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ABSTRACT

Diffusion models have shown remarkable performance in image synthesis by
progressively estimating a smooth transition from a Gaussian distribution of noise
to a real image. Unfortunately, their practical deployment is limited by slow
inference speed, high memory usage, and the computational demands of the noise
estimation process. Post-training quantization (PTQ) emerges as a promising
solution to accelerate sampling and reduce the memory overhead of diffusion
models. Existing PTQ methods for diffusion models typically apply uniform
weights to calibration samples across timesteps, which is sub-optimal since data at
different timesteps may contribute differently to the diffusion process. Additionally,
due to varying activation distributions and gradients across timesteps, a uniform
quantization approach is sub-optimal. Each timestep requires a different gradient
direction for optimal quantization, and treating them equally can lead to conflicting
gradients that degrade performance. In this paper, we propose a novel PTQ method
that addresses these challenges by assigning appropriate weights to calibration
samples. Specifically, our approach learns to assign optimal weights to calibration
samples to align the quantized model’s gradients across timesteps, facilitating the
quantization process. Extensive experiments on CIFAR-10, LSUN-Bedrooms, and
ImageNet datasets demonstrate the superiority of our method compared to other
PTQ methods for diffusion models.

1 INTRODUCTION

In recent years, diffusion models have become a prominent framework for high-quality image synthe-
sis (Ho et al., 2020; Dhariwal & Nichol, 2021; Rombach et al., 2022). Despite their effectiveness, the
practical deployment of diffusion models is hindered by the substantial computational cost associated
with the sampling procedure, which typically involves hundreds of iterative denoising steps. Fur-
thermore, the noise estimation networks employed in these models are often composed of complex
architectures with a large number of parameters, making them resource-intensive and difficult to
deploy on devices with limited computational or memory capacity.

Quantization has become an increasingly viable approach for alleviating the intensive resource
requirements of diffusion models. By approximating network weights and activations using reduced-
precision representations (Li et al., 2023; He et al., 2023b; Huang et al., 2024; Shang et al., 2023;
Wang et al., 2024a), it allows substantial reductions in both memory footprint and computational
overhead at the expense of slight degration in performance. In particular, PTQ stands out as a practical
method for adapting diffusion models to low-resource settings, as it allows for model compression
without revisiting the training process or relying on the original dataset.

In the context of post-training quantization for diffusion models, calibration data plays a critical role
in guiding the quantization process and is typically collected from various stages of the denoising tra-
jectory. For instance, Q-Diffusion (Li et al., 2023) adopts a fixed-interval selection strategy, collecting
samples uniformly across the entire set of denoising steps. On the other hand, in PTQ4DM (Shang
et al., 2023), a number of timesteps are sampled from a Gaussian distribution, and the images gen-
erated at these timesteps are then used as calibration data. Building upon this, TFMQ-DM (Huang
et al., 2024) follows the same sampling strategy as Q-Diffusion and further introduces a method
designed to preserve temporal feature consistency during quantization. A common assumption in
existing quantization methods for diffusion models (Shang et al., 2023; Li et al., 2023; Huang
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et al., 2024) is that all calibration samples contribute equally to the quantization process. However,
recent research on diffusion models challenges this notion by demonstrating that sample importance
varies significantly across timesteps. For example, (Xie et al., 2024) shows that the loss gradient
norms of samples are highly dependent on their associated timesteps, introducing a systematic bias in
influence estimation. Samples corresponding to timesteps with larger gradient norms tend to exert a
disproportionately higher impact on the model. Similarly, (Wang et al., 2024b) empirically categorize
timesteps into acceleration, deceleration, and convergence phases based on process increments, each
contributing differently to the model’s learning dynamics.

On the other hand, since activations and gradients vary significantly across timesteps, calibration
data from different timesteps can be interpreted as representing distinct tasks with divergent gradient
dynamics. Prior works on diffusion model training have highlighted the challenge of gradient conflict,
which arises when optimization directions across timesteps interfere with each other. For example,
(Hang et al., 2023) frames diffusion model training as a multi-task problem, showing that optimizing
the denoising objective at a specific noise level can degrade performance at others. Similarly, (Go
et al., 2023) observes that negative transfer can occur due to conflicting gradients across timesteps.
In the context of quantization, this challenge becomes more pronounced due to the discrete nature
of the parameter space. Quantized models with binary constraints lack the flexibility to represent
intermediate values, forcing parameters to take discrete values such as 0 or 1. Unlike full-precision
models, which can mitigate conflicting gradient signals by adjusting parameters incrementally,
quantized models cannot resolve such conflicts effectively. As a result, when gradients from different
timesteps compete, the model may incur large losses in directions where no suitable quantized value
exists, leading to uneven performance across timesteps. Consequently, improving performance at one
timestep may inherently degrade performance at others due to representational trade-offs.

To this end, we propose a novel meta-learning–based approach that dynamically assigns importance
weights to calibration samples during the quantization process. Our goal is to calibrate the quantized
model using a weighted sample set that not only achieves strong validation performance but also
promotes alignment between gradients from different timesteps. We formulate this as a bi-level
optimization problem, learning sample weights such that the calibrated model maintains gradient
consistency and improves adaptability during the quantization process. By aligning gradient directions
and emphasizing samples that contribute most effectively, our method enhances gradient propagation
and overall quantization quality. We validate our proposed approach on the widely used CIFAR-
10 (Krizhevsky & Hinton, 2009), LSUN-Bedrooms (Yu et al., 2015) and ImageNet (Deng et al., 2009)
datasets with various noise estimation network architectures under different bit-width settings. The
extensive experiments demonstrate that our method outperforms the state-of-the-art PTQ methods for
diffusion models. The contributions of this work can be summarized as follows:

• We are the first to identify the issue of gradient conflict during post-training quantiza-
tion of diffusion models, where calibration samples from different timesteps may induce
inconsistent optimization directions.

• We introduce the first PTQ framework for diffusion models that leverages gradient alignment
to learn sample-wise importance weights for calibration data. By emphasizing samples
with coherent gradient directions across timesteps, our method enhances quantization
effectiveness.

• Extensive experiments on CIFAR-10, LSUN-Bedrooms, and ImageNet demonstrate that our
approach consistently achieves superior FID scores compared to prior PTQ techniques for
diffusion models.

