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Abstract

In this work, we make two contributions towards understanding of in-context learning of
linear models by transformers. First, we investigate the adversarial robustness of in-context
learning in transformers to hijacking attacks — a type of adversarial attacks in which the
adversary’s goal is to manipulate the prompt to force the transformer to generate a specific
output. We show that both linear transformers and transformers with GPT-2 architectures
are vulnerable to such hijacking attacks. However, adversarial robustness to such attacks
can be significantly improved through adversarial training — done either at the pretraining
or finetuning stage — and can generalize to stronger attack models. Our second main con-
tribution is a comparative analysis of adversarial vulnerabilities across transformer models
and other algorithms for learning linear models. This reveals two novel findings. First,
adversarial attacks transfer poorly between larger transformer models trained from different
seeds despite achieving similar in-distribution performance. This suggests that transform-
ers of the same architecture trained according to the same recipe may implement different
in-context learning algorithms for the same task. Second, we observe that attacks do not
transfer well between classical learning algorithms for linear models (single-step gradient
descent and ordinary least squares) and transformers. This indicates that there are likely
qualitative differences between the in-context learning algorithms that transformers imple-
ment and these traditional algorithms.

1 Introduction

Transformers exhibit sophisticated in-context learning capabilities across a variety of settings such as lan-
guage (Brown et al., 2020), vision (Kirsch et al., 2022; Bar et al., 2022; Zhang et al., 2023), tabular data (Holl-
mann et al., 2022; Requeima et al., 2024; Ashman et al., 2024), reinforcement learning and robotics (Chen
et al., 2021; Raparthy et al., 2023; Team et al., 2023; Elawady et al., 2024). The mechanisms underlying
this behavior, however, remain poorly understood. While recent works have made progress by studying
transformer behavior on supervised learning tasks, fundamental questions about how these models learn and
implement algorithms in-context remain open (Anwar et al., 2024, Section 2.1).

In this work, we investigate the mechanisms of in-context learning through the lens of adversarial robustness
to hijacking attacks — a threat model where an adversary manipulates examples in the in-context set to force
the model to output specific target values (Qiang et al., 2023; Bailey et al., 2023). Beyond its direct practical
relevance for deployed language models and emerging applications of in-context learning across various
domains for sensitive applications like clinical decision-making (Nori et al., 2023) or robot control (Elawady
et al., 2024), studying hijacking attacks provides a powerful tool for probing and understanding the algorithms
that transformers learn to implement in-context.

Our investigation focuses on the setting of linear regression tasks, where we analyze two architecture classes:
single-layer linear attention models and GPT-2 style transformers. Through a combination of theoretical
analysis and extensive experiments, we show that both the linear transformer, and GPT-2 style transformers,
do not learn adversarially robust in-context learning algorithms by default. Specifically:
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1. We prove that single-layer linear transformers, which prior work showed implement gradient descent on
in-context data (von Oswald et al., 2022), can be hijacked through perturbation of just a single token
(Theorem 4.1). We then empirically demonstrate that GPT-2 style transformers are also vulnerable to
hijacking attacks, which we find through gradient-based methods.

2. Encouragingly, we show that adversarial training can effectively improve robustness of GPT-2 style trans-
formers, with impressive generalization: training on perturbations of K examples yields robustness against
manipulation of K ′ > K tokens. This is particularly surprising given the historical difficulty of achieving
robustness against adaptive adversaries in regression tasks (Diakonikolas & Kane, 2019).

We then provide a comparative analysis of adversarial vulnerabilities of different transformers and traditional
solvers. Specifically, we analyze to what extent adversarial examples designed for a particular model or solver
transfer to other models or solvers. This comparative analysis yields multiple interesting insights:

1. We find that hijacking attacks transfer readily between smaller transformers but show poor transferability
between larger transformers of identical architecture but trained from different random seeds, providing the
first evidence that architecturally identical transformers trained with the same recipe may learn distinct
in-context learning algorithms.

2. We find that successful attacks against linear transformers (which perform gradient descent) fail to transfer
to GPT2 architectures. Similarly, we find that adversarial attacks transfer poorly between transformers
and ordinary least squares (OLS). This shows that the out-of-distribution behavior of transformers is
mechanistically distinct from both gradient descent and OLS – calling into question prior explanations
about what algorithms these models implement to learn in-context (Garg et al., 2022; Akyürek et al.,
2022).

2 Related Works

In-Context Learning of Supervised Learning Tasks: Our work is most closely related to prior works
that have attempted to understand in-context learning of linear functions in transformers (Garg et al., 2022;
Akyürek et al., 2022; von Oswald et al., 2022; Zhang et al., 2024; Fu et al., 2023; Ahn et al., 2023; Vla-
dymyrov et al., 2024). von Oswald et al. (2022) provided a construction of weights of linear self-attention
layers (Schmidhuber, 1992; Katharopoulos et al., 2020; Schlag et al., 2021) that allow the transformer to
implement gradient descent over the in-context examples. They show that when optimized, the weights of
the linear self-attention layer closely match their construction, indicating that linear transformers implicitly
perform mesa-optimization. This finding is corroborated by the works of Zhang et al. (2024) and Ahn et al.
(2023). A number of works have argued that when GPT2 transformers are trained on linear regression,
they learn to implement ordinary least squares (OLS) (Garg et al., 2022; Akyürek et al., 2022; Fu et al.,
2023). More recently, Vladymyrov et al. (2024) show that linear transformers also implement other iter-
ative algorithms on noisy linear regression tasks with possibly different levels of noise. Bai et al. (2024)
show that transformers can perform in-context algorithm selection: choosing different learning algorithms
to solve different in-context learning tasks. Other neural architectures such as recurrent neural networks
have also been shown to implement in-context learning algorithms (Hochreiter et al., 2001) such as bandit
algorithms (Wang et al., 2016) or gradient descent (Kirsch & Schmidhuber, 2021).

Hijacking Attacks: While a considerable amount of research has been conducted on the security aspects
of LLMs, most of the prior research has focused on jailbreaking attacks. To the best of our knowledge,
Qiang et al. (2023) is the only prior that considers hijacking attack on LLMs or transformers during in-
context learning. They show that it is possible to hijack LLMs to generate unwanted target outputs during
in-context learning by including adversarial tokens in the demos. He et al. (2024) also consider adversarial
perturbations to in-context data, however, their goal is to simply reduce the in-context learning performance
of the model in general, and not in a targeted way. Bailey et al. (2023) demonstrate that vision-language
models can be hijacked through adversarial perturbations to the vision modality alone. Similar to our work,
both Qiang et al. (2023) and Bailey et al. (2023) assume a white-box setup and use gradient-based methods
for finding adversarial perturbations to hijack the models.
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Robust Supervised Learning Algorithms: There are a number of frameworks for robustness in machine
learning. The framework we focus on in this work is data contamination/poisoning, where an adversary can
manipulate the data in order to force predictions. Surprisingly, designing efficient robust learning algorithms,
even for the relatively simple setting of linear regression, has proved quite challenging, with significant
progress only being made in the last decade (Diakonikolas & Kane, 2023). Different algorithms have been
devised which work under a contamination model where only labels y can be corrupted (Bhatia et al., 2015;
2017; Suggala et al., 2019) or when both features x and labels y can be corrupted (Klivans et al., 2018;
Diakonikolas et al., 2019; Cherapanamjeri et al., 2020). Note that all the aforementioned work focus on
hand-designing robust learning algorithms for each problem setting. In contrast, we are concerned with
understanding the propensity of the transformers to learn to implement robust learning algorithms.

