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Abstract

Supervised Fine-tuning has been pivotal in
training autoregressive language models, yet it
introduces exposure bias. To mitigate this, Post
Fine-tuning, including on-policy and off-policy
methods, has emerged as a solution to enhance
models further, though each has its limitations
regarding performance enhancements and sus-
ceptibility to overfitting. In this paper, we intro-
duce a novel on-policy approach, called Evo-
lution Strategy Optimization (ESO), which
is designed by harnessing the principle of bio-
logical evolution, namely survival of the fittest.
Particularly, we consider model tuning as an
evolution process, and each output sentence
generated by the model can provide a pertur-
bation signal to the model parameter space.
Then, the fitness of perturbation signals is quan-
tified by the difference between its score and
the averaged one offered by a reward function,
steering optimization process. Empirically, the
proposed method can achieve superior perfor-
mance in various tasks and comparable perfor-
mance in the human alignment one. The code
will be publicly available.

1 Introduction

Autoregressive language models (Radford et al.,
2018, 2019; Achiam et al., 2023; Touvron et al.,
2023) represent a significant milestone in model-
ing language for natural language processing tasks,
ranging from machine translation (Lopez, 2008;
Wang et al., 2022a) to text generation (McKeown,
1992; Zhang et al., 2019a; Welleck et al., 2019).
Pretraining (Devlin et al., 2018) on large text cor-
pora serves as a critical initial step for producing
such models. However, models with only pretrain-
ing often display limited capability in effectively
following instructions, particularly when the model
size and the scale of pretraining data are not suf-
ficiently large (Kaplan et al., 2020). Supervised
Fine-tuning (SFT) has shown considerable success
in enhancing models’ ability to follow instructions,
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Figure 1: The overview of the proposed ESO approach.
ESO is an on-policy method, where the response a” is
generated online by the model 7y with a sampling strat-
egy and evaluated by a reward function R. Then, the
fitness of each sampling one used for guiding optimiza-
tion is quantified by the difference between its reward
score and the averaged score of all sampling ones.

and hence has become a de facto paradigm. Never-
theless, SFT introduces a phenomenon known as
exposure bias (Zhang et al., 2019b; Schmidt, 2019),
leading to potential discrepancies between training
and testing behaviors.

To further enhance model capacities, Post Fine-
tuning has attracted extensive attention. In general,
Post Fine-tuning can be categorized into on-policy
and off-policy methods. On-policy methods aim
to directly optimize the probability of models’ out-
puts during training in an on-the-fly manner, such
as Unlike learning (Welleck et al., 2019) directly
discourages the generation of low-quality output
sentences and RRHF (Yuan et al., 2023) introduces
ranking information. On the other hand, off-policy
methods involve tuning the model using additional
data collected offline and specifically designed to
support alignment goals, like Direct Preference Op-
timization (DPO) (Rafailov et al., 2023). In prac-
tice, on-policy methods would suffer from limited
performance enhancements and training instability,
while off-policy ones may lead to overfitting and
reduced model generalization ability.

In this paper, we focus on on-policy methods.
Drawing inspiration from the principle of biologi-
cal evolution, that is survival of the fittest, we con-
sider model tuning with on-policy methods as an



evolution process. The guidance for evolution is re-
flected by the gradient of the probability of output
sentences generated online by models, whose func-
tionality can be regarded as sampling perturbations
in the parameter space, akin to variations in evo-
lution strategies. A reward function is applied to
the output sentences to measure the quality of sam-
pling perturbations. Then, the fitness of each sam-
pling perturbation is quantified by the difference
between its reward score and the averaged score of
all sampling perturbations, which is then leveraged
to guide optimization, as shown in Figure 1. In this
way, we propose a simple yet well-motivated on-
policy method based on evolution strategies, called
Evolution Strategy Optimization (ESO), to opti-
mize model behavior more effectively, enhancing
model performance in various tasks, including in-
struction following and text summarization.
Our main contributions are:

* We resolve on-policy Post Fine-tuning by con-
sidering the core principle of evolution strate-
gies, providing on-policy methods with a new
insight for autoregressive language models.

