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Abstract

Supervised Fine-tuning has been pivotal in001
training autoregressive language models, yet it002
introduces exposure bias. To mitigate this, Post003
Fine-tuning, including on-policy and off-policy004
methods, has emerged as a solution to enhance005
models further, though each has its limitations006
regarding performance enhancements and sus-007
ceptibility to overfitting. In this paper, we intro-008
duce a novel on-policy approach, called Evo-009
lution Strategy Optimization (ESO), which010
is designed by harnessing the principle of bio-011
logical evolution, namely survival of the fittest.012
Particularly, we consider model tuning as an013
evolution process, and each output sentence014
generated by the model can provide a pertur-015
bation signal to the model parameter space.016
Then, the fitness of perturbation signals is quan-017
tified by the difference between its score and018
the averaged one offered by a reward function,019
steering optimization process. Empirically, the020
proposed method can achieve superior perfor-021
mance in various tasks and comparable perfor-022
mance in the human alignment one. The code023
will be publicly available.024

1 Introduction025

Autoregressive language models (Radford et al.,026

2018, 2019; Achiam et al., 2023; Touvron et al.,027

2023) represent a significant milestone in model-028

ing language for natural language processing tasks,029

ranging from machine translation (Lopez, 2008;030

Wang et al., 2022a) to text generation (McKeown,031

1992; Zhang et al., 2019a; Welleck et al., 2019).032

Pretraining (Devlin et al., 2018) on large text cor-033

pora serves as a critical initial step for producing034

such models. However, models with only pretrain-035

ing often display limited capability in effectively036

following instructions, particularly when the model037

size and the scale of pretraining data are not suf-038

ficiently large (Kaplan et al., 2020). Supervised039

Fine-tuning (SFT) has shown considerable success040

in enhancing models’ ability to follow instructions,041

Figure 1: The overview of the proposed ESO approach.
ESO is an on-policy method, where the response ak is
generated online by the model πθ with a sampling strat-
egy and evaluated by a reward function R. Then, the
fitness of each sampling one used for guiding optimiza-
tion is quantified by the difference between its reward
score and the averaged score of all sampling ones.

and hence has become a de facto paradigm. Never- 042

theless, SFT introduces a phenomenon known as 043

exposure bias (Zhang et al., 2019b; Schmidt, 2019), 044

leading to potential discrepancies between training 045

and testing behaviors. 046

To further enhance model capacities, Post Fine- 047

tuning has attracted extensive attention. In general, 048

Post Fine-tuning can be categorized into on-policy 049

and off-policy methods. On-policy methods aim 050

to directly optimize the probability of models’ out- 051

puts during training in an on-the-fly manner, such 052

as Unlike learning (Welleck et al., 2019) directly 053

discourages the generation of low-quality output 054

sentences and RRHF (Yuan et al., 2023) introduces 055

ranking information. On the other hand, off-policy 056

methods involve tuning the model using additional 057

data collected offline and specifically designed to 058

support alignment goals, like Direct Preference Op- 059

timization (DPO) (Rafailov et al., 2023). In prac- 060

tice, on-policy methods would suffer from limited 061

performance enhancements and training instability, 062

while off-policy ones may lead to overfitting and 063

reduced model generalization ability. 064

In this paper, we focus on on-policy methods. 065

Drawing inspiration from the principle of biologi- 066

cal evolution, that is survival of the fittest, we con- 067

sider model tuning with on-policy methods as an 068
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evolution process. The guidance for evolution is re-069

