

000 001 002 003 004 005 GRADIENT-ALIGNED CALIBRATION FOR POST- 006 TRAINING QUANTIZATION OF DIFFUSION MODELS 007 008 009

010 **Anonymous authors**
011

012 Paper under double-blind review
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028

029 ABSTRACT 030

031 Diffusion models have shown remarkable performance in image synthesis by
032 progressively estimating a smooth transition from a Gaussian distribution of noise
033 to a real image. Unfortunately, their practical deployment is limited by slow
034 inference speed, high memory usage, and the computational demands of the noise
035 estimation process. Post-training quantization (PTQ) emerges as a promising
036 solution to accelerate sampling and reduce the memory overhead of diffusion
037 models. Existing PTQ methods for diffusion models typically apply uniform
038 weights to calibration samples across timesteps, which is sub-optimal since data at
039 different timesteps may contribute differently to the diffusion process. Additionally,
040 due to varying activation distributions and gradients across timesteps, a uniform
041 quantization approach is sub-optimal. Each timestep requires a different gradient
042 direction for optimal quantization, and treating them equally can lead to conflicting
043 gradients that degrade performance. In this paper, we propose a novel PTQ method
044 that addresses these challenges by assigning appropriate weights to calibration
045 samples. Specifically, our approach learns to assign optimal weights to calibration
046 samples to align the quantized model’s gradients across timesteps, facilitating the
047 quantization process. Extensive experiments on CIFAR-10, LSUN-Bedrooms, and
048 ImageNet datasets demonstrate the superiority of our method compared to other
049 PTQ methods for diffusion models.
050

051 1 INTRODUCTION 052

053 In recent years, diffusion models have become a prominent framework for high-quality image synthesis (Ho et al., 2020; Dhariwal & Nichol, 2021; Rombach et al., 2022). Despite their effectiveness, the practical deployment of diffusion models is hindered by the substantial computational cost associated with the sampling procedure, which typically involves hundreds of iterative denoising steps. Furthermore, the noise estimation networks employed in these models are often composed of complex architectures with a large number of parameters, making them resource-intensive and difficult to deploy on devices with limited computational or memory capacity.

054 Quantization has become an increasingly viable approach for alleviating the intensive resource requirements of diffusion models. By approximating network weights and activations using reduced-precision representations (Li et al., 2023; He et al., 2023b; Huang et al., 2024; Shang et al., 2023; Wang et al., 2024a), it allows substantial reductions in both memory footprint and computational overhead at the expense of slight degradation in performance. In particular, PTQ stands out as a practical method for adapting diffusion models to low-resource settings, as it allows for model compression without revisiting the training process or relying on the original dataset.

055 In the context of post-training quantization for diffusion models, calibration data plays a critical role
056 in guiding the quantization process and is typically collected from various stages of the denoising
057 trajectory. For instance, Q-Diffusion (Li et al., 2023) adopts a fixed-interval selection strategy, collecting
058 samples uniformly across the entire set of denoising steps. On the other hand, in PTQ4DM (Shang
059 et al., 2023), a number of timesteps are sampled from a Gaussian distribution, and the images gen-
060 erated at these timesteps are then used as calibration data. Building upon this, TFMQ-DM (Huang
061 et al., 2024) follows the same sampling strategy as Q-Diffusion and further introduces a method
062 designed to preserve temporal feature consistency during quantization. A common assumption in
063 existing quantization methods for diffusion models (Shang et al., 2023; Li et al., 2023; Huang
064 et al., 2024) is that the noise distribution is approximately Gaussian, which is a reasonable assumption
065 for most diffusion models. However, this assumption may not hold for all diffusion models, and
066 it is important to take this into account when performing quantization. In this paper, we propose
067 a novel PTQ method for diffusion models that addresses this challenge by learning to assign optimal
068 weights to calibration samples to align the quantized model’s gradients across timesteps, facilitating
069 the quantization process. Extensive experiments on CIFAR-10, LSUN-Bedrooms, and ImageNet
070 datasets demonstrate the superiority of our method compared to other PTQ methods for diffusion
071 models.

054 et al., 2024) is that all calibration samples contribute equally to the quantization process. However,
 055 recent research on diffusion models challenges this notion by demonstrating that sample importance
 056 varies significantly across timesteps. For example, (Xie et al., 2024) shows that the loss gradient
 057 norms of samples are highly dependent on their associated timesteps, introducing a systematic bias in
 058 influence estimation. Samples corresponding to timesteps with larger gradient norms tend to exert a
 059 disproportionately higher impact on the model. Similarly, (Wang et al., 2024b) empirically categorize
 060 timesteps into acceleration, deceleration, and convergence phases based on process increments, each
 061 contributing differently to the model’s learning dynamics.

062 On the other hand, since activations and gradients vary significantly across timesteps, calibration
 063 data from different timesteps can be interpreted as representing distinct tasks with divergent gradient
 064 dynamics. Prior works on diffusion model training have highlighted the challenge of gradient conflict,
 065 which arises when optimization directions across timesteps interfere with each other. For example,
 066 (Hang et al., 2023) frames diffusion model training as a multi-task problem, showing that optimizing
 067 the denoising objective at a specific noise level can degrade performance at others. Similarly, (Go
 068 et al., 2023) observes that negative transfer can occur due to conflicting gradients across timesteps.
 069 In the context of quantization, this challenge becomes more pronounced due to the discrete nature
 070 of the parameter space. Quantized models with binary constraints lack the flexibility to represent
 071 intermediate values, forcing parameters to take discrete values such as 0 or 1. Unlike full-precision
 072 models, which can mitigate conflicting gradient signals by adjusting parameters incrementally,
 073 quantized models cannot resolve such conflicts effectively. As a result, when gradients from different
 074 timesteps compete, the model may incur large losses in directions where no suitable quantized value
 075 exists, leading to uneven performance across timesteps. Consequently, improving performance at one
 076 timestep may inherently degrade performance at others due to representational trade-offs.

077 To this end, we propose a novel meta-learning-based approach that dynamically assigns importance
 078 weights to calibration samples during the quantization process. Our goal is to calibrate the quantized
 079 model using a weighted sample set that not only achieves strong validation performance but also
 080 promotes alignment between gradients from different timesteps. We formulate this as a bi-level
 081 optimization problem, learning sample weights such that the calibrated model maintains gradient
 082 consistency and improves adaptability during the quantization process. By aligning gradient directions
 083 and emphasizing samples that contribute most effectively, our method enhances gradient propagation
 084 and overall quantization quality. We validate our proposed approach on the widely used CIFAR-
 085 10 (Krizhevsky & Hinton, 2009), LSUN-Bedrooms (Yu et al., 2015) and ImageNet (Deng et al., 2009)
 086 datasets with various noise estimation network architectures under different bit-width settings. The
 087 extensive experiments demonstrate that our method outperforms the state-of-the-art PTQ methods for
 088 diffusion models. The contributions of this work can be summarized as follows:
 089

- 090 • We are the first to identify the issue of gradient conflict during post-training quantization
 091 of diffusion models, where calibration samples from different timesteps may induce
 092 inconsistent optimization directions.
- 093 • We introduce the first PTQ framework for diffusion models that leverages gradient alignment
 094 to learn sample-wise importance weights for calibration data. By emphasizing samples
 095 with coherent gradient directions across timesteps, our method enhances quantization
 096 effectiveness.
- 097 • Extensive experiments on CIFAR-10, LSUN-Bedrooms, and ImageNet demonstrate that our
 098 approach consistently achieves superior FID scores compared to prior PTQ techniques for
 099 diffusion models.

100 2 RELATED WORKS

101 **Post-training quantization on diffusion Models.** Diffusion models (Ho et al., 2020; Song et al.,
 102 2021b) have emerged as a powerful generative framework, capable of producing high quality images
 103 through iterative refinement of noisy inputs. Despite their impressive results, the sheer number of
 104 inference steps required in the denoising trajectory poses a substantial bottleneck for real-world
 105 deployment. While acceleration techniques (Lu et al., 2022; Song et al., 2021a; Zhao et al., 2023)
 106 have been introduced to reduce inference time, these methods often remain resource-intensive due to
 107 the size and complexity of the underlying noise estimation networks. To alleviate these overhead,
 108 model compression techniques, particularly model quantization (Li et al., 2023; He et al., 2023b;

108 Wang et al., 2024a; Huang et al., 2024; Shang et al., 2023; He et al., 2023a), offer a promising solution
 109 for diffusion models, by minimizing both computational and memory footprints. Among these, the
 110 post-training quantization (PTQ)(Li et al., 2023; Huang et al., 2024) has gained much attention as a
 111 practical approach that does not require full model retraining.

112 **Data optimization for diffusion model quantization.** PTQ methods for diffusion models typically
 113 rely on generated calibration data and effective quantization strategies. Recent efforts in this direction
 114 have primarily focused on sampling strategies for calibration, aiming to select optimal calibration data
 115 for the quantization process. For instance, APQ-DM (Wang et al., 2024a) adopts a principled time-
 116 step selection strategy rooted in structural risk minimization to guide the generation of calibration
 117 inputs. On the other hand, PTQ4DM(Shang et al., 2023) demonstrates that calibrating quantized
 118 models with samples generated from the denoising process leads to superior results compared to
 119 using samples from the forward process. Building on this idea, Q-Diffusion (Li et al., 2023) samples
 120 intermediate results at fixed intervals and introduces a novel shortcut-aware quantization technique to
 121 improve the quantized model’s performance across different benchmarks.