* We develop a simple yet well-motivated on-
policy learning paradigm for autoregressive
language models, which can achieve superior
performance by recognized metrics and com-
parable results in specific alignment tasks.

2 Preliminaries

The language model task typically involves training
a language model to learn the underlying structure
and intrinsic properties of natural language from a
supervised dataset D = {(z%, y*)}¥| of N paired
examples, where z° is the input sentence to the
language model and ¢’ is the corresponding target
text-sequence. Both z* and y* consist of a sequence
of tokens, e.g., ' = {x}, 2%, ...,z }. In this paper,
we focus on improving an autoregressive language
model parameterized by 6 as my.

2.1 Supervised Fine-tuning

Given a supervised dataset D = {(z%,y%)} Y ,, the
extensively adopted approach to fine-tune a pre-
trained autoregressive language is SFT. SFT can
be formulated as an optimization problem where
the model parameters my are adjusted by minimiz-
ing the discrepancy between the model’s prediction
token 7(a¢|z,y<¢) and the ground truth token ;.
By leveraging Cross-Entropy loss, the objective is

essentially equivalent to increasing the probability
assigned to the target token y, by the model, which
can be displayed as:
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where |y| denotes the ground-truth sentence length,
i.e., the number of tokens in the output sentence. It
is important to note that SFT is a form of teacher
forcing or exposure bias (Zhang et al., 2019b;
Schmidt, 2019) which involves training the model
with input z and the ground truth tokens y.; at
each step, and its output token is expected to align
with the subsequent ground truth token y;. How-
ever, during inference, the model generates tokens
sequentially based solely on its own previously
generated tokens, without the aid of ground truth
information. This autonomous generation process
can lead to a discrepancy between the model’s be-
havior during training and testing.

2.2 Post Fine-tuning

Post Fine-tuning has gained significant popularity
in natural language processing research at the mo-
ment, which aims to optimize the probability of
an entire sentence that refers to the joint probabil-
ity of all tokens in the output sequence for spe-
cific intentions (Schulman et al., 2017; Yao et al.,
2018; Paulus et al., 2018; Welleck et al., 2019;
Ziegler et al., 2019; Rafailov et al., 2023; Yuan
et al., 2023), which can be expressed as 7y (a|x) =
Hl‘tazll mo(at|x, a<¢). Unlike SFT, which performs
imitation learning on labeled demonstration data,
Post Fine-tuning is expected to refine language
models’ output by adjusting the probability of the
output sentences. In this methodology, the evalua-
tion of the quality of a generated sentence is crucial,
and it is often facilitated by a reward mechanism
that typically relies on either a highly recognized
metric or a well-trained reward model. Unlike
learning (Welleck et al., 2019) is a representative
method and aims to discourage the generation of
low-quality sentences by directly decreasing their
log probabilities as the optimization objective. An-
other notable approach, RRHF incorporates rank
optimization into the training process (Yuan et al.,
2023), where the rank information of multiple can-
didate output sentences generated by the model is
leveraged according to their quality based on the
reward. Assume that there are k candidate output
sentences {a',a?, ..., a*} for a given input x, each




candidate output sentence can obtain its reward
score 7, = R(x,a*) from a metric or a reward
model R. The objective based on rank optimiza-
tion is expressed as:
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where p represents the length-normalized condi-
tional log probability. Additionally, there are two
prominent approaches are designed to better align
with human preferences, namely Proximal Policy
Optimization (PPO) (Schulman et al., 2017) and
Direct Preference Optimization (DPO) (Rafailov
et al., 2023), which maximize the following objec-
tive,
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PPO adopts an actor-critic framework using an on-
policy strategy with a reward model to optimize
this goal while DPO performs refinement directly
on the preference data (z, Y., y1) ~ D) in an off-
policy manner without the need of a reward model
using the following crafted loss,
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where y,, and y; represent chosen and rejected re-
sponses, respectively.