2 RELATED WORKS

Post-training quantization on diffusion Models. Diffusion models (Ho et al., 2020; Song et al.,
2021b) have emerged as a powerful generative framework, capable of producing high quality images
through iterative refinement of noisy inputs. Despite their impressive results, the sheer number of
inference steps required in the denoising trajectory poses a substantial bottleneck for real-world
deployment. While acceleration techniques (Lu et al., 2022; Song et al., 2021a; Zhao et al., 2023)
have been introduced to reduce inference time, these methods often remain resource-intensive due to
the size and complexity of the underlying noise estimation networks. To alleviate these overhead,
model compression techniques, particularly model quantization (Li et al., 2023; He et al., 2023b;
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Wang et al., 2024a; Huang et al., 2024; Shang et al., 2023; He et al., 2023a), offer a promising solution
for diffusion models, by minimizing both computational and memory footprints. Among these, the
post-training quantization (PTQ)(Li et al., 2023; Huang et al., 2024) has gained much attention as a
practical approach that does not require full model retraining.

Data optimization for diffusion model quantization. PTQ methods for diffusion models typically
rely on generated calibration data and effective quantization strategies. Recent efforts in this direction
have primarily focused on sampling strategies for calibration, aiming to select optimal calibration data
for the quantization process. For instance, APQ-DM (Wang et al., 2024a) adopts a principled time-
step selection strategy rooted in structural risk minimization to guide the generation of calibration
inputs. On the other hand, PTQ4DM(Shang et al., 2023) demonstrates that calibrating quantized
models with samples generated from the denoising process leads to superior results compared to
using samples from the forward process. Building on this idea, Q-Diffusion (Li et al., 2023) samples
intermediate results at fixed intervals and introduces a novel shortcut-aware quantization technique to
improve the quantized model’s performance across different benchmarks.

While existing PTQ methods typically assign equal weight to all calibration samples, this overlooks
important characteristics of diffusion models. Prior studies (Nichol & Dhariwal, 2021; Zhang et al.,
2022) have shown that different timesteps contribute unequally to the generative process. For instance,
later timesteps tend to capture higher-level semantic structures, while earlier ones focus more on
denoising low-level details. Treating all timesteps uniformly may therefore dilute the influence of
more impactful samples, leading to suboptimal quantization.

Moreover, samples from different timesteps follow distinct distributions and can be seen as separate
subtasks with divergent learning dynamics. Uniformly optimizing over the entire training set may
induce conflicting gradient signals across timesteps, resulting in performance trade-offs where
improvements in certain timesteps degrade others. To address these challenges, we introduce a
meta-learning–based framework that learns sample-wise importance weights, promoting calibration
samples that yield coherent and stable gradient directions across timesteps. This improves the overall
quantization quality by guiding optimization in a more coherent direction.

3 PRELIMINARY ANALYSIS

To investigate the gradient dynamics induced by calibration samples from different timesteps during
the quantization process, we analyze how gradients of the quantized model vary across timesteps.
Specifically, we compute gradient vectors of the quantization loss evaluated on calibration samples
drawn from different timesteps with respect to model parameters, using 256 samples per timestep for
CIFAR10 dataset. We then measure the pairwise cosine distance between these gradient vectors to
construct a gradient dissimilarity matrix. As shown in the heatmap in Figure 1a, the cosine distance
between gradients varies across timesteps. In particular, while gradients from earlier timesteps exhibit
higher consistency, those from later stages of the denoising process tend to diverge more noticeably.
This observation indicates that calibration data from different timesteps induce distinct gradient
signals. Ignoring these variations during quantization may result in gradient misalignment, which
can hinder effective optimization and reduce generalization across timesteps, causing the model to
perform well to certain timesteps while underperforming on others.

Additionally, we visualize the loss of the quantized model after calibrated, using timestep-specific
calibration subsets, each corresponding to a specific timestep. The results, shown in Figure 1b,
reveal significant variation in loss across timesteps, indicating that the quantized model struggles to
generalize across the full diffusion process.

4 PROPOSED METHOD

4.1 PROBLEM DEFINITION

Before the quantization process starts, we construct the calibration set following the procedure
outlined in Q-Diffusion (Li et al., 2023), by selecting generated samples at fixed intervals across the
denoising timesteps. Each calibration sample in the training set X(T ) =

⋃T
t=1 X

(T )
t is represented

as (x
(T )
i , t

(T )
i ) ∈ X

(T )
ti , where x

(T )
i is a generated sample at the ti timestep. A validation set
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(a) Gradient dissimilarity across timesteps.
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(b) Timestep-wise loss of the quantized model

Figure 1: Timestep-wise behavior in quantized diffusion models. (a) Gradient dissimilarity matrix
constructed by computing pairwise cosine distance between gradient vectors of the quantization loss,
with respect to model parameters, for calibration samples drawn from different timesteps. Higher
value indicates higher divergent between timesteps. (b) Quantization loss evaluated separately for
calibration samples grouped by timestep, highlighting the uneven performance of the quantized model
across different timesteps.

X(V ) =
⋃T

t=1 X
(V )
t is constructed by generating an equal number of synthetic samples X(V )

t from
each timestep t. In our method, each calibration sample (x(T )

i , t
(T )
i ) is assigned a learnable weight ωi,

which reflects its influence on the quantized model’s performance. The complete set of weights for all

training samples is denoted by ω = {ωi}|X
(T )|

i=1 . Our goal is to dynamically optimize training sample
weights, such that the resulting quantized model θ∗Q obtained after quantized using the weighted
samples, achieves strong performance on the validation set. Given the full-precision model θFP and
the initial quantized model θQ, the optimization objective for ω is defined as follows:

ω = argmin
ω

LV AL(θ
∗
Q(ω), θFP , X

(V ))

s.t: θ∗Q(ω) = θQ − η

|X(T )|∑
i=1

ωi
∂LMSE(θQ, θFP , x

(T )
i )

∂θQ
, (1)

where |.| signifies the cardinality of a given set; LMSE(.) denotes the quantization loss (MSE loss)
that matches the outputs of the full-precision model θFP and the quantized model θQ; LV AL(.)
denotes our optimization objective, to help the model achieves strong performance on the validation
set. θ∗Q(ω) denotes the final quantized model after calibrated over the training set; η denotes the
learning rate.