122 While existing PTQ methods typically assign equal weight to all calibration samples, this overlooks
 123 important characteristics of diffusion models. Prior studies (Nichol & Dhariwal, 2021; Zhang et al.,
 124 2022) have shown that different timesteps contribute unequally to the generative process. For instance,
 125 later timesteps tend to capture higher-level semantic structures, while earlier ones focus more on
 126 denoising low-level details. Treating all timesteps uniformly may therefore dilute the influence of
 127 more impactful samples, leading to suboptimal quantization.

128 Moreover, samples from different timesteps follow distinct distributions and can be seen as separate
 129 subtasks with divergent learning dynamics. Uniformly optimizing over the entire training set may
 130 induce conflicting gradient signals across timesteps, resulting in performance trade-offs where
 131 improvements in certain timesteps degrade others. To address these challenges, we introduce a
 132 meta-learning-based framework that learns sample-wise importance weights, promoting calibration
 133 samples that yield coherent and stable gradient directions across timesteps. This improves the overall
 134 quantization quality by guiding optimization in a more coherent direction.

135 3 PRELIMINARY ANALYSIS

136 To investigate the gradient dynamics induced by calibration samples from different timesteps during
 137 the quantization process, we analyze how gradients of the quantized model vary across timesteps.
 138 Specifically, we compute gradient vectors of the quantization loss evaluated on calibration samples
 139 drawn from different timesteps with respect to model parameters, using 256 samples per timestep for
 140 CIFAR10 dataset. We then measure the pairwise cosine distance between these gradient vectors to
 141 construct a gradient dissimilarity matrix. As shown in the heatmap in Figure 1a, the cosine distance
 142 between gradients varies across timesteps. In particular, while gradients from earlier timesteps exhibit
 143 higher consistency, those from later stages of the denoising process tend to diverge more noticeably.
 144 This observation indicates that calibration data from different timesteps induce distinct gradient
 145 signals. Ignoring these variations during quantization may result in gradient misalignment, which
 146 can hinder effective optimization and reduce generalization across timesteps, causing the model to
 147 perform well to certain timesteps while underperforming on others.

148 Additionally, we visualize the loss of the quantized model after calibrated, using timestep-specific
 149 calibration subsets, each corresponding to a specific timestep. The results, shown in Figure 1b,
 150 reveal significant variation in loss across timesteps, indicating that the quantized model struggles to
 151 generalize across the full diffusion process.

152 4 PROPOSED METHOD

153 4.1 PROBLEM DEFINITION

154 Before the quantization process starts, we construct the calibration set following the procedure
 155 outlined in Q-Diffusion (Li et al., 2023), by selecting generated samples at fixed intervals across the
 156 denoising timesteps. Each calibration sample in the training set $X^{(T)} = \bigcup_{t=1}^T X_t^{(T)}$ is represented
 157 as $(x_i^{(T)}, t_i^{(T)}) \in X_{t_i}^{(T)}$, where $x_i^{(T)}$ is a generated sample at the t_i timestep. A validation set

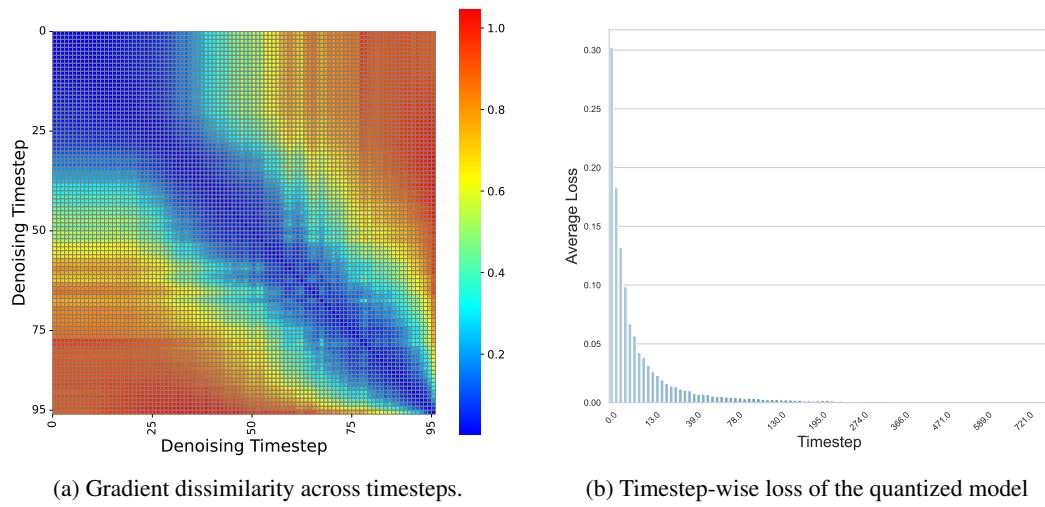


Figure 1: Timestep-wise behavior in quantized diffusion models. (a) Gradient dissimilarity matrix constructed by computing pairwise cosine distance between gradient vectors of the quantization loss, with respect to model parameters, for calibration samples drawn from different timesteps. Higher value indicates higher divergent between timesteps. (b) Quantization loss evaluated separately for calibration samples grouped by timestep, highlighting the uneven performance of the quantized model across different timesteps.

$X^{(V)} = \bigcup_{t=1}^T X_t^{(V)}$ is constructed by generating an equal number of synthetic samples $X_t^{(V)}$ from each timestep t . In our method, each calibration sample $(x_i^{(T)}, t_i^{(T)})$ is assigned a learnable weight ω_i , which reflects its influence on the quantized model’s performance. The complete set of weights for all training samples is denoted by $\omega = \{\omega_i\}_{i=1}^{|X^{(T)}|}$. Our goal is to dynamically optimize training sample weights, such that the resulting quantized model θ_Q^* obtained after quantized using the weighted samples, achieves strong performance on the validation set. Given the full-precision model θ_{FP} and the initial quantized model θ_Q , the optimization objective for ω is defined as follows:

$$\begin{aligned} \omega &= \arg \min_{\omega} \mathcal{L}_{VAL}(\theta_Q^*(\omega), \theta_{FP}, X^{(V)}) \\ \text{s.t. } \theta_Q^*(\omega) &= \theta_Q - \eta \sum_{i=1}^{|X^{(T)}|} \omega_i \frac{\partial \mathcal{L}_{MSE}(\theta_Q, \theta_{FP}, x_i^{(T)})}{\partial \theta_Q}, \end{aligned} \quad (1)$$

where $|\cdot|$ signifies the cardinality of a given set; $\mathcal{L}_{MSE}(\cdot)$ denotes the quantization loss (MSE loss) that matches the outputs of the full-precision model θ_{FP} and the quantized model θ_Q ; $\mathcal{L}_{VAL}(\cdot)$ denotes our optimization objective, to help the model achieves strong performance on the validation set. $\theta_Q^*(\omega)$ denotes the final quantized model after calibrated over the training set; η denotes the learning rate.

4.2 CALIBRATION DATA OPTIMIZATION

Beside model performance on the validation set, since all timesteps in diffusion model shares the same quantized model weight θ_Q , for a consistent quantization process, we aim to align the gradients of θ_Q^* across different timestep-specific validation set, promoting smoother optimization across subsequent quantization stages. In practice, we would divide timesteps into different groups, as adjacent timesteps often exhibit similar gradient behavior, as illustrated in Figure 1a. However, for simplicity, we assume each group consists of a single timestep and use T to denote both the number of timesteps and the number of groups throughout the algorithmic description.

Our validation loss $\mathcal{L}_{VAL}(\cdot)$ is defined as:

$$\mathcal{L}_{VAL}(\theta_Q^*, \theta_{FP}, X^{(V)}) = \mathcal{L}_{GM}(\theta_Q^*, X^{(V)}) + \mathcal{L}_{MSE}(\theta_Q^*, \theta_{FP}, X^{(V)}), \quad (2)$$

216 where the gradient matching loss \mathcal{L}_{GM} for gradients w.r.t the model weights is defined as:
 217

$$\begin{aligned} 218 \quad \mathcal{L}_{GM}(\theta_Q^*, X^{(V)}) &= -\frac{2}{\mathbf{T} * (\mathbf{T} - 1)} \sum_{t \neq k} \mathcal{G}_{\theta_Q^*, t} \mathcal{G}_{\theta_Q^*, k} \\ 219 \quad \text{s.t. } \mathcal{G}_{\theta_Q^*, t} &= \frac{\partial \mathcal{L}_{MSE}(\theta_Q^*, \theta_{FP}, X_t^{(V)})}{\partial \theta_Q^*} \end{aligned} \quad (3)$$

223 **Regarding the loss \mathcal{L}_{MSE} in Eq. (1).** The reconstruction loss \mathcal{L}_{MSE} , commonly employed in
 224 prior quantization methods, is defined as follows:
 225

$$\begin{aligned} 226 \quad \mathcal{L}_{MSE}(\theta_Q, \theta_{FP}, X^{(T)}) &= \frac{1}{|X^{(T)}|} \sum_{i=1}^{|X^{(T)}|} \mathcal{L}_{MSE}(\theta_Q, \theta_{FP}, x_i) \\ 227 \quad &= \frac{1}{|X^{(T)}|} \sum_{i=1}^{|X^{(T)}|} \|\mathbf{f}(\theta_{FP}, x_i) - \mathbf{f}(\theta_Q, x_i)\|^2, \end{aligned} \quad (4)$$

232 where $\mathbf{f}(\theta_{FP}, x_i)$ and $\mathbf{f}(\theta_Q, x_i)$ respectively denote the outputs of the full-precision and quantized
 233 models given the input sample x_i .
 234

235 Directly optimizing Eq. (1) is challenging due to the involvement of the third-order term in the
 236 gradient of $\mathcal{L}_{GM}(\cdot)$ with respect to the sample weights ω . To address this, we propose a more
 237 efficient algorithm in Algorithm 2, and prove that the proxy objective optimized by this algorithm
 238 serves as a faithful surrogate for the original loss in Eq.(1). Theorem 4.1 formalizes this relationship,
 239 demonstrating that optimization via Algorithm 2 induces the minimization of the original objective in
 240 Eq. (1).