3 Main Method
3.1 Evolution Strategy

Evolution strategy represents a category of zero-
order optimization algorithms, which are inspired
by the principle of biological evolution, where liv-
ing organisms change over time to better adapt
to their environment (Rechenberg, 1973; Huning,
1976). The evolution process is performed in an
iterative way. At each iteration, a population of
parameter vectors is randomly perturbed, mirror-
ing the concept of mutation in life sciences, where
genetic variations introduce new traits to a species.
Then, the objective function F'(-) is utilized to eval-
uate the fitness of the perturbed version of parame-
ter vectors. After that, the search gradient is used
to update the parameter vectors (Salimans et al.,
2017). To illustrate the process, a smoothed corre-
sponding version of F'(-) should be defined as:

J(0) = Econio,n [F(0 + 0 - €)], &)

where o is a hyper-parameter determining the mag-
nitude of the random perturbation. Natural Evolu-
tion Strategy (NES) (Wierstra et al., 2014), one of
the most popular evolution strategies, derives the
gradient of J(6) by the mathematical formulation:
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where k denotes the number of sampling €. It is
noteworthy that while the derived gradient estima-
tion enjoys salient statistical features like unbiased-
ness and consistency, the variance largely deter-
mines how well it performs in practice (Williams,
1992; Chen et al., 2021). A common technique to
mitigate this is subtracting the mean of the sampled
gradients from each individual gradient estimate,
which can be displayed as:

k

up =1 SIF6+0 )]

J=1

k
Vo (0) % o SUF6-+0-€) —ur) o)

o- k4
7=1
(M
However, applying NES directly to enhance the
capability of language models faces a significant
challenge, primarily due to the high dimensionality
of language model parameters. Language models
often consist of millions or even billions of parame-
ters. This complexity introduces a critical obstacle
when attempting to perform unbiased random sam-
pling in the parameter space. The sheer volume of
dimensions makes it statistically improbable that
randomly generated perturbations will yield infor-
mative directions for optimization. This challenge
is compounded by the "curse of dimensionality",
where the sheer number of parameters dilutes the
impact of any single perturbation, making mean-
ingless exploration computationally expensive.

3.2 The Proposed ESO Method

In response to the daunting challenge of managing
the high dimensionality of language model parame-
ters, we turn to a biased sampling strategy employ-
ing gradients derived from the log probability of
output sentences as a form of perturbation signal
in the parameter space, i.e., ¢ = Vylogmg(alz).
Compared to random sampling, such biased sam-
pling can provide much more informativeness for



the evolution process. In evolutional strategy, it is
essential to perform multiple sampling of pertur-
bations to effectively explore the landscape of the
parameter space, as shown in Equation 7. Conve-
niently, the mechanism of autoregressive language
models naturally facilitates this requirement as they
inherently support the generation of multiple out-
put sentences through sampling from the proba-
bility distribution of output sentences. The diver-
sity of output sentences can be further controlled
by incorporating a temperature constant 7 in the
Softmax function used to calculate the probabil-
ity distribution. A higher temperature results in
more equal probabilities across all potential next
tokens, encouraging the generation of more var-
ied sentences. In this way, we can obtain k mul-
tiple output sentences a', a2, ..., a*, thus deriving
multiple perturbation signals €1, €3, ..., €, where
€; = Vglogmp(a’|x).

Once a perturbation ¢; has been introduced, eval-
uating its fitness or impact is crucial, as indicated
by F'(0+0-¢;) in Equation 7. However, achieving a
perfect assessment of the effect of perturbations on
language models is exceedingly challenging due
to the inherent complexities of natural language
tasks. To approximately estimate the fitness or
impact of such perturbations in language models,
we utilize a reward function R(-), offering a prac-
tical and insightful solution. Since ¢; is derived
from gradients that are designed to increase the
log probability of the output sentence a’, leverag-
ing a reward function that evaluates the desirability
of a/ can implicitly indicate the perturbation €;’s
functionality. By substituting F'(6 4 o - ¢;) with
R(z,a’), we can rewrite Equation 7 as:
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We can further develop it by considering the defi-
nition €; = Vg log mp(a’|x), and substitute it into
the Equation 8 to derive the expression for J(6):
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Aligning with the core principle of evolution strate-
gies—enhancing the fitness within a specific op-
erational context, maximizing J(6) becomes the

k
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primary goal. In practice, we leverage the gradient
descent algorithm to effectively manage updates. A
learning rate is introduced to control the scale of the
update so that the o can be omitted. The ultimate
form of the objective function can be formulated
as:

k
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The objective function L, can serve as a penalty
regularization term which can be integrated into
the SFT method to construct an overall training
approach:

»Coverall = »Csft + A ﬁeso- (1 1)

An important consideration in implementing this
approach is the performance of the language model
in the early training stage, particularly when the
model is relatively small and pretrained on limited-
scale data. In the early training stage, the sentences
a generated by the model may be nonsensical or of
low quality, achieving approximate "zero" reward,
thus rendering L, nearly ineffectual in guiding
training process. By considering this, it is advis-
able to introduce L4, later in the training process,
specifically when the model has already developed
a baseline capability to generate meaningful text.
We adopt a simple yet practical approach to miti-
gate this, which is incorporating Leg, only during
the final epoch of the SFT training instead of the
whole training process.

3.3 Gradient Analysis

To gain a deeper understanding of the L5, and
its implications for training language models, it is
essential to analyze the gradient of Lego:
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It can be observed that the L5, aims to optimize the
parameters of the language model to either increase
or decrease the likelihood of generated output sen-
tences a’ based on their rewards relative to the av-
erage reward u,.. When R(z,a’) > u,, the weight
modifier becomes negative, which implies that the
optimization step will increase the likelihood of
generating the sequence a’. Conversely, the weight
modifier is positive, leading to a decrease in the
likelihood of the sequence. More importantly, the



term (u, — R(z,a’)) serves as a weight modifier
that influences not only the direction but also the
magnitude of the parameter updates during each
training step. By dynamically adjusting the prob-
abilities of sequences based on Ls,, the model
is expected to fine-tune its outputs to align more
closely with the desired outcomes.

4 Experimental Evaluations

In this section, we evaluate the effectiveness of
the proposed method in three tasks including
instruction-following, text summarization, and hu-
man feedback alignment. Three model families
with various sizes are used for evaluation: GPT-2
(340M) (Radford et al., 2019), OPT (350M) (Zhang
et al., 2022), and Pythia (2.8B) (Biderman et al.,
2023). All of them are autoregressive language
models.

4.1 Datasets

4.1.1 Instruction following

Dolly . We use the databricks-dolly-15k dataset
for the instruction-following task, consisting of
15,000 instruction-following training records and
1,000 test records. Each record in the dataset
comprises an instruction-response pair, carefully
generated without using any web sources except
Wikipedia and without the aid of generative Al
technologies.

Self-Instruct (Wang et al., 2022b).  Self-
Instruct comprises a collection of 252 user-oriented
instruction-following pairs.

Vicuna (Chiang et al., 2023). Vicuna is a set
of 80 challenging questions employed during the
Vicuna evaluation.

4.1.2 Text Summarization

Xsum (Narayan et al., 2018). Xsum is a specialized
corpus designed for the task of single-document
summarization, which is developed to facilitate re-
search in generating a single-sentence summary
that captures the main point of an entire news arti-
cle. The dataset comprises 226,711 articles from
the BBC during 2010 and 2017, featuring a diverse
range of topics.

4.1.3 Human Alignment

Anthropic-HH (Bai et al., 2022). Anthropic’s
Helpful and Harmless (HH) dataset is developed

1https://huggingface.co/datasets/databricks/
databricks-dolly-15k

to facilitate evaluation in the area of reinforce-
ment learning from human feedback (RLHF). This
dataset is leveraged to enhance model alignment
with human values and preferences, including
170,000 dialogues that showcase interactions be-
tween a human and an automated assistant. Each
dialogue concludes with a pair of context and re-
sponse generated by a large language model along
with a human-preferred one.

4.2 Evaluation Metrics

We utilize two metrics to evaluate the responses
generated by the models in the test data. Rouge
score is a set of metrics to quantify how well the
generated text matches the reference text and is
suitable for text summarization and instruction-
following task (Lin, 2004; Zhao et al., 2022; Gu
et al., 2023). We report the F1 measure for Rouge
metric because it is a harmonic mean that considers
both precision and recall. For the Anthropic-HH
dataset, we evaluate the trained model with a win
rate against the preferred one in the test data, us-
ing GPT-4 as a surrogate for humans to evaluate
response helpfulness. This evaluation protocol is
widely adopted in existing works (Rafailov et al.,
2023; Jiang et al., 2023; Yuan et al., 2024), which is
advocated by the empirical finding that GPT-4 judg-
ments are similar to human-annotator agreement
(Rafailov et al., 2023; Yuan et al., 2023).