flected by the gradient of the probability of output070

sentences generated online by models, whose func-071

tionality can be regarded as sampling perturbations072

in the parameter space, akin to variations in evo-073

lution strategies. A reward function is applied to074

the output sentences to measure the quality of sam-075

pling perturbations. Then, the fitness of each sam-076

pling perturbation is quantified by the difference077

between its reward score and the averaged score of078

all sampling perturbations, which is then leveraged079

to guide optimization, as shown in Figure 1. In this080

way, we propose a simple yet well-motivated on-081

policy method based on evolution strategies, called082

Evolution Strategy Optimization (ESO), to opti-083

mize model behavior more effectively, enhancing084

model performance in various tasks, including in-085

struction following and text summarization.086

Our main contributions are:087

• We resolve on-policy Post Fine-tuning by con-088

sidering the core principle of evolution strate-089

gies, providing on-policy methods with a new090

insight for autoregressive language models.091

• We develop a simple yet well-motivated on-092

policy learning paradigm for autoregressive093

language models, which can achieve superior094

performance by recognized metrics and com-095

parable results in specific alignment tasks.096

2 Preliminaries097

The language model task typically involves training098

a language model to learn the underlying structure099

and intrinsic properties of natural language from a100

supervised dataset D = {(xi, yi)}Ni=1 of N paired101

examples, where xi is the input sentence to the102

language model and yi is the corresponding target103

text-sequence. Both xi and yi consist of a sequence104

of tokens, e.g., xi = {xi0, xi1, ..., xim}. In this paper,105

we focus on improving an autoregressive language106

model parameterized by θ as πθ.107

2.1 Supervised Fine-tuning108

Given a supervised dataset D = {(xi, yi)}Ni=1, the109

extensively adopted approach to fine-tune a pre-110

trained autoregressive language is SFT. SFT can111

be formulated as an optimization problem where112

the model parameters πθ are adjusted by minimiz-113

ing the discrepancy between the model’s prediction114

token π(at|x, y<t) and the ground truth token yt.115

By leveraging Cross-Entropy loss, the objective is116

essentially equivalent to increasing the probability 117

assigned to the target token yt by the model, which 118

can be displayed as: 119

Lsft = −
|y|∑
t=1

log πθ(yt|x, y<t), (1) 120

where |y| denotes the ground-truth sentence length, 121

i.e., the number of tokens in the output sentence. It 122

is important to note that SFT is a form of teacher 123

forcing or exposure bias (Zhang et al., 2019b; 124

Schmidt, 2019) which involves training the model 125

with input x and the ground truth tokens y<t at 126

each step, and its output token is expected to align 127

with the subsequent ground truth token yt. How- 128

ever, during inference, the model generates tokens 129

sequentially based solely on its own previously 130

generated tokens, without the aid of ground truth 131

information. This autonomous generation process 132

can lead to a discrepancy between the model’s be- 133

havior during training and testing. 134

2.2 Post Fine-tuning 135

Post Fine-tuning has gained significant popularity 136

in natural language processing research at the mo- 137

ment, which aims to optimize the probability of 138

an entire sentence that refers to the joint probabil- 139

ity of all tokens in the output sequence for spe- 140

cific intentions (Schulman et al., 2017; Yao et al., 141

2018; Paulus et al., 2018; Welleck et al., 2019; 142

Ziegler et al., 2019; Rafailov et al., 2023; Yuan 143

et al., 2023), which can be expressed as πθ(a|x) = 144∏|a|
t=1 πθ(at|x, a<t). Unlike SFT, which performs 145

imitation learning on labeled demonstration data, 146

Post Fine-tuning is expected to refine language 147

models’ output by adjusting the probability of the 148

output sentences. In this methodology, the evalua- 149

tion of the quality of a generated sentence is crucial, 150

and it is often facilitated by a reward mechanism 151

that typically relies on either a highly recognized 152

metric or a well-trained reward model. Unlike 153

learning (Welleck et al., 2019) is a representative 154

method and aims to discourage the generation of 155

low-quality sentences by directly decreasing their 156

log probabilities as the optimization objective. An- 157

other notable approach, RRHF incorporates rank 158

optimization into the training process (Yuan et al., 159

2023), where the rank information of multiple can- 160

didate output sentences generated by the model is 161

leveraged according to their quality based on the 162

reward. Assume that there are k candidate output 163

sentences {a1, a2, ..., ak} for a given input x, each 164
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candidate output sentence can obtain its reward165

score rk = R(x, ak) from a metric or a reward166

model R. The objective based on rank optimiza-167

tion is expressed as:168

Lrank =
∑

rm<rn

max(0, pm − pn), (2)169

where p represents the length-normalized condi-170

tional log probability. Additionally, there are two171

prominent approaches are designed to better align172

with human preferences, namely Proximal Policy173

Optimization (PPO) (Schulman et al., 2017) and174

Direct Preference Optimization (DPO) (Rafailov175

et al., 2023), which maximize the following objec-176

tive,177

Ex∼D,a∼πθ(a|x)

[
R(x, a)− β log

πθ(a | x)
πref(a | x)

]
.