241 **Theorem 4.1.** *The optimization in Algorithm 2 implicitly lead to the minimization of the target
 242 objective $\mathcal{L}_{VAL}(\cdot)$ in Eq. (1).*

243 In order to prove our main result, we present two lemmas that will be instrumental in the proof of the
 244 theorem.
 245

246 **Lemma 4.2.** *Let us denotes $\mathcal{G}_{\omega, t} = \frac{\partial \mathcal{L}_{MSE}(\theta_Q^*, \theta_{FP}, X_t^{(V)})}{\partial \omega}$. The second gradient matching loss
 247 $\mathcal{L}_{GM}^{(2)}(\cdot)$ for gradients w.r.t the sample weight ω is defined as:*
 248

$$249 \quad \mathcal{L}_{GM}^{(2)}(\theta_Q^*, X^{(V)}) = -\frac{2}{T * (T - 1)} \sum_{t \neq k} \mathcal{G}_{\omega, t} \mathcal{G}_{\omega, k}, \quad (5)$$

252 The minimization of $\mathcal{L}_{GM}^{(2)}(\cdot)$ will implicitly lead to the minimization of $\mathcal{L}_{GM}(\cdot)$, in the sense that a
 253 minimizer of $\mathcal{L}_{GM}^{(2)}$ corresponds to a minimizer of the target loss \mathcal{L}_{GM} .
 254

255 We begin by leveraging Lemma 4.2 to show that minimizing the surrogate gradient matching loss
 256 $\mathcal{L}_{GM}^{(2)}(\cdot)$ in Eq. (15)implies the minimization of the original gradient matching loss $\mathcal{L}_{GM}(\cdot)$ in
 257 Eq. (3). Therefore, minimizing the surrogate validation objective $\mathcal{L}_{VAL}^{(2)}(\cdot)$ in Eq. (8) leads to the
 258 minimization of the true validation loss $\mathcal{L}_{VAL}(\cdot)$ in Eq. (2). To establish Theorem 4.1, it thus suffices
 259 to show that Algorithm 2 minimizes $\mathcal{L}_{VAL}^{(2)}(\cdot)$, which is stated by Lemma 4.3:
 260

261 **Lemma 4.3.** *Let us define a second validation loss:*
 262

$$263 \quad \mathcal{L}_{VAL}^{(2)}(\theta_Q^*, \theta_{FP}, X^{(V)}) = \mathcal{L}_{GM}^{(2)}(\theta_Q^*, X^{(V)}) + \mathcal{L}_{MSE}(\theta_Q^*, \theta_{FP}, X^{(V)}), \quad (6)$$

264 *The Algorithm 2 will minimize $\mathcal{L}_{VAL}^{(2)}(\theta_Q^*, \theta_{FP}, X^{(V)})$ in Eq. (8).*
 265

266 Therefore, combining Lemma 4.3 and Lemma 4.2, we conclude that Theorem 4.1 holds. Please see
 267 the Supplementary for the proof of our Lemmas 4.3 and 4.2.
 268

269 Based on Theorem 4.1, we can optimize the sample weights in Eq. (1) implicitly using the Algorithm
 2 in the Appendix.

270 4.3 OVERALL OPTIMIZATION FRAMEWORK
271272 At the beginning of training, a synthetic dataset is constructed by sampling from the full-precision
273 diffusion model across multiple timesteps. This set is then divided into a timestep-balanced validation
274 set and a training set. The training sample weight ω are initialized uniformly as
275

276
$$\omega_i = \frac{\exp(s_i/\tau)}{\sum_j \exp(s_j/\tau)}, \quad (7)$$

277

278 where we initialize $s_i = \frac{1}{32} \quad \forall 0 \leq i < |X^{(T)}|$, τ denotes the temperature hyper-parameter.
279 During the training process, model calibration is performed in a block-wise fashion, with sample
280 weights updated at each transition to a new block. A summary of the proposed model weight
281 calibration procedure is provided in Algorithm 1.
282283 **Algorithm 1** Diffusion Model Quantization with Sample Weights284 1: **Input:** Full-precision model θ_{FP} ; number of layers L ; number of timesteps T ; the training set
285 $X^{(T)}$; the validation set $X^{(V)}$
286 2: Initialize sample weights ω
287 3: Initialize quantized model $\theta_Q \leftarrow \theta_{FP}$
288 4: **for** $\ell = 1$ to L **do**
289 5: Use Algorithm 2 to update ω
290 6: Update quantized model θ_Q by calibrating layer ℓ with training set $X^{(T)}$ and the updated
291 sample weights ω .
292 7: **end for**
293 8: **Return:** Quantized model θ_Q
294
295

296 5 EXPERIMENTS

297 5.1 EXPERIMENTAL SETUP

300 **Models and datasets.** To assess the effectiveness of our approach, we conduct experiments on
301 popular diffusion architectures. Specifically, we provide performance on DDPM (Ho et al., 2020), for
302 unconditional generation, and LDM (Rombach et al., 2022), which utilizes latent space and supports
303 both unconditional and class-conditional generation tasks.304 Our evaluation spans multiple standard datasets, including CIFAR-10 at a resolution of $32 \times$
305 32 (Krizhevsky et al., 2010), LSUN-Bedrooms at 256×256 (Yu et al., 2015), and ImageNet at
306 256×256 (Deng et al., 2009).307 **Implementation details.** Our approach aligns with the current state-of-the-art techniques in post-
308 training quantization (PTQ) applied to diffusion models (Shang et al., 2023; Huang et al., 2024),
309 targeting both model weights and activations. In practical scenarios, post-training quantization (PTQ)
310 for diffusion models typically addresses weight and activation quantization as separate processes.
311 For activations, TFMQ-DM (Huang et al., 2024) has shown that adopting sophisticated quantization
312 techniques tends to introduce high computational cost while yielding only limited performance gains.
313 As a result, we employ the lightweight activation quantization method from TFMQ-DM, which
314 estimates activation ranges using an exponential moving average (EMA) (Jacob et al., 2018) over
315 mini-batches. **On the other hand, we quantize the model weights using the AdaRound algorithm**
316 **(Nagel et al., 2020)**, in conjunction with block-wise reconstruction (Li et al., 2021), to efficiently
317 quantize the noise-estimation network. We adopt AdaRound as it is the standard weight-quantization
318 scheme used in prior diffusion PTQ methods (Huang et al., 2024; He et al., 2023b), ensuring a fair
319 and consistent comparison. We begin by generating the calibration data through inference on the
320 pretrained full-precision diffusion model, as outlined in Q-Diffusion (Li et al., 2023). To ensure
321 consistency with prior post-training quantization efforts (Shang et al., 2023; Li et al., 2023; Huang
322 et al., 2024), we adopt the LAPQ method (Nahshan et al., 2021) to initialize the quantized model
323 parameters θ_Q using weights from the original full-precision network. Additionally, we integrate
324 the temporal feature preservation strategy proposed in TFMQ-DM (Huang et al., 2024) to better
325 maintain generative quality. Regarding the validation set, we use a small subset of the generated data

as the validation set. Since our algorithm aligns gradients across timesteps and adjacent timesteps tend to exhibit similar behavior, we partition the validation data into 5 groups, each corresponding to a consecutive range of timesteps. Each group is treated as a separate task in our algorithm. We optimize the sample weights using the Adam optimizer with a learning rate of 5×10^{-6} for 1500 iterations per update. For each quantization block, we apply 20000 optimization iterations, in line with existing approaches (Shang et al., 2023; Li et al., 2023; Huang et al., 2024). Optimization of the sample weights ω is carried out using the Adam optimizer (Kingma & Ba, 2015), with a fixed learning rate of 4×10^{-5} . We employ the *higher* library¹ to enable gradient-based meta-optimization.

Evaluation metrics. To ensure alignment with established benchmarks (Shang et al., 2023; Li et al., 2023; Huang et al., 2024), we assess the generative quality of diffusion models using both the Fréchet Inception Distance (FID)(Heusel et al., 2017) and spatial Fréchet Inception Distance (sFID)(Salimans et al., 2016). These metrics provide complementary insights into visual fidelity and spatial coherence. Specifically, FID evaluates the discrepancy between real and generated image distributions by comparing their high-level Inception features, while sFID focuses on mid-level features to better capture localized structural patterns in the images. Following common practice, we generate and evaluate 50,000 synthetic samples to compute these scores, for a fair comparison with prior quantization studies.

Table 1: Quantization results for unconditional image generation with DDIM on CIFAR-10 32×32 .

Methods	CIFAR-10 32×32					
	W/A	FID \downarrow	sFID \downarrow	W/A	FID \downarrow	sFID \downarrow
PTQ4DM (Shang et al., 2023)		5.65	-		5.14	-
Q-Diffusion (Li et al., 2023)	4/32	5.08	4.98	4/8	4.98	5.68
TFMQ-DM (Huang et al., 2024)		4.73	-		4.78	-
Ours		4.28	4.56		4.32	4.61

Table 2: Quantization results for image generation with LDM-4 on LSUN-Bedrooms and ImageNet at resolution 256×256 . We report FID, sFID, Precision, and Recall for each dataset.