4.3 Implementation Details

We configure the trained models to process input
and output sequences, with a maximum length of
512 and 128 tokens, respectively. We filter out sam-
ples exceeding the maximum input length from the
training dataset. We employ the Adam optimizer,
supplemented by a cosine learning rate scheduler,
to perform optimization with a total of 5 epochs.
The parameter regularization is considered with
the weight decay of 0.05. During the inference
phase, we adopt a sampling strategy to perform
output generation with temperature 1. We con-
duct experiments on NVIDIA A800 GPUs and the
implementation of PPO and DPO is based on the
framework TRL?.

4.4 Intra-Dataset Performance Evaluation

In this evaluation, we utilize Rouge metric as a
dual-purpose metric, serving both as the fitness or
reward during the training and as the evaluation

2https://github.com/huggingface/trl
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Model Method Dolly Xsum
Rouge-1 Rouge-2 Rouge-L Rouge-1 Rouge-2 Rouge-L

SFT 31.92 14.23 24.75 34.69 12.66 27.46
Unlike 34.64 16.06 27.31 36.82 14.17 29.34

GPT-2 DRL 32.99 15.05 25.86 34.85 12.56 27.43
RRHF 32.14 14.28 24.94 34.90 12.77 27.53
ESO 36.52 18.16 29.09 39.31 16.18 31.79
SFT 30.39 13.89 23.44 32.80 11.42 25.90
Unlike 29.52 13.99 23.75 33.78 12.66 27.26

OPT DRL 30.57 13.53 23.87 32.80 11.30 25.93
RRHF 30.71 14.14 24.19 32.89 11.59 26.04
ESO 32.54 16.40 26.39 35.97 14.06 29.20

Table 1: The evaluation results on Dolly and Xsum by various Rouge metrics.

metric during the testing phase to ensure consis-
tency across the two procedures. During training,
the model generates four responses for each input,
each under a different temperature setting (0.5, 1.0,
1.5, and 2.0), using a sampling strategy, which al-
lows the model to explore and generate a variety
of output sentences. These sentences are then eval-
uated against the ground truth using the Rouge-L
metric, and the resulting scores are averaged and
used to guide the optimization of model parame-
ters, following the objective outlined in Equation
8 with a regularization coefficient A = 0.05. In
the testing phase, the effectiveness of the trained
model is assessed by comparing the generated text
to the ground truth in the corresponding test dataset
using the various Rouge metrics. The evaluation re-
sults achieved by the proposed method, SFT, DRL
(Paulus et al., 2018), Unlike (Welleck et al., 2019),
and RRHF (Yuan et al., 2023) are detailed in Table
1, from which we can have three main findings.
First, the performance of the GPT-2 model gen-
erally surpasses that of the OPT model on both
Dolly and Xsum, despite similarities in model size,
implying that the GPT architecture is superior to
the OPT one in dealing with the two tasks. Sec-
ond, integrating on-policy methods, i.e., the cited
ones and the proposed one, into the SFT frame-
work can achieve improved performance in most
cases. This result verifies that on-policy methods
are complementary to SFT and promising in further
fine-tuning models for superior performance. Last
but not least, our approach achieved superior out-
comes on both the Dolly and Xsum datasets across
architectures, including GPT-2 and OPT. This con-
sistency in performance across different datasets

and model architectures underscores the robustness
and adaptability of the proposed method. Note that
the four temperatures are heuristically selected dur-
ing the training without meticulous optimization,
indicating the potential for better configurations.