(3)178

PPO adopts an actor-critic framework using an on-179

policy strategy with a reward model to optimize180

this goal while DPO performs refinement directly181

on the preference data (x, yw, yl) ∼ Dp in an off-182

policy manner without the need of a reward model183

using the following crafted loss,184

− E(x,yw,yl)∼Dp

log σ

(
β log

πθ (yw|x)
πref (yw|x)

− β log
πθ (yl|x)
πref (yl|x)

)
,

(4)185

where yw and yl represent chosen and rejected re-186

sponses, respectively.187

3 Main Method188

3.1 Evolution Strategy189

Evolution strategy represents a category of zero-190

order optimization algorithms, which are inspired191

by the principle of biological evolution, where liv-192

ing organisms change over time to better adapt193

to their environment (Rechenberg, 1973; Huning,194

1976). The evolution process is performed in an195

iterative way. At each iteration, a population of196

parameter vectors is randomly perturbed, mirror-197

ing the concept of mutation in life sciences, where198

genetic variations introduce new traits to a species.199

Then, the objective function F (·) is utilized to eval-200

uate the fitness of the perturbed version of parame-201

ter vectors. After that, the search gradient is used202

to update the parameter vectors (Salimans et al.,203

2017). To illustrate the process, a smoothed corre-204

sponding version of F (·) should be defined as:205

J(θ) = Eϵ∼N(0,I)[F (θ + σ · ϵ)], (5)206

where σ is a hyper-parameter determining the mag- 207

nitude of the random perturbation. Natural Evolu- 208

tion Strategy (NES) (Wierstra et al., 2014), one of 209

the most popular evolution strategies, derives the 210

gradient of J(θ) by the mathematical formulation: 211

∇θJ(θ) =
1

σ
Eϵ∼N(0,I)[F (θ + σ · ϵ) · ϵ]

≈ 1

σ · k

k∑
j=1

[F (θ + σ · ϵj) · ϵj ],
(6) 212

where k denotes the number of sampling ϵ. It is 213

noteworthy that while the derived gradient estima- 214

tion enjoys salient statistical features like unbiased- 215

ness and consistency, the variance largely deter- 216

mines how well it performs in practice (Williams, 217

1992; Chen et al., 2021). A common technique to 218

mitigate this is subtracting the mean of the sampled 219

gradients from each individual gradient estimate, 220

which can be displayed as: 221

uF =
1

k

k∑
j=1

[F (θ + σ · ϵj)],

∇θJ(θ) ≈
1

σ · k

k∑
j=1

[(F (θ + σ · ϵj)− uF ) · ϵj ],

(7) 222

However, applying NES directly to enhance the 223

capability of language models faces a significant 224

challenge, primarily due to the high dimensionality 225

of language model parameters. Language models 226

often consist of millions or even billions of parame- 227

ters. This complexity introduces a critical obstacle 228

when attempting to perform unbiased random sam- 229

pling in the parameter space. The sheer volume of 230

dimensions makes it statistically improbable that 231

randomly generated perturbations will yield infor- 232

mative directions for optimization. This challenge 233

is compounded by the "curse of dimensionality", 234

where the sheer number of parameters dilutes the 235

impact of any single perturbation, making mean- 236

ingless exploration computationally expensive. 237

3.2 The Proposed ESO Method 238

In response to the daunting challenge of managing 239

the high dimensionality of language model parame- 240

ters, we turn to a biased sampling strategy employ- 241

ing gradients derived from the log probability of 242

output sentences as a form of perturbation signal 243

in the parameter space, i.e., ϵ = ∇θ log πθ(a|x). 244

Compared to random sampling, such biased sam- 245

pling can provide much more informativeness for 246
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the evolution process. In evolutional strategy, it is247