There are a number of other related frameworks for robustness in machine learning, e.g., robustness with
respect to imperceptible (adversarial) perturbations of the input (Goodfellow et al., 2015; Madry et al.,
2018). We do not focus on these attack models in this work.

3 Preliminaries

In this work, we investigate whether the learning algorithms that transformers learn to implement in-context
are adversarially robust. We focus on the setting of in-context learning of linear models, a setting studied
significantly in recent years (Garg et al., 2022; Akyürek et al., 2022; von Oswald et al., 2022; Zhang et al.,
2024; Ahn et al., 2023). We assume pre-training data that are sampled as follows. Each linear regression task
is indexed by τ ∈ [B], with each task consisting of N labeled examples (xτ,i, yτ,i)N

i=1, query example xτ,query,
parameters wτ

i.i.d.∼ N(0, Id), features xτ,i, xτ,query
i.i.d.∼ N(0, Id) (independent of wτ ), and labels yτ,i = w⊤

τ xτ,i,
yτ,query = w⊤

τ xτ,query.

The goal is to train a transformer on this data (by a method to be described shortly) and examine if, after
pre-training, when we sample a new linear regression task (by sampling a new, independent w ∼ N(0, Id)
and features xi, i = 1, . . . , M), the transformer can formulate accurate predictions for new, independent
query examples. Note that the number of examples M in a task at test time may differ from the number of
examples N per task observed during training.

To feed data into the transformer, we need to decide on a tokenization mechanism, which requires some
care since transformers map sequences of vectors of a fixed dimension into a sequence of vectors of the same
length and dimension, while the features xi are d-dimensional and outputs yi are scalars. That is, from a
prompt of N input-output pairs (xi, yi) and a test example xquery for which we want to make predictions,
the question is how to embed

P = (x1, y1, . . . , xN , yN , xquery),

into a matrix. We will consider two variants of tokenization: concatenation (denoted Concat), which con-
catenates xi and yi and stacks each sample into a column of an embedding matrix, and then appends
(xquery, 0)⊤ ∈ Rd+1 as the last column:

E(P ) =
(

x1 x2 · · · xN xquery
y1 y2 · · · yN 0

)
∈ R(d+1)×(N+1). (Concat) (1)

The notation E(P ) emphasizes that the embedding matrix is a function of the prompt P , and we shall
sometimes denote this as E for ease of notation. This tokenization has been used in a number of prior works
on in-context learning of function classes (von Oswald et al., 2022; Zhang et al., 2024; Wu et al., 2023).
With the Concat tokenization the natural predicted value for xM+1 appears in the (d + 1, M + 1) entry of
the transformer output. This allows for a last-token prediction formulation of the squared-loss objective
function: if f(E; θ) is a transformer, the objective function for B batches of data consisting of N +1 samples
(xτ,i, yτ,i)N

i=1, (xτ,query, yτ,query), each batch embedded into Eτ , is

L̂(θ) = 1
2B

∑B
τ=1

(
[f(Eτ ; θ)]d+1,N+1 − yτ,query

)2
. (2)
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We will also consider an alternative tokenization method, Interleave, where features x and y are interleaved
into separate tokens,

E(P ) =
(

x1 0 x2 · · · xN 0 xquery
0 y1 0 · · · 0 yN 0

)
∈ R(d+1)×(2N+1). (Interleave) (3)

By using causal masking, i.e. forcing the prediction for the i-th column of Eτ to depend only on columns
≤ i, this tokenization allows for the formulation of a next-token prediction averaged across all N pairs of
examples,

L̂(θ) = 1
2B

∑B
τ=1

1
N

∑N
i=1
(
[fMask(Eτ ; θ)]d+1,2i+1 − yτ,i+1

)2
, (4)

where we treat yτ,N+1 := yτ,query. This formulation was used in the original work by Garg et al. (2022)

We consider in-context learning in two types of transformer models: single-layer linear transformers, where
we can theoretically analyze the behavior of the transformer, and standard GPT-2 style transformers, where
we use experiments to probe their behavior. In all experiments, we focus on the setting where d = 20 and
the number of examples per pre-training task is N = 40.

3.1 Single-Layer Linear Transformer Setup

Linear transformers are a simplified transformer model in which the standard self-attention layers are replaced
by linear self-attention layers (Katharopoulos et al., 2020; von Oswald et al., 2022; Ahn et al., 2023; Zhang
et al., 2024; Vladymyrov et al., 2024). In this work, we specifically consider a single-layer linear self-attention
(LSA) model,

fLSA(E; θ) = fLSA(E; W P V , W KQ) := E + W P V E · E⊤W KQE

N
. (5)

This is a modified version of attention where we remove the softmax nonlinearity, merge the projection and
value matrices into a single matrix W P V ∈ Rd+1×d+1, and merge the query and key matrices into a single
matrix W KQ ∈ Rd+1×d+1. For the linear transformer, we will assume the Concat tokenization.

Prior work by Zhang et al. (2024) developed an explicit formula for the predictions fLSA when it is pre-
trained on noiseless linear regression tasks (under the Concat tokenization) by gradient flow with a particular
initialization scheme. This corresponds to gradient descent with an infinitesimal learning rate d

dt θ = −∇L(θ)
in the infinite task limit B → ∞ of the objective (11),

L(θ) = lim
B→∞

L̂(θ) = 1
2Ewτ ∼N(0,I), xτ,i,xτ,query

i.i.d.∼ N(0,I)

[
([f(Eτ ; θ)]d+1,N+1 − x⊤

τ,queryw)2] . (6)

3.2 Standard Transformer Setup

For studying the adversarial robustness of the in-context learning in standard transformers, we use the same
setup as described in Garg et al. (2022). Namely, we use a standard GPT2 architecture with the Interleave
tokenization. We provide details on the architecture and the training setup in Appendix C.

3.3 Hijacking Attacks

We focus on a particular adversarial attack where the adversary’s goal is to hijack the transformer. Specif-
ically, the aim of the adversary is to force the transformer to predict a specific output ybad for xquery when
given a prompt P = (x1, y1, . . . , xM , yM , xquery). The adversary can choose one or more pairs (xi, yi) to
replace with an adversarial example (x(i)

adv, y
(i)
adv).

