
ACCELERATING NEURAL NETWORK TRAINING:
AN ANALYSIS OF THE ALGOPERF COMPETITION

Priya Kasimbeg1˚ Frank Schneider2˚ Runa Eschenhagen3 Juhan Bae4,5
Chandramouli Shama Sastry4,6 Mark Saroufim7 Boyuan Feng7 Less Wright7
Edward Z. Yang7 Zachary Nado1 Sourabh Medapati1
Philipp Hennig2 Mike Rabbat7 George E. Dahl1:

1Google DeepMind 2University of Tübingen 3University of Cambridge
4Vector Institute 5University of Toronto 6Dalhousie University 7Meta

ABSTRACT

The goal of the ALGOPERF: TRAINING ALGORITHMS competition is to evaluate
practical speed-ups in neural network training achieved solely by improving the
underlying training algorithms. In the external tuning ruleset, submissions must
provide workload-agnostic hyperparameter search spaces, while in the self-tuning
ruleset they must be completely hyperparameter-free. In both rulesets, submissions
are compared on time-to-result across multiple deep learning workloads, training
on fixed hardware. This paper presents the inaugural ALGOPERF competition’s
results, which drew 18 diverse submissions from 10 teams. Our investigation
reveals several key findings: (1) The winning submission in the external tuning
ruleset, using DISTRIBUTED SHAMPOO, demonstrates the effectiveness of non-
diagonal preconditioning over popular methods like ADAM, even when compared
on wall-clock runtime. (2) The winning submission in the self-tuning ruleset,
based on the SCHEDULE FREE ADAMW algorithm, demonstrates a new level of
effectiveness for completely hyperparameter-free training algorithms. (3) The top-
scoring submissions were surprisingly robust to workload changes. We also discuss
the engineering challenges encountered in ensuring a fair comparison between
different training algorithms. These results highlight both the significant progress
so far, and the considerable room for further improvements.

1 INTRODUCTION

Deep neural networks are powerful models that excel in tasks such as image recognition, natural lan-
guage processing, and speech recognition. However, training these models often requires significant
computational resources as well as careful (and sometimes brittle) training recipes, including meticu-
lous hyperparameter tuning. A big practical issue in the usability of training algorithms, for instance,
is that many choices are still left to the practitioner. How should the learning rate be tuned? In what
range? Using what schedule? These are very crucial decisions that can make or break the training
process and, critically, determine which methods perform best. Despite training algorithms being
such a fundamental part of the deep learning pipeline, the community has been unable to identify
which training methods are the state of the art. Previous empirical comparisons have suffered from a
number of issues, e.g., weak baselines, not fully accounting for hyperparameter tuning, or failing to
properly control for potential confounding factors like model architecture changes. Dahl et al. (2023)
proposed the ALGOPERF: TRAINING ALGORITHMS benchmark (Section 2) to measure speed-ups in
neural net training due to algorithmic improvements, while addressing the aforementioned issues.
This competitive, time-to-result benchmark uses multiple realistic deep learning workloads on fixed
hardware, allowing submitters to innovate solely on the training algorithms. It allows submissions
under two different hyperparameter tuning rulesets: an external tuning ruleset that scores submissions
based on the best result from a handful of hyperparameter configurations, and a self-tuning ruleset
without hyperparameters that counts any time a submission spends tuning as part of the training time.

˚Equal contributions.
:Corresponding author gdahl@google.com.

1



In this paper, we present the results of the inaugural ALGOPERF: TRAINING ALGORITHMS com-
petition, a competition open to the entire machine learning community, based on the ALGOPERF
benchmark proposed in Dahl et al. (2023). Our analysis of «4000 training runs reveals several key
findings on accelerating neural net training through improved training algorithms:

• The winning submission in the external tuning ruleset, based on DISTRIBUTED SHAMPOO (Anil
et al., 2020; Shi et al., 2023), demonstrates that non-diagonal preconditioning methods can
outperform currently popular diagonal methods, such as ADAM (Kingma & Ba, 2015), in terms
of wall-clock training time. Across eight deep learning workloads, this submission achieved on
average a «28% faster model training compared to the baseline, which used NADAMW (Dozat,
2016; Loshchilov & Hutter, 2019) (Section 3).

• In the self-tuning ruleset, the winning submission based on SCHEDULE FREE ADAMW (Defazio
et al., 2024) was the only entry surpassing the baseline, providing «8% faster average training. It
was also «10% faster than the external tuning baseline across the seven base benchmark workloads
both algorithms trained successfully, without any hyperparameters or parallel tuning (Section 3).1
This result establishes a new state-of-the-art for hyperparameter-free training algorithms and
highlights the exciting potential of fully automated neural network training.

• The top-scoring submissions are characterized by their consistent performance across workloads,
including robustness to minor workload modifications, e.g. changes to activation functions or
normalization layers (Table 3). This suggests that, at least in a competitive evaluation context,
achieving consistent performance across workloads is a major challenge for training algorithms
operating under restricted runtime and tuning budgets.

Building the training harness and software for the ALGOPERF: TRAINING ALGORITHMS competition
to enable fair and meaningful comparisons between training algorithms, especially across the deep
learning frameworks JAX (Bradbury et al., 2018) and PYTORCH (Paszke et al., 2019), required
substantial engineering effort. Section 4 discusses these engineering challenges, while Section 5
highlights lessons learned as well as opportunities to improve future iterations of the benchmark.

2 SUMMARY OF BENCHMARKING METHODOLOGY

The ALGOPERF: TRAINING ALGORITHMS benchmark evaluates the effectiveness of training
algorithms by measuring how quickly they can achieve specific evaluation metric goal values across
various realistic deep learning workloads. These per-workload, time-to-result measurements are
performed on a fixed hardware configuration, and account for all required workload-specific tuning.
The final benchmark score aggregates across workloads to identify more efficient general-purpose
training algorithms for deep learning. Below, we briefly summarize the ALGOPERF benchmark by
explaining key terms. For a more detailed discussion of the benchmark’s motivation, description, and
justification see Dahl et al. (2023) and the competition rules2 & documentation3. For the ALGOPERF
competition, we solicited submissions from the entire machine learning community, and made
several modifications to the benchmark as it was initially proposed by Dahl et al. (2023), which are
summarized in Appendix A.2.

Workloads. The benchmark features multiple neural network training tasks, called workloads, each
consisting of a dataset, model, loss function, target metric, validation target and runtime budget. The
submissions’ objective is to train these workloads as quickly as possible; if the target is not reached
within the runtime budget, the run receives an infinite score. Designed to reflect real-world deep
learning training scenarios, the workloads cover several key domains. The benchmark includes two
types of workloads: fixed base workloads (Table 2) directly affect the benchmark score, and held-out
workload variants (Table 3) discourage submissions to overfit the benchmark’s fixed workloads
and ensure robustness to natural workload changes. While held-out workloads do not contribute
directly to the benchmark score, failure to train a held-out workload quickly enough will invalidate
the submission’s score for the corresponding fixed base workload.

Submissions. Submitted training algorithms must adhere to the fixed ALGOPERF API (Dahl et al.,
2023, Sec. 4.2) and are limited to four submission functions: (1) update_params is responsible for

1Note, the two speed-ups for SCHEDULE FREE ADAMW are computed across different sets of workloads.
2github.com/mlcommons/algorithmic-efficiency/[...]/COMPETITION_RULES.md
3github.com/mlcommons/algorithmic-efficiency/[...]/DOCUMENTATION.md

2

https://github.com/mlcommons/algorithmic-efficiency/blob/main/docs/.old/COMPETITION_RULES.md
https://github.com/mlcommons/algorithmic-efficiency/blob/main/docs/DOCUMENTATION.md


modifying the network’s parameters during training and typically involves optimization algorithms,
such as SGD, ADAM, or a custom method. (2) init_optimizer_state allows the creating of
the training algorithm’s internal state, e.g. to define learning rate schedules. (3) data_selection
allows control of how batches are constructed, to use techniques such as curriculum learning or data
echoing (Choi et al., 2020). (4) get_batch_size defines a batch size for each workload, e.g.,
participants can predetermine the largest batch size fitting in the competition hardware’s memory.
For the external tuning ruleset (see below), participants can also provide a workload-agnostic search
space for hyperparameters. This limited API isolates training speed-ups resulting from improvements
to the training algorithm itself, rather than pipeline optimizations or model changes. The API also
ensures that submissions can be applied to generic deep learning workloads by being fully specified
without any workload-specific behavior (apart from the batch size).

Tuning rulesets. Submissions compete under two distinct rulesets governing hyperparameter tuning.
The external tuning ruleset simulates hyperparameter tuning with limited parallel resources. In this
ruleset, hyperparameters are tuned using five independent trials, with hyperparameter configurations
sampled via quasirandom search (Bousquet et al., 2017) from the submission’s defined search space,4
and are scored based on the runtime of the trial that achieves the validation target the fastest. To
produce a more consistent final score, the tuning process is repeated five times across five different
tuning studies, where each study receives a different random seed for the workload’s model and data
initialization. The final workload score used in the benchmark’s scoring procedure is the median of
the best training time from each of the five studies. The self-tuning ruleset simulates fully automated
hyperparameter tuning during training on a single machine. This includes submissions that use the
same hyperparameters across all workloads (e.g. ADAMW with defaults for all hyperparameters
including regularization) or those that perform inner-loop tuning during the training run. Anticipating
that they may require more time to reach the target, self-tuning submissions have three times the
runtime budget of external-tuning submissions (see Table 2). Similar to the external tuning ruleset,
five studies are conducted (although each self-tuning study consists of a single trial), and the median
runtime across all studies determines the workload score.