4.2 CALIBRATION DATA OPTIMIZATION

Beside model performance on the validation set, since all timesteps in diffusion model shares the
same quantized model weight θQ, for a consistent quantization process, we aim to align the gradients
of θ∗Q across different timestep-specific validation set , promoting smoother optimization across
subsequent quantization stages. In practice, we would divide timesteps into different groups, as
adjacent timesteps often exhibit similar gradient behavior, as illustrated in Figure 1a. However, for
simplicity, we assume each group consists of a single timestep and use T to denote both the number
of timesteps and the number of groups throughout the algorithmic description.

Our validation loss LV AL(.) is defined as:

LV AL(θ
∗
Q, θFP , X

(V )) = LGM (θ∗Q, X
(V )) + LMSE(θ

∗
Q, θFP , X

(V )), (2)
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where the gradient matching loss LGM for gradients w.r.t the model weights is defined as:

LGM (θ∗Q, X
(V )) = − 2

T ∗ (T− 1)

∑
t̸=k

Gθ∗
Q
,tGθ∗

Q
,k

s.t: Gθ∗
Q
,t =

∂LMSE(θ
∗
Q, θFP , X

(V )
t )

∂θ∗Q
(3)

Regarding the loss LMSE in Eq. (1). The reconstruction loss LMSE , commonly employed in
prior quantization methods, is defined as follows:

LMSE(θQ, θFP , X
(T )) =

1

|X(T )|

|X(T )|∑
i=1

LMSE(θQ, θFP , xi)

=
1

|X(T )|

|X(T )|∑
i=1

∥f(θFP , xi)− f(θQ, xi)∥2, (4)

where f(θFP , xi) and f(θQ, xi) respectively denote the outputs of the full-precision and quantized
models given the input sample xi.

Directly optimizing Eq. (1) is challenging due to the involvement of the third-order term in the
gradient of LGM (.) with respect to the sample weights ω. To address this, we propose a more
efficient algorithm in Algorithm 2, and prove that the proxy objective optimized by this algorithm
serves as a faithful surrogate for the original loss in Eq.( 1). Theorem 4.1 formalizes this relationship,
demonstrating that optimization via Algorithm 2 induces the minimization of the original objective in
Eq. (1).

Theorem 4.1. The optimization in Algorithm 2 implicitly lead to the minimization of the target
objective LVAL(·) in Eq. (1).

In order to prove our main result, we present two lemmas that will be instrumental in the proof of the
theorem.

Lemma 4.2. Let us denotes Gω,t =
∂LMSE(θ∗

Q,θFP ,X
(V )
t )

∂ω . The second gradient matching loss
L(2)
GM (.) for gradients w.r.t the sample weight ω is defined as:

L(2)
GM (θ∗Q, X

(V )) = − 2

T ∗ (T − 1)

∑
t̸=k

Gω,tGω,k, (5)

The minimization of L(2)
GM (.) will implicitly lead to the minimization of LGM (.), in the sense that a

minimizer of L(2)
GM corresponds to a minimizer of the target loss LGM.

We begin by leveraging Lemma 4.2 to show that minimizing the surrogate gradient matching loss
L(2)
GM (.) in Eq. (15 )implies the minimization of the original gradient matching loss LGM (.) in

Eq. (3). Therefore, minimizing the surrogate validation objective L(2)
V AL(.) in Eq. (8) leads to the

minimization of the true validation loss LV AL(.) in Eq. (2). To establish Theorem 4.1, it thus suffices
to show that Algorithm 2 minimizes L(2)

V AL(.), which is stated by Lemma 4.3:

Lemma 4.3. Let us define a second validation loss:

L(2)
V AL(θ

∗
Q, θFP , X

(V )) = L(2)
GM (θ∗Q, X

(V )) + LMSE(θ
∗
Q, θFP , X

(V )), (6)

The Algorithm 2 will minimize L(2)
V AL(θ

∗
Q, θFP , X

(V )) in Eq. (8).

Therefore, combining Lemma 4.3 and Lemma 4.2, we conclude that Theorem 4.1 holds. Please see
the Supplementary for the proof of our Lemmas 4.3 and 4.2.

Based on Theorem 4.1, we can optimize the sample weights in Eq. (1) implicitly using the Algorithm
2 in the Appendix.
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4.3 OVERALL OPTIMIZATION FRAMEWORK

At the beginning of training, a synthetic dataset is constructed by sampling from the full-precision
diffusion model across multiple timesteps. This set is then divided into a timestep-balanced validation
set and a training set. The training sample weight ω are initialized uniformly as

ωi =
exp(si/τ)∑
j exp(sj/τ)

, (7)

where we initialize si = 1
32 ∀ 0 ≤ i < |X(T )|, τ denotes the temperature hyper-parameter.

During the training process, model calibration is performed in a block-wise fashion, with sample
weights updated at each transition to a new block. A summary of the proposed model weight
calibration procedure is provided in Algorithm 1.

Algorithm 1 Diffusion Model Quantization with Sample Weights

1: Input: Full-precision model θFP ; number of layers L; number of timesteps T; the training set
X(T ); the validation set X(V )

2: Initialize sample weights ω
3: Initialize quantized model θQ ← θFP

4: for ℓ = 1 to L do
5: Use Algorithm 2 to update ω
6: Update quantized model θQ by calibrating layer ℓ with training set X(T ) and the updated

sample weights ω.
7: end for
8: Return: Quantized model θQ

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Models and datasets. To assess the effectiveness of our approach, we conduct experiments on
popular diffusion architectures. Specifically, we provide performance on DDPM (Ho et al., 2020), for
unconditional generation, and LDM (Rombach et al., 2022), which utilizes latent space and supports
both unconditional and class-conditional generation tasks.

Our evaluation spans multiple standard datasets, including CIFAR-10 at a resolution of 32 ×
32(Krizhevsky et al., 2010), LSUN-Bedrooms at 256 × 256(Yu et al., 2015), and ImageNet at
256× 256 (Deng et al., 2009).