Methods	Bits (W/A)	LSUN-Bedrooms				ImageNet			
		FID \downarrow	sFID \downarrow	Precision \uparrow	Recall \uparrow	FID \downarrow	sFID \downarrow	Precision \uparrow	Recall \uparrow
Full Prec.	32/32	2.98	7.09	-	-	10.91	7.67	-	-
PTQ4DM (Shang et al., 2023)	4/32	4.83	7.94	-	-	-	-	-	-
Q-Diffusion (Li et al., 2023)	4/32	4.20	7.66	-	-	11.87	8.76	-	-
PTQD (He et al., 2023b)	4/32	4.42	7.88	-	-	11.65	9.06	-	-
TFMQ-DM (Huang et al., 2024)	4/32	3.60	7.61	65.92	44.88	10.50	7.98	92.91	30.24
Ours	4/32	3.14	7.22	66.11	45.50	10.17	7.40	93.02	30.97
PTQ4DM (Shang et al., 2023)	4/8	20.72	54.30	-	-	-	-	-	-
Q-Diffusion (Li et al., 2023)	4/8	6.40	17.93	-	-	10.68	14.85	-	-
PTQD (He et al., 2023b)	4/8	5.94	15.16	-	-	10.40	12.63	-	-
TFMQ-DM (Huang et al., 2024)	4/8	3.68	7.65	65.89	44.99	10.29	7.35	92.53	30.98
Ours	4/8	3.26	7.40	66.05	45.20	9.96	7.55	92.75	30.71

5.2 COMPARISON WITH THE STATE-OF-THE-ART QUANTIZATION METHODS FOR DIFFUSION MODELS

To validate the effectiveness of our method, we benchmark it against the current state-of-the-art post-training quantization techniques developed for diffusion models, such as TFMQ-DM (Huang et al., 2024), PTQD (He et al., 2023b)PTQ4DM (Shang et al., 2023) and Q-Diffusion (Li et al., 2023). For consistency and comparability, the baseline results are directly adopted from the TFMQ-DM study. Our evaluation spans a diverse set of datasets: CIFAR-10 (32×32), LSUN-Bedrooms (256×256) for unconditional generation tasks, as well as ImageNet (256×256) for class-conditional image synthesis. All experiments adhere to the evaluation protocols established in prior work (Huang et al., 2024).

¹<https://github.com/facebookresearch/higher>

378 **Unconditional image generation.** To evaluate the effectiveness of our method under extreme low-bit
 379 quantization, we conduct comprehensive experiments on both low-resolution and high-resolution
 380 generative models. Specifically, we test DDPM on CIFAR-10 at 32×32 resolution, and LDM-4 on
 381 two high-resolution datasets: LSUN-Bedrooms at 256×256 . For consistency and fair comparison,
 382 we employ the DDIM sampler (Song et al., 2021a) with 100 steps for CIFAR-10 and 200 steps for
 383 the two high-resolution datasets.

384 Across all three benchmarks, our method consistently outperforms existing state-of-the-art techniques,
 385 particularly in low-bit regimes. As reported in Table 2, we achieve state-of-the-art FID scores in
 386 all quantization settings. Specifically, on CIFAR-10, our approach surpasses the compared method
 387 method (TFMQ-DM) with FID improvements of 0.45 and 0.46 in W4A32 and W4A8 settings,
 388 respectively. Similar improvements are observed on LSUN-Bedrooms, with FID gains of 0.46
 389 (W4A32) and 0.42 (W4A8). In summary, our approach demonstrates consistent and meaningful
 390 improvements over prior methods.

391 **Class-conditional image generation.** We further evaluate our method on the high-resolution
 392 ImageNet dataset using LDM-4 and the DDIM sampler (Song et al., 2021a) with 20 denoising steps.
 393 To ensure fair comparison, baseline results are adopted directly from the TFMQ-DM paper (Huang
 394 et al., 2024). As summarized in Table 2, our approach consistently surpasses existing methods across
 395 all quantization configurations.

396 In particular, the performance gain in the W4A32 setting is notable: our method reduces FID by
 397 0.33 and sFID by 0.58 compared to TFMQ-DM, one of the current state-of-the-art PTQ methods for
 398 diffusion model. These results highlight our method’s ability to preserve generation quality under
 399 aggressive quantization, even on large-scale and visually complex datasets such as ImageNet.

401 5.3 ABLATION STUDIES

402 **Ablation studies for the temperature parameter τ .** Please refer to the Appendix for more ablation
 403 studies of our method. We vary the value of τ from 0.2 to 2 and evaluate the model’s performance on
 404 the CIFAR-10 dataset under the W4A32 setting, as shown in Table 3b. As shown, the performance
 405 will degrade if we set τ to smaller values.

406 Table 3: Ablation studies on CIFAR-10 dataset.

(a) Effect of validation set size.					(b) Effect of temperature parameter T .				
τ	2%	5%	10%	20%	τ	0.2	0.5	1	2
FID \downarrow	4.55	4.32	4.59	4.75	FID \downarrow	4.85	4.55	4.28	4.32
sFID \downarrow	4.71	4.61	4.38	4.51	sFID \downarrow	4.74	4.67	4.56	4.61

416 **Ablation studies for the number of timesteps.** To evaluate the effectiveness of our method in the
 417 extreme case of very few timesteps, we test it on the ImageNet dataset (4/32 setting) using the DDIM
 418 sampler with 5, 10, and 20 timesteps. As shown in Table 4, our method remains highly effective,
 419 outperforms the baseline TFMQ-DM under these challenging conditions.

420 Table 4: Ablation studies for the number of inference timesteps. The results demonstrate that our
 421 method remains effective when the number of timesteps is small.

Methods	Timestep	FID \downarrow	sFID \downarrow
TFMQ-DM (Huang et al., 2024)	20	10.50	7.98
Ours	20	10.17	7.40
TFMQ-DM (Huang et al., 2024)	10	9.01	12.75
Ours	10	8.73	11.26
TFMQ-DM (Huang et al., 2024)	5	19.10	38.69
Ours	5	18.22	35.05

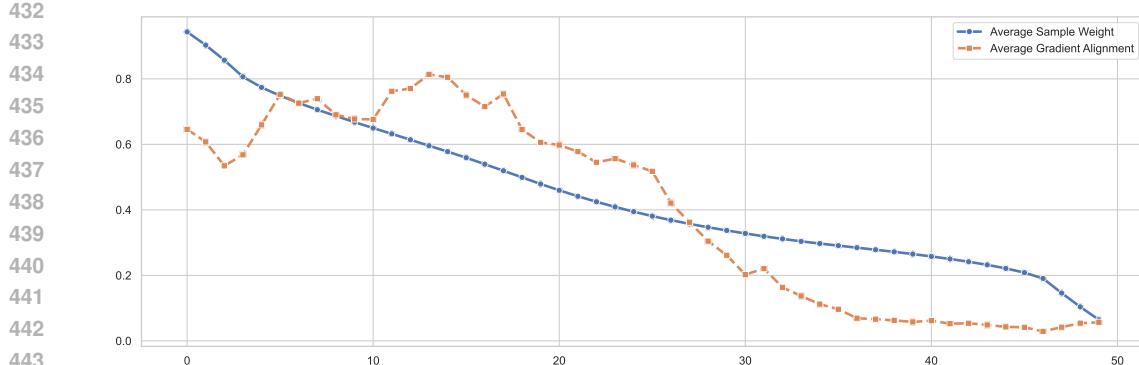


Figure 2: Visualization of the correlation between optimized sample weights and gradient alignments. All samples are sorted in descending order of their sample weights, and divided uniformly into 50 groups. The blue line represents the average sample weight per group, while the red line indicates the average gradient alignment between samples in each group and the validation set. This demonstrates the positive correlation between gradient alignment and sample weight.

Ablation studies for the validation set size. In practice, we only use a small part of the training set as the validation set (5%), therefore the total number of images that our methods use are equal to that of the baseline method (TFMQ-DM). To assess sensitivity, we evaluate the performance using various validation sizes below in Table 3a. We observe that the method performs reliably across all sizes, with 5% achieving the best FID and competitive sFID. Notably, increasing the validation size beyond this point does not consistently improve performance, possibly due to increased sample diversity making it harder to optimize the reweighting under fixed calibration cost.

Visualization of sample weight. We visualize the distribution of sample weights alongside their corresponding average gradient similarity scores across groups in the validation set. For each training sample, the gradient similarity score is computed by assessing the alignment of its gradient with those of each task, and then averaging the similarity scores across tasks. As illustrated in Figure 2, our method assigns higher weights to samples exhibiting stronger gradient alignment, which facilitates more consistent optimization across the diffusion process by prioritizing samples that reduce gradient conflicts and improve the overall convergence across timesteps

The comparison of the computation cost and hardware efficiency. Although our method introduces additional computational overhead during training process, it remains competitively efficient. On LSUN-Bedrooms (256×256) under the W4A8 setting, TFMQ-DM (Huang et al., 2024) and Q-Diffusion (Li et al., 2023) requires 2.32 and 5.29 GPU hours for training cost, respectively. In comparison, our approach takes around 3.5 GPU hours, representing a moderate increase by 1 hour over TFMQ-DM, but still more efficient than Q-Diffusion. Crucially, this modest increase in training cost yields consistently superior FID results across all evaluated settings, demonstrating an effective trade-off between performance and computational burden. It's also important to note that the added complexity is confined to the training stage. During inference, our method shares the same model structure and quantization format as TFMQ-DM, leading to identical hardware efficiency and latency at test time.