Benchmark score. A submission’s benchmark score is based on its individual workload scores
relative to those of other submissions, aggregated using performance profiles (Dolan & Moré, 2002;
Dahl et al., 2023, Sec. 4.5). A performance profile plots the fraction of workloads where a submission
trains successfully (achieves the target performance) within a factor of τ of the time required by
the per-workload fastest submission, for different values of 1ďτ ďτmax (see Figures 1 and 3). For
instance, the height of submission s’s performance profile at τ “ 1.5 is the fraction of workloads
where s trains successfully and within 1.5̂ the wall-clock time the best competitor requires on that
workload. The final scalar benchmark scores (Figures 1a and 1c) are the normalized area under the
performance profiles, with 1.0 corresponding to a submission that was faster than all competitors on
all workloads.

Computational costs. To score all competition submissions, we conducted 3850 and 420 runs in
the external tuning and self-tuning ruleset respectively. On average, scoring an external submission
required « 3469 hours, and « 1847 hours for a self-tuning submission, totaling « 49,240 hours on
the competition hardware (8ˆNVIDIA V100 GPUs) (see Appendix A.3).

3 RESULTS

The two ALGOPERF: TRAINING ALGORITHMS competition leaderboards (Figure 1) rank submis-
sions in each tuning ruleset by their benchmark score.5 Although five submissions outperformed the
baseline (Table 4) in the external tuning ruleset, only the winning submission was competitive in
the self-tuning ruleset. The remaining self-tuning submissions (Table 5) scored significantly lower
than the self-tuning baseline, highlighting the challenge of fully automatic training algorithms that
must pay the training time cost of any workload-specific hyperparameter tuning. Although there
is at least one submission that could successfully train each workload, no submission reached the

4Submissions can alternatively provide a list of five hyperparameter configurations that will be sampled
without replacement.

5Note that the external-tuning baseline is different from the self-tuning baseline; each was tuned and
specialized specifically for its ruleset. Similarly, there are two distinct SCHEDULE FREE ADAMW submissions,
one for each ruleset. We specify which one we are referring to if the context does not make it clear.

3



Submission Line Score

PYTORCH DISTRIBUTED
SHAMPOO

✖ 0.7784

SCHEDULE FREE ADAMW ● 0.7077
GENERALIZED ADAM ● 0.6383

CYCLIC LR ▼ 0.6301

NADAMP ♦ 0.5909
BASELINE 0.5707
AMOS ✖ 0.4918
CASPR ADAPTIVE ★ 0.4722
LAWA QUEUE ♦ 0.3699

LAWA EMA ▼ 0.3384
SCHEDULE FREE PRODIGY 0

(a) External tuning leaderboard

1.0 1.5 2.0 2.5 3.0 3.5 4.0

τ

0%

25%

50%

75%

100%

Pe
rc

en
ta

ge
of

W
or

kl
oa

ds

(b) External tuning performance profiles

Submission Line Score

SCHEDULE FREE ADAMW ● 0.8542
BASELINE 0.8194

NADAMW SEQUENTIAL ♦ 0.3308

SINV6 75 ✖ 0.1420

SINV6 ▼ 0.0903
ADAMG ★ 0

(c) Self-tuning leaderboard

1.0 1.5 2.0 2.5 3.0 3.5 4.0

τ

0%

25%

50%

75%

100%

Pe
rc

en
ta

ge
of

W
or

kl
oa

ds

(d) Self-tuning performance profiles

Figure 1: ALGOPERF competition leaderboard & performance profiles for all submissions to the
external (top) and self-tuning (bottom) ruleset. The leaderboards (a, c) are ranked by the submissions’
benchmark scores, rounded to four significant digits. Higher scores indicate faster training. Note,
scores are not comparable between rulesets. In the performance profiles (b, d), each line represents a
submission. A step at τ indicates that, for one workload, this submission reaches the target within τ
times the runtime of the fastest submission for that workload and ruleset.

target on every workload (Figure 1; see Section 3.1 for more details). This result simultaneously
demonstrates the benchmark’s feasibility and its difficulty as well as the significant potential for
future improvement in training algorithms. There were strong submissions in both PYTORCH & JAX,
suggesting that, within the benchmark’s codebase, workload implementations in both frameworks
are, at least to some degree, sufficiently similar in speed and memory usage (see Section 4).

3.1 PER-WORKLOAD RUNTIMES

Table 1 provides a detailed overview of the submissions’ runtimes across all workloads, normalized
by the external tuning runtime budget. Workloads with runtimes deemed infinite for scoring purposes
are marked in gray, with corresponding symbols explaining the reason (see the caption of Table 1).
The winning submissions in both rulesets excelled by reliably training most workloads rather than
being the fastest on every one. For example, PYTORCH DISTRIBUTED SHAMPOO was the fastest on
“only” 2 of the 8 base workloads, while SCHEDULE FREE ADAMW led in 4 of 8 in the self-tuning
ruleset. We also observed substantial variations in workload runtimes, even among competitive
methods. PYTORCH DISTRIBUTED SHAMPOO, for instance, took over twice as long on WMT as
the fastest submission. This indicates that there is still ample potential to improve training algorithms.
In the self-tuning ruleset, if the winning submission successfully trained a workload, it did so within
the external tuning runtime budget. This suggests that future benchmarks could significantly reduce
the self-tuning runtime budget to save computational costs, perhaps matching the external tuning one.

RESNET workload. The RESNET workload is notable, since only one submission, GENERALIZED
ADAM, could reliably train it to the target performance within the given budget. This may be

4



Table 1: Normalized submission runtimes across all workloads. All runtimes are normalized
using the external tuning runtime budget, with the fastest submission per workload in each ruleset
highlighted in bold. Workload runtimes considered infinite for scoring are marked in gray, with a
(suffix) symbol explaining the reason. inf denotes that a submission did not reach the workload
target within the allowed runtime budget. NaN indicates an error (such as running out of memory)
before any evaluation occurred. A † indicates that a held-out score is ignored due to the submission
not reaching the target on the corresponding base workload, while a ‡ indicates that a base workload
score is ignored because the submission did not successfully train the associated held-out workload.
Runs that are not within 4ˆ the fastest (valid) workload runtime are marked with *.

(a) External tuning ruleset

CRITEO 1TB FASTMRI RESNET VIT CONFORMER DEEP
SPEECH

OGBG WMT

Base H.O. Base H.O. Base H.O. Base Base H.O. Base Base H.O. Base H.O.

AMOS inf inf 0.33 0.49 inf 0.55† 0.65 0.71 0.57 0.57 0.60* 0.89* 0.68 0.37
BASELINE 0.94 0.08 0.23 0.51 inf 0.94† 0.91 0.90 0.83 0.65 0.42‡ 0.68* 0.86 0.35
CASPR
ADAPTIVE

NaN NaN 0.13 0.15 inf inf 0.58 inf 0.59† 0.75 0.12 0.12 0.67‡ NaN

CYCLIC LR 0.67 0.08 0.25 0.44 inf inf 0.81 0.94 0.92 0.70 0.38‡ 0.51* 0.49 0.35
GENERALIZED
ADAM

0.83 0.05 0.18 0.39 0.97 0.88 0.84 inf 0.83† 0.68 0.31‡ 0.64* 0.63 0.33

LAWA EMA 0.69 0.09 0.29 0.57 inf inf 0.80 inf inf inf 0.57* 0.73* 0.89 0.39
LAWA QUEUE inf 0.14† 0.22 0.55 inf inf 0.66 inf inf inf 0.25 0.24 0.56 0.22
NADAMP 0.80 0.07 0.22 0.49 inf 0.90† 0.88 0.94 0.85 0.60 0.43‡ 0.74* 0.80 0.47
SCHEDULE FREE
ADAMW

0.67 0.05 0.13 0.41 inf inf 0.57 0.92 0.57 0.78 0.29‡ 0.61* 0.33 0.12

SCHEDULE FREE
PRODIGY

NaN NaN 0.21‡ 0.65* inf inf inf inf inf inf 0.61* inf inf 0.40†

PYTORCH
DISTR. SHAMPOO

0.65 0.03 0.15 0.22 inf 0.93† 0.43 0.78 0.68 0.62 0.18 0.19 0.80 0.25

(b) Self-tuning ruleset

CRITEO 1TB FASTMRI RESNET VIT CONFORMER DEEP
SPEECH

OGBG WMT

Base H.O. Base H.O. Base H.O. Base Base H.O. Base Base H.O. Base H.O.