Implementation details. Our approach aligns with the current state-of-the-art techniques in post-
training quantization (PTQ) applied to diffusion models (Shang et al., 2023; Huang et al., 2024),
targeting both model weights and activations. In practical scenarios, post-training quantization (PTQ)
for diffusion models typically addresses weight and activation quantization as separate processes.
For activations, TFMQ-DM (Huang et al., 2024) has shown that adopting sophisticated quantization
techniques tends to introduce high computational cost while yielding only limited performance gains.
As a result, we employ the lightweight activation quantization method from TFMQ-DM, which
estimates activation ranges using an exponential moving average (EMA)(Jacob et al., 2018) over
mini-batches. On the other hand, we quantize the model weights using the AdaRound algorithm
(Nagel et al., 2020), in conjunction with block-wise reconstruction (Li et al., 2021), to efficiently
quantize the noise-estimation network. We adopt AdaRound as it is the standard weight-quantization
scheme used in prior diffusion PTQ methods (Huang et al., 2024; He et al., 2023b), ensuring a fair
and consistent comparison. We begin by generating the calibration data through inference on the
pretrained full-precision diffusion model, as outlined in Q-Diffusion (Li et al., 2023). To ensure
consistency with prior post-training quantization efforts (Shang et al., 2023; Li et al., 2023; Huang
et al., 2024), we adopt the LAPQ method (Nahshan et al., 2021) to initialize the quantized model
parameters θQ using weights from the original full-precision network. Additionally, we integrate
the temporal feature preservation strategy proposed in TFMQ-DM (Huang et al., 2024) to better
maintain generative quality. Regarding the validation set, we use a small subset of the generated data

6
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as the validation set. Since our algorithm aligns gradients across timesteps and adjacent timesteps
tend to exhibit similar behavior, we partition the validation data into 5 groups, each corresponding
to a consecutive range of timesteps. Each group is treated as a separate task in our algorithm. We
optimize the sample weights using the Adam optimizer with a learning rate of 5× 10−6 for 1500
iterations per update. For each quantization block, we apply 20000 optimization iterations, in line
with existing approaches (Shang et al., 2023; Li et al., 2023; Huang et al., 2024). Optimization of
the sample weights ω is carried out using the Adam optimizer (Kingma & Ba, 2015), with a fixed
learning rate of 4× 10−5. We employ the higher library1 to enable gradient-based meta-optimization.

Evaluation metrics. To ensure alignment with established benchmarks (Shang et al., 2023; Li
et al., 2023; Huang et al., 2024), we assess the generative quality of diffusion models using both
the Fréchet Inception Distance (FID)(Heusel et al., 2017) and spatial Fréchet Inception Distance
(sFID)(Salimans et al., 2016). These metrics provide complementary insights into visual fidelity and
spatial coherence. Specifically, FID evaluates the discrepancy between real and generated image
distributions by comparing their high-level Inception features, while sFID focuses on mid-level
features to better capture localized structural patterns in the images. Following common practice, we
generate and evaluate 50,000 synthetic samples to compute these scores, for a fair comparison with
prior quantization studies.

Table 1: Quantization results for unconditional image generation with DDIM on CIFAR-10 32× 32.

Methods CIFAR-10 32× 32

W/A FID↓ sFID↓ W/A FID↓ sFID↓
PTQ4DM (Shang et al., 2023)

4/32

5.65 -

4/8

5.14 -
Q-Diffusion (Li et al., 2023) 5.08 4.98 4.98 5.68
TFMQ-DM (Huang et al., 2024) 4.73 - 4.78 -
Ours 4.28 4.56 4.32 4.61

Table 2: Quantization results for image generation with LDM-4 on LSUN-Bedrooms and ImageNet
at resolution 256× 256. We report FID, sFID, Precision, and Recall for each dataset.

Methods Bits (W/A) LSUN-Bedrooms ImageNet

FID↓ sFID↓ Precision↑ Recall↑ FID↓ sFID↓ Precision↑ Recall↑
Full Prec. 32/32 2.98 7.09 – – 10.91 7.67 – –

PTQ4DM (Shang et al., 2023) 4/32 4.83 7.94 – – – – – –
Q-Diffusion (Li et al., 2023) 4/32 4.20 7.66 – – 11.87 8.76 – –
PTQD (He et al., 2023b) 4/32 4.42 7.88 – – 11.65 9.06 – –
TFMQ-DM (Huang et al., 2024) 4/32 3.60 7.61 65.92 44.88 10.50 7.98 92.91 30.24
Ours 4/32 3.14 7.22 66.11 45.50 10.17 7.40 93.02 30.97

PTQ4DM (Shang et al., 2023) 4/8 20.72 54.30 – – – – – –
Q-Diffusion (Li et al., 2023) 4/8 6.40 17.93 – – 10.68 14.85 – –
PTQD (He et al., 2023b) 4/8 5.94 15.16 – – 10.40 12.63 – –
TFMQ-DM (Huang et al., 2024) 4/8 3.68 7.65 65.89 44.99 10.29 7.35 92.53 30.98
Ours 4/8 3.26 7.40 66.05 45.20 9.96 7.55 92.75 30.71

5.2 COMPARISON WITH THE STATE-OF-THE-ART QUANTIZATION METHODS FOR DIFFUSION
MODELS

To validate the effectiveness of our method, we benchmark it against the current state-of-the-art post-
training quantization techniques developed for diffusion models, such as TFMQ-DM (Huang et al.,
2024), PTQD (He et al., 2023b)PTQ4DM (Shang et al., 2023) and Q-Diffusion (Li et al., 2023). For
consistency and comparability, the baseline results are directly adopted from the TFMQ-DM study.
Our evaluation spans a diverse set of datasets: CIFAR-10 (32× 32), LSUN-Bedrooms (256× 256)
for unconditional generation tasks, as well as ImageNet (256 × 256) for class-conditional image
synthesis. All experiments adhere to the evaluation protocols established in prior work (Huang et al.,
2024).

1https://github.com/facebookresearch/higher
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Unconditional image generation. To evaluate the effectiveness of our method under extreme low-bit
quantization, we conduct comprehensive experiments on both low-resolution and high-resolution
generative models. Specifically, we test DDPM on CIFAR-10 at 32× 32 resolution, and LDM-4 on
two high-resolution datasets: LSUN-Bedrooms at 256× 256. For consistency and fair comparison,
we employ the DDIM sampler (Song et al., 2021a) with 100 steps for CIFAR-10 and 200 steps for
the two high-resolution datasets.