essential to perform multiple sampling of pertur-248

bations to effectively explore the landscape of the249

parameter space, as shown in Equation 7. Conve-250

niently, the mechanism of autoregressive language251

models naturally facilitates this requirement as they252

inherently support the generation of multiple out-253

put sentences through sampling from the proba-254

bility distribution of output sentences. The diver-255

sity of output sentences can be further controlled256

by incorporating a temperature constant T in the257

Softmax function used to calculate the probabil-258

ity distribution. A higher temperature results in259

more equal probabilities across all potential next260

tokens, encouraging the generation of more var-261

ied sentences. In this way, we can obtain k mul-262

tiple output sentences a1, a2, ..., ak, thus deriving263

multiple perturbation signals ϵ1, ϵ2, ..., ϵk, where264

ϵj = ∇θ log πθ(a
j |x).265

Once a perturbation ϵj has been introduced, eval-266

uating its fitness or impact is crucial, as indicated267

by F (θ+σ·ϵj) in Equation 7. However, achieving a268

perfect assessment of the effect of perturbations on269

language models is exceedingly challenging due270

to the inherent complexities of natural language271

tasks. To approximately estimate the fitness or272

impact of such perturbations in language models,273

we utilize a reward function R(·), offering a prac-274

tical and insightful solution. Since ϵj is derived275

from gradients that are designed to increase the276

log probability of the output sentence aj , leverag-277

ing a reward function that evaluates the desirability278

of aj can implicitly indicate the perturbation ϵj’s279

functionality. By substituting F (θ + σ · ϵj) with280

R(x, aj), we can rewrite Equation 7 as:281

ur =
1

k

k∑
j=1

[R(x, aj)],

∇θJ(θ) ≈
1

σ · k

k∑
j=1

[(R(x, aj)− ur) · ϵj ].

(8)282

We can further develop it by considering the defi-283

nition ϵj = ∇θ log πθ(a
j |x), and substitute it into284

the Equation 8 to derive the expression for J(θ):285

J(θ) ≈ 1

σ · k

k∑
j=1

[
(R(x, aj)− ur) · log πθ(aj |x)

]
.

(9)286

Aligning with the core principle of evolution strate-287

gies—enhancing the fitness within a specific op-288

erational context, maximizing J(θ) becomes the289

primary goal. In practice, we leverage the gradient 290

descent algorithm to effectively manage updates. A 291

learning rate is introduced to control the scale of the 292

update so that the σ can be omitted. The ultimate 293

form of the objective function can be formulated 294

as: 295

Leso =

k∑
j=1

(ur −R(x, aj)) · log πθ(aj |x). (10) 296

The objective function Leso can serve as a penalty 297

regularization term which can be integrated into 298

the SFT method to construct an overall training 299

approach: 300

Loverall = Lsft + λ ∗ Leso. (11) 301

An important consideration in implementing this 302

approach is the performance of the language model 303

in the early training stage, particularly when the 304

model is relatively small and pretrained on limited- 305

scale data. In the early training stage, the sentences 306

a generated by the model may be nonsensical or of 307

low quality, achieving approximate "zero" reward, 308

thus rendering Leso nearly ineffectual in guiding 309

training process. By considering this, it is advis- 310

able to introduce Leso later in the training process, 311

specifically when the model has already developed 312

a baseline capability to generate meaningful text. 313

We adopt a simple yet practical approach to miti- 314

gate this, which is incorporating Leso only during 315

the final epoch of the SFT training instead of the 316

whole training process. 317

3.3 Gradient Analysis 318

To gain a deeper understanding of the Leso and 319

its implications for training language models, it is 320

essential to analyze the gradient of Leso: 321

∇θLeso =
k∑

j=1

(ur −R(x, aj))︸ ︷︷ ︸
weight modifier

·∇θ log πθ(a
j |x).