6 CONCLUSION

In this work, we address the overlooked issue of gradient conflict during post-training quantization (PTQ) of diffusion models, which arises from treating calibration samples across timesteps as equally important. We propose a meta-weighting framework that dynamically learns sample-wise importance by promoting gradient alignment across timesteps. This approach enables more effective calibration under quantization constraints. Extensive experiments on CIFAR-10, LSUN-Bedrooms, and ImageNet demonstrate consistent improvements over existing PTQ methods, highlighting the significance of timestep-aware sample weighting.

486 REFERENCES
487

488 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale
489 hierarchical image database. In *CVPR*, 2009.

490 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. In *NeurIPS*,
491 2021.

492 Hyojun Go, Jinyoung Kim, Yunsung Lee, Seunghyun Lee, Shinhyeok Oh, Hyeongdon Moon, and
493 Seungtaek Choi. Addressing negative transfer in diffusion models. *ArXiv*, abs/2306.00354, 2023.
494 URL <https://api.semanticscholar.org/CorpusID:258999775>.

495 Tiankai Hang, Shuyang Gu, Chen Li, Jianmin Bao, Dong Chen, Han Hu, Xin Geng, and Bain-
496 ing Guo. Efficient diffusion training via min-snR weighting strategy. 2023 *IEEE/CVF In-
497 ternational Conference on Computer Vision (ICCV)*, pp. 7407–7417, 2023. URL <https://api.semanticscholar.org/CorpusID:257557255>.

498 Yefei He, Jing Liu, Weijia Wu, Hong Zhou, and Bohan Zhuang. Efficientdm: Efficient quantiza-
499 tion-aware fine-tuning of low-bit diffusion models. *ArXiv*, abs/2310.03270, 2023a. URL <https://api.semanticscholar.org/CorpusID:263672060>.

500 Yefei He, Luping Liu, Jing Liu, Weijia Wu, Hong Zhou, and Bohan Zhuang. PTQD: Accurate
501 post-training quantization for diffusion models. In *NeurIPS*, 2023b.

502 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
503 trained by a two time-scale update rule converge to a local nash equilibrium. In *NeurIPS*, 2017.

504 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In *NeurIPS*,
505 2020.

506 Yushi Huang, Ruihao Gong, Jing Liu, Tianlong Chen, and Xianglong Liu. TFMQ-DM: Temporal
507 feature maintenance quantization for diffusion models. In *CVPR*, 2024.

508 Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard, Hartwig
509 Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for efficient
510 integer-arithmetic-only inference. In *CVPR*, 2018.

511 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In *ICLR*, 2015.

512 Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
513 Technical report, University of Toronto, 2009.

514 Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute for advanced
515 research), 2010.

516 Xiuyu Li, Yijiang Liu, Long Lian, Huanrui Yang, Zhen Dong, Daniel Kang, Shanghang Zhang, and
517 Kurt Keutzer. Q-Diffusion: Quantizing diffusion models. In *ICCV*, 2023.

518 Yuhang Li, Ruihao Gong, Xu Tan, Yang Yang, Peng Hu, Qi Zhang, Fengwei Yu, Wei Wang, and Shi
519 Gu. BRECQ: Pushing the limit of post-training quantization by block reconstruction. In *ICLR*,
520 2021.

521 Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast ode
522 solver for diffusion probabilistic model sampling in around 10 steps. In *NeurIPS*, 2022.

523 Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Christos Louizos, and Tijmen Blankevoort. Up or
524 down? adaptive rounding for post-training quantization. In *ICML*, 2020.

525 Yury Nahshan, Brian Chmiel, Chaim Baskin, Evgenii Zheltonozhskii, Ron Banner, Alex M Bronstein,
526 and Avi Mendelson. Loss aware post-training quantization. *Machine Learning*, 110(11-12):
527 3245–3262, 2021.

528 Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
529 In *ICML*, 2021.

540 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 541 resolution image synthesis with latent diffusion models. In *CVPR*, 2022.

542

543 Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
 544 Improved techniques for training gans. In *NeurIPS*, 2016.

545

546 Yuzhang Shang, Zhihang Yuan, Bin Xie, Bingzhe Wu, and Yan Yan. Post-training quantization on
 547 diffusion models. In *CVPR*, 2023.

548

549 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In *ICLR*,
 2021a.

550

551 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 552 Poole. Score-based generative modeling through stochastic differential equations. In *ICLR*, 2021b.

553

554 Changyuan Wang, Ziwei Wang, Xiuwei Xu, Yansong Tang, Jie Zhou, and Jiwen Lu. Towards accurate
 555 post-training quantization for diffusion models. In *CVPR*, 2024a.

556

557 Kai Wang, Yukun Zhou, Mingjia Shi, Zhihang Yuan, Yuzhang Shang, Xiaojiang Peng, Hanwang
 558 Zhang, and Yang You. A closer look at time steps is worthy of triple speed-up for diffusion model
 training. *ArXiv*, abs/2405.17403, 2024b. URL <https://api.semanticscholar.org/CorpusID:270063517>.

559

560 Tong Xie, Haoyu Li, Andrew Bai, and Cho-Jui Hsieh. Data attribution for diffusion models:
 561 Timestep-induced bias in influence estimation. *ArXiv*, abs/2401.09031, 2024. URL <https://api.semanticscholar.org/CorpusID:267027618>.

562

563 Fisher Yu, Yinda Zhang, Shuran Song, Ari Seff, and Jianxiong Xiao. LSUN: construction of a
 564 large-scale image dataset using deep learning with humans in the loop. *CoRR*, abs/1506.03365,
 565 2015.

566

567 Qinsheng Zhang, Molei Tao, and Yongxin Chen. gddim: Generalized denoising diffusion implicit
 568 models. *arXiv preprint arXiv:2206.05564*, 2022.

569

570 Wenliang Zhao, Lujia Bai, Yongming Rao, Jie Zhou, and Jiwen Lu. UniPC: A unified predictor-
 571 corrector framework for fast sampling of diffusion models. In *NeurIPS*, 2023.

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594 **A APPENDIX**
 595

596 **A.1 THE USE OF LARGE LANGUAGE MODELS**
 597

598 We used a large language model (ChatGPT) to help with editing this paper. It was only used for
 599 simple tasks such as fixing typos, rephrasing sentences for clarity, and improving word choice. All
 600 ideas, experiments, and analyses were done by the authors, and the use of LLMs does not affect the
 601 reproducibility of our work.

602 **A.2 THEORETICAL PROOFS**
 603

604 **Lemma A.1** (Restated from Lemma 4.3). *Let us define a second validation loss:*

$$605 \quad \mathcal{L}_{VAL}^{(2)}(\theta_Q^*, \theta_{FP}, X^{(V)}) = \mathcal{L}_{GM}^{(2)}(\theta_Q^*, X^{(V)}) + \mathcal{L}_{MSE}(\theta_Q^*, \theta_{FP}, X^{(V)}), \quad (8)$$

606 *The Algorithm 1 will minimize $\mathcal{L}_{VAL}^{(2)}(\theta_Q^*, \theta_{FP}, X^{(V)})$ in Eq. (8).*

607 *Proof of Lemma 1.1.* Let us denote $\mathcal{G}_{\omega,i}^{(t)} = \frac{\partial \mathcal{L}_{MSE}(\theta_Q^*, \theta_{FP}, X_t^{(V)})}{\partial \omega^{(i-1)}}$ as the gradient w.r.t $\omega^{(i)}$ when
 608 evaluated on the validation set at the t-th iteration, $\omega^{(i-1)}$ denotes the samples weight after the (i-1)-th
 609 iteration and before the i-th iteration optimized with Algorithm 1, $\omega^{(0)}$ denotes the initial sample
 610 weights. We have:

$$611 \quad \omega^{(T)} - \omega^{(0)} = -\eta \left(\sum_{t=1}^T \mathcal{G}_{\omega,t}^{(t)} \right), \quad (9)$$

612 Using First Order Taylor approximation around $\omega^{(0)}$ and combine with Eq. (9) we have:

$$613 \quad \begin{aligned} \mathcal{G}_{\omega,t}^{(t)} &\approx \mathcal{G}_{\omega,1}^{(t)} + \mathcal{H}_{\omega,t}(\omega^{(t-1)} - \omega^{(0)})^T \\ 614 &= \mathcal{G}_{\omega,1}^{(t)} - \eta \mathcal{H}_{\omega,t} \left(\sum_{i=1}^{t-1} \mathcal{G}_{\omega,i}^{(i)} \right)^T \\ 615 &= \mathcal{G}_{\omega,1}^{(t)} - O(\eta), \end{aligned} \quad (10)$$

616 where $\mathcal{H}_{\omega,t}$ denotes the Hessian matrix of the model loss with respect to the sample weights ω ,
 617 evaluated on the validation data at the t-th iteration.