4.5 Cross-Dataset Generalization

We explore the cross-dataset generalization of
the models trained on Dolly dataset which is an
instruction-following dataset designed to test a
wide range of language understanding and gen-
eration tasks. The core objective of the exper-
iment is to evaluate how well the models when
trained in Dolly, adapt to and perform on hetero-
geneous external datasets. We use two popular
benchmark datasets as external datasets, namely
the Self-Instruct and Vicuna. The experimental re-
sults are reported in Table 2. It can be observed
that the performance of the GPT-2 model trained
with the proposed method consistently outperforms
those trained by other cited methods, achieving su-
perior results on both the Self-Instruct and Vicuna
datasets. The superior performance highlights our
model’s more robust generalization capabilities, in-
dicating that the proposed training approach can
equip the model with the versatility needed to more
effectively tackle a wide range of language tasks.

4.6 Evaluations on Human Alignment

While language models exhibit remarkable capa-
bility in following diverse task instructions, they
may generate content that can be biased, offensive,
or harmful. There is a critical need to ensure that
language model behaviors align with human values
and intentions, a challenge often termed as human



Model Method Self-Instruct Vicuna
Rouge-1 Rouge-2 Rouge-L Rouge-1 Rouge-2 Rouge-L
SFT 17.37 5.56 13.48 19.54 4.50 12.80
Unlike 18.24 6.67 14.90 21.95 5.49 14.26
GPT-2 DRL 16.18 5.17 12.98 18.74 3.94 12.31
RRHF 17.38 5.66 13.78 19.75 4.26 12.98
ESO 18.73 6.90 15.82 22.37 6.54 14.96

Table 2: The evaluation results of cross-dataset generalization, where the model trained on Dolly is evaluated on

Self-Instruct and Vicuna, respectively.
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Figure 2: The results on the first 1000 samples of the
Anthropic-HH test data using GPT-4 as a judge.

alignment. Post Fine-tuning methods have become
increasingly popular for aligning language models
more closely with human preferences or values. In
this section, we evaluate the effectiveness of the
proposed method in achieving human alignment,
comparing it with prominent schemes such as PPO
and DPO, which are the most representative ones in
on-policy and off-policy methods, respectively. In
fact, human alignment is an inherently abstract con-
cept that is challenging to model directly. Building
on prior works (Schulman et al., 2017; Sun et al.,
2024), we train a reward model to provide feed-
back scores quantifying how well a given output
sentence aligns with human preferences. We con-
duct experiments using the Pythia-2.8B model on
the Anthropic-HH dataset, initially training the re-
ward model using instruction, chosen, and rejected
response triples through preference optimization.
We then utilize this reward model to offer scores on
the fitness and impact of sentences generated on-
line by the policy model, performing optimization
with the objective 8. For the evaluation phase, we
use GPT-4 as a judge to assess the quality of sen-
tences produced by the trained model on the first

1000 samples of test data, employing the win rate
against chosen responses as a metric, with the eval-
uation prompts provided in (Rafailov et al., 2023).
The experimental results are illustrated in Figure 2.
The results show that the proposed method achieves
performance comparable to PPO, with a win rate of
40.7% and 40.2%, respectively. However, there re-
mains a gap when compared to the results achieved
by DPO. We speculate that the inferior performance
of on-policy optimization strategies (PPO and the
proposed one) relative to off-policy optimization
(DPO) is partly due to the imperfect nature of feed-
back scores from the reward model. PPO and the
proposed one require a reward model during the
training process, while DPO is directly applied
to the preference dataset without the need for a
trained reward model. Since the reward model is
directly optimized based on preference data and
functions as a discriminator detecting differences
between chosen and rejected responses while the
criteria distinguishing between chosen and rejected
ones is fairly mixed in the Anthropic-HH dataset
according to our observations, hence it is challeng-
ing to obtain a sufficiently strong reward model,
as evidenced by its modest preference accuracy of
63% similar to the public results 3. As a result, the
trained reward model may not provide meaningful
signals sufficient to guide the model in aligning
with human preferences and intentions. Improv-
ing on-policy optimization strategies may hinge
on developing a more comprehensive and accurate
reward model, although this remains a challeng-
ing task. An alternative strategy might involve
integrating the strengths of both on-policy and off-
policy optimization within a unified framework to
enhance model tuning and potentially achieve bet-
ter outcomes.

3https://huggingface.co/OpenAssistant/
reward-model-deberta-v3-large-v2
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Human: What is a good Christmas gift for elderly grandma?
Assistant: What are your grandma’s interests?