Across all three benchmarks, our method consistently outperforms existing state-of-the-art techniques,
particularly in low-bit regimes. As reported in Table 2, we achieve state-of-the-art FID scores in
all quantization settings. Specifically, on CIFAR-10, our approach surpasses the compared method
method (TFMQ-DM) with FID improvements of 0.45 and 0.46 in W4A32 and W4A8 settings,
respectively. Similar improvements are observed on LSUN-Bedrooms, with FID gains of 0.46
(W4A32) and 0.42 (W4A8). In summary, our approach demonstrates consistent and meaningful
improvements over prior methods.

Class-conditional image generation. We further evaluate our method on the high-resolution
ImageNet dataset using LDM-4 and the DDIM sampler (Song et al., 2021a) with 20 denoising steps.
To ensure fair comparison, baseline results are adopted directly from the TFMQ-DM paper (Huang
et al., 2024). As summarized in Table 2, our approach consistently surpasses existing methods across
all quantization configurations.

In particular, the performance gain in the W4A32 setting is notable: our method reduces FID by
0.33 and sFID by 0.58 compared to TFMQ-DM, one of the current state-of-the-art PTQ methods for
diffusion model. These results highlight our method’s ability to preserve generation quality under
aggressive quantization, even on large-scale and visually complex datasets such as ImageNet.

5.3 ABLATION STUDIES

Ablation studies for the temperature parameter τ . Please refer to the Appendix for more ablation
studies of our method. We vary the value of τ from 0.2 to 2 and evaluate the model’s performance on
the CIFAR-10 dataset under the W4A32 setting, as shown in Table 3b. As shown, the performance
will degrade if we set T to smaller values.

Table 3: Ablation studies on CIFAR-10 dataset.

(a) Effect of validation set size.

τ 2% 5% 10% 20%
FID↓ 4.55 4.32 4.59 4.75
sFID↓ 4.71 4.61 4.38 4.51

(b) Effect of temperature parameter T .

τ 0.2 0.5 1 2
FID↓ 4.85 4.55 4.28 4.32
sFID↓ 4.74 4.67 4.56 4.61

Ablation studies for the number of timesteps. To evaluate the effectiveness of our method in the
extreme case of very few timesteps, we test it on the ImageNet dataset (4/32 setting) using the DDIM
sampler with 5, 10, and 20 timesteps. As shown in Table 4, our method remains highly effective,
outperforms the baseline TFMQ-DM under these challenging conditions.

Table 4: Ablation studies for the number of inference timesteps. The results demonstrate that our
method remains effective when the number of timesteps is small.

Methods Timestep FID ↓ sFID ↓

TFMQ-DM (Huang et al., 2024) 20 10.50 7.98
Ours 20 10.17 7.40

TFMQ-DM (Huang et al., 2024) 10 9.01 12.75
Ours 10 8.73 11.26

TFMQ-DM (Huang et al., 2024) 5 19.10 38.69
Ours 5 18.22 35.05

8
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Figure 2: Visualization of the correlation between optimized sample weights and gradient alignments.
All samples are sorted in descending order ot their sample weights, and divided uniformly into 50
groups. The blue line represents the average sample weight per group, while the red line indicates the
average gradient alignment between samples in each group and the validation set. This demonstrates
the positive correlation between gradient alignment and sample weight.

Ablation studies for the validation set size. In practice, we only use a small part of the training
set as the validation set ( 5%), therefore the total number of images that our methods use are equal to
that of the baseline method (TFMQ-DM). To assess sensitivity, we evaluate the performance using
various validation sizes below in Table 3a. We observe that the method performs reliably across
all sizes, with 5% achieving the best FID and competitive sFID. Notably, increasing the validation
size beyond this point does not consistently improve performance, possibly due to increased sample
diversity making it harder to optimize the reweighting under fixed calibration cost.

Visualization of sample weight. We visualize the distribution of sample weights alongside their
corresponding average gradient similarity scores across groups in the validation set. For each training
sample, the gradient similarity score is computed by assessing the alignment of its gradient with those
of each task, and then averaging the similarity scores across tasks. As illustrated in Figure 2, our
method assigns higher weights to samples exhibiting stronger gradient alignment, which facilitates
more consistent optimization across the diffusion process by prioritizing samples that reduce gradient
conflicts and improve the overall convergence across timesteps

The comparison of the computation cost and hardware efficiency. Although our method intro-
duces additional computational overhead during training process, it remains competitively efficient.
On LSUN-Bedrooms (256 × 256) under the W4A8 setting, TFMQ-DM (Huang et al., 2024) and
Q-Diffusion (Li et al., 2023) requires 2.32 and 5.29 GPU hours for training cost, respectively. In
comparison, our approach takes around 3.5 GPU hours, representing a moderate increase by 1 hour
over TFMQ-DM, but still more efficient than Q-Diffusion. Crucially, this modest increase in training
cost yields consistently superior FID results across all evaluated settings, demonstrating an effective
trade-off between performance and computational burden. It’s also important to note that the added
complexity is confined to the training stage. During inference, our method shares the same model
structure and quantization format as TFMQ-DM, leading to identical hardware efficiency and latency
at test time.

6 CONCLUSION

In this work, we address the overlooked issue of gradient conflict during post-training quantization
(PTQ) of diffusion models, which arises from treating calibration samples across timesteps as
equally important. We propose a meta-weighting framework that dynamically learns sample-wise
importance by promoting gradient alignment across timesteps. This approach enables more effective
calibration under quantization constraints. Extensive experiments on CIFAR-10, LSUN-Bedrooms,
and ImageNet demonstrate consistent improvements over existing PTQ methods, highlighting the
significance of timestep-aware sample weighting.

9
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A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS

We used a large language model (ChatGPT) to help with editing this paper. It was only used for
simple tasks such as fixing typos, rephrasing sentences for clarity, and improving word choice. All
ideas, experiments, and analyses were done by the authors, and the use of LLMs does not affect the
reproducibility of our work.