We characterize hijacking attacks in this work along two axes: (i) the type of data being attacked (ii) number
of data-points or tokens being attacked. The adversary may perturb either the x feature (xi, yi) 7→ (xadv, yi),
which we call feature-attack, or a label y, (xi, yi) 7→ (xi, yadv), which we refer to as label-attack, or
simultaneously perturb the pair (xi, yi) 7→ (xadv, yadv), which we refer to as joint-attack. We will primarily
focus on feature-attack and label-attack as the behavior of joint-attack is qualitatively quite similar
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to feature-attack (see Figures 1 and 2). Furthermore, we allow for the adversary to perturb multiple
tokens in the prompt P . A k-token attack means that the adversary can perturb at most k pairs (xi, yi) in
the prompt.1

We note that hijacking attacks are different from jailbreaks. In jailbreaking, the adversary’s goal is to bypass
safety filters instilled within the LLM (Willison, 2023; Kim et al., 2024). A jailbreak may be considered
successful if it can elicit any unsafe response from the LLM. While on the other hand, the goal of a hijacking
attack is to force the model to generate specific outputs desired by the adversary (Bailey et al., 2023), which
could potentially be unsafe outputs, in which case the hijacking attack would be considered a jailbreak as
well. A good analogy for jailbreaks and hijack attacks is untargeted and targeted adversarial attacks as
studied in the context of image classification (Liu et al., 2016).

4 Robustness of Transformers to Hijacking Attacks

In this section, we first provide a theoretical result characterizing the lack of robustness of linear transformers
to single-token hijacking attacks. We then empirically investigate the robustness of GPT-2 style transformers
trained to solve linear regression in-context, and the efficacy of adversarial training towards improving the
robustness of these transformers.

4.1 Single-Layer Linear Transformers

We first consider robustness of a linear transformer trained to solve linear regression in-context. As reviewed
previously in the Section 3.1, this setup has been considered in several prior works (von Oswald et al., 2022;
Zhang et al., 2024; Ahn et al., 2023), who all show that linear transformers learn to solve linear regression
problems in-context by implementing a (preconditioned) step of a gradient descent. We build on this prior
work to show that the solution learned by linear transformers is highly non-robust and that an adversary
can hijack a linear transformer with very minimal perturbations to the in-context training set. Specifically,
we show that throughout the training trajectory, an adversary can force the linear transformer to make
any prediction it would like by simply adding a single (xadv, yadv) pair to the input sequence. We provide a
constructive proof of this theorem in Appendix A.
Theorem 4.1. Let t ≥ 0 and let fLSA(· ; θ(t)) be the linear transformer trained by gradient flow on the
population loss using the initialization of Zhang et al. (2024), and denote θ(∞) as the infinite-time limit of
gradient flow. For any time t ∈ R+ ∪ {∞} and prompt P = (x1, y1, . . . , xM , yM , xquery) with xquery ∼ N(0, I),
for any ybad ∈ R, the following holds.

1. If xadv ∼ N(0, Id), there exists yadv = yadv(t, P, xquery, ybad, xadv) ∈ R s.t. with probability 1 over the
draws of xadv, xquery, by replacing any single example (xi, yi), i ≤ M , with (xadv, yadv), the output on
the perturbed prompt Padv satisfies ŷquery(E(Padv); θ(t)) = ybad.

2. If yadv ̸= 0, there exists xadv = xadv(t, P, xquery, ybad, yadv) ∈ Rd s.t. with probability 1 over the draw of
xquery, by replacing any single example (xi, yi), i ≤ M , with (xadv, yadv), the output on the perturbed
prompt Padv) satisfies ŷquery(E(Padv); θ(t)) = ybad.

Theorem 4.1 demonstrates that throughout the training trajectory, by adding a single (xadv, yadv) token
an adversary can force the transformer to make any prediction the adversary would like. Moreover, the
(xadv, yadv) pair can be chosen so that either xadv is in-distribution (i.e., has the same distribution as the
training data and other in-context examples) or yadv is in-distribution. We provide explicit formulas for each
of these attacks in the Appendix (see (17) and (18)).

At a high level, the non-robustness of the linear transformer is a consequence of the linear transformer im-
plementing a learning algorithm – one step gradient step – that generalizes well but is inherently non-robust.
At a more mechanistic level, this non-robustness can be attributed to the learned in-context algorithm’s

1Note that for standard transformers with the Interleave tokenization, a k-token attack corresponds to 2k tokens being
manipulated (see (3)).
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inability to identify and remove outliers from the prompt. This property is shared by many learning algo-
rithms for regression problems: for instance, ordinary least squares, as an algorithm which is linear in the
labels y, can also be shown to suffer similar problems as the linear transformer outlined in Theorem 4.1.
While non-robustness of the transformers to hijacking attacks has been established in prior works (Qiang
et al., 2023; Bailey et al., 2023), this is the first result that provides a mechanistic explanation as to why
transformers are vulnerable to hijacking attacks.

In Section 5.2, we empirically verify that our attack can successfully force linear transformer to output the
adversary’s desired output ybad, and evaluate its transferability to GPT-2 style transformers as well.

4.2 GPT-2 Style Standard Transformers

In this section, we empirically investigate the robustness of GPT2-style standard transformers to gradient-
based hijacking attacks, and whether adversarial training (during pre-training or by fine-tuning) can improve
the robustness of the transformers.

Metrics: To evaluate the impact of our adversarial attacks, we use two metrics: ground truth error (GTE),
and targeted attack error (TAE). Ground-truth error measures mean-squared error (MSE) between the trans-
former’s prediction on the corrupted prompt Padv and the ground-truth prediction, i.e., yclean = w⊤xquery.
Targeted attack error similarly measures mean-squared error (MSE) between the transformer’s prediction
on the corrupted prompt and ybad. Let ŷ be the transformer’s prediction corresponding to xquery, then:

Ground Truth Error = 1
B

B∑
i=1

(ŷi − yclean)2
, Targeted Attack Error = 1

B

B∑
i=1

(ŷi − ybad)2
. (7)

Attack Methodology: We choose ybad according to the following formula,
ybad = (1 − α)w⊤

τ xquery + αw⊤
⊥xquery (8)

Here wτ is the underlying weight vector corresponding to the clean prompt P and w⊥ ⊥ w, and α ∈
[0, 1] is a parameter. We construct w⊥ by first sampling a w′ i.i.d.∼ N(0, Id) and applying Gram-Schmidt
orthogonalization process to w′ to make it orthogonal to wτ . The resultant vector is then normalized to
have L2 norm of d. When α → 0, the target label ybad is more similar to the in-distribution ground truth,
while α → 1 represents a label which is more out-of-distribution.

To carry out a gradient-based attack, we randomly select a ktest number of input examples—where ktest is
specified beforehand—and initialize their values to zero. We then optimize these ktest tokens by minimizing
the targeted attack error, for target ybad from (8) for different values of α ∈ (0, 1]. Both during training and
testing, we set the sequence length of the transformer to be 40. See Appendix C.3 for further details on
attack procedure.

Based on whether we are perturbing ‘features’ or ‘labels’ within the input prompt, we denote our attacks as ei-
ther feature-attack or label-attack. When we simultaneously attack both the features and label, we call
that joint-attack. Specifically, given a prompt P = (x1, y1, . . . , xM , yM , xquery): for feature-attack, we
replace (x1, y1) with (xadv, y1), for label-attack, we replace (x1, y1) with (x1, yadv), and for joint-attack,
we replace (x1, y1) with (xadv, yadv).