618 Replace $\mathcal{G}_{\omega,i}^{(i)} = \mathcal{G}_{\omega,1}^{(i)} - O(\eta) \quad \forall i = 1, 2, \dots, t-1$ we have:

$$619 \quad \begin{aligned} \mathcal{G}_{\omega,t}^{(t)} &= \mathcal{G}_{\omega,1}^{(t)} - \eta \mathcal{H}_{\omega,t} \left(\sum_{i=1}^{t-1} \mathcal{G}_{\omega,i}^{(i)} \right)^T \\ 620 &\approx \mathcal{G}_{\omega,1}^{(t)} - \eta \mathcal{H}_{\omega,t} \left(\sum_{i=1}^{t-1} (\mathcal{G}_{\omega,1}^{(i)} - O(\eta)) \right)^T \\ 621 &\approx \mathcal{G}_{\omega,1}^{(t)} - \eta \mathcal{H}_{\omega,t} \left(\sum_{i=1}^{t-1} (\mathcal{G}_{\omega,1}^{(i)}) + O(\eta^2) \right) \end{aligned} \quad (11)$$

622 For any $i \leq j$, because at each iteration i and j we randomly sample validation data of a timestep,
 623 the iteration indexes are interchangeable, i.e. $\mathbb{E}[\mathcal{H}_{\omega,j} \mathcal{G}_{\omega,1}^{(i)}] = \mathbb{E}[\mathcal{H}_{\omega,i} \mathcal{G}_{\omega,1}^{(j)}]$. Therefore, we have:

$$624 \quad \begin{aligned} \mathbb{E}\left[\frac{\partial \mathcal{G}_{\omega,1}^{(i)}}{\partial \omega} \mathcal{G}_{\omega,1}^{(j)}\right] &= \mathbb{E}[\mathcal{H}_{\omega,j} \mathcal{G}_{\omega,1}^{(i)} + \mathcal{H}_{\omega,i} \mathcal{G}_{\omega,1}^{(j)}] \\ 625 &= 2\mathbb{E}[\mathcal{H}_{\omega,j} \mathcal{G}_{\omega,1}^{(i)}] \\ 626 \implies \mathcal{H}_{\omega,t} \left(\sum_{i=1}^{t-1} \mathcal{G}_{\omega,1}^{(i)} \right) &= \frac{1}{2} \sum_{i=1}^{t-1} \frac{\partial \mathcal{G}_{\omega,1}^{(i)}}{\partial \omega} \mathcal{G}_{\omega,1}^{(i)} \end{aligned} \quad (12)$$

648 Combine Eq. (11) and Eq. (12) we have:
649

$$\begin{aligned}
650 \quad \mathcal{G}_{\omega,t}^{(t)} &\approx \mathcal{G}_{\omega,1}^{(t)} - \eta \mathcal{H}_{\omega,t} \left(\sum_{i=1}^{t-1} (\mathcal{G}_{\omega,1}^{(i)}) \right) \\
651 \\
652 \quad &= \mathcal{G}_{\omega,1}^{(t)} - \frac{\eta}{2} \sum_{i=1}^{t-1} \frac{\partial \mathcal{G}_{\omega,1}^{(i)}^T \mathcal{G}_{\omega,1}^{(t)}}{\partial \omega} \\
653 \\
654 \quad &= \mathcal{G}_{\omega,1}^{(t)} - \frac{\eta}{2} \sum_{i=1}^{t-1} \frac{\partial \mathcal{G}_{\omega,1}^{(i)}^T \mathcal{G}_{\omega,1}^{(t)}}{\partial \omega} \\
655
\end{aligned} \tag{13}$$

656 Combine Eq. (9) and Eq. (13) we have:
657

$$\begin{aligned}
658 \quad \omega^{(T)} - \omega^{(0)} &= -\eta \left(\sum_{t=1}^T \mathcal{G}_{\omega,t}^{(t)} \right) \\
659 \\
660 \quad &= -\eta \left(\sum_{t=1}^T (\mathcal{G}_{\omega,1}^{(t)} - \frac{\eta}{2} \sum_{i=1}^{t-1} \frac{\partial \mathcal{G}_{\omega,1}^{(i)}^T \mathcal{G}_{\omega,1}^{(t)}}{\partial \omega}) \right), \\
661 \\
662 \quad &= -\eta \left(\sum_{t=1}^T \mathcal{G}_{\omega,1}^{(t)} - \frac{\eta}{2} \sum_{1 \leq i < j \leq T} \frac{\partial \mathcal{G}_{\omega,1}^{(i)}^T \mathcal{G}_{\omega,1}^{(j)}}{\partial \omega} \right), \\
663 \\
664 \quad &= -\eta \left(\sum_{t=1}^T \frac{\partial \mathcal{L}_{MSE}(\theta_Q^*, \theta_{FP}, X_t^{(V)})}{\partial \omega} + \frac{\eta T(T-1)}{4} \frac{\partial \mathcal{L}_{GM}^{(2)}(\theta_Q^*, X^{(V)})}{\partial \omega} \right), \\
665 \\
666 \quad &= -\eta \left(\frac{\partial \mathcal{L}_{MSE}(\theta_Q^*, \theta_{FP}, X^{(V)})}{\partial \omega} + \frac{\eta T(T-1)}{4} \frac{\partial \mathcal{L}_{GM}^{(2)}(\theta_Q^*, X^{(V)})}{\partial \omega} \right), \\
667 \\
668 \quad &= -\eta \left(\frac{\partial \mathcal{L}_{MSE}(\theta_Q^*, \theta_{FP}, X^{(V)})}{\partial \omega} + \frac{\eta T(T-1)}{4} \frac{\partial \mathcal{L}_{GM}^{(2)}(\theta_Q^*, X^{(V)})}{\partial \omega} \right), \\
669 \\
670 \quad &= -\eta \left(\frac{\partial \mathcal{L}_{MSE}(\theta_Q^*, \theta_{FP}, X^{(V)})}{\partial \omega} + \frac{\eta T(T-1)}{4} \frac{\partial \mathcal{L}_{GM}^{(2)}(\theta_Q^*, X^{(V)})}{\partial \omega} \right), \\
671
\end{aligned} \tag{14}$$

672 According to Eq.(14), the update in ω of Algorithm 1 corresponds to a gradient descent step on a
673 composite loss function comprising $\mathcal{L}_{MSE}(\cdot)$ and $\mathcal{L}_{GM}^{(2)}(\cdot)$. This indicates that the optimization of
674 Algorithm 1 effectively minimizes the combined validation loss $\mathcal{L}_{VAL}^{(2)}(\theta_Q^*, \theta_{FP}, X^{(V)})$ as defined in
675 Equation (8).
676 \square
677

678
679 **Lemma A.2** (Restated from Lemma 4.2). *Let us denotes $\mathcal{G}_{\omega,t} = \frac{\partial \mathcal{L}_{MSE}(\theta_Q^*, \theta_{FP}, X_t^{(V)})}{\partial \omega}$. The second
680 gradient matching loss $\mathcal{L}_{GM}^{(2)}(\cdot)$ for gradients w.r.t the sample weight ω is defined as:*
681

$$682 \quad \mathcal{L}_{GM}^{(2)}(\theta_Q^*, X^{(V)}) = -\frac{2}{T * (T-1)} \sum_{t \neq k} \mathcal{G}_{\omega,t} \mathcal{G}_{\omega,k}, \tag{15}$$

683
684 *The minimization of $\mathcal{L}_{GM}^{(2)}(\cdot)$ will implicitly lead to the minimization of $\mathcal{L}_{GM}(\cdot)$, in the sense that a
685 minimizer of $\mathcal{L}_{GM}^{(2)}(\cdot)$ corresponds to a minimizer of the target loss \mathcal{L}_{GM} .*
686

687
688 *Proof of Lemma 1.2.* To demonstrate that minimizing $\mathcal{L}_{GM}^{(2)}(\cdot)$ leads to the minimization of $\mathcal{L}_{GM}(\cdot)$,
689 we show that under sufficiently small learning rate η , the optimality of $\mathcal{L}_{GM}^{(2)}(\cdot)$ implies the optimality
690 of $\mathcal{L}_{GM}(\cdot)$. Let $\{\mathcal{G}_{\theta_Q,t}^{(T)}\}_{t=1}^T$ denotes the set of gradient w.r.t the intial quantized model's parameters
691 θ_Q when evaluated on T timestep-specific training sets $\{X_t^{(T)}\}_{t=1}^T$. Similarly, we define $\{\mathcal{G}_{\theta_Q^*,t}^{(T)}\}_{t=1}^T$
692 as the set of gradient w.r.t the meta model's parameters θ_Q^* when evaluated on T timestep-specific
693 training subsets. We aim to prove that, under sufficiently small learning rate η , for any $1 \leq i < j \leq T$,
694 if
695

$$696 \quad \cos(\mathcal{G}_{\omega,i}, \mathcal{G}_{\omega,j}) = 1,$$

697 then it follows that
698

$$699 \quad \cos(\mathcal{G}_{\theta_Q^*,i}, \mathcal{G}_{\theta_Q^*,j}) = 1.$$

702 We begin by expressing the gradients using the chain rule:
 703

$$\begin{aligned}
 704 \quad \mathcal{G}_{\omega,t} &= \frac{\partial \mathcal{L}_{MSE}(\theta_Q^*, \theta_{FP}, X_t^{(V)})^T}{\partial \omega} \\
 705 \\
 706 &= \frac{\partial \mathcal{L}_{MSE}(\theta_Q^*, \theta_{FP}, X_t^{(V)})^T}{\partial \theta_Q^*} \frac{\partial \theta_Q^*}{\partial \omega} \\
 707 \\
 708 &= \frac{\partial \mathcal{L}_{MSE}(\theta_Q^*, \theta_{FP}, X_t^{(V)})^T}{\partial \theta_Q^*} \frac{\partial \theta_Q^*}{\partial \omega} \\
 709 \\
 710 &= \mathcal{G}_{\theta_Q^*, t}^T \frac{\partial(\theta_Q - \eta \sum_{i=1}^{|X^{(T)}|} \omega_i \frac{\partial \mathcal{L}_{MSE}(\theta_Q, \theta_{FP}, x_i^{(T)})}{\partial \theta_Q}) z}{\partial \omega} \\
 711 \\
 712 &= -\eta \mathcal{G}_{\theta_Q^*, t}^T \left[\frac{\mathcal{L}_{MSE}(\theta_Q, \theta_{FP}, x_1^{(T)})}{\partial \theta_Q} \quad \frac{\mathcal{L}_{MSE}(\theta_Q, \theta_{FP}, x_2^{(T)})}{\partial \theta_Q} \quad \dots \quad \frac{\mathcal{L}_{MSE}(\theta_Q, \theta_{FP}, x_1^{(N)})}{\partial \theta_Q} \right] \quad (16)
 713 \\
 714 \\
 715
 \end{aligned}$$