ADAMG inf inf inf inf inf inf inf inf inf inf inf inf inf inf

BASELINE 0.75 0.07 0.22 0.51 inf inf 0.95 0.94 0.92 0.65 0.46 0.69 0.84 0.59
NADAMW
SEQUENTIAL

2.96‡ 0.57* 0.27 0.44 inf inf 1.58 inf 1.16† 1.45 0.55 0.96 2.36‡ 1.57*

SCHEDULE FREE
ADAMW

0.75 0.25 0.15 0.58 inf inf 0.68 0.97 0.61 0.88 0.32 0.56 0.94 0.21

SINV6 NaN NaN 0.49 0.87 inf inf inf inf 1.82† 2.47 1.35* inf 2.32 0.46
SINV6 75 NaN NaN 0.45 0.80 inf inf inf inf 2.55† 2.21 1.50* inf 1.82 0.44

surprising, as the RESNET target threshold was derived using the same procedure as all other
workloads. The hyperparameter search space used for target-setting (see Dahl et al., 2023) may have
been more suitable for this workload given its well-studied nature. Although only one submission
achieved a finite RESNET workload score (recall a finite workload score requires at least 3 out of the
5 repetition studies to train successfully), several others met the target in at least one study. NADAMP,
PYTORCH DISTR. SHAMPOO, and the BASELINE hit the target at least once but were not consistent,
with the remaining studies falling just short (Figure 2). These results support using the median across
multiple studies to determine a submission’s workload score, ensuring robustness against stochasticity.
Across all workloads, including held-out ones, at least one submission reliably reached the target,
demonstrating that none of the workloads were impossible to handle, rather it was difficult for a
submission to do well on all of them simultaneously.

Speed-up comparisons. In addition to benchmark scores, we compute raw speed-ups between
submissions. For relative training speed-ups, we focus on the fixed base workloads and impute
infinite workload scores with the ruleset’s runtime budget, i.e. assuming the submission would have

5



achieved the target just after the (artificial) cut-off. This is a best-case assumption for submissions that
do not train successfully (and thus a worst-case assumption for speed-ups over those submissions),
which may be reasonable in some cases (e.g. Figure 2) but can significantly underestimate actual
training times in others. For speed-up calculations, we do not enforce the held-out workload rules that
would invalidate workload runtimes when the corresponding held-out workload was not successfully
trained. Table 6 lists the average speed-ups over the baseline across all eight base workloads.
PYTORCH DISTRIBUTED SHAMPOO provides significantly accelerated training than the external
tuning BASELINE, with an average speed-up of «28%. It was also «2% and 19% faster compared
to the second- and third-place submissions, respectively. In the self-tuning ruleset, SCHEDULE FREE
ADAMW provides « 8% faster hyperparameter-free training than the self-tuning baseline. While
speed-up metrics offer a more intuitive measure, they are less meaningful overall, as the penalty for
missing a target is relatively weak. For instance, CASPR ADAPTIVE achieved a finite workload
score on only four out of eight workloads, but ranked third in average speed-up.

3.2 COMPARISON ACROSS HYPERPARAMETER TUNING RULESETS

To compare submissions across rulesets, we evaluated the first-place self-tuning submission as an
external tuning submission. This quantifies the performance gap between rulesets and estimates
the expected slowdown from the lack of parallel hyperparameter tuning. The self-tuning winner,
the (self-tuning) SCHEDULE FREE ADAMW submission, would have scored a 0.4804 under the
external tuning ruleset, ranking hypothetically eighth, without affecting the scores of other external
tuning submissions. Although there is a notable gap compared to its external tuning counterpart, it
is surprisingly competitive in this ruleset, given its lack of parallel tuning. Across the seven base
workloads both submissions trained successfully, PYTORCH DISTRIBUTED SHAMPOO, the winner of
the external tuning ruleset, is «24% faster than (self-tuning) SCHEDULE FREE ADAMW. However,
(self-tuning) SCHEDULE FREE ADAMW is «10% faster than the (external tuning) BASELINE across
the seven base workloads both trained successfully. In other words, (self-tuning) SCHEDULE FREE
ADAMW reduced training time by 10% compared to the baseline, using only a single machine
instead of five in parallel exploring different hyperparameter configurations. Although there is still
a meaningful gap between the rulesets, the encouraging results of (self-tuning) SCHEDULE FREE
ADAMW suggest that even without any free workload-specific tuning, it might be possible to create
training algorithms that are surprisingly effective.

3.3 RULE CHANGE COUNTERFACTUALS

In order to better understand the effects of the specific ALGOPERF benchmark rules, we can consider
how the results would have changed with different rules.

Different ways of determining whether a submission receives a finite runtime score. There are a
variety of mechanisms in the rules whereby a submission can fail to receive a finite runtime score
on a given workload, and they triggered relatively frequently in the competition. In the external
tuning ruleset, out of 154 workload-submission combinations (including both fixed base and held-out
workloads), 33 («21%)were classified as infs due to a submission not reaching the target (31 out of
84 or «37% for the self-tuning ruleset), while 5 («3%) and 4 («5%), respectively, were classified as
NaNs (error before first evaluation). Additionally, 8 held-out workload scores («12%) in the external
tuning ruleset were ignored due to failure to reach the target on the base workload, while the reverse
occurred for 7 base workload scores («8%). In the self-tuning ruleset, 3 held-out scores («8%) and 2
base scores («4%) were excluded for the same reasons. Finally, 11 scores («7%) in the external and
4 scores («5%) in the self-tuning ruleset exceeded the four-times-the-fastest-valid-runtime threshold
and were thus classified as infinite. This is most notable for OGBG, where the fast training times
of CASPR ADAPTIVE invalidated a significant number of workload scores. Ultimately, requiring
training algorithms to be robust to workload variations through the held-out workloads did provide a
non-trivial constraint, though the held-out workload targets were not so stringent the effect was that
large. Only considering submissions to train a workload successfully when no other submission could
train more than four times faster, primarily affected workloads where the overall runtime budget was
the most generous (in hindsight). This rule might become redundant if runtime budgets for future
iterations are tightened based on the top-performing submissions. In Figure 3 (Appendix A.5), we
investigate the sensitivity of benchmark scores and rankings to changes in τmax, the upper limit of the
performance profile.

6



Scoring on a subset of workloads. How would the competition results change if we considered only a
subset of the benchmark’s workloads? Figure 4 shows the performance profiles and benchmark scores
when ignoring all held-out workloads. With the exception of CASPR ADAPTIVE and AMOS, which
switch positions, held-out workloads have little impact on the leaderboard. However, quantifying the
full effect of held-out workloads is challenging. Their presence may have discouraged submissions
overfitting to the fixed workloads. While held-out workloads offer some value, their costs likely
outweigh their benefits (Section 5). These costs include the additional compute and, perhaps more
importantly, the significant human effort involved in designing and implementing them.

Dahl et al. (2023) envisioned ALGOPERF’s qualification set as a cheaper way to evaluate training
algorithms, allowing for better allocation of compute resources to the more promising submissions.
For the competition, we had enough compute to fully score all submitted training algorithms and did
not use the qualification set (for a description of all changes between the benchmark and competition
see Appendix A.2). Figure 5 shows the submissions’ score when using only the qualification
set (which also excludes held-out workloads). While the qualification set helps to identify under-
performing submissions, rankings can change substantially compared to the full set. We can also
assess how scores shift when removing individual workloads. Table 7 presents the benchmark scores
and rankings when each workload is excluded. The rankings remain largely stable, with the winning
submissions unchanged in all but one case, indicating that the competition results are robust to the
precise selection of workloads, as long as there is a large and diverse enough set.

4 ENGINEERING CHALLENGES

Scoring submissions based on wall-clock time, especially in a multi-framework setting, introduces
non-trivial engineering challenges. Requiring competing submissions to make use of shared workload
implementations and timing code is an essential requirement for meaningful timing measurements,
but also introduces a host of issues. Even for standard algorithms, seemingly minor implementation
details can have a dramatic effect on time-per-step or how quickly the loss decreases per step. As much
as possible, potential confounding factors for training algorithm comparisons should be removed,
while still allowing realistic participation. Perhaps the biggest point of tension between controlling
measurements and remaining relevant to current practice is due to supporting multiple frameworks.
Submissions in JAX & PYTORCH have to be compared on a level playing field, despite framework-
specific differences in optimization and execution paradigms. To ensure as fair a comparison as
possible between algorithms implemented in JAX & PYTORCH, the workload implementations in
each framework should be functionally equivalent, high-quality, and realistically performant:

Functional equivalence: workload implementations should perform mathematically identical com-
putations across frameworks and use identical implementation strategies. Given the same input (batch,
model parameters, random initialization), the outputs of the forward and backward passes should be
the same (within numerical precision) regardless of whether the workload is implemented in JAX
or PYTORCH. All parts of the computation not controlled by the submission code (everything from
forward & backward passes to weight initialization to timing & logging) should be semantically
identical and also be parallelized in the same way on the same devices. This guarantees that any
observed performance differences are truly due to algorithmic improvements within the submissions,
and not variations in the underlying computations.

Performant in both time and memory: workload implementations shouldn’t saddle training
algorithm submissions with time or memory overheads that skilled engineers would easily avoid
outside the context of the competition. Although achieving identical execution times (and memory
usage patterns) across frameworks when run on identical competition hardware is not required in
principle (and is nearly impossible), in practice since both JAX & PYTORCH are mature frameworks
and the competition workloads are standard deep learning benchmark problems, any large discrepancy
between time or space efficiency across workload implementations in different frameworks is cause
for concern. Hypothetically, different frameworks can make different techniques easier or harder to
express or make achieving certain memory or runtime requirements more or less difficult. However,
only when the workload implementations in both frameworks are as efficient as is realistically
possible can one begin to ask how the constraints of the frameworks themselves are playing a role.
Implementations should realistically capture how the frameworks are used by practitioners while also
being as efficient as possible.

7



Addressing these challenges led to the identification and subsequent implementation of various
improvements and best practices. Our experience should be useful for researchers attempting to make
similar reproducible measurements with as few confounding factors as possible.

4.1 FUNCTIONAL EQUIVALENCE OF JAX & PYTORCH IMPLEMENTATIONS

Framework-specific defaults. JAX & PYTORCH provide basic primitives for implementing various
components in neural networks. Creating functionally equivalent workloads requires considerable
care around framework specific features and defaults. For example, JAX’s default Gelu activation
function calculates the cumulative density function of the Gaussian with a Tanh approximation,
whereas in PYTORCH the exact computation is used. Similarly, for layer normalization, the default
values for ε differ between the frameworks. Even more insidious, the weights of linear layers in
JAX are initialized with lecun_normal, while similar weights in PYTORCH are initialized with
kaiming_uniform. Moreover, PYTORCH does not supply a lecun_normal initialization,
necessitating a manual implementation.

Data pre-processing and augmentation. Differences in data pre-processing and augmentation
strategies can result in data pipelines that are not comparable. To mitigate these types of differences,
the same TENSORFLOW (Abadi et al., 2015) dataset pipelines were used across frameworks where
possible (CRITEO 1TB, FASTMRI, LIBRISPEECH, OGBG, and WMT). However, the IMAGENET
VIT and RESNET workloads in PYTORCH use a custom implementation to match the TENSORFLOW
random augmentation strategy in the JAX workload.

4.2 PERFORMANCE OF JAX & PYTORCH IMPLEMENTATIONS

Data pipelines. Differences in the data parallelism implementations may also lead to additional
overhead for PYTORCH workloads. To match JAX’s data parallel paradigm, the PYTORCH workloads
are implemented with DistributedDataParallel (DDP). DDP requires one PYTHON process
per device, which in a naive implementation would lead to replication of TENSORFLOW data pipeline
tasks in each process and potentially use too much RAM and an undesirable number of threads. To
mitigate this issue, TENSORFLOW data pipeline operations are only run in one PYTHON process
and batches are broadcasted to the remaining processes. This choice results in a small additional
communication overhead for each batch in the PYTORCH workloads.

Custom CUDA kernels. The wall-clock time of two functionally equivalent computations can
significantly differ due to differences in the underlying GPU implementations. One example for this
is the torch.lstm implementation. In PYTORCH, the LSTM implementation uses a custom CUDA
kernel that results in a 2ˆ smaller wall-clock time on the LIBRISPEECH DEEPSPEECH workload
compared to the JAX version. This uncovered the opportunity to generate a similar CUDA kernel in
the JAX LSTM layer implementation. Using the updated faster JAX LSTM layer implementation
significantly sped up the end-to-end wall clock times for the DEEPSPEECH workload. 6

Adopting PYTORCH 2.0 features Achieving realistically performant workload implementations re-
quires adopting novel features and best practices in both frameworks. Without these, the performance
gaps between PYTORCH & JAX could be as large as 60%. Over the course of the development of
the competition, the performance of PYTORCH workload implementations significantly improved as
a result of migrating from PYTORCH to PYTORCH 2.0 (see Appendix A.6).

PYTORCH 2.0 (Ansel et al., 2024), released in Dec 2022, introduced two major extensions that
represent a major departure from PYTORCH’s (Paszke et al., 2019) original eager programming
model, where every line of code would dispatch to a CUDA kernel. Specifically, PYTORCH 2.0
introduced TorchDynamo, a Python level JIT compiler that enables graph compilation of PYTORCH
programs, and TorchInductor, a compiler backend which translates PYTORCH programs into
Triton (Tillet et al., 2019) kernels for GPU and C++ for CPUs. The main adjustments that had to be
made to adopt to PYTORCH 2.0 and close the speed gap to JAX were related to torch.compile:

• Avoiding graph breaks. When TorchDynamo encounters unsupported functionality, it creates a
graph break, splitting the model. To maximize performance, graph breaks should be prevented and
models compiled with torch.compile(model, fullgraph=True).

6https://github.com/google/jax/pull/13319

8

https://github.com/google/jax/pull/13319


• Compiling the loss function, not just the model. Most of the tutorials surround-
ing torch.compile implied that it is only to be applied to the model by running
torch.compile(model). However, compiling loss functions had a dramatic impact on
performance for several workloads. 7

• Overhead reduction mode. For models where overhead reduction is crucial it is rec-
ommended to use CUDA graphs. This can be enabled via torch.compile(model,
mode="reduce-overhead") for the cost of a small memory overhead.

• Combining DDP and torch.compile: The compiler also needs to compose with the other
subsystems, e.g., there are subtle differences between ddp(torch.compile(model)) and
torch.compile(ddp(model)). With the latter, the compiler will also trace collectives
which may result in further performance optimizations.

Memory allocator settings Older CUDA versions are more likely to cause OOM errors in PY-
TORCH. Setting torch.cuda.memory._set_allocator_settings(’expandable_-
segments:True’) can fix OOMs caused by memory fragmentation. 8

Making adjustments to use modern features and adopting best practices for PYTORCH & JAX helped
achieve realistically performant workload implementations in both frameworks and significantly
reduced the time gap in between the JAX & PYTORCH workload implementations. While perfor-
mance differences still exist, they are mostly within tolerance (12%) and are balanced such that
neither framework has an overwhelming advantage. Measurements of the performances gaps between
PYTORCH & JAX workloads and improvements can be found in Appendix A.6.

5 LESSONS LEARNED

The improved training algorithms developed for the competition delivered significant speedups in
neural network training. The winning submissions achieved 28% and 8% faster model training
compared to their respective baselines. The winning submission in the external tuning ruleset, based
on DISTRIBUTED SHAMPOO, demonstrates that non-diagonal preconditioning methods can improve
runtime over currently popular methods like ADAM. And yet, despite these significant strides made
in accelerating neural network training, there is ample room left for algorithmic improvement.
No single submission dominated across all workloads; instead, five different submissions achieved
the best performance on at least one of the eight base workloads.

These algorithmic advances can only be realized reliably by careful benchmarking and engineer-
ing efforts ensuring fair and meaningful comparisons. Comparisons on multiple deep learning
workloads are required to isolate a robust signal of a submission’s performance. Seemingly intuitive
aggregate metrics, like average speedup, fail to fully capture pertinent aspects of a training algorithm’s
practical usefulness. Precise engineering work is required to ensure that training algorithms are
compared fairly. In Section 4, we identified implementation details that dramatically affect the
runtime across virtually all training algorithms, and numerous potentially confounding factors that
must be accounted for in algorithmic comparisons, in particular across deep learning frameworks.

The competition also underscores the inherent link between hyperparameter tuning and training
algorithm performance. To meaningfully compare training algorithms, measurements must
properly account for workload-specific hyperparameter tuning and training algorithms must
be fully-specified without leaving free parameters for the user to set. A complete training
algorithm specification includes a formal specification of a training algorithm’s hyperparameter
defaults and/or search space, and should include regularization choices. The varying performance
of many submissions across workloads suggests that hyperparameter tuning remains a significant
challenge; the top-scoring submissions mostly distinguished themselves by their reliable training
across a large variety of workloads. Despite promising advances in hyperparameter-free algorithms
(as seen in the self-tuning ruleset), fully-automatic neural network training remains a serious challenge.
In light of our results, future publications of training algorithms should include clear hyperparameter
(search space) recommendations and be paired with a recommended tuning protocol, ideally one that
is sensitive to a user-supplied tuning budget. Although a radical change from the current practice of
published training algorithms that aren’t runnable without setting various hyperparameters, publishing

7https://github.com/mlcommons/algorithmic-efficiency/pull/597
8https://github.com/mlcommons/algorithmic-efficiency/issues/497

9

https://github.com/mlcommons/algorithmic-efficiency/pull/597
https://github.com/mlcommons/algorithmic-efficiency/issues/497


families of update rules and abdicating responsibility for tuning entirely to the user only adds to the
community’s confusion on what to actually use.

5.1 METHODOLOGICAL LESSONS

In our competition, the ALGOPERF: TRAINING ALGORITHMS benchmark has proven to be quite
effective in differentiating algorithms and measuring progress in neural network training, but it results
in quite an involved experimental protocol with substantial costs. Most of its features, e.g. (integrated)
performance profiles, were useful in order to generate nuanced and robust insights. However, based on
our experience, we propose the following modifications to the ALGOPERF benchmark going forward:
(1) Removing held-out workloads. Eliminating the held-out workloads would drastically simplify
the evaluation process and reduce the benchmark’s runtime substantially. Though held-out workloads
have the potential to deter overfitting to the base workloads, they require substantial computational,
logistical (they can’t be generated until submissions are frozen), and engineering effort. Replacing
the six held-out workloads with one or two additional base workloads would provide similar benefits,
while reducing runtime and allowing additional, practically-relevant workloads to be included, such
as autoregressive language models or diffusion models. (2) Reducing the runtime budgets to
reduce costs, especially for the self-tuning ruleset. The submissions have demonstrated that, for
many workloads, significantly less training time is needed. Matching the self-tuning budget to the
current external tuning budget, and potentially reducing the external tuning budget further, would
maintain meaningful comparisons while lowering overall costs. (3) Reducing the number of studies
from 5 to 3 would cuts compute costs by an additional 40%. These repetitions with different random
seeds ensure robust insights rather than random noise due to the stochastic training process. However,
our results indicate fewer studies are sufficient for statistical fidelity. Additionally, a modernized
hardware setup with a better cost-to-performance ratio could further reduce costs.

6 CONCLUSION

An inescapable limitation of empirical comparisons of (training) algorithms (see also Choi et al.,
2019; Sivaprasad et al., 2020; Schmidt et al., 2021) is that one can only directly measure the behavior
of specific implementations, not the abstract algorithmic ideas they express. The ALGOPERF:
TRAINING ALGORITHMS competition embraces this constraint by evaluating submissions that fully
specify everything necessary to apply them to any generic learning problem, including all necessary
workload-specific hyperparameter tuning. The competition conditions provide a realistic simulation
of applying a generic training algorithm to a new problem, with some important caveats. First and
foremost, the maximum runtime budgets and evaluation metric targets for each workload provide a
lot of information about what training horizon is appropriate and what validation error is achievable,
unlike in a novel learning task where such information isn’t available. Second, by scoring on time
to reach particular validation error goals and not using results on separate per-workload test sets,
the competition conditions do not capture the challenges of train/test skew or distribution shift.
Additionally, while this competition reveals how well training algorithms perform, deeper analysis,
such as Kunstner et al. (2024), is needed to explain why.

Nevertheless, despite its limitations, the ALGOPERF: TRAINING ALGORITHMS competition has
produced insights about the current training algorithm landscape. In particular, the competition results
have validated two exciting directions for improvements: non-diagonal preconditioning (PYTORCH
DISTRIBUTED SHAMPOO) and hyperparameter reduction strategies (SCHEDULE FREE ADAMW).
These insights are only possible because they are the result of an open and competitive process. This
is in contrast to existing works that, due to the lack of a suitable existing benchmark, have each
been forced to introduce their own training algorithm evaluation protocols. As a result, much of
existing research on training algorithms has focused on isolating and improving individual ideas and
components, but hasn’t always produced complete and usable training algorithms that incorporate
viable hyperparameter tuning protocols, as would be necessary to perform well in competition.

Our end goal is not the specific insights generated by the inaugural round of comparisons, as
interesting as they might be. Ideally, competitions like ALGOPERF will affect training algorithms
research in two main ways. First, they should provide a sieve to filter the most useful ideas out of the
literature by separating truly practical methods from interesting ideas that aren’t yet useful. Second,
they should provide a valuable signal to guide the design process for new training algorithms.

10



ACKNOWLEDGMENTS

FS was supported by funds from the Cyber Valley Research Fund. PH and FS gratefully acknowledge
co-funding by the European Union (ERC, ANUBIS, 101123955), and by the DFG through Project HE
7114/5-1 in SPP2298/1; PH is a member of the Machine Learning Cluster of Excellence, funded by the
DFG under Germany’s Excellence Strategy – EXC number 2064/1 – Project number 390727645; PH
and FS also acknowledge the German Federal Ministry of Education and Research (BMBF) through
the Tübingen AI Center (FKZ:01IS18039A); and funds from the Ministry of Science, Research and
Arts of the State of Baden-Württemberg.

REFERENCES

Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah,
Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent
Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg,
Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015. URL https://www.tensorflow.org/. Software available
from tensorflow.org.

Rohan Anil, Vineet Gupta, Tomer Koren, Kevin Regan, and Yoram Singer. Scalable Second Order
Optimization for Deep Learning, 2020. URL https://arxiv.org/abs/2002.09018.

Jason Ansel, Edward Yang, Horace He, Natalia Gimelshein, Animesh Jain, Michael Voznesensky, Bin
Bao, Peter Bell, David Berard, Evgeni Burovski, Geeta Chauhan, Anjali Chourdia, Will Constable,
Alban Desmaison, Zachary DeVito, Elias Ellison, Will Feng, Jiong Gong, Michael Gschwind,
Brian Hirsh, Sherlock Huang, Kshiteej Kalambarkar, Laurent Kirsch, Michael Lazos, Mario
Lezcano, Yanbo Liang, Jason Liang, Yinghai Lu, C. K. Luk, Bert Maher, Yunjie Pan, Christian
Puhrsch, Matthias Reso, Mark Saroufim, Marcos Yukio Siraichi, Helen Suk, Shunting Zhang,
Michael Suo, Phil Tillet, Xu Zhao, Eikan Wang, Keren Zhou, Richard Zou, Xiaodong Wang, Ajit
Mathews, William Wen, Gregory Chanan, Peng Wu, and Soumith Chintala. PyTorch 2: Faster
Machine Learning Through Dynamic Python Bytecode Transformation and Graph Compilation. In
Proceedings of the 29th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2, ASPLOS ’24, pp. 929–947, New York, NY, USA,
2024.

Olivier Bousquet, Sylvain Gelly, Karol Kurach, Olivier Teytaud, and Damien Vincent. Critical Hyper-
Parameters: No Random, No Cry, 2017. URL https://arxiv.org/abs/1706.03200.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclau-
rin, and Skye Wanderman-Milne. JAX: composable transformations of Python+NumPy programs,
2018. URL http://github.com/google/jax.

Dami Choi, Christopher J. Shallue, Zachary Nado, Jaehoon Lee, Chris J. Maddison, and George E.
Dahl. On Empirical Comparisons of Optimizers for Deep Learning, 2019. URL https://
arxiv.org/abs/1910.05446.

Dami Choi, Alexandre Passos, Christopher J. Shallue, and George E. Dahl. Faster Neural Network
Training with Data Echoing, 2020. URL https://arxiv.org/abs/1907.05550.

George E. Dahl, Frank Schneider, Zachary Nado, Naman Agarwal, Chandramouli Shama Sastry,
Philipp Hennig, Sourabh Medapati, Runa Eschenhagen, Priya Kasimbeg, Daniel Suo, Juhan Bae,
Justin Gilmer, Abel L. Peirson, Bilal Khan, Rohan Anil, Mike Rabbat, Shankar Krishnan, Daniel
Snider, Ehsan Amid, Kongtao Chen, Chris J. Maddison, Rakshith Vasudev, Michal Badura, Ankush
Garg, and Peter Mattson. Benchmarking Neural Network Training Algorithms, 2023. URL
https://arxiv.org/abs/2306.07179.

Aaron Defazio, Xingyu Yang, Harsh Mehta, Konstantin Mishchenko, Ahmed Khaled, and Ashok
Cutkosky. The Road Less Scheduled, 2024. URL https://arxiv.org/abs/2405.15682.

11

https://www.tensorflow.org/
https://arxiv.org/abs/2002.09018
https://arxiv.org/abs/1706.03200
http://github.com/google/jax
https://arxiv.org/abs/1910.05446
https://arxiv.org/abs/1910.05446
https://arxiv.org/abs/1907.05550
https://arxiv.org/abs/2306.07179
https://arxiv.org/abs/2405.15682


Elizabeth D. Dolan and Jorge J. Moré. Benchmarking optimization software with performance
profiles. Mathematical Programming, 2002.

Timothy Dozat. Incorporating Nesterov Momentum into Adam. In 4th International Conference on
Learning Representations, ICLR, 2016.

Sai Surya Duvvuri, Fnu Devvrit, Rohan Anil, Cho-Jui Hsieh, and Inderjit S. Dhillon. Combining
Axes Preconditioners through Kronecker Approximation for Deep Learning. In 12th International
Conference on Learning Representations, ICLR, 2024.

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon Wilson.
Averaging Weights Leads to Wider Optima and Better Generalization. In Ricardo Silva, Amir
Globerson, and Amir Globerson (eds.), 34th Conference on Uncertainty in Artificial Intelligence
2018, UAI 2018, 34th Conference on Uncertainty in Artificial Intelligence 2018, UAI 2018, pp.
876–885. Association For Uncertainty in Artificial Intelligence (AUAI), 2018.

Jean Kaddour. Stop Wasting My Time! Saving Days of ImageNet and BERT Training with Latest
Weight Averaging. In Has it Trained Yet? NeurIPS 2022 Workshop, 2022.

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In 3rd Interna-
tional Conference on Learning Representations, ICLR, 2015.

Frederik Kunstner, Robin Yadav, Alan Milligan, Mark Schmidt, and Alberto Bietti. Heavy-tailed class
imbalance and why Adam outperforms gradient descent on language models. In NeurIPS 2024
Workshop on Mathematics of Modern Machine Learning, 2024. URL https://openreview.
net/forum?id=msW3fL8J1D.

Ilya Loshchilov and Frank Hutter. SGDR: Stochastic Gradient Descent with Warm Restarts. In 5th
International Conference on Learning Representations, ICLR, 2017.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In 7th International
Conference on Learning Representations, ICLR, 2019.

Konstantin Mishchenko and Aaron Defazio. Prodigy: An Expeditiously Adaptive Parameter-Free
Learner. In 41st International Conference on Machine Learning, ICML, Proceedings of Machine
Learning Research. PMLR, 21–27 Jul 2024.

Yijiang Pang, Shuyang Yu, Bao Hoang, and Jiayu Zhou. Towards Stability of Parameter-free
Optimization, 2024. URL https://arxiv.org/abs/2405.04376.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An Imperative Style, High-Performance
Deep Learning Library. In Advances in Neural Information Processing Systems 32, NeurIPS, 2019.

Herbert Robbins and Sutton Monro. A Stochastic Approximation Method. The Annals of Mathemati-
cal Statistics, 1951.

Robin M. Schmidt, Frank Schneider, and Philipp Hennig. Descending through a Crowded Valley -
Benchmarking Deep Learning Optimizers. In 38th International Conference on Machine Learning,
ICML, 2021.

Hao-Jun Michael Shi, Tsung-Hsien Lee, Shintaro Iwasaki, Jose Gallego-Posada, Zhijing Li, Kaushik
Rangadurai, Dheevatsa Mudigere, and Michael Rabbat. A Distributed Data-Parallel PyTorch
Implementation of the Distributed Shampoo Optimizer for Training Neural Networks At-Scale,
2023. URL https://arxiv.org/abs/2309.06497.

Prabhu T. Sivaprasad, Florian Mai, Thijs Vogels, Martin Jaggi, and Francois Fleuret. Optimizer
Benchmarking Needs to Account for Hyperparameter Tuning. In 37th International Conference
on Machine Learning, ICML, 2020.

Leslie N. Smith. Cyclical Learning Rates for Training Neural Networks. In 2017 IEEE Winter
Conference on Applications of Computer Vision (WACV), pp. 464–472, 2017.

12

https://openreview.net/forum?id=msW3fL8J1D
https://openreview.net/forum?id=msW3fL8J1D
https://arxiv.org/abs/2405.04376
https://arxiv.org/abs/2309.06497


Ran Tian and Ankur P. Parikh. Amos: An Adam-style Optimizer with Adaptive Weight Decay
towards Model-Oriented Scale, 2022. URL https://arxiv.org/abs/2210.11693.

Philippe Tillet, H. T. Kung, and David Cox. Triton: an intermediate language and compiler for tiled
neural network computations. In Proceedings of the 3rd ACM SIGPLAN International Workshop
on Machine Learning and Programming Languages, MAPL 2019, pp. 10–19, New York, NY,
USA, 2019. Association for Computing Machinery.

13

https://arxiv.org/abs/2210.11693


A APPENDIX

A.1 ALGOPERF DETAILS

In this section, we provide additional details about the ALGOPERF: TRAINING ALGORITHMS
benchmark (Dahl et al., 2023) and our competition based on it. Tables 2 and 3 summarize the fixed
base and held-out workloads of the ALGOPERF benchmark as they are used in the competition.

Table 2: Summary of fixed base workloads in the ALGOPERF benchmark. Losses include
cross-entropy (CE), mean absolute error (L1), and Connectionist Temporal Classification loss (CTC).
Additional evaluation metrics are structural similarity index measure (SSIM), (word) error rate (ER
& WER), mean average precision (mAP), and bilingual evaluation understudy score (BLEU). Note:
Some workloads have minor changes (see Appendix A.2) to the runtime budgets and validation
targets compared to the ALGOPERF benchmark publication (Dahl et al., 2023). The runtime budget
is that of the external tuning ruleset, the self-tuning ruleset allows 3ˆ longer training.

Validation Runtime
Task Dataset Model Loss Metric Target Budget

Clickthrough rate
prediction

CRITEO 1TB DLRMSMALL CE CE 0.123735 7703

MRI reconstruction FASTMRI U-NET L1 SSIM 0.7344 8859

Image IMAGENET RESNET-50 CE ER 0.22569 63,008
classification VIT CE ER 0.22691 77,520

Speech LIBRISPEECH CONFORMER CTC WER 0.085884 61,068
recognition DEEPSPEECH CTC WER 0.119936 55,506

Molecular property
prediction

OGBG GNN CE mAP 0.28098 18,477

Translation WMT TRANSFORMER CE BLEU 30.8491 48,151

Table 3: Summary of held-out workloads sampled for this iteration of the ALGOPERF competi-
tion. One held-out workload was sampled from the random workload variants (see (Dahl et al., 2023,
Table 11)) for each dataset used in the fixed workloads. Note, for the IMAGENET and LIBRISPEECH
datasets only a single held-out workload was sampled, according to the modified competition rules
(see Appendix A.2). The loss function and performance metrics are identical to the corresponding
fixed base workload (Table 2).

Validation Runtime
Task Dataset Variant Target Budget

Clickthrough rate prediction CRITEO 1TB EMBED INIT SCALE 0.129657 7703

MRI reconstruction FASTMRI TANH 0.717840 8859

Image classification IMAGENET RESNET BN INIT SCALE 0.23474 63,008

Speech recognition LIBRISPEECH CONFORMER LAYERNORM 0.09731 61,068

Molecular property prediction OGBG ALTERED LAYERS 0.269446 18,477

Translation WMT GLU & TANH 29.5779 48,151

A.2 MODIFICATIONS TO THE ALGOPERF BENCHMARK FOR THIS COMPETITION

For the purposes of this competition, we made several modifications to the benchmark from how
it was initially proposed by Dahl et al. (2023), mainly to reduce the competition’s overall compute
costs. All modifications were done before the competition’s submission deadline. Most notably,
the number of tuning trials in the external tuning ruleset was reduced from 20 to 5. This change
significantly lowers the computational cost of the competition while also mitigating the risk of
submissions overfitting to the benchmark’s workload selection. To further reduce computational

14



costs, we also decreased the runtime budgets for both LIBRISPEECH workloads significantly—from
101, 780 to 61, 068 seconds and from 92, 509 to 55, 506 seconds—with only a slight impact on
target performance (the WER changed from 0.078477 to 0.085884 and from 0.1162 to 0.119936).
Additionally, small bug fixes led to slight changes in two other workload targets: the target loss on
CRITEO 1TB increased from 0.123649 to 0.123735, and the target SSIM on FASTMRI decreased
from 0.7344 to 0.723653. Furthermore, only a single held-out workload was sampled for each
dataset, not each workload. This means that for both the IMAGENET and LIBRISPEECH datasets,
only one, instead of two, held-out workloads were sampled from the combined set of workload
variants, further reducing the competition’s overall runtime significantly.

Finally, we decided to use only the validation targets, excluding the test set targets. Including both
validation and test set targets, as proposed by Dahl et al. (2023), complicates the evaluation process
by involving the practitioner’s task of selecting hyperparameters for an unknown test set based on
validation performance. We chose to omit this aspect of the training process in the current iteration of
the benchmark.

A.3 COMPUTATIONAL COSTS

The ALGOPERF benchmark requires a substantial number of training runs and thus significant
computational resources to yield meaningful results. To evaluate a single submission, it needs to be
evaluated on eight fixed—and six held-out—workloads. For each workload, five repetition studies
are performed, and in the external tuning ruleset, each study comprises five tuning trials. In this
iteration of the competition, we conducted 3850 runs in the external tuning ruleset (due to eleven
training algorithms evaluated on 14 workloads, with 5¨5 trials) and 420 runs in the self-tuning ruleset
(six training algorithms evaluated five times on 14 workloads, with a runtime budget 3̂ larger). The
actual computational cost of these 4000+ training runs varies significantly based on the performance
of the submission. Training can terminate early if the validation (and test targets)9 are met or if
errors occur, such as out-of-memory (OOM) issues. The runtime budget in Table 2 reflects only
the compute time spent by the submissions themselves, excluding time for free evaluations or other
operations outside the submission functions. It is thus not an upper bound on the total computational
cost. On average, we required approximately 1847 h to fully run a self-tuning submission and 3469 h
per external tuning submission, amounting to a total of roughly 49,240 h on the competition hardware
(8ˆNVIDIA V100 GPUs). This is considerably less than what is reported in Dahl et al. (2023,
Table 15), primarily due to fewer tuning trials and a reduced runtime budget for certain workloads
(see Appendix A.2), as well as early termination of some submissions. In theory, the number of
required runs could be reduced, for example, by skipping a held-out workload if a submission fails
the corresponding fixed workload. However, this would limit the ability to parallelize different runs
and reduce opportunities for further analysis beyond calculating benchmark scores.

A.4 SUBMISSION DETAILS

In this section, we provide details on the submissions received in this iteration of the competition.
Table 4 lists the submissions to the external tuning ruleset, while Table 5 details submissions received
for the self-tuning ruleset. Notably, no submission in this iteration significantly modified the data_-
selection function, indicating a potential area for future exploration.

A.5 ADDITIONAL COMPETITION RESULTS

In this section, we provide additional analysis of the ALGOPERF competition results. In Figure 2, we
investigate submissions could achieve the target performance on the RESNET workload at least once,
but not reliable enough to receive a finite score. Table 6 compares the training time speed-ups of all
submission relative to the BASELINE in their respective ruleset. We investigated the sensitivity of
leaderboard rankings and benchmark scores to changes in τmax, the upper limit of the performance
profile and integration for the benchmark score. As shown in Figure 3, rankings remain relatively
stable for most submissions across different τmax values. With Figures 4 and 5 and Table 7 we explore
how hypothetical rules changes would affect the competition results.

9Although we decided not to use test targets for the purpose of our competition, we wanted to log when
submissions reached the test targets for potential future analysis.

15



Table 4: External tuning submissions. Details of all submissions to the external tuning ruleset.

Submission Authors Institutions Framework Description

PYTORCH
DISTR.
SUBMISSION

Hao-Jun Shi,
Tsung-Hsien Lee,
Anna Cai, Shintaro
Iwasaki, Wenyin
Fu, Yuchen Hao,
Mike Rabbat

Meta
Platforms

PYTORCH Based on the Distributed Shampoo algorithm
of Anil et al. (2020) with an implementation
tailored to leverage PyTorch performance
optimizations. See Shi et al. (2023) for
details. The submission uses a list of five
hyperparameter settings.

SCHEDULE
FREE
ADAMW

Alice Yang, Aaron
Defazio, Konstantin
Mishchenko

Meta AI,
Samsung
AI

PYTORCH A externally tuned version of SCHEDULE
FREE ADAMW (Defazio et al., 2024) with a
list of five hyperparameter configurations.

GENERAL-
IZED
ADAM

George Dahl,
Sourabh Medapati,
Zack Nado, Rohan
Anil, Shankar
Krishnan, Naman
Agarwal, Priya
Kasimbeg, Vlad
Feinberg

Google JAX Submission with an ADAM-style update rule,
tuning over the use of Nesterov acceleration
and preconditioning. Essentially tuning over
ADAMW (Kingma & Ba, 2015), NADAMW,
and SGD (Robbins & Monro, 1951) with or
without momentum.

CYCLIC
LR

Niccolò Ajroldi,
Antonio Orvieto,
Jonas Geiping

MPI-IS,
ELLIS
Institute
Tübingen

PYTORCH Revisits the work of Loshchilov & Hutter
(2017) and Smith (2017), coupling
NADAMW (Dozat, 2016; Loshchilov &
Hutter, 2019) with a cyclic learning rate
scheduler. Each cycle involves a linear
warmup phase for the LR, followed by
cosine annealing.

NADAMP George Dahl,
Sourabh Medapati,
Zack Nado, Rohan
Anil, Shankar
Krishnan, Naman
Agarwal, Priya
Kasimbeg, Vlad
Feinberg

Google JAX Uses NADAMW with an extra tunable
hyperparameter p enabling pth root of
denominator inside NADAMW update rule
instead of the default of 2.

BASELINE JAX Baseline using NADAMW (Dozat, 2016;
Loshchilov & Hutter, 2019) and a linear
learning rate warmup followed by a cosine
decay (Dahl et al., 2023).

AMOS Ran Tian Google JAX Submission based on the AMOS optimizer
(Tian & Parikh, 2022) with a list of five
hyperparameter settings.

CASPR
ADAPTIVE

Sai Surya Duvvuri,
Inderjit S. Dhillon,
Cho-Jui Hsieh

UT Austin,
UCLA,
Google

JAX A submission based on (Duvvuri et al.,
2024) with a list of five hyperparameter
configurations.

LAWA
QUEUE

Niccolò Ajroldi,
Antonio Orvieto,
Jonas Geiping

MPI-IS,
ELLIS
Institute
Tübingen

PYTORCH Employs Latest Weight Averaging (Izmailov
et al., 2018; Kaddour, 2022) on top of
NADAMW (Dozat, 2016; Loshchilov &
Hutter, 2019), maintaining a queue of
previous model weights. The queue is
periodically updated during training and
passed to the competition API for evaluation.

LAWA
EMA

Niccolò Ajroldi,
Antonio Orvieto,
Jonas Geiping

MPI-IS,
ELLIS
Institute
Tübingen

PYTORCH Similar to LAWA QUEUE but maintaining
an exponential moving average of the model
weights, which is updated periodically
during training and returned to the
competition API for evaluation.

SCHEDULE
FREE
PRODIGY

Alice Yang, Aaron
Defazio, Konstantin
Mishchenko

Meta AI,
Samsung
AI

PYTORCH Combining Schedule-free (Defazio et al.,
2024) with the PRODIGY optimizer
(Mishchenko & Defazio, 2024).

16



50000 52000 54000 56000 58000 60000 62000

0.73

0.74

0.75

0.76

0.77

A
cc

ur
ac

y

Study 0, Trial 1
Study 1, Trial 1
Study 2, Trial 1
Study 3, Trial 1
Study 4, Trial 1

(a) BASELINE

50000 52000 54000 56000 58000 60000 62000

0.73

0.74

0.75

0.76

0.77

A
cc

ur
ac

y

Study 0, Trial 2
Study 1, Trial 2
Study 2, Trial 2
Study 3, Trial 2
Study 4, Trial 2

(b) NADAMP

50000 52000 54000 56000 58000 60000 62000

Runtime in seconds

0.73

0.74

0.75

0.76

0.77

A
cc

ur
ac

y

Study 0, Trial 5
Study 1, Trial 3
Study 2, Trial 5
Study 3, Trial 5
Study 4, Trial 3

(c) PYTORCH DISTRIBUTED SHAMPOO

Figure 2: Validation accuracy vs. runtime on the RESNET workload. The BASELINE (Figure 2a),
NADAMP (Figure 2b), and PYTORCH DISTRIBUTED SHAMPOO (Figure 2c) all reach the validation
target on the RESNET workload for at least one study but not reliably enough to get a finite score.
Shown are the best trials from each of the five studies, where “best” is either the fastest trial to achieve
the target performance or the trial whose best performance is closest to the target. Trials that reach
the target are marked with a solid line, while studies that do not reach the target are indicated with
a dashed line. The gray dashed horizontal and vertical lines indicate the target performance and
runtime budget respectively. Additionally, both AMOS and CYCLIC LR came close but missed the
target in all studies.

17



1.5 2.0 2.5 3.0 3.5 4.0
τmax

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

B
en

ch
m

ar
k

Sc
or

e

PyTorch Distr. Shampoo
Schedule Free AdamW
Generalized Adam
Cyclic LR

NadamP
Baseline
Amos
CASPR Adaptive

Lawa Queue
Lawa EMA
Schedule Free Prodigy

(a) External tuning ruleset

1.5 2.0 2.5 3.0 3.5 4.0
τmax

0.0

0.2

0.4

0.6

0.8

B
en

ch
m

ar
k

Sc
or

e

Schedule Free AdamW
Baseline

NadamW Sequential
Sinv6 75

Sinv6
AdamG

(b) Self-tuning ruleset

Figure 3: Benchmark score as a function of τmax. The upper limit of the performance profile and
upper integration limit for the benchmark score, τmax, determines which workload scores are treated
as finite and influences the penalty for infinite scores. We observe that rankings remain stable for
most submissions across different values of τmax.

18



1.0 1.5 2.0 2.5 3.0 3.5 4.0

τ

0%

25%

50%

75%

100%

Pe
rc

en
ta

ge
of

W
or

kl
oa

ds

PyTorch Distr. Shampoo (0.7784)

Schedule Free AdamW (0.7740)

Generalized Adam (0.6944)

Cyclic LR (0.6648)

NadamP (0.6067)

Baseline (0.5915)

CASPR Adaptive (0.5549)

Amos (0.4918)

Lawa Queue (0.3699)

Lawa EMA (0.3384)

Schedule Free Prodigy (0.0966)

(a) Performance profiles for the external tuning ruleset ignoring held-out workloads

1.0 1.5 2.0 2.5 3.0 3.5 4.0

τ

0%

25%

50%

75%

100%

Pe
rc

en
ta

ge
of

W
or

kl
oa

ds

Schedule Free AdamW (0.8542)

Baseline (0.8194)

NadamW Sequential (0.3826)

Sinv6 75 (0.1420)

Sinv6 (0.0903)

AdamG (0.0000)

(b) Performance profiles for the self-tuning ruleset ignoring held-out workloads

Figure 4: Performance profiles of all ALGOPERF submissions when ignoring held-out work-
loads. Structurally the same as Figure 1 but here we ignore all benchmark rules involving the held-out
workloads.

19



1.0 1.5 2.0 2.5 3.0 3.5 4.0

τ

0%

33%

67%

100%

Pe
rc

en
ta

ge
of

W
or

kl
oa

ds

Schedule Free AdamW (0.8418)

PyTorch Distr. Shampoo (0.7845)

Cyclic LR (0.7054)

Generalized Adam (0.6886)

CASPR Adaptive (0.5539)

NadamP (0.5269)

Baseline (0.5000)

Lawa EMA (0.4747)

Lawa Queue (0.4680)

Amos (0.2172)

Schedule Free Prodigy (0.0000)

(a) Performance profiles for the external tuning ruleset on the qualification workloads

1.0 1.5 2.0 2.5 3.0 3.5 4.0

τ

0%

33%

67%

100%

Pe
rc

en
ta

ge
of

W
or

kl
oa

ds

Schedule Free AdamW (0.9848)

Baseline (0.9529)

NadamW Sequential (0.3956)

Sinv6 75 (0.2037)

Sinv6 (0.1364)

AdamG (0.0000)

(b) Performance profiles for the self-tuning ruleset on the qualification workloads

Figure 5: Performance profiles of all ALGOPERF submissions on the qualification workloads.
Structurally the same as Figure 1 and Figure 4 but only considering the three workloads that are part
of the qualification set, i.e. CRITEO 1TB, WMT, and OGBG. In the qualification set, no held-out
workloads are used.

20



Table 5: Self-tuning submissions. Details of all submissions to the external tuning ruleset.

Submission Authors Institutions Framework Description

SCHEDULE
FREE
ADAMW

Alice Yang, Aaron
Defazio, Konstantin
Mishchenko

Meta AI,
Samsung
AI

PYTORCH A self-tuning version of SCHEDULE FREE
ADAMW (Defazio et al., 2024) using a
single hyperparameter configuration.

BASELINE JAX Baseline using NADAMW, a linear learning
rate warmup followed by a cosine decay, and
a single hyperparameter point (Dahl et al.,
2023).

NADAMW
SEQUENTIAL

George Dahl,
Sourabh Medapati,
Zack Nado, Rohan
Anil, Shankar
Krishnan, Naman
Agarwal, Priya
Kasimbeg, Vlad
Feinberg

Google JAX Uses NADAMW update rule and runs 3 fixed
hyperparameter points sequentially. The
intention was for these to be the top 3
hyperparameter points found at one third
the self-tuning ruleset step budgets.

SINV6 75 Abhinav Moudgil Mila,
Concordia
University

JAX A submission for a task-invariant learned
optimizer meta-trained on small tasks. Uses
75% of the number of steps as target in
learned optimizer initialization.

SINV6 Abhinav Moudgil Mila,
Concordia
University

JAX A submission for a task-invariant learned
optimizer meta-trained on small tasks.

ADAMG Yijiang Pang Michigan
State
University

PYTORCH A submission based on the ADAMG
optimizer (Pang et al., 2024).

Table 6: Speed-ups vs. the baseline. To compute the speed-up over the baseline, we first compute
the geometric mean of the workload runtimes relative to the runtimes of the baseline. Only fixed
base workloads are considered. If a submission did not reach the target on a workload, its runtime is
imputed with the runtime budget, i.e. assuming that the submission would have reached the target
just after the cut-off. This is the best-case assumption for the submissions. We do not set runtimes
to infinity, e.g. because the corresponding held-out workload was not trained successfully. The
geometric mean is then expressed as a relative speed-up over the baseline, with positive numbers
representing faster training.

(a) External tuning

Submission Speed-up

PYTORCH DISTR. SHAMPOO 27.87%
SCHEDULE FREE ADAMW 26.60%
CASPR ADAPTIVE 24.33%
GENERALIZED ADAM 10.89%
CYCLIC LR 10.67%
LAWA QUEUE 7.98%
NADAMP 3.37%
AMOS 1.46%
BASELINE −0.00%
LAWA EMA −9.17%
SCHEDULE FREE PRODIGY −15.68%

(b) Self-tuning

Submission Speed-up

SCHEDULE FREE ADAMW 7.76%
BASELINE −0.00%
NADAMW SEQUENTIAL −92.44%
SINV6 75 −157.67%
SINV6 −168.63%
ADAMG −294.16%

21



Table 7: Submission benchmark scores and ranking when removing individual workloads.
Shown are the benchmark scores (S.) and leaderboard rankings (R.) of all external tuning (Table 7a)
and self-tuning (Table 7b) submissions, when dropping specific workloads. For example, the last
column reports the rankings of the submissions if we consider all workloads (including held-out
workloads) except the WMT workloads. The “Full” columns show the scores and ranks when
considering all workloads.

(a) External tuning ruleset

Full CRITEO
1TB

FASTMRI RESNET VIT CON-
FORMER

DEEP
SPEECH

OGBG WMT

Score Rank S. R. S. R. S. R. S. R. S. R. S. R. S. R. S. R.

PYTORCH DISTR.
SHAMPOO

0.78 1 0.75 1 0.75 1 0.89 1 0.75 1 0.75 1 0.75 1 0.77 2 0.81 1

SCHEDULE FREE
ADAMW

0.71 2 0.67 2 0.67 2 0.81 2 0.68 2 0.68 3 0.68 2 0.81 1 0.67 2

GENERALIZED
ADAM

0.64 3 0.60 3 0.61 4 0.59 6 0.63 3 0.73 2 0.59 3 0.73 3 0.63 3

CYCLIC LR 0.63 4 0.58 4 0.62 3 0.72 3 0.62 4 0.59 4 0.59 4 0.72 4 0.60 4
NADAMP 0.59 5 0.54 6 0.57 5 0.68 4 0.58 5 0.55 5 0.53 5 0.68 5 0.60 5
BASELINE 0.57 6 0.53 8 0.55 6 0.65 5 0.56 6 0.52 7 0.52 6 0.65 6 0.58 6
AMOS 0.49 7 0.56 5 0.50 7 0.56 7 0.44 7 0.42 9 0.42 8 0.56 7 0.47 8
CASPR
ADAPTIVE

0.47 8 0.54 7 0.40 8 0.54 8 0.41 8 0.54 6 0.41 9 0.40 8 0.54 7

LAWA QUEUE 0.37 9 0.42 9 0.32 9 0.42 9 0.31 9 0.42 8 0.42 7 0.33 10 0.31 10
LAWA EMA 0.34 10 0.25 10 0.31 10 0.39 10 0.28 10 0.39 10 0.39 10 0.39 9 0.32 9
SCHEDULE FREE
PRODIGY

0.00 11 0.00 11 0.00 11 0.00 11 0.00 11 0.00 11 0.00 11 0.00 11 0.00 11

(b) Self-tuning ruleset

Full CRITEO
1TB

FASTMRI RESNET VIT CON-
FORMER

DEEP
SPEECH

OGBG WMT

Score Rank S. R. S. R. S. R. S. R. S. R. S. R. S. R. S. R.

SCHEDULE FREE
ADAMW

0.85 1 0.83 1 0.83 1 0.98 1 0.83 1 0.83 1 0.85 1 0.83 1 0.84 1

BASELINE 0.82 2 0.79 2 0.82 2 0.94 2 0.81 2 0.79 2 0.79 2 0.81 2 0.79 2
NADAMW
SEQUENTIAL

0.33 3 0.38 3 0.27 3 0.38 3 0.30 3 0.38 3 0.29 3 0.27 3 0.38 3

SINV6 75 0.14 4 0.16 4 0.12 4 0.16 4 0.16 4 0.16 4 0.13 4 0.16 4 0.08 4
SINV6 0.09 5 0.10 5 0.07 5 0.10 5 0.10 5 0.10 5 0.09 5 0.10 5 0.04 5
ADAMG 0.00 6 0.00 6 0.00 6 0.00 6 0.00 6 0.00 6 0.00 6 0.00 6 0.00 6

22



A.6 ALGOPERF WORKLOAD WALL-CLOCK TIME COMPARISON BETWEEN JAX & PYTORCH

To measure the wall-clock time performance of JAX & PYTORCH workload implementations, we
estimate the submission times for an ADAMW baseline training algorithm to train to target for each
of the workloads on the 8ˆNVIDIA V100 GPUs competition system. The workloads support the
same training batch sizes for this ADAMW baseline across frameworks.

The submission time accumulates the wall-clock times of the update_params and the data_-
selection calls and excludes any time spent on logging and checkpointing (which is disabled
during scoring runs anyway). During the first few steps of training, there may be some additional
overhead in these calls resulting from cache warm-ups and compilation costs of the model and update
code. An accurate estimate would be based on enough steps that any especially slow initial steps
play only a small role in the average step time. We found that running for 20% of the step hint
allowed us to estimate the equilibrium step time well. We then calculated the full submission time by
extrapolating the submission time over the 20% step hint to the full step hint.

We initially performed this measurement when the workloads were complete in the sense that they
were functionally equivalent. After upgrading the JAX & PYTORCH packages, changing the CUDA
driver versions for the hardware configuration, and implementing various improvements and best
practices, we then repeated the measurement to capture the final state of the workloads performance
across frameworks. The projected submission times of the JAX & PYTORCH workload are presented
in Table 8.

Table 8: Projected submission times for ADAMW baseline on JAX & PYTORCH workloads be-
fore and after workload performance adjustments. All submission times are in minutes. A positive
difference indicates that our JAX implementation is faster than our PYTORCH implementation.

Workload JAX PYTORCH Difference

Before After Before After Before After

CRITEO 1TB 127 136 213 122 68% −10%
FASTMRI 148 145 163 163 10% 12%
RESNET 1047 1063 1174 1135 12% 7%
VIT 1290 1378 1260 1253 −2% −9%
CONFORMER 1689 1445 1755 1407 4% −3%
DEEPSPEECH 1047 875 1229 967 17% 10%
OGBG 306 399 398 445 30% 12%
WMT 804 782 972 792 21% 1%

23


	Introduction
	Summary of benchmarking methodology
	Results
	Per-workload runtimes
	Comparison across hyperparameter tuning rulesets
	Rule change counterfactuals

	Engineering challenges
	Functional equivalence of JAX & PyTorch implementations
	Performance of JAX & PyTorch implementations

	Lessons learned
	Methodological lessons

	Conclusion
	Appendix
	AlgoPerf details
	Modifications to the AlgoPerf benchmark for this competition
	Computational costs
	Submission details
	Additional competition results
	AlgoPerf workload wall-clock time comparison between JAX & PyTorch