Results: We find that gradient based adversarial attacks are generally successful. Our main results appear
in Figure 1 under the label ktrain = 0, which show the targeted attack error for an 8 layer transformer
averaged over 1000 prompts and 3 random initialization seeds when α = 1 from (8). We note that for
feature-attack, an adversary can achieve a very small targeted attack error with perturbing just a single
token. However, for label-attack, achieving low targeted attack generally requires perturbing multiple
y-tokens. Note that this is in contrast with linear transformers, for which we have previously shown that
hijacking is possible with perturbing just a single y-token. Finally, joint-attack behave in a qualitatively
similar way to feature-attack but are slightly more effective (this is most notable for ktest = 1). Additional
experiments investigating different choices of α appear in Appendix B.3.
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4.3 Adversarial Training

A common tactic to promote adversarial robustness of neural networks is to subject them to adversarial
training — i.e., train them on adversarially perturbed samples (Madry et al., 2018). In our setup, we create
adversarially perturbed samples by carrying out the gradient-based attack outlined in Section 4.2 on the
model undergoing training. Namely, for the model f t

θ at time t, for each standard prompt P , we take a
target adversarial label ybad and use the gradient-based attacks from Section 4.2 to construct an adversarial
prompt Padv.

We consider two types of setups for adversarial training. In the first setup, we train the transformer model
from scratch on adversarially perturbed prompts. We call this adversarial pretraining. In the second setup,
we first train the transformer model on standard (non-adversarial) prompts P for T1 number of steps; and
then further train the transformer model for T2 number of steps on adversarial prompts. We call this setup
adversarial fine-tuning. In our experiments, unless otherwise specified, we perform adversarial pretraining
for 5 · 105 steps. For adversarial fine-tuning, we perform 5 · 105 steps of standard training and then 105 steps
of adversarial training, i.e., T1 = 5 · 105 and T2 = 105.

The adversarial target value ybad is constructed by sampling a weight vector w ∼ N(0, I) independent of the
parameters wτ which determine the labels for the task τ and setting ybad = w⊤xquery (i.e., α = 1). To keep
training efficient, for each task we perform 5 gradient steps to construct the adversarial prompt. We denote
the number of tokens attacked during training with ktrain, and experiment with two values of ktrain = 1 and
ktrain = 3. Unless stated otherwise, we use an 8 layer transformer.

Adversarial training improves robustness—even with only fine-tuning. In Figures 1 and 2, we
show the robustness of transformers under k-token hijacking attacks when they are adversarially trained on
either feature-attack or label-attack. We see that adversarial training against attacks of a fixed type
(e.g. feature-attack or label-attack) improves robustness to hijacking attacks of the same type, with
robustness under feature-attack seeing a particular improvement. Notably, there is little difference between

(a) feature-attack. (b) label-attack. (c) joint-attack.

Figure 1: For both adversarial pretraining (A-PT) and fine-tuning (A-FT) against label-attack, robustness
against label-attack improves significantly, especially when trained on a budget of ktrain = 3 perturbed
tokens. The results are shown for 8 layer transformers with GPT-2 architecture.

(a) feature-attack. (b) label-attack. (c) joint-attack.

Figure 2: For both adversarial pretraining (A-PT) and fine-tuning (A-FT) against feature-attack, robust-
ness against feature-attack and joint-attack improves for 7+ token attacks when trained on ktrain = 1.
The results are shown for 8 layer transformers with GPT-2 architecture.
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adversarial fine-tuning and pretraining, showing little benefit from the increased compute requirement of
adversarial pretraining.

Adversarial training against one attack model moderately improves robustness against another.
Following adversarial training against label-attack, we see modest improvement in the robustness against
feature-attack and joint-attack, while adversarial training against feature-attack results in significant
improvement against joint-attack (as expected, given that 20 of the 21 dimensions joint-attack uses
is shared by feature-attack) and modest improvement against label-attack. We show in Fig. 12 the
results for adversarial training against joint-attack.

Adversarial training against k-token attacks can lead to robustness against k′ > k token attacks.
In both Fig. 1 and 2 (as well as Fig. 12) we see that training against k = 3 token attacks can lead to significant
robustness against k = 7 token attacks, especially in the case of models trained against feature-attack
and joint-attack.

Figure 3: While there is a moderate trade-
off between robustness and (clean) accuracy
when training against label-attack, the
tradeoff is very small for feature-attack
and joint-attack training.

Minimal accuracy vs. robustness tradeoff. In many su-
pervised learning problems, there is an inherent tradeoff be-
tween the robustness of a model and its (non-robust) accu-
racy (Zhang et al., 2019). In Fig. 3 we compare the performance
of models which undergo adversarial training vs. those which
do not, and we find that while there is a moderate tradeoff when
undergoing label-attack training, there is little tradeoff when
undergoing feature-attack and joint-attack training.

On the whole, given the challenging nature of robust regression
problem (Diakonikolas & Kane, 2019), the success of adversar-
ial training is both surprising and remarkable, and hints at the
ability of transformers to solve highly challenging non-convex
optimization problems in context.

4.4 Effect of Scaling Depth and Context Length

Figure 4: Larger context lengths can improve robustness for a
fixed number of tokens attacked, but not for a fixed propor-
tion. The number of layers is kept fixed at 8 while varying
the context length. The results are averaged across three inde-
pendently trained transformers (with identical hyperparameters).
The shaded area indicates standard error.

Some recent works indicate that larger
neural networks are naturally more ro-
bust to adversarial attacks (Bartoldson
et al., 2024; Howe et al., 2024). How-
ever, we did not observe any consistent
improvement in adversarial robustness of
in-context learning in transformers in our
setup with scaling of the number of lay-
ers, as can be seen in Figure 8 in the ap-
pendix.

We also studied the effect of sequence
length, which scales the size of the in-
context training set. We show in Fig-
ure 4 that for a fixed number of tokens
attacked, longer context lengths can improve the robustness to hijacking attacks. However, for a fixed
proportion of the context length attacked, the robustness to hijacking attacks is approximately the same
across context lengths. Note that in this setup the transformers are evaluated at the same sequence length
with which they were trained with (i.e., M = N). We explore this in more detail in the appendix (see
Appendix B.2).
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(a) 3 layers. (b) 6 layers.

(c) 12 layers. (d) 16 layers. (e) Source: L layers, Target: L′ layers.

Figure 5: Targeted attack error when transferring an attack from a source model to a target models. Attacks
transfer better between smaller-scale models, but not to larger-scale models (right)—even across random
seeds (left). Adversarial samples were generated using feature-attack with k = 3.

5 Transferability of Hijacking Attacks

Intuitively, if two predictive models are similar, they should be vulnerable to similar targeted adversarial
attacks. Thus, evaluating whether hijacking attacks transfer between two predictive models learned from
distinct learning algorithms can help us evaluate to what extent the two models (and their underlying learning
algorithms) could be considered similar. Note that we are specifically interested in targeted transfer; i.e.,
we want adversarial samples generated by attacking a source model to predict ybad to also cause a victim
model to predict ybad. Transfer of targeted attacks is generally less common than the transfer of untargeted
attacks (Liu et al., 2016).