(12) 322

It can be observed that the Leso aims to optimize the 323

parameters of the language model to either increase 324

or decrease the likelihood of generated output sen- 325

tences aj based on their rewards relative to the av- 326

erage reward ur. When R(x, aj) > ur, the weight 327

modifier becomes negative, which implies that the 328

optimization step will increase the likelihood of 329

generating the sequence aj . Conversely, the weight 330

modifier is positive, leading to a decrease in the 331

likelihood of the sequence. More importantly, the 332
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term (ur − R(x, aj)) serves as a weight modifier333

that influences not only the direction but also the334

magnitude of the parameter updates during each335

training step. By dynamically adjusting the prob-336

abilities of sequences based on Leso, the model337

is expected to fine-tune its outputs to align more338

closely with the desired outcomes.339

4 Experimental Evaluations340

In this section, we evaluate the effectiveness of341

the proposed method in three tasks including342

instruction-following, text summarization, and hu-343

man feedback alignment. Three model families344

with various sizes are used for evaluation: GPT-2345

(340M) (Radford et al., 2019), OPT (350M) (Zhang346

et al., 2022), and Pythia (2.8B) (Biderman et al.,347

2023). All of them are autoregressive language348

models.349

4.1 Datasets350

4.1.1 Instruction following351

Dolly 1. We use the databricks-dolly-15k dataset352

for the instruction-following task, consisting of353

15,000 instruction-following training records and354

1,000 test records. Each record in the dataset355

comprises an instruction-response pair, carefully356

generated without using any web sources except357

Wikipedia and without the aid of generative AI358

technologies.359

Self-Instruct (Wang et al., 2022b). Self-360

Instruct comprises a collection of 252 user-oriented361

instruction-following pairs.362

Vicuna (Chiang et al., 2023). Vicuna is a set363

of 80 challenging questions employed during the364

Vicuna evaluation.365

4.1.2 Text Summarization366

Xsum (Narayan et al., 2018). Xsum is a specialized367

corpus designed for the task of single-document368

summarization, which is developed to facilitate re-369

search in generating a single-sentence summary370

that captures the main point of an entire news arti-371

cle. The dataset comprises 226,711 articles from372

the BBC during 2010 and 2017, featuring a diverse373

range of topics.374

4.1.3 Human Alignment375

Anthropic-HH (Bai et al., 2022). Anthropic’s376

Helpful and Harmless (HH) dataset is developed377

1https://huggingface.co/datasets/databricks/
databricks-dolly-15k

to facilitate evaluation in the area of reinforce- 378

ment learning from human feedback (RLHF). This 379

dataset is leveraged to enhance model alignment 380

with human values and preferences, including 381

170,000 dialogues that showcase interactions be- 382

tween a human and an automated assistant. Each 383

dialogue concludes with a pair of context and re- 384

sponse generated by a large language model along 385

with a human-preferred one. 386

4.2 Evaluation Metrics 387

We utilize two metrics to evaluate the responses 388

generated by the models in the test data. Rouge 389

score is a set of metrics to quantify how well the 390

generated text matches the reference text and is 391

suitable for text summarization and instruction- 392

following task (Lin, 2004; Zhao et al., 2022; Gu 393

et al., 2023). We report the F1 measure for Rouge 394

metric because it is a harmonic mean that considers 395

both precision and recall. For the Anthropic-HH 396

dataset, we evaluate the trained model with a win 397

rate against the preferred one in the test data, us- 398

ing GPT-4 as a surrogate for humans to evaluate 399

response helpfulness. This evaluation protocol is 400

widely adopted in existing works (Rafailov et al., 401

2023; Jiang et al., 2023; Yuan et al., 2024), which is 402

advocated by the empirical finding that GPT-4 judg- 403

ments are similar to human-annotator agreement 404

(Rafailov et al., 2023; Yuan et al., 2023). 405

4.3 Implementation Details 406

We configure the trained models to process input 407

and output sequences, with a maximum length of 408

512 and 128 tokens, respectively. We filter out sam- 409

ples exceeding the maximum input length from the 410

training dataset. We employ the Adam optimizer, 411

supplemented by a cosine learning rate scheduler, 412

to perform optimization with a total of 5 epochs. 413

The parameter regularization is considered with 414

the weight decay of 0.05. During the inference 415

phase, we adopt a sampling strategy to perform 416

output generation with temperature 1. We con- 417

duct experiments on NVIDIA A800 GPUs and the 418

implementation of PPO and DPO is based on the 419

framework TRL2. 420

4.4 Intra-Dataset Performance Evaluation 421

In this evaluation, we utilize Rouge metric as a 422

dual-purpose metric, serving both as the fitness or 423

reward during the training and as the evaluation 424

2https://github.com/huggingface/trl
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Model Method Dolly Xsum