716 Let us define a matrix C size $T \times N$ where $C_{t,j} = \cos(\mathcal{G}_{\theta_Q^*, t}, \frac{\mathcal{L}_{MSE}(\theta_Q, \theta_{FP}, x_j^{(T)})}{\partial \theta_Q})$ denoting the
 717 cosine similarity between the meta model's gradient evaluated on the validation data at timestep t
 718 and the original model's gradient when evaluated on j^{th} training samples.
 719

720 From Eq. (16), for any $1 \leq i < j \leq T$, if $\cos(\mathcal{G}_{\omega,i}, \mathcal{G}_{\omega,j}) = 1$, then we have:
 721

$$\frac{C_{i,1}}{C_{j,1}} = \frac{C_{i,2}}{C_{j,2}} = \dots = \frac{C_{i,N}}{C_{j,N}} > 0 \quad \forall k \in \{1, \dots, N\} \text{ with } C_{j,k} \neq 0 \quad (17)$$

724 Supposed $i = 1, j = 2$, then $\cos(\mathcal{G}_{\omega,1}, \mathcal{G}_{\omega,2}) = 1$ and we assume that $\cos(\mathcal{G}_{\theta_Q^*, 1}, \mathcal{G}_{\theta_Q^*, 2}) = \gamma < 1$,
 725 we will prove that this lead to contradiction. Using First-Order Taylor approximation around θ_Q we
 726 have:
 727

$$\begin{aligned}
 728 \quad \frac{\mathcal{G}_{\theta_Q^*, 1}}{\|\mathcal{G}_{\theta_Q^*, 1}\|} &= \frac{\mathcal{G}_{\theta_Q^*, 1}^{(T)}}{\|\mathcal{G}_{\theta_Q^*, 1}^{(T)}\|} \quad (X_1^{(T)} \text{ and } X_1^{(V)} \text{ has similar distribution}) \\
 729 \\
 730 &\approx \frac{1}{\|\mathcal{G}_{\theta_Q^*, 1}^{(T)}\|} (\mathcal{G}_{\theta_Q^*, 1}^{(T)} + (\theta_Q^* - \theta_Q) \mathcal{H}_1) \\
 731 \\
 732 &= \frac{1}{\|\mathcal{G}_{\theta_Q^*, 1}^{(T)}\|} (\mathcal{G}_{\theta_Q^*, 1}^{(T)} - \eta \sum_{i=1}^{|X^{(T)}|} \omega_i \frac{\partial \mathcal{L}_{MSE}(\theta_Q, \theta_{FP}, x_i^{(T)})}{\partial \theta_Q} \mathcal{H}_1), \quad (18)
 733 \\
 734 \\
 735
 \end{aligned}$$

736 where \mathcal{H}_1 denotes the Hessian matrix w.r.t the model weight θ_Q when evaluated on the training set
 737 $X_1^{(T)}$ for the timestep 1.
 738

739 Let $B = \frac{\mathcal{G}_{\theta_Q^*, 1}}{\|\mathcal{G}_{\theta_Q^*, 1}\|} - \frac{\mathcal{G}_{\theta_Q^*, 2}}{\|\mathcal{G}_{\theta_Q^*, 2}\|}$, we have
 740

$$\|\mathcal{B}\| = \left\| \frac{\mathcal{G}_{\theta_Q^*, 1}}{\|\mathcal{G}_{\theta_Q^*, 1}\|} - \frac{\mathcal{G}_{\theta_Q^*, 2}}{\|\mathcal{G}_{\theta_Q^*, 2}\|} \right\| \leq \left\| \frac{\mathcal{G}_{\theta_Q^*, 1}}{\|\mathcal{G}_{\theta_Q^*, 1}\|} \right\| + \left\| \frac{\mathcal{G}_{\theta_Q^*, 2}}{\|\mathcal{G}_{\theta_Q^*, 2}\|} \right\| = 2 \quad (19)$$

745 Therefore, multiply both size of Eq. (18) with B we have::
 746

$$\begin{aligned}
 747 \quad \left(\frac{\mathcal{G}_{\theta_Q^*, 1}}{\|\mathcal{G}_{\theta_Q^*, 1}\|} \right)^T B &= \frac{1}{\|\mathcal{G}_{\theta_Q^*, 1}^{(T)}\|} (\mathcal{G}_{\theta_Q^*, 1}^{(T)} - \eta \sum_{i=1}^{|X^{(T)}|} \omega_i \frac{\partial \mathcal{L}_{MSE}(\theta_Q, \theta_{FP}, x_i^{(T)})}{\partial \theta_Q} \mathcal{H}_1)^T B \\
 748 \\
 749 &\implies \frac{1}{\|\mathcal{G}_{\theta_Q^*, 1}^{(T)}\|} (\mathcal{G}_{\theta_Q^*, 1}^{(T)})^T B = \left(\frac{\mathcal{G}_{\theta_Q^*, 1}}{\|\mathcal{G}_{\theta_Q^*, 1}\|} \right)^T B + \eta \frac{1}{\|\mathcal{G}_{\theta_Q^*, 1}^{(T)}\|} \left(\sum_{i=1}^{|X^{(T)}|} \omega_i \frac{\partial \mathcal{L}_{MSE}(\theta_Q, \theta_{FP}, x_i^{(T)})}{\partial \theta_Q} \mathcal{H}_1 \right)^T B \\
 750 \\
 751 &= 1 - \gamma \quad + \eta \frac{1}{\|\mathcal{G}_{\theta_Q^*, 1}^{(T)}\|} \left(\sum_{i=1}^{|X^{(T)}|} \omega_i \frac{\partial \mathcal{L}_{MSE}(\theta_Q, \theta_{FP}, x_i^{(T)})}{\partial \theta_Q} \mathcal{H}_1 \right)^T B \quad (20)
 752 \\
 753 \\
 754
 \end{aligned}$$

Let us denote $N^{(T)} = \max_{x_i^{(T)}} \left\| \frac{\partial \mathcal{L}_{MSE}(\theta_Q, \theta_{FP}, x_i^{(T)})}{\partial \theta_Q} \right\|$. Because $\sum_i \omega_i = 1$ and $\|B\| \leq 2$ according to Eq. (19), we then have:

$$\begin{aligned}
& \left| \eta \frac{1}{\left\| \mathcal{G}_{\theta_Q^*, 1}^{(T)} \right\|} \left(\sum_{i=1}^{|X^{(T)}|} \omega_i \frac{\partial \mathcal{L}_{MSE}(\theta_Q, \theta_{FP}, x_i^{(T)})}{\partial \theta_Q} \mathcal{H}_1 \right)^T B \right| \leq \frac{\eta}{\left\| \mathcal{G}_{\theta_Q^*, 1}^{(T)} \right\|} \left\| \mathcal{H}_1 \right\|_2 \left\| \sum_{i=1}^{|X^{(T)}|} \omega_i \frac{\partial \mathcal{L}_{MSE}(\theta_Q, \theta_{FP}, x_i^{(T)})}{\partial \theta_Q} \right\| \|B\| \\
& \leq 2\eta \left\| \mathcal{H}_1 \right\|_2 \frac{N^{(T)}}{\left\| \mathcal{G}_{\theta_Q^*, 1}^{(T)} \right\|}, \tag{21}
\end{aligned}$$

where $\|\mathcal{H}_1\|_2$ denotes the spectral norm of \mathcal{H}_1 . Combining Eq. (21) and Eq. (20) we have:

$$\begin{aligned}
\frac{1}{\|G_{\theta_Q^*, 1}^{(T)}\|} (G_{\theta_Q^*, 1}^{(T)})^T B &= 1 - \gamma + \eta \frac{1}{\|G_{\theta_Q^*, 1}^{(T)}\|} \left(\sum_{i=1}^{|X^{(T)}|} \omega_i \frac{\partial \mathcal{L}_{MSE}(\theta_Q, \theta_{FP}, x_i^{(T)})}{\partial \theta_Q} \mathcal{H}_1 \right)^T B \\
&\geq 1 - \gamma - 2\eta \|\mathcal{H}_1\|_2 \frac{N^{(T)}}{\|G_{\theta_Q^*, 1}^{(T)}\|} > 0 \quad \text{for } \eta < \frac{(1 - \gamma) \|G_{\theta_Q^*, 1}^{(T)}\|}{2 \|\mathcal{H}_1\|_2 N^{(T)}}
\end{aligned} \tag{22}$$

Therefore, for sufficiently small learning rate η , we have $(\mathcal{G}_{\theta_Q, 1}^{(T)})^T B > 0$. This implies that there exist at least a single training sample $x_k^{(T)} \in X^{(T)}$ such that

$$\begin{aligned}
& \frac{\partial \mathcal{L}_{MSE}(\theta_Q, \theta_{FP}, x_k^{(T)})}{\partial \theta_Q}^T B > 0 \\
\implies & \frac{\partial \mathcal{L}_{MSE}(\theta_Q, \theta_{FP}, x_k^{(T)})}{\partial \theta_Q}^T \left(\frac{\mathcal{G}_{\theta_Q^*, 1}}{\|\mathcal{G}_{\theta_Q^*, 1}\|} - \frac{\mathcal{G}_{\theta_Q^*, 2}}{\|\mathcal{G}_{\theta_Q^*, 2}\|} \right) > 0 \\
\implies & C_{1,k} > C_{2,k}
\end{aligned} \tag{23}$$

Similarly, there exists a training sample $x_l^{(T)}$ such that $C_{2,l} > C_{1,l}$. This leads to a contradiction, because by assumption, $\frac{C_{1,k}}{C_{2,k}} = \frac{C_{1,l}}{C_{2,l}} > 0$ for all k, l such that $C_{2,k} \neq 0$ and $C_{2,l} \neq 0$. If $C_{2,k} = 0$, then it must be that $C_{1,k} = 0$ as well; contradicting $C_{1,k} > C_{2,k}$. Therefore, if $\cos(\mathcal{G}_{\omega,i}, \mathcal{G}_{\omega,j}) = 1$, it follows that $\cos(\mathcal{G}_{\theta_Q^*, i}, \mathcal{G}_{\theta_Q^*, j}) = 1$ as well.