In this section, we first analyze the transferability of adversarial attacks between different transformers,
and surprisingly find that adversarial attacks can fail to transfer between even transformers of the same
architecture and trained with the same recipe—their sole difference being the random seeds used for training.
Next, we investigate the transfer from linear transformers to GPT-2 style transformers, and find that these
attacks do not transfer. Lastly, we investigate the transfer between ordinary least squares (OLS) and GPT-2
style transformers, and find that the hijacking attacks transfer poorly between them.

5.1 Transfer Between Different Transformers

Lastly, we look at the transferability of the adversarial attacks between different GPT-2 style transformers
trained to solve linear regression in-context.

For brevity, we restrict our focus to feature-attack here; transferability of label-attack follows a simi-
lar pattern and is discussed in Appendix B.4. We first consider within-class transfer, i.e., transfer from one
transformer to another transformer with identical architecture but trained from a different random initializa-
tion. We present these results in Fig. 5(a-d), averaged over 1000 prompts. We generate adversarial samples
according to the methodology described in Sec. 4.2. While sampling ybad, we use α = 1. Diagonal entries
correspond to self-transfer, i.e., TAE of the generated adversarial samples for the source model. These results
show that for transformers with smaller capacities (3 and 6 layers) attacks transfer quite well, but transfers
become progressively worse as the models become larger. This suggests that higher-capacity transformers
could implement different in-context learning algorithms when trained from different seeds.

We next consider across-class transfer, i.e., transfer between transformers with different number of layers.
We present these results in Fig. 5(e), for one randomly chosen source and target model with given number of
layers. The results are also averaged over 1000 prompts. These results show a similar trend as within-class
transfer: attacks from small-to-medium capacity models transfer better to other small-to-medium capacity
models, while larger capacity models transfer poorly to all other capacity models.
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(a) feature-attack (b) feature-attack (c) label-attack (d) label-attack

Figure 6: Robustness of different SGD-trained transformers when using attacks constructed from the infinite-
time gradient flow solution via Theorem 4.1, for different target values ybad = (1 − α)w⊤xquery + αw⊤

⊥xquery,
where w⊥ ⊥ w. While these attacks reduce ground truth error across all model classes, the targeted attack
error is only small for the linear transformer. Shaded area is standard error.

(a) OLS → Transformers. (b) Transformers → OLS.

Figure 7: As the targeted prediction ybad becomes more out-of-distribution (α → 1; cf. (8)), we see (b)
attacks derived from transformers result in significantly different predictions than that of OLS, while (a)
attacks derived from OLS result in similar predictions for some classes of transformers but not all.

5.2 Transfer Between Linear Transformers and Standard Transformers

We implement separate feature-attack and label-attack based on formulas given in equa-
tions (17) and (18). Recall that these formulas presume that the network being attacked is a linear trans-
former which implements one step of gradient descent when trained to solve linear regression in context. As
done previously, ybad is chosen according to (8).

In Figure 6 we show the robustness of SGD-trained single-layer linear transformers and standard transformers
of different depths as a function of α (cf. (8)). These results are averaged over 1000 different samples and 3
random initialization seeds for every model type (see Appendix C for further details on training). We find
that the gradient flow-derived attacks transfer to the SGD-trained single-layer linear transformers, as the
targeted attack error is near zero for all values of α. Moreover, while standard (GPT2) transformers trained
to solve linear regression in-context incur significant ground-truth error when the prompts are perturbed
using the attacks from Theorem 4.1, these attacks are not successful as targeted attacks, since the targeted
error is large. This behavior persists across GPT2 architectures of different depths. As linear transformers
implement one step of gradient descent, poor transferability of these attacks suggests that when trained
on linear regression tasks, GPT2 architectures do not implement one step of gradient descent, as has been
suggested in some prior works (von Oswald et al., 2022).

10
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5.3 Transfer Between Transformers and Least Squares Solver

It has been argued that transformers trained to solve linear regression in-context implement ordinary least
squares (OLS) (Garg et al., 2022; Akyürek et al., 2022). If so, adversarial (hijacking) attacks ought to transfer
between transformers and OLS. In Figure 7, we show mean squared error (MSE) between predictions of OLS
and transformers on adversarial samples created by performing feature-attack on OLS and transformers
respectively. It can be clearly observed that as the targeted prediction ybad becomes more out-of-distribution
(α → 1), MSE between predictions made by OLS and transformers also increases. Furthermore, MSE
is considerably larger when adversarial samples are created by attacking transformers. This collectively
indicates that the alignment between OLS and transformers is weaker out-of-distribution and that the
transformers likely have additional adversarial vulnerabilities relative to OLS. We provide additional results
and expanded discussion in Appendix B.5.

6 Discussion

This study makes several contributions to understanding how transformers perform in-context learning,
particularly concerning adversarial robustness and the nature of the learned algorithms.

We conclusively establish that neither linear transformers nor standard GPT-2 style transformers inher-
ently learn adversarially robust in-context learning algorithms. Specifically, within linear transformers, this
vulnerability arises because they implement a standard, non-robust learning algorithm. This finding pro-
vides mechanistic insight into the adversarial non-robustness of transformers previously observed in other
works (Qiang et al., 2023; Bailey et al., 2023). On a positive note, we empirically demonstrate that adver-
sarial training can improve robustness to hijacking attacks, and this improved robustness shows a degree of
generalization. This is an encouraging result, especially as robust regression against adaptive adversaries is
known to be challenging (Diakonikolas & Kane, 2019).

Furthermore, our analysis of the transferability of adversarial attacks reveals two novel phenomena. Firstly,
hijacking attacks may fail to transfer effectively across larger transformer models trained with identical
procedures but different random seeds, suggesting a non-universality of in-context learning mechanisms even
within a fixed architecture and data distribution. Secondly, adversarial samples sourced from traditional
linear regression algorithms (like ordinary least squares and gradient descent) are largely ineffective against
GPT-2 style transformers, and vice versa. This provides strong indirect evidence that the in-context learning
algorithms acquired by GPT-2 likely differ qualitatively from these traditional learning algorithms.

6.1 Limitations

While the improvement in robustness through adversarial training is promising, the relative simplicity of
the linear regression task used in our study means these results should be interpreted with caution. Further
investigations on more complex tasks are required to fully assess the capability of transformer architectures
to learn adversarially robust learning algorithms. Understanding and ‘reverse-engineering’ the specific al-
gorithms transformers implement in these robust settings could also provide novel insights for algorithm
design.

An important limitation of our transferability analysis is its non-mechanistic nature. While the differing
behavior on adversarial (out-of-distribution) sample strongly hints at qualitative differences between learned
algorithms, it leaves open questions about the precise mechanistic nature of these differences. Specifically,
it remains unclear whether these differences arise from different parameterizations of same underlying al-
gorithm, or transformers learning variety of different types of learning algorithms, or due to some other
reason.

6.2 Future Work

Prior work has shown that gradient descent on neural network parameters can exhibit an implicit bias towards
solutions that generalize well but lack adversarial robustness (Frei et al., 2023). Our work shows that a similar
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bias exists for linear transformers trained to solve linear regression in-context. Future work could investigate
the extent to which this bias affects the in-context learning algorithms discovered by transformers in general.