Rouge-1 Rouge-2 Rouge-L Rouge-1 Rouge-2 Rouge-L

GPT-2

SFT 31.92 14.23 24.75 34.69 12.66 27.46
Unlike 34.64 16.06 27.31 36.82 14.17 29.34
DRL 32.99 15.05 25.86 34.85 12.56 27.43
RRHF 32.14 14.28 24.94 34.90 12.77 27.53
ESO 36.52 18.16 29.09 39.31 16.18 31.79

OPT

SFT 30.39 13.89 23.44 32.80 11.42 25.90
Unlike 29.52 13.99 23.75 33.78 12.66 27.26
DRL 30.57 13.53 23.87 32.80 11.30 25.93
RRHF 30.71 14.14 24.19 32.89 11.59 26.04
ESO 32.54 16.40 26.39 35.97 14.06 29.20

Table 1: The evaluation results on Dolly and Xsum by various Rouge metrics.

metric during the testing phase to ensure consis-425

tency across the two procedures. During training,426

the model generates four responses for each input,427

each under a different temperature setting (0.5, 1.0,428

1.5, and 2.0), using a sampling strategy, which al-429

lows the model to explore and generate a variety430

of output sentences. These sentences are then eval-431

uated against the ground truth using the Rouge-L432

metric, and the resulting scores are averaged and433

used to guide the optimization of model parame-434

ters, following the objective outlined in Equation435

8 with a regularization coefficient λ = 0.05. In436

the testing phase, the effectiveness of the trained437

model is assessed by comparing the generated text438

to the ground truth in the corresponding test dataset439

using the various Rouge metrics. The evaluation re-440

sults achieved by the proposed method, SFT, DRL441

(Paulus et al., 2018), Unlike (Welleck et al., 2019),442

and RRHF (Yuan et al., 2023) are detailed in Table443

1, from which we can have three main findings.444

First, the performance of the GPT-2 model gen-445

erally surpasses that of the OPT model on both446

Dolly and Xsum, despite similarities in model size,447

implying that the GPT architecture is superior to448

the OPT one in dealing with the two tasks. Sec-449

ond, integrating on-policy methods, i.e., the cited450

ones and the proposed one, into the SFT frame-451

work can achieve improved performance in most452

cases. This result verifies that on-policy methods453

are complementary to SFT and promising in further454

fine-tuning models for superior performance. Last455

but not least, our approach achieved superior out-456

comes on both the Dolly and Xsum datasets across457

architectures, including GPT-2 and OPT. This con-458

sistency in performance across different datasets459

and model architectures underscores the robustness 460

and adaptability of the proposed method. Note that 461

the four temperatures are heuristically selected dur- 462

ing the training without meticulous optimization, 463

indicating the potential for better configurations. 464

4.5 Cross-Dataset Generalization 465

We explore the cross-dataset generalization of 466

the models trained on Dolly dataset which is an 467

instruction-following dataset designed to test a 468

wide range of language understanding and gen- 469

eration tasks. The core objective of the exper- 470

iment is to evaluate how well the models when 471

trained in Dolly, adapt to and perform on hetero- 472

geneous external datasets. We use two popular 473

benchmark datasets as external datasets, namely 474

the Self-Instruct and Vicuna. The experimental re- 475

sults are reported in Table 2. It can be observed 476

that the performance of the GPT-2 model trained 477

with the proposed method consistently outperforms 478

those trained by other cited methods, achieving su- 479

perior results on both the Self-Instruct and Vicuna 480

datasets. The superior performance highlights our 481

model’s more robust generalization capabilities, in- 482

dicating that the proposed training approach can 483

equip the model with the versatility needed to more 484

effectively tackle a wide range of language tasks. 485

4.6 Evaluations on Human Alignment 486

While language models exhibit remarkable capa- 487

bility in following diverse task instructions, they 488

may generate content that can be biased, offensive, 489

or harmful. There is a critical need to ensure that 490

language model behaviors align with human values 491

and intentions, a challenge often termed as human 492
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Model Method Self-Instruct Vicuna