A.3 VISUALIZATION OF GENERATED IMAGES

We visualize sample images generated from the full-precision model, as well as from quantized models obtained using the Q-Diffusion (Li et al., 2023) method, the TFMQ (Huang et al., 2024) method, and our proposed method with the W4A32 setting, all initialized with a fixed random seed. As shown in Figure 3, our proposed method generates images that closely match those of the full-precision models, demonstrating the effectiveness of our approach.

(a) Full precision.

(b) Q-Diffusion (W4A32).

(c) TFMQ-DM (W4A32).

(d) Our proposed method (W4A32).

844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Figure 3: Generated samples from (a) full-precision LDM-4, (b) Q-Diffusion (W4A32), (c) TFMQ-DM (W4A32), and (d) our proposed method (W4A32) on LSUN-Bedrooms 256×256 dataset with a fixed random seed.

864 A.4 FINAL ALGORITHM

865

866

867

868

869

Algorithm 2 Sample Weights Optimization for Diffusion Quantization

```

871 1: Input: Full-precision model  $\theta_{FP}$ ; number of timesteps  $T$ ; samples per timestep  $B$ ; learning rate
872   for model quantization  $\eta$ ; learning rate for sample weights  $\eta_\omega$ ; total iterations  $I$ 
873 2: Initialize quantized model  $\theta_Q \leftarrow \theta_{FP}$ 
874 3: Initialize sample weights  $\omega_i \leftarrow \frac{1}{B} \quad \forall i \in \{1, \dots, T\}$ 
875 4:  $\omega^{(0)} = \omega$ 
876 5: for iteration  $i = 1$  to  $I$  do
877   6: Sample timestep  $t \sim \{1, \dots, T\}$                                 // randomly choose a timestep
878   7:  $\theta_Q^* = \theta_Q - \eta \cdot \sum_{j=1}^B \omega_j \cdot \nabla_{\theta_Q} \mathcal{L}_{\text{MSE}}(\theta_Q, \theta_{FP}, X^{(T)})$       // one-step-ahead model
879   8: for  $j = 1$  to  $B$  do
880     9:  $\omega_j^{(i)} = \omega_j^{(i-1)} - \eta \cdot \nabla_{\omega_j^{(i-1)}} \mathcal{L}_{\text{MSE}}(\theta_Q^*, \theta_{FP}, X_i^{(V)})$       // pseudo update  $\omega$  with  $X_i^{(V)}$ 
881   10: end for
882   11: if  $i \bmod T = 0$  then
883     12:   for  $j = 1$  to  $B$  do
884       13:      $\omega_j \leftarrow \omega_j^{(0)} + \eta_\omega \cdot \frac{1}{T} (\omega_j^{(T)} - \omega_j^{(0)})$                       // final update of  $\omega$ 
885     14:   end for
886   15:    $\omega^{(0)} = \omega$ 
887   16: end if
888   17: end for
889 18: Return:  $\omega$ 

```

890

891

892

893

A.5 ADDITIONAL RESULTS

894

895

896

Ablation studies for the number of timestep groups. In practice, we uniformly divide timesteps into 5 groups for simplicity across all datasets. To investigate the effectiveness of our method under different timestep groupings, we evaluate it on the CIFAR-10 dataset using the W4A32 setting. Table 5 presents ablation results for varying numbers of groups. We observe that increasing the number of groups does not significantly improve performance but may introduce additional computational overhead.

902

903

904

905 Table 5: Ablation studies for the number of timestep groups. The results are on the CIFAR-10 dataset
906 with the W4A32 setting.

907

908

909

910

911

912

913

914

915

916

917

Evaluation on extreme bit settings To further investigate the effectiveness of our method under extreme low-bit settings, we report additional results on the ImageNet 256×256 dataset using the LDM-DM model with 3/6 and 2/4 configurations. The results are summarized in Table 6. As shown, our method achieves substantial improvements over baseline approaches, even under these highly constrained quantization regimes.

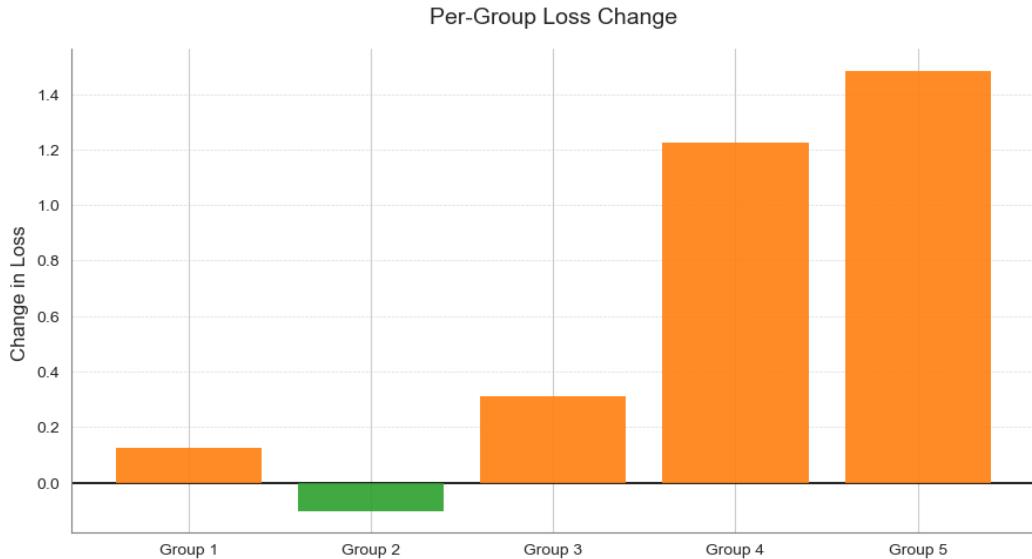
Group	1	2	5	10	20
FID \downarrow	4.63	4.57	4.28	4.25	4.26
sFID \downarrow	4.61	4.63	4.56	4.57	4.56

918
919 Table 6: Additional results on low-bit settings for unconditional image generation with LDM-4 on
920 ImageNet 256×256.

921 Methods	922 Bits (W/A)	923 FID ↓	924 sFID ↓	925 Precision ↑	926 Recall ↑
927 Full Prec.	928 32/32	929 9.36	930 8.67	931 –	932 –
933 PTQD (He et al., 2023b)	934	935 17.98	936 57.31	937 63.13	938 –
939 TFMQ-DM (Huang et al., 2024)	940 3/6	941 15.90	942 40.63	943 67.42	944 44.04
945 Ours	946	947 10.65	948 11.94	949 72.57	950 45.01
951 PTQD (He et al., 2023b)	952	953 336.57	954 288.42	955 0.01	956 –
957 TFMQ-DM (Huang et al., 2024)	958 2/4	959 300.03	960 272.64	961 0.03	962 0.01
963 Ours	964	965 226.27	966 102.83	967 0.08	968 0.03

931 A.6 VISUALIZATION OF THE CHANGE IN LOSS ACROSS GROUP.

932
933 We visualize the difference in training loss between the quantized diffusion model trained with our
934 sample-weighting strategy and one trained with uniform sample weights, using the CIFAR-10 dataset
935 under the 4/32 quantization setting. The comparison is made across groups of timesteps sorted by
936 ascending loss. As shown in Figure 4, our method consistently reduces the loss in groups that tend to
937 be under-optimized when uniform weights are used. This supports our motivation to assign sample
938 weights that mitigate gradient conflicts, preventing the model from over-optimizing certain timesteps
939 at the expense of others.



969 Figure 4: Visualization of loss differences across timestep groups on the CIFAR-10 calibration set
970 (4/32 setting) for quantized models trained with and without our sample-weighting method. Data
971 are grouped by timesteps into five categories during sample weight optimization and are shown in
972 **ascending** order of loss. Orange bars indicate loss reduction with our method, while green bars
973 indicate an increase. The results demonstrate that our approach effectively reduces loss for under-
974 optimized timesteps, addressing the gradient conflict issue that leads to the neglect of certain timestep

975
976 We visualize the difference in training loss between the quantized diffusion model trained with our
977 sample-weighting strategy and one trained with uniform sample weights, using the CIFAR-10 dataset
978 under the 4/32 quantization setting. The comparison is made across groups of timesteps sorted by
979 **ascending** loss. As shown in Figure 4, our method consistently reduces the loss in groups that tend to
980 be under-optimized when uniform weights are used. This supports our motivation to assign sample

972 weights that mitigate gradient conflicts, preventing the model from over-optimizing certain timesteps
973 at the expense of others.
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025