Our work, on the whole, highlights that developing a thorough understanding of in-context learning within
transformers may be more challenging than previously thought, and emphasises the need of developing
mechanistic understanding of these transformers. Further mechanistic analyses of these transformers is
needed to better understand what in-context learning algorithms these transformers learn. Such reverse
engineering efforts could also help inspire better algorithm design for various robust learning problems.
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Appendix

A Proofs

Notation: We denote [n] = {1, 2, ..., n}. We write the inner product of two matrices A, B ∈ Rm×n as
⟨A, B⟩ = tr(AB⊤). We use 0n and 0m×n to denote the zero vector and zero matrix of size n and m × n,
respectively. We denote the matrix operator norm and Frobenius norm as ∥·∥2 and ∥·∥F . We use Id to
denote the d-dimensional identity matrix and sometimes we also use I when the dimension is clear from the
context.

Setup: As described in the main text, we consider the setting of linear transformers trained on in-context
examples of linear models, a setting considered in a number of prior theoretical works on transformers (von
Oswald et al., 2022; Akyürek et al., 2022; Zhang et al., 2024; Ahn et al., 2023; Wu et al., 2023). Let xi ∈ Rd

and yi ∈ R. For a prompt P = (x1, y1, . . . , xN , yN , xN+1), we say its length is N . For this prompt, we use
an embedding which stacks (xi, yi)⊤ ∈ Rd+1 into the first N columns with (xN+1, 0)⊤ ∈ Rd+1 as the last
column:

E = E(P ) =
(

x1 x2 · · · xN xN+1
y1 y2 · · · yN 0

)
∈ R(d+1)×(N+1). (9)

We consider a single-layer linear self-attention (LSA) model, which is a modified version of attention where
we remove the softmax nonlinearity, merge the projection and value matrices into a single matrix W P V ∈
Rd+1,d+1, and merge the query and key matrices into a single matrix W KQ ∈ Rd+1,d+1. Denote the set of
parameters as θ = (W KQ, W P V ) and let

fLSA(E; θ) = E + W P V E · E⊤W KQE

N
. (10)

The network’s prediction for the query example xN+1 is the bottom-right entry of matrix output by fLSA,

ŷquery(E; θ) = [fLSA(E; θ)](d+1),(N+1).

We may occasionally use an abuse of notation by writing ŷquery(E; θ) as ŷquery(P ) or ŷquery with the under-
standing that the transformer always forms predictions by embedding the prompt into the matrix E and
always depends upon the parameters θ.

We assume training prompts are sampled as follows. Let Λ be a positive definite covariance matrix. Each
training prompt, indexed by τ ∈ N, takes the form of Pτ = (xτ,1, yτ,1, . . . , xτ,N , yτ,N ), xτ,N+1), where task
weights wτ

i.i.d.∼ N(0, Id), inputs xτ,i
i.i.d.∼ N(0, Λ), and labels yτ,i = ⟨wτ , xi⟩. The empirical risk over B

independent prompts is defined as

L̂(θ) = 1
2B

B∑
τ=1

(
ŷτ,N+1(Eτ ; θ) − ⟨wτ , xτ,N+1⟩

)2
. (11)

We consider the behavior of gradient flow-trained networks over the population loss in the infinite task limit
B → ∞:

L(θ) = lim
B→∞

L̂(θ) = 1
2Ewτ ∼N(0,Id), xτ,ixτ,N+1

i.i.d.∼ N(0,Λ)

[
(ŷτ,N+1(Eτ ; θ) − ⟨wτ , xτ,N+1⟩)2] (12)

Note that we consider the infinite task limit, but each task has a finite set of N i.i.d. (xi, yi) pairs. We
consider the setting where fLSA is trained by gradient flow on the population loss above. Gradient flow
captures the behavior of gradient descent with infinitesimal step size and has dynamics d

dt θ = −∇L(θ).

We repeat Theorem 4.1 from the main section for convenience.
Theorem 4.1. Let t ≥ 0 and let fLSA(· ; θ(t)) be the linear transformer trained by gradient flow on the
population loss using the initialization of Zhang et al. (2024), and denote θ(∞) as the infinite-time limit of
gradient flow. For any time t ∈ R+ ∪ {∞} and prompt P = (x1, y1, . . . , xM , yM , xquery) with xquery ∼ N(0, I),
for any ybad ∈ R, the following holds.
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1. If xadv ∼ N(0, Id), there exists yadv = yadv(t, P, xquery, ybad, xadv) ∈ R s.t. with probability 1 over the
draws of xadv, xquery, by replacing any single example (xi, yi), i ≤ M , with (xadv, yadv), the output on
the perturbed prompt Padv satisfies ŷquery(E(Padv); θ(t)) = ybad.

2. If yadv ̸= 0, there exists xadv = xadv(t, P, xquery, ybad, yadv) ∈ Rd s.t. with probability 1 over the draw of
xquery, by replacing any single example (xi, yi), i ≤ M , with (xadv, yadv), the output on the perturbed
prompt Padv) satisfies ŷquery(E(Padv); θ(t)) = ybad.

Proof. Let us partition the W KQ and W P V matrices as,

W KQ =
(

W KQ
11 wKQ

12
(wKQ

21 )⊤ wKQ
22

)
, W P V =

(
W P V

11 wP V
12

(wP V
21 )⊤ wP V

22

)
,

where W KQ
11 , W P V

11 ∈ Rd×d, wKQ
12 , wP V

12 , wKQ
21 , wP V

21 ∈ Rd, and wKQ
22 , wP V

22 ∈ R. Then by definition, for an
embedding matrix E with M + 1 columns,

ŷquery(E; θ) =
(
(wP V

21 )⊤ wP V
22
)

·
(

EE⊤

M

)(
W KQ

11
(wKQ

21 )⊤

)
xquery. (13)

Due to the lack of positional encoders, the prediction is the same when replacing (xk, yk) with (xadv, yadv) for
any k, so for notational simplicity of the proof we will consider the case of replacing (x1, y1) with (xadv, yadv).
So, let us consider the embedding corresponding to (xadv, yadv, x2, y2, . . . , xM , yM , xquery), so that

EE⊤ = 1
M

(
xadvx⊤

adv +
∑M

i=2 xix
⊤
i + xqueryx⊤

query yadvxadv +
∑M

i=2 yixi

yadvx⊤
adv +

∑M
i=2 yix

⊤
i y2

adv +
∑M

i=2 y2
i

)
.

Expanding, we have

ŷquery(E; θ) = (wP V
21 )⊤

M

(
xadvx⊤

adv +
M∑

i=2
xix

⊤
i + xqueryx⊤

query

)
W KQ

11 xquery

+ (wP V
21 )⊤

M

(
yadvxadv +

M∑
i=2

yixi

)
(wKQ

21 )⊤xquery

+ wP V
22
M

(
yadvx⊤

adv +
M∑

i=2
yix

⊤
i

)
W KQ

11 xquery

+ wP V
22
M

(
y2

adv +
M∑

i=2
y2

i

)
(wKQ

21 )⊤xquery.

