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Abstract

Robotics increasingly leverages behavioral cloning for contact-rich tasks where1

accurate simulators are infeasible and dense reward functions difficult to define.2

Collected by humans sequentially, input trajectories are non-i.i.d. data and thus3

randomized to mitigate non-stationarity, and more closely adhere to the fundamen-4

tal theoretical assumptions underlying statistical learning. Rather than modeling5

single actions, modern visuomotor policies are trained to model action chunks,6

which are crucially considered in complete isolation during training. However,7

empirical evidence suggests that powerful visuomotor policies seem to pick up on8

the sequential nature of the input trajectories provided during training, reproducing9

increasingly more consistent chunks, despite not being instructed to do so. In this10

opinion piece, we present initial empirical evidence substantiating the claim that,11

when fine-tuned on extra demonstrations, small-size VLAs might learn to exploit12

aspects of the input data self-learning consistency, conversely to larger models13

which in the same setting become less self-consistent.14

1 Introduction15

Learning policies from collections of human demonstrations is an increasingly popular approach in16

robotics [Brohan et al., 2022, Zhao et al., 2023b, Chi et al., 2024, Kim et al., 2024, Li et al., 2024,17

Black et al., 2024, O’Neill et al., 2024, Shukor et al., 2025]. Learning from real-world demonstration—18

reward-free—data proves particularly effective in highly dexterous tasks, where (1) simulation may19

prove expensive and (2) defining a reward function is non trivial.20

Expert demonstrations are typically recorded via tele-operation, a process consisting of a human ex-21

pert controlling symbiotic robot platforms while performing a task, all while recording the visuomotor22

data associated to its commands over time (an expert trajectory). Then, learning a desired behavior23

can be reduced to learning to reproduce these trajectories, approximating the mapping between24

visuomotor inputs—(i) camera views and (ii) robot’s proprioperception—and the control applied25

by the human demonstrator. Learning from (potentially, large-scale) tele-operation data [Khazatsky26

et al., 2024, Collaboration et al., 2023] also appears to be uniquely positioned to benefit from the27

recent advancements in developing multi-modal foundation models [Beyer et al., 2024, Hurst et al.,28

2024], combining advancements in perception and visual reasoning with traditional planning.29

Given an observation ot of the environment, modern robotics policies π are trained to reproduce30

the expert demonstration by outputting sequences of H actions AH—action chunks—rather than a31

single action at drawn from π(•|ot). Indeed, Zhao et al. [2023a] argue providing a controller with32

multiple actions to be enacted sequentially not only proves effective in mitigating catastrophic error33

compounding, but also aligns with the psychological understanding of how individual actions are34

grouped and executed as an atomic unit [Lai et al., 2022]. The prevalent technique considered is thus35

to learn multiple actions originating from a single, input observation of the environment, modifying36

accordingly the dataset to exhibit this chunk-level structure. Critically, during training action chunks37

AH
t = π(ot) are considered in isolation. That is, action chunks AH

t are not compared to neighboring38
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Figure 1: (A) Initial (top) and final (bottom) camera frames of the cube-stacking demonstration.
Demonstrations start with cubes in arbitrary positions on a plane, and terminate with the two
cubes stacked. (B) Histograms of the L2-norm differences ∥AH

t+1 −AH
t ∥2 between successive

action chunks before (left) and after (right) training on the demonstrations, illustrating the marked
improvement in temporal consistency during training (π0 for control on the top-right of each
visualization).
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while learning from reward-free data. For39

similar, successive observations, one would naturally expect well-performing policies to produce40

similar actions, assuming generally unimodal demonstrations for a given task. Yet, such expectation41

seems to be only partially met by empirical evidence: in a small scale experiment assessing the42

similarity of successive chunks for similar observations for (1) a small, light-weight Vision-Language-43

Action model (VLA) and (2) a large, state-of-the-art VLA model, we found the discrepancy between44

the corresponding chunks to (1) increase and (2) decrease when fine-tuning.45

Motivated by analyzing this phenomenon, we investigate the evolution of the similarity of neighboring46

action chunks over fine-tuning for the two different models. In particular, we assess the similarity of47

successive action chunks—i.e., chunks’ consistency—for SmolVLA [Shukor et al., 2025], a compact48