A.2 THEORETICAL PROOFS

Lemma A.1 (Restated from Lemma 4.3). Let us define a second validation loss:

L(2)
V AL(θ

∗
Q, θFP , X

(V )) = L(2)
GM (θ∗Q, X

(V )) + LMSE(θ
∗
Q, θFP , X

(V )), (8)

The Algorithm 1 will minimize L(2)
V AL(θ

∗
Q, θFP , X

(V )) in Eq. (8).

Proof of Lemma 1.1. Let us denote G(t)ω,i =
∂LMSE(θ∗

Q,θFP ,X
(V )
t )

∂ω(i−1) as the gradient w.r.t ω(i) when
evaluated on the validation set at the t-th iteration, ω(i−1) denotes the samples weight after the (i-1)-th
iteration and before the i-th iteration optimized with Algorithm 1, ω(0) denotes the initial sample
weights. We have:

ω(T ) − ω(0) = −η(

T∑
t=1

G(t)
ω,t),

(9)

Using First Order Taylor approximation around ω(0) and combine with Eq. (9) we have:

G(t)
ω,t ≈ G(t)

ω,1 +Hω,t(ω
(t−1) − ω(0))T

= G(t)
ω,1 − ηHω,t(

t−1∑
i=1

G(i)
ω,i)

T

= G(t)
ω,1 −O(η), (10)

where Hω,t denotes the Hessian matrix of the model loss with respect to the sample weights ω,
evaluated on the validation data at the t-th iteration.

Replace G(i)ω,i = G
(i)
ω,1 −O(η) ∀i = 1, 2, . . . t− 1 we have:

G(t)
ω,t = G(t)

ω,1 − ηHω,t(

t−1∑
i=1

G(i)
ω,i)

T

≈ G(t)
ω,1 − ηHω,t(

t−1∑
i=1

(G(i)
ω,1 −O(η)))T

≈ G(t)
ω,1 − ηHω,t(

t−1∑
i=1

(G(i)
ω,1) +O(η2)

(11)

For any i ≤ j, because at each iteration i and j we randomly sample validation data of a timestep,
the iteration indexes are interchangeable, i.e. E[Hω,jG(i)ω,1] = E[Hω,iG(j)ω,1]. Therefore, we have:

E[
∂G(i)

ω,1

T
G(j)
ω,1

∂ω
] = E[Hω,jG(i)

ω,1 +Hω,iG(j)
ω,1]

= 2E[Hω,jG(i)
ω,1]

=⇒ Hω,t(

t−1∑
i=1

(G(i)
ω,1) =

1

2

t−1∑
i=1

∂G(i)
ω,1

T
G(t)
ω,1

∂ω (12)
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Combine Eq. (11) and Eq. (12) we have:

G(t)
ω,t ≈ G(t)

ω,1 − ηHω,t(

t−1∑
i=1

(G(i)
ω,1)

= G(t)
ω,1 −

η

2

t−1∑
i=1

∂G(i)
ω,1

T
G(t)
ω,1

∂ω (13)

Combine Eq. (9 )and Eq. (13) we have:

ω(T ) − ω(0) = −η(

T∑
t=1

G(t)
ω,t)

= −η(

T∑
t=1

(G(t)
ω,1 −

η

2

t−1∑
i=1

∂G(i)
ω,1

T
G(t)
ω,1

∂ω
)),

= −η(

T∑
t=1

G(t)
ω,1 −

η

2

∑
1≤i<j≤T

∂G(i)
ω,1

T
G(j)
ω,1

∂ω
),

= −η(

T∑
t=1

∂LMSE(θ
∗
Q, θFP , X

(V )
t )

∂ω
+

ηT (T − 1)

4

∂L(2)
GM (θ∗Q, X

(V ))

∂ω
),

= −η(
∂LMSE(θ

∗
Q, θFP , X

(V ))

∂ω
+

ηT (T − 1)

4

∂L(2)
GM (θ∗Q, X

(V ))

∂ω
),

(14)

According to Eq.( 14), the update in ω of Algorithm 1 corresponds to a gradient descent step on a
composite loss function comprising LMSE(.) and L(2)

GM (.). This indicates that the optimization of
Algorithm 1 effectively minimizes the combined validation loss L(2)

V AL(θ
∗
Q, θFP , X

(V )) as defined in
Equation (8).

Lemma A.2 (Restated from Lemma 4.2). Let us denotes Gω,t =
∂LMSE(θ∗

Q,θFP ,X
(V )
t )

∂ω . The second
gradient matching loss L(2)

GM (.) for gradients w.r.t the sample weight ω is defined as:

L(2)
GM (θ∗Q, X

(V )) = − 2

T ∗ (T − 1)

∑
t̸=k

Gω,tGω,k, (15)

The minimization of L(2)
GM (.) will implicitly lead to the minimization of LGM (.), in the sense that a

minimizer of L(2)
GM corresponds to a minimizer of the target loss LGM.

Proof of Lemma 1.2. To demonstrate that minimizing L(2)
GM (·) leads to the minimization of LGM (·),

we show that under sufficiently small learning rate η, the optimality of L(2)
GM (·) implies the optimality

of LGM (·). Let {G(T )
θQ,t}Tt=1 denotes the set of gradient w.r.t the intial quantized model’s parameters

θQ when evaluated on T timestep-specific training sets {X(T )
t }Tt=1. Similarly, we define {G(T )

θ∗
Q,t}Tt=1

as the set of gradient w.r.t the meta model’s parameters θ∗Q when evaluated on T timestep-specific
training subsets. We aim to prove that, under sufficiently small learning rate η, for any 1 ≤ i < j ≤ T,
if

cos(Gω,i,Gω,j) = 1,

then it follows that

cos
(
Gθ∗

Q,i,Gθ∗
Q,j

)
= 1.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

We begin by expressing the gradients using the chain rule:

Gω,t =
∂LMSE(θ

∗
Q, θFP , X

(V )
t )

∂ω

T

=
∂LMSE(θ

∗
Q, θFP , X

(V )
t )

∂θ∗Q

T
∂θ∗Q
∂ω

=
∂LMSE(θ

∗
Q, θFP , X

(V )
t )

∂θ∗Q

T
∂θ∗Q
∂ω

= GT
θ∗
Q
,t

∂(θQ − η
∑|X(T )|

i=1 ωi
∂LMSE(θQ,θFP ,x

(T )
i )

∂θQ
)z

∂ω

= −ηGT
θ∗
Q
,t

[
LMSE(θQ,θFP ,x

(T )
1 )

∂θQ

LMSE(θQ,θFP ,x
(T )
2 )

∂θQ
· · · LMSE(θQ,θFP ,x

(N)
1 )

∂θQ

]
(16)

Let us define a matrix C size T × N where Ct,j = cos(Gθ∗
Q,t,

LMSE(θQ,θFP ,x
(T )
j )

∂θQ
) denoting the

cosine similarity between the meta model’s gradient evaluated on the validation data at timestep t
and the original model’s gradient when evaluated on jth training samples.