When training by gradient flow over the population using the initialization of (Zhang et al., 2024, Assumption
3.3), by Lemmas C.1, C.5, and C.6 of (Zhang et al., 2024) we know that for all times t ∈ R+ ∪ {∞}, it
holds that wP V

21 (t) = wP V
12 (t) = wKQ

21 (t) = 0 and W KQ
11 (t) ̸= 0 and wP V

22 (t) ̸= 0. In particular, the prediction
formula above simplifies to

ŷquery(E; θ(t)) = wP V
22 (t)
M

(
yadvx⊤

adv +
M∑

i=2
yix

⊤
i

)
W KQ

11 (t)xquery. (14)

For notational simplicity let us denote W (t) = wP V
22 (t)W KQ

11 (t), so that

ŷ(E; θ(t)) = 1
M

(
yadvx⊤

adv +
M∑

i=2
yix

⊤
i

)
W (t)xquery.

The goal is to take ybad ∈ R and find (xadv, yadv) such that ŷ(E; θ(t)) = ybad. Rewriting the above equation
we see that this is equivalent to finding (xadv, yadv) such that
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yadvx⊤
advW (t)xquery = M

(
ybad − 1

M

M∑
i=2

yix
⊤
i W (t)xquery

)
. (15)

From here we see that if W (t)xquery ̸= 0 then by setting

xadvyadv = MW (t)xquery
∥W (t)xquery∥2 ·

(
ybad − 1

M

M∑
i=2

yix
⊤
i W (t)xquery

)
, (16)

we guarantee that ŷ(E; θ(t)) = ybad. By Zhang et al. (2024, Lemmas A.3 and A.4), we know W (t) ̸= 0 for all
t. Since W (t) ̸= 0 and xquery ∼ N(0, I) is independent of W (t), we know W (t)xquery ̸= 0 a.s. Therefore the
identity (16) suffices for constructing adversarial tokens, and indeed for any choice of yadv ̸= 0 this directly
allows for constructing x-based adversarial tokens,

xadv = MW (t)xquery
yadv∥W (t)xquery∥2 ·

(
ybad − 1

M

M∑
i=2

yix
⊤
i W (t)xquery

)
, (17)

On the other hand, if we want to construct an adversarial token by solely changing the label y, we can
return to (15). Clearly, as long as x⊤

advW (t)xquery ̸= 0, then dividing both sides by this quantity allows for
solving yadv. If we assume xadv is another in-distribution independent N(0, I) sample, then since W (t) ̸= 0
guarantees that x⊤

advW (t)xquery ̸= 0 and so we can construct

yadv =
M
(

ybad − 1
M

∑M
i=2 yix

⊤
i W (t)xquery

)
x⊤

advW (t)xquery
. (18)
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B Additional Results

In this section, we provide additional results that expand on some of the results given in the main text.

B.1 Effect of Scale

We conducted experiments with transformers with different number of layers to evaluate whether scale has
any effect on adversarial robustness of the transformer or not. We observed no meaningful improvement in
the adversarial robustness of the transformers with increase in the number of layers. This is shown in the
figure below for ybad chosen with α = 1. See Section 4.4 in the main text for relevant discussion.

(a) feature-attack. (b) label-attack.

(c) feature-attack. (d) label-attack.

Figure 8: Increasing the scale of the transformer does not improve the adversarial robustness of in-context
learning in transformers.

B.2 Effect of Sequence Length

We show here the complete set of results, for both feature-attack and label-attack, on how an increase
in sequence length positively impacts adversarial robustness if adversary can manipulate the same number of
tokens (for all sequence lengths), but if the adversary can manipulate the same proportion of tokens (which
would amount to different number of tokens for different sequence lengths), increase in sequence length has
a negligble effect on the adversarial robustness. See Section 4.4 in the main text for relevant discussion.
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(a) feature-attack (b) feature-attack

(c) label-attack. (d) label-attack.

Figure 9: Effect of increase in sequence length.

B.3 Gradient-Based Adversarial Attacks & Adversarial Training

In the main text (in Sections 4.2 and 4.3), we gave results for attacks performed with ybad chosen by setting
α = 1 in equation 8. Here, we present results for α = 0.5 and α = 0.1. These results are qualitatively similar
to the case of α = 1 and are presented only for completeness. Furthermore, in the main text, we showed only
target attack error for our attacks due to space constraints, while here we present results for both ground
truth error and target attack error.

B.3.1 α = 1.0

(a) feature-attack. (b) label-attack. (c) joint-attack.

(d) feature-attack. (e) label-attack. (f) joint-attack.

Figure 10: Adversarial training against label-attack. A-PT denotes adversarial pretraining and A-FT
denotes adversarial finetuning. ktrain denotes the number of tokens attacked during training and ktrain = 0
corresponds to a model that has not undergone adversarial training at all.
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(a) feature-attack. (b) label-attack. (c) joint-attack.

(d) feature-attack. (e) label-attack. (f) joint-attack.

Figure 11: Adversarial training against feature-attack.

(a) feature-attack. (b) label-attack. (c) joint-attack.

(d) feature-attack. (e) label-attack. (f) joint-attack.

Figure 12: Adversarial training against joint-attack.
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B.3.2 α = 0.5

(a) feature-attack. (b) label-attack. (c) joint-attack.

(d) feature-attack. (e) label-attack. (f) joint-attack.

Figure 13: Adversarial training against label-attack.

(a) feature-attack. (b) label-attack. (c) joint-attack.

(d) feature-attack. (e) label-attack. (f) joint-attack.

Figure 14: Adversarial training against feature-attack.
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(a) feature-attack. (b) label-attack. (c) joint-attack.

(d) feature-attack. (e) label-attack. (f) joint-attack.

Figure 15: Adversarial training against joint-attack.

B.3.3 α = 0.1

(a) feature-attack. (b) label-attack. (c) joint-attack.

(d) feature-attack. (e) label-attack. (f) joint-attack.

Figure 16: Adversarial training against label-attack. A-PT denotes adversarial pretraining and A-FT
denotes adversarial finetuning. ktrain denotes the number of tokens attacked during training and ktrain = 0
corresponds to a model that has not undergone adversarial training at all.
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(a) feature-attack. (b) label-attack. (c) joint-attack.

(d) feature-attack. (e) label-attack. (f) joint-attack.

Figure 17: Adversarial training against feature-attack.

(a) feature-attack. (b) label-attack. (c) joint-attack.

(d) feature-attack. (e) label-attack. (f) joint-attack.

Figure 18: Adversarial training against joint-attack.

B.4 Transferability

In Section 5.1, we briefly presented some results around transfer of adversarial examples generated using one
transformer to other transformers – either with the same architecture or different architecture. We present
complete results here, for both feature-attack and label-attack. As in the main text, we first present
results for transfer across same class of transformers, i.e., transformers with same number of layers and then
present results for transfer across different classes of transformers.
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(a) 2 layers. (b) 3 layers. (c) 4 layers. (d) 6 layers. (e) 8 layers. (f) 12 layers. (g) 16 layers.

Figure 19: Target Attack Error for different target models on adversarial samples generated using a source
model with the same number of layers. Adversarial samples were generated using feature-attack with
k = 3. Transfer of adversarial samples across transformers progressively becomes poorer as number of layers
increases.

(a) 2 layers. (b) 3 layers. (c) 4 layers. (d) 6 layers. (e) 8 layers. (f) 12 layers. (g) 16 layers.