VLA designed for deployment on low-end hardware platforms, trained on small-scale crowd-sourced49

and open-source robotics dataset. We evaluate the similarity of action chunks obtained for subsequent50

observations before, during and after further-training SmolVLA on a specific dataset, and observe51

that chunks become more and more temporal consistent as training proceeds. Conversely, when52

reproducing the same procedure with the same fine-tuning demonstrations on π0 [Black et al., 2024],53

we found chunks to not increase in similarity, and in fact to widen as fine-tuning progresses—an54

observation we believe could prove interesting in understanding the training dynamics of VLAs.55

Our experiments indicate further-training SmolVLA on a task-specific dataset seem to biases the56

model towards becoming more and more self-consistent, while π0 exhibits the opposite behavior.57

2 Background58

Taken together, (i) multi-modal backbones for semantic reasoning over multi-modal input streams, (ii)59

reward-free learning via imitation, and (iii) chunk-level consistency mechanisms define the landscape60

within which our analysis is positioned.61

2.1 Multi-modal Foundation Models for Robotics.62

The recent advent of large-scale Vision-Language Models (VLMs) [Alayrac et al., 2022, Beyer et al.,63

2024] has provided robotics with precisely the kind of rich, general-purpose perception required to64

model potentially-noisy human demonstrations. By pretraining on billions of image-text pairs, VLMs65

acquire semantic representations that transfer remarkably well to downstream tasks and domains,66

including robotics [Brohan et al., 2023, Kim et al., 2024, Black et al., 2024, Shukor et al., 2025]. A67

common recipe for VLMs training couples a vision encoder with a pretrained language model (LM),68

trained solely on text [Radford et al., 2021, Zhai et al., 2023, Fini et al., 2024]. The merged system is69

subsequently exposed to multi-modal data through a sequence of increasingly supervised stages: (i)70
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large-scale caption corpora [Schuhmann et al., 2022, Byeon et al., 2022], (ii) interleaved image-text71

documents [Laurençon et al., 2023, Zhu et al., 2023], and (iii) instruction-tuning collections to elicit72

conversational skills [Tong et al., 2024, Laurençon et al., 2024]. Besides semantic understanding,73

efficiency also emerged as an equally prominent objective in training VLMs. Computational budgets74

can be reduced by designing more compact backbones [Marafioti et al., 2025, Korrapati, 2024, Yao75

et al., 2024], or adopting parameter-efficient techniques to draw inference, or even update the model76

weights specifically for inference [Shukor et al., 2023, Vallaeys et al., 2024, Tsimpoukelli et al.,77

2021].78

Robotics Transformer 2 (RT-2) [Brohan et al., 2023] demonstrated the connection between pre-trained79

VLMs and robotics explicitly: in their method, Brohan et al. [2022] present a frozen, internet-scale80

VLM used as perceptual backbone, while a task-specific action head is fine-tuned on the tele-operation81

data collected. Subsequent work has embraced the same recipe, giving rise to Vision-Language-Action82

(VLA) models, jointly processing language instructions, visual observations, and proprioceptive83

inputs to output series of actions [Kim et al., 2024, Wen et al., 2024].84

2.2 Imitation Learning for Robotics85

Learning control policies directly from human demonstrations [Brohan et al., 2022, Zhao et al., 2023b,86

Chi et al., 2024, Kim et al., 2024, Black et al., 2024, Shukor et al., 2025] has emerged as a powerful87

alternative to Reinforcement Learning (RL), especially in the context of dexterous manipulation88

where specifying dense reward functions is notoriously difficult, and high-fidelity simulation proves89

expensive or even unfeasible. In the standard tele-operation setting, an expert controls the robot while90

the system records synchronized streams of visual observations, proprioceptive readings, and the91

control commands actually executed. A policy π is then trained without any task rewards to reproduce92

the expert behavior by mapping an observation ot to an action chunk AH
t ∈RH×D specifying H93

consecutive low-level actions in the D-dimensional robot joint space. Predicting temporally extended94

sequences—that is, H actions—not only reduces error compounding but also mirrors the hierarchical95

structure of human motor control [Zhao et al., 2023b, Lai et al., 2022].96

π0 Recent work by Black et al. [2024] leverages the idea of action chunking in the context of97

developing a foundation model for robotics. In particular, Black et al. [2024]’s π0 architecture grafts98

a flow-matching diffusion head onto a pretrained VLM [Beyer et al., 2024], enabling control while99

inheriting internet-scale semantic understanding of the image data coming from camera streams.100

After pre-training on expert trajectories collected across diverse embodiments, pi0 exhibits task-101

generalization by proving to be a single policy that can zero-shot perform highly dexterous tasks like102