From Eq. (16), for any 1 ≤ i < j ≤ T , if cos(Gω,i,Gω,j) = 1, then we have:
Ci,1

Cj,1
=

Ci,2

Cj,2
= · · · = Ci,N

Cj,N
> 0 ∀k ∈ {1, . . . , N} with Cj,k ̸= 0

(17)

Supposed i = 1, j = 2, then cos(Gω,1,Gω,2) = 1 and we assume that cos
(
Gθ∗

Q,1,Gθ∗
Q,2

)
= γ < 1,

we will prove that this lead to contradiction. Using First-Order Taylor approximation around θQ we
have:

Gθ∗
Q
,1∥∥∥Gθ∗

Q
,1

∥∥∥ =
G(T )
θ∗
Q
,1∥∥∥G(T )

θ∗
Q
,1

∥∥∥ (X(T )
1 and X

(V )
1 has similar distribution)

≈ 1∥∥∥G(T )
θ∗
Q
,1

∥∥∥ (G(T )
θQ,1 + (θ∗Q − θQ)H1)

=
1∥∥∥G(T )
θ∗
Q
,1

∥∥∥ (G(T )
θQ,1 − η

|X(T )|∑
i=1

ωi
∂LMSE(θQ, θFP , x

(T )
i )

∂θQ
H1), (18)

whereH1 denotes the Hessian matrix w.r.t the model weight θQ when evaluated on the training set
X

(T )
1 for the timestep 1.

Let B =
Gθ∗

Q
,1∥∥∥∥Gθ∗

Q
,1

∥∥∥∥ −
Gθ∗

Q
,2∥∥∥∥Gθ∗

Q
,2

∥∥∥∥ , we have

∥B∥ =

∥∥∥∥∥∥
Gθ∗

Q
,1∥∥∥Gθ∗

Q
,1

∥∥∥ −
Gθ∗

Q
,2∥∥∥Gθ∗

Q
,2

∥∥∥
∥∥∥∥∥∥ ≤

∥∥∥∥∥∥
Gθ∗

Q
,1∥∥∥Gθ∗

Q
,1

∥∥∥
∥∥∥∥∥∥+

∥∥∥∥∥∥
Gθ∗

Q
,2∥∥∥Gθ∗

Q
,2

∥∥∥
∥∥∥∥∥∥ = 2 (19)

Therefore, multiply both size of Eq. (18) with B we have::

(
Gθ∗

Q
,1∥∥∥Gθ∗

Q
,1

∥∥∥ )TB =
1∥∥∥G(T )
θ∗
Q
,1

∥∥∥ (G(T )
θQ,1 − η

|X(T )|∑
i=1

ωi
∂LMSE(θQ, θFP , x

(T )
i )

∂θQ
H1)

TB

=⇒ 1∥∥∥G(T )
θ∗
Q
,1

∥∥∥ (G(T )
θQ,1)

TB = (
Gθ∗

Q
,1∥∥∥Gθ∗

Q
,1

∥∥∥ )TB + η
1∥∥∥G(T )
θ∗
Q
,1

∥∥∥ (
|X(T )|∑
i=1

ωi
∂LMSE(θQ, θFP , x

(T )
i )

∂θQ
H1)

TB

= 1− γ + η
1∥∥∥G(T )
θ∗
Q
,1

∥∥∥ (
|X(T )|∑
i=1

ωi
∂LMSE(θQ, θFP , x

(T )
i )

∂θQ
H1)

TB

(20)
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Let us denote N (T ) = max
x
(T )
i

∥∥∥∥∂LMSE(θQ,θFP ,x
(T )
i )

∂θQ

∥∥∥∥. Because
∑

i ωi = 1 and ∥B∥ ≤ 2 according

to Eq. (19), we then have:

∣∣∣∣∣∣η 1∥∥∥G(T )
θ∗
Q
,1

∥∥∥ (
|X(T )|∑
i=1

ωi
∂LMSE(θQ, θFP , x

(T )
i )

∂θQ
H1)

TB

∣∣∣∣∣∣ ≤ η∥∥∥G(T )
θ∗
Q
,1

∥∥∥∥H1∥2

∥∥∥∥∥∥
|X(T )|∑
i=1

ωi
∂LMSE(θQ, θFP , x

(T )
i )

∂θQ

∥∥∥∥∥∥∥B∥

≤ 2η∥H1∥2
N (T )∥∥∥G(T )
θ∗
Q
,1

∥∥∥ ,
(21)

where ∥H1∥2 denotes the spectral norm ofH1. Combining Eq. (21) and Eq. (20) we have:

1∥∥∥G(T )
θ∗
Q
,1

∥∥∥ (G(T )
θQ,1)

TB = 1− γ + η
1∥∥∥G(T )
θ∗
Q
,1

∥∥∥ (
|X(T )|∑
i=1

ωi
∂LMSE(θQ, θFP , x

(T )
i )

∂θQ
H1)

TB

≥ 1− γ − 2η∥H1∥2
N (T )∥∥∥G(T )
θ∗
Q
,1

∥∥∥ > 0 for η <
(1− γ)

∥∥∥G(T )
θ∗
Q
,1

∥∥∥
2∥H1∥2N (T )

(22)

Therefore, for sufficiently small learning rate η, we have (G(T )
θQ,1)

TB > 0. This implies that there

exist at least a single training sample x
(T )
k ∈ X(T ) such that

∂LMSE(θQ, θFP , x
(T )
k )

∂θQ

T

B > 0

=⇒
∂LMSE(θQ, θFP , x

(T )
k )

∂θQ

T

(
Gθ∗

Q
,1∥∥∥Gθ∗

Q
,1

∥∥∥ −
Gθ∗

Q
,2∥∥∥Gθ∗

Q
,2

∥∥∥ ) > 0

=⇒ C1,k > C2,k

(23)

Similarly, there exists a training sample x
(T )
l such that C2,l > C1,l. This leads to a contradiction,

because by assumption, C1,k

C2,k
=

C1,l

C2,l
> 0 for all k, l such that C2,k ̸= 0 and C2,l ̸= 0. If C2,k = 0,

then it must be that C1,k = 0 as well; contradicting C1,k > C2,k. Therefore, if cos(Gω,i,Gω,j) = 1,

it follows that cos
(
Gθ∗

Q,i,Gθ∗
Q,j

)
= 1 as well.