Rouge-1 Rouge-2 Rouge-L Rouge-1 Rouge-2 Rouge-L

GPT-2

SFT 17.37 5.56 13.48 19.54 4.50 12.80
Unlike 18.24 6.67 14.90 21.95 5.49 14.26
DRL 16.18 5.17 12.98 18.74 3.94 12.31
RRHF 17.38 5.66 13.78 19.75 4.26 12.98
ESO 18.73 6.90 15.82 22.37 6.54 14.96

Table 2: The evaluation results of cross-dataset generalization, where the model trained on Dolly is evaluated on
Self-Instruct and Vicuna, respectively.

Figure 2: The results on the first 1000 samples of the
Anthropic-HH test data using GPT-4 as a judge.

alignment. Post Fine-tuning methods have become493

increasingly popular for aligning language models494

more closely with human preferences or values. In495

this section, we evaluate the effectiveness of the496

proposed method in achieving human alignment,497

comparing it with prominent schemes such as PPO498

and DPO, which are the most representative ones in499

on-policy and off-policy methods, respectively. In500

fact, human alignment is an inherently abstract con-501

cept that is challenging to model directly. Building502

on prior works (Schulman et al., 2017; Sun et al.,503

2024), we train a reward model to provide feed-504

back scores quantifying how well a given output505

sentence aligns with human preferences. We con-506

duct experiments using the Pythia-2.8B model on507

the Anthropic-HH dataset, initially training the re-508

ward model using instruction, chosen, and rejected509

response triples through preference optimization.510

We then utilize this reward model to offer scores on511

the fitness and impact of sentences generated on-512

line by the policy model, performing optimization513

with the objective 8. For the evaluation phase, we514

use GPT-4 as a judge to assess the quality of sen-515

tences produced by the trained model on the first516

1000 samples of test data, employing the win rate 517

against chosen responses as a metric, with the eval- 518

uation prompts provided in (Rafailov et al., 2023). 519

The experimental results are illustrated in Figure 2. 520

The results show that the proposed method achieves 521

performance comparable to PPO, with a win rate of 522

40.7% and 40.2%, respectively. However, there re- 523

mains a gap when compared to the results achieved 524

by DPO. We speculate that the inferior performance 525

of on-policy optimization strategies (PPO and the 526

proposed one) relative to off-policy optimization 527

(DPO) is partly due to the imperfect nature of feed- 528

back scores from the reward model. PPO and the 529

proposed one require a reward model during the 530

training process, while DPO is directly applied 531

to the preference dataset without the need for a 532

trained reward model. Since the reward model is 533

directly optimized based on preference data and 534

functions as a discriminator detecting differences 535

between chosen and rejected responses while the 536

criteria distinguishing between chosen and rejected 537

ones is fairly mixed in the Anthropic-HH dataset 538

according to our observations, hence it is challeng- 539

ing to obtain a sufficiently strong reward model, 540

as evidenced by its modest preference accuracy of 541

63% similar to the public results 3. As a result, the 542

trained reward model may not provide meaningful 543

signals sufficient to guide the model in aligning 544

with human preferences and intentions. Improv- 545

ing on-policy optimization strategies may hinge 546

on developing a more comprehensive and accurate 547

reward model, although this remains a challeng- 548

ing task. An alternative strategy might involve 549

integrating the strengths of both on-policy and off- 550

policy optimization within a unified framework to 551

enhance model tuning and potentially achieve bet- 552

ter outcomes. 553

3https://huggingface.co/OpenAssistant/
reward-model-deberta-v3-large-v2

7

https://huggingface.co/OpenAssistant/reward-model-deberta-v3-large-v2
https://huggingface.co/OpenAssistant/reward-model-deberta-v3-large-v2


Human: What is a good Christmas gift for elderly grandma?
Assistant: What are your grandma’s interests?
Human: She likes bingo, knitting, shopping, her grandkids,
coffee.