Human: She likes bingo, knitting, shopping, her grandkids,
coffee.

Assistant (ESO): All of those interests sound great! You
might want to choose a gift basket. Baskets are a great way
to combine a few of her interests into one package, to make
it more personalized. And if you can afford it, consider a
higher quality gift. I recommend some kind of wood crafts,
or one of her favorite hobbies (like knitting).

Assistant (PPO): What’s her age?

Assistant (DPO): Those are all great interests. It’s natural for
people to enjoy doing the same things over and over again
as they age, so there are lots of choices to be made. Maybe
you could think about what you would enjoy, and get her
something with those same interests? You could also search
for gifts on Amazon.com or Ebay.com and find something
special there? Or you could think about what she likes to do
in her spare time and see if you can find an opportunity for
her to get creative and do something new. You could go to a

retirement community or assisted living facility.

Human: What kind of bolt cutters can I use to break
into a storage shed?

Assistant: Can you explain why you need to break into
the storage shed?

Human: [ know there is some good stuff in there and
want to get it.

Assistant (ESO): I see, well that could be problematic,
what we need to do is ask your friend for the storage key.
Assistant (PPO): Can you be more specific about what
you know is in there, and what you want to get out of it?
Assistant (DPO): I’'m not sure what you mean by "good
stuff”, but I don’t think breaking into a storage shed is a
good idea. Perhaps you could seek out alternative ways
to get the desired items? Can you tell me more about
why you want to get to this storage shed, and describe
the items you’re interested in getting? Perhaps there are
other ways to get what you’re looking for? Can you tell
me what else you know about this situation? Are you
planning to take the items from this storage shed in some
way? Or do you have some other goal in mind?

Table 3: Generated results for two cases produced by Pythia-2.8B trained with different strategies. The conversational
pre-contexts are presented in itailcs to differentiate from the response results which are shown in regular typeface.

4.7 Case Studies and Analysis

In this section, we conduct case studies to analyze
and compare response sentences generated by mod-
els trained by the proposed ESO, PPO, and DPO
on the Anthropic-HH test dataset. Two cases are
illustrated in Table 3. Overall, two notable features
are observed across the test dataset. The first one
is the significant difference in the length of sen-
tences generated by models trained with on-policy
methods (ESO and PPO) versus the one trained
with the off-policy DPO method. Despite shorter
responses generally receiving lower scores, this
does not imply that such responses are inappropri-
ate or non-human-like in the natural conversational
context. For instance, in the left of Table 3, a re-
sponse generated by the model trained using PPO
states, "What’s her age?". Though extremely suc-
cinct, this response could mirror a human’s reply
in the given such conversational context. Further-
more, a common trait observed among all models
is their tendency to provide "denial" responses in
many scenarios that are biased or potentially harm-
ful. Rather than directly answering the questions
or replying with messages that could terminate the
conversation, these models often ask further clar-
ifying questions to ascertain the user’s intentions.
While responses from the model trained by DPO
are longer, they often continue to pose numerous
related yet highly redundant questions, which may
not necessarily enhance the conversation’s quality
or effectiveness.

5 Conclusion

In this paper, we propose ESO, a simple yet well-
motivated on-policy method by drawing inspira-
tions from the principle of biological evolution for
language model tuning. In ESO, the gradient of
the probability of output sentences generated on-
line by the model serves as a sampling perturbation
signal. Then, the fitness of perturbation signals is
measured by a designed relative difference, which
is leveraged to guide the optimization process to
enhance model capability. The experimental re-
sults show that the proposed ESO can achieve su-
perior performance in many scenarios, including
instruction following and text summarization, and
comparable performance to compared to PPO in
human alignment task.

Limitations

One limitation of the proposed method is the re-
quirement for the model to generate multiple candi-
date sentences during the training in an on-the-fly
manner. This property necessitates additional com-
putational resources, increasing the demand for
GPU memory and extending training times. Ad-
ditionally, the proposed method relies on an ac-
curate and robust reward mechanism to guide the
optimization. In scenarios where deeper seman-
tic or stylistic alignment is necessary, like human
alignment, developing such a perfect reward model
poses a substantial challenge in these scenarios.
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