A.3 VISUALIZATION OF GENERATED IMAGES

We visualize sample images generated from the full-precision model, as well as from quantized
models obtained using the Q-Diffusion (Li et al., 2023) method, the TFMQ (Huang et al., 2024)
method, and our proposed method with the W4A32 setting, all initialized with a fixed random
seed. As shown in Figure 3, our proposed method generates images that closely match those of the
full-precision models, demonstrating the effectiveness of our approach.
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(a) Full precision.

(b) Q-Diffusion (W4A32).

(c) TFMQ-DM (W4A32).

(d) Our proposed method (W4A32).

Figure 3: Generated samples from (a) full-precision LDM-4, (b) Q-Diffusion (W4A32), (c) TFMQ-
DM (W4A32), and (d) our proposed method (W4A32) on LSUN-Bedrooms 256× 256 dataset with
a fixed random seed.
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A.4 FINAL ALGORITHM

Algorithm 2 Sample Weights Optimization for Diffusion Quantization

1: Input: Full-precision model θFP ; number of timesteps T; samples per timestep B; learning rate
for model quantization η; learning rate for sample weights ηω; total iterations I

2: Initialize quantized model θQ ← θFP

3: Initialize sample weights ωi ← 1
B ∀i ∈ {1, . . . ,T}

4: ω(0) = ω
5: for iteration i = 1 to I do
6: Sample timestep t ∼ {1, . . . ,T} // randomly choose a timestep
7: θ∗Q = θQ − η ·

∑B
j=1 ωj · ∇θQLMSE(θQ, θFP , X

(T )) // one-step-ahead model
8: for j = 1 to B do
9: ω

(i)
j = ω

(i−1)
j − η · ∇

ω
(i−1)
j
LMSE(θ

∗
Q, θFP , X

(V )
i ) // pseudo update ω with X

(V )
i

10: end for
11: if i mod T = 0 then
12: for j = 1 to B do
13: ωj ← ω

(0)
j + ηω · 1

T

(
ω
(T )
j − ω

(0)
j

)
// final update of ω

14: end for
15: ω(0) = ω
16: end if
17: end for
18: Return: ω

A.5 ADDITIONAL RESULTS

Ablation studies for the number of timestep groups. In practice, we uniformly divide timesteps
into 5 groups for simplicity across all datasets. To investigate the effectiveness of our method under
different timestep groupings, we evaluate it on the CIFAR-10 dataset using the W4A32 setting. Table 5
presents ablation results for varying numbers of groups. We observe that increasing the number
of groups does not significantly improve performance but may introduce additional computational
overhead.

Table 5: Ablation studies for the number of timestep groups. The results are on the CIFAR-10 dataset
with the W4A32 setting.

Group 1 2 5 10 20
FID ↓ 4.63 4.57 4.28 4.25 4.26
sFID ↓ 4.61 4.63 4.56 4.57 4.56

Evaluation on extreme bit settings To further investigate the effectiveness of our method under
extreme low-bit settings, we report additional results on the ImageNet 256× 256 dataset using the
LDM-DM model with 3/6 and 2/4 configurations. The results are summarized in Table 6. As shown,
our method achieves substantial improvements over baseline approaches, even under these highly
constrained quantization regimes.
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Table 6: Additional results on low-bit settings for unconditional image generation with LDM-4 on
ImageNet 256×256.

Methods Bits (W/A) FID ↓ sFID ↓ Precision ↑ Recall ↑

Full Prec. 32/32 9.36 8.67 – –

PTQD (He et al., 2023b) 17.98 57.31 63.13 –
TFMQ-DM (Huang et al., 2024) 3/6 15.90 40.63 67.42 44.04
Ours 10.65 11.94 72.57 45.01

PTQD (He et al., 2023b) 336.57 288.42 0.01 –
TFMQ-DM (Huang et al., 2024) 2/4 300.03 272.64 0.03 0.01
Ours 226.27 102.83 0.08 0.03

A.6 VISUALIZATION OF THE CHANGE IN LOSS ACROSS GROUP.

We visualize the difference in training loss between the quantized diffusion model trained with our
sample-weighting strategy and one trained with uniform sample weights, using the CIFAR-10 dataset
under the 4/32 quantization setting. The comparison is made across groups of timesteps sorted by
ascending loss. As shown in Figure 4, our method consistently reduces the loss in groups that tend to
be under-optimized when uniform weights are used. This supports our motivation to assign sample
weights that mitigate gradient conflicts, preventing the model from over-optimizing certain timesteps
at the expense of others.

Figure 4: Visualization of loss differences across timestep groups on the CIFAR-10 calibration set
(4/32 setting) for quantized models trained with and without our sample-weighting method. Data
are grouped by timesteps into five categories during sample weight optimization and are shown in
ascending order of loss. Orange bars indicate loss reduction with our method, while green bars
indicate an increase. The results demonstrate that our approach effectively reduces loss for under-
optimized timesteps, addressing the gradient conflict issue that leads to the neglect of certain timestep

We visualize the difference in training loss between the quantized diffusion model trained with our
sample-weighting strategy and one trained with uniform sample weights, using the CIFAR-10 dataset
under the 4/32 quantization setting. The comparison is made across groups of timesteps sorted by
ascending loss. As shown in Figure 4, our method consistently reduces the loss in groups that tend to
be under-optimized when uniform weights are used. This supports our motivation to assign sample
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weights that mitigate gradient conflicts, preventing the model from over-optimizing certain timesteps
at the expense of others.
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