Assistant (ESO): All of those interests sound great! You
might want to choose a gift basket. Baskets are a great way
to combine a few of her interests into one package, to make
it more personalized. And if you can afford it, consider a
higher quality gift. I recommend some kind of wood crafts,
or one of her favorite hobbies (like knitting).
Assistant (PPO): What’s her age?
Assistant (DPO): Those are all great interests. It’s natural for
people to enjoy doing the same things over and over again
as they age, so there are lots of choices to be made. Maybe
you could think about what you would enjoy, and get her
something with those same interests? You could also search
for gifts on Amazon.com or Ebay.com and find something
special there? Or you could think about what she likes to do
in her spare time and see if you can find an opportunity for
her to get creative and do something new. You could go to a
retirement community or assisted living facility.

Human: What kind of bolt cutters can I use to break
into a storage shed?
Assistant: Can you explain why you need to break into
the storage shed?
Human: I know there is some good stuff in there and
want to get it.

Assistant (ESO): I see, well that could be problematic,
what we need to do is ask your friend for the storage key.
Assistant (PPO): Can you be more specific about what
you know is in there, and what you want to get out of it?
Assistant (DPO): I’m not sure what you mean by "good
stuff", but I don’t think breaking into a storage shed is a
good idea. Perhaps you could seek out alternative ways
to get the desired items? Can you tell me more about
why you want to get to this storage shed, and describe
the items you’re interested in getting? Perhaps there are
other ways to get what you’re looking for? Can you tell
me what else you know about this situation? Are you
planning to take the items from this storage shed in some
way? Or do you have some other goal in mind?

Table 3: Generated results for two cases produced by Pythia-2.8B trained with different strategies. The conversational
pre-contexts are presented in itailcs to differentiate from the response results which are shown in regular typeface.

4.7 Case Studies and Analysis554

In this section, we conduct case studies to analyze555

and compare response sentences generated by mod-556

els trained by the proposed ESO, PPO, and DPO557

on the Anthropic-HH test dataset. Two cases are558

illustrated in Table 3. Overall, two notable features559

are observed across the test dataset. The first one560

is the significant difference in the length of sen-561

tences generated by models trained with on-policy562

methods (ESO and PPO) versus the one trained563

with the off-policy DPO method. Despite shorter564

responses generally receiving lower scores, this565

does not imply that such responses are inappropri-566

ate or non-human-like in the natural conversational567

context. For instance, in the left of Table 3, a re-568

sponse generated by the model trained using PPO569

states, "What’s her age?". Though extremely suc-570

cinct, this response could mirror a human’s reply571

in the given such conversational context. Further-572

more, a common trait observed among all models573

is their tendency to provide "denial" responses in574

many scenarios that are biased or potentially harm-575

ful. Rather than directly answering the questions576

or replying with messages that could terminate the577

conversation, these models often ask further clar-578

ifying questions to ascertain the user’s intentions.579

While responses from the model trained by DPO580

are longer, they often continue to pose numerous581

related yet highly redundant questions, which may582

not necessarily enhance the conversation’s quality583

or effectiveness.584

5 Conclusion 585

In this paper, we propose ESO, a simple yet well- 586

motivated on-policy method by drawing inspira- 587

tions from the principle of biological evolution for 588

language model tuning. In ESO, the gradient of 589

the probability of output sentences generated on- 590

line by the model serves as a sampling perturbation 591

signal. Then, the fitness of perturbation signals is 592

measured by a designed relative difference, which 593

is leveraged to guide the optimization process to 594

enhance model capability. The experimental re- 595

sults show that the proposed ESO can achieve su- 596

perior performance in many scenarios, including 597

instruction following and text summarization, and 598

comparable performance to compared to PPO in 599

human alignment task. 600

Limitations 601

One limitation of the proposed method is the re- 602

quirement for the model to generate multiple candi- 603

date sentences during the training in an on-the-fly 604

manner. This property necessitates additional com- 605

putational resources, increasing the demand for 606

GPU memory and extending training times. Ad- 607

ditionally, the proposed method relies on an ac- 608

curate and robust reward mechanism to guide the 609

optimization. In scenarios where deeper seman- 610

tic or stylistic alignment is necessary, like human 611

alignment, developing such a perfect reward model 612

poses a substantial challenge in these scenarios. 613
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