Figure 20: Same as above figure (19) but adversarial samples were generated using label-attack with
k = 7. As with feature-attack, transfer of adversarial samples samples across transformers progressively
becomes poorer as number of layers increases.

(a) (b)

Figure 21: Target Attack Error for different target models on adversarial samples possibly generated us-
ing a source model with a different number of layers. In (a) adversarial samples were generated using
feature-attack with k = 3. In (b) adversarial samples were generated using label-attack with k = 7.
Transfer is generally worse when
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B.5 Hijacking Attacks on Ordinary Least Square

Linear regression can be solved using ordinary least square. This solution can be written in closed-form as
follow:

ŷ = f(X, Y, xquery) =
(
X⊤X

)−1
X⊤Y xquery (19)

where X = [x⊤
1 ; x⊤

2 ; · · · ; x⊤
N ] and Y = [y1, ..., yN ]. We implement a gradient-based adversarial attack on this

solver by using Jax autograd to calculate the gradients ∇Xf(X, Y, xquery) and ∇Y f(X, Y, xquery). Similar to
our gradient-based attack on the transformer, we only update a randomly chosen subset of entries withing
X and Y . In OLS, X and Y are not tokenized, however, for consistency of language, we will continue to
refer to the individual entries of these matrices, i.e., xi, yi as tokens. We perform 1000 iterations and use a
learning rate of 0.01 for both feature-attack and label-attack.

Figure 22 shows results for feature-attack and y-attack respectively on OLS for ybad chosen by using α =
1.0. The adversarial robustness of OLS is qualitatively similar to that of the transformer; for a fixed compute
budget, single-token label-attack are much less successful compared to single-token feature-attack, and
target attack error is lower when greater number of tokens are attacked.

We further look at the transfer of adversarial attacks between transformers and OLS. Specifically, by attack-
ing OLS we create a set of adversarial samples and then measure the mean squared error (MSE) between
the predictions of OLS and different transformers on these adversarial samples, and vice versa. Figure 23
shows the transfer for adversarial samples for different values of α for sampling ybad. For feature-attack,
we attack 3 indices and for y-attack, we attack 7 indices. We can make following observations from this
figure: (i) the predictions made by OLS and transformers tend to diverge as α increases. This indicates
lack of alignment between the predictions made by OLS and transformers OOD. (ii) For feature-attack,
MSE between predictions is significantly lower when adversarial samples are sourced by attacking OLS rel-
ative to when adversarial samples are sourced by attacking the transformers. In other words, adversarial
samples transfer better from OLS to transformers but not vice versa. This hints at the fact that adversarial
robustness of the transformers is worse than that of OLS. (iii) For y-attack, the aforementioned asymmetry
in transfer above does not exist except for transformers with layers 16 and 12. (iv) Finally, we note that
transformer with 16 layers clearly always behaves in an anomalous fashion, with transformers with layers
12 and 2 also sometimes behaving anomalously, which is in line with the discussion in previous section on
intra-transformer transfer of adversarial samples.

In Figure 24, we present complementary results showing MSE between predictions of OLS and transformers
on adversarial samples when different number of tokens are attacked for α = 1.0. These results further
support the observations made in the previous paragraph.
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(a) feature-attack. (b) label-attack.

Figure 22: The adversarial robustness of ordinary least squares to gradient-based hijacking attacks is quali-
tatively similar to that of the transformers.

(a) feature-attack: OLS → Trans-
formers.

(b) feature-attack: Transformers
→ OLS.

(c) label-attack: OLS → Trans-
formers.

(d) label-attack: Transformers →
OLS.

Figure 23: The mean squared error between the predictions being made by the transformer and OLS on
adversarial samples tends to increase as the ‘OOD-ness’ of the ybad increases. Furthermore, the difference
in prediction is generally higher when the hijacking attacks are derived using the transformer (notice the
differences in scale). For feature-attack, we attack 3 tokens and for y-attack we attack 7 tokens when
creating adversarial samples.
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(a) feature-attack: OLS → Trans-
formers.

(b) feature-attack: Transformers
→ OLS.

(c) label-attack: OLS → Trans-
formers.

(d) label-attack: Transformers →
OLS.

Figure 24: The mean squared error between the predictions being made by the transformer and OLS on
adversarial samples tends to be higher when the adversarial samples are sourced by attacking transformers.
In the above plot, we use α = 1.0 for sampling ybad.
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C Training Details and Hyperparameters

C.1 Linear Transformer

To match the setup considered in Theorem 4.1, we implement linear transformer as a single-layer attention-
only linear transformer as described in equation 10. We train the linear transformer for 2M steps with a
batchsize of 1024 and learning rate of 10−6.

C.2 Standard Transformer

Our training setup closely mirrors that of Garg et al. (2022). Similar to their setup, we use a curriculum
where we begin training on data with dimensionality of 5 and gradually increase the dimensionality to 20 by
incrementing it by 1 every 5k steps. Details of our architecture are given in Table 1. We guve the number
of parameters present in various transformer models with different number of layers in Table 2. Important
training hyperparameters are mentioned in Table 3.

Parameter Value
Embedding Size 256
Number of heads 8
Positional Embedding Learned
Number of Layers 8 (unless mentioned otherwise)
Causal Masking Yes

Table 1: Architecture for the transformer model.

Number of Layers Parameter Count
2 1, 673, 601
3 2, 463, 553
4 3, 253, 505
6 4, 833, 409
8 6, 413, 313
12 9, 573, 121
16 12, 732, 929

Table 2: Hyperparameters used for training transformer models with GPT-2 architecture.

Hyperparameter Value
Learning Rate 5 × 10−4

Warmup Steps 20,000
Total Training Steps 500,000
Batch Size 64
Optimizer Adam

Table 3: Hyperparameters used for training transformer models with GPT-2 architecture.

C.3 Adversarial Attack and Adversarial Training Details

We implement our adversarial attacks as simple gradient descent on the (selected) inputs with the target
attack error as the optimization objective. We briefly experimented with variations of gradient descent, e.g.,
gradient descent with momentum but found those to perform at par with simple gradient descent.
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When performing feature-attack, we used a learning rate of 1 and when performing label-attack, we
used a learning rate of 100. When performing joint-attack, we used a learning rate of 1 when perturbing
x-tokens and a learning rate of 100 when perturbing y-tokens. We chose the learning rates based on best
performance within 100 gradient steps. Using lower values of learning rates resulted in proportionally slower
convergence, and hence were avoided.

In all our plots, we show results across three different models and use 1000 samples for each model.

Differences Between Adversarial Attacks and Adversarial Training: The two major differences in
our adversarial traning setup, compared with adversarial attacks setup are:

• During adversarial attacks (done on trained models at test time), we sample ybad according to the
expression 8, but during adversarial training we sample ybad by sampling a weight vector w ∼ N(0, Id)
independent of the task parameters wτ and setting ybad = w⊤xquery.

• During adversarial attacks, we perform 100 steps of gradient descent, but in adversarial training, we
only perform 5 steps of gradient descent.

Both the above changes were done to help improve the efficiency of adversarial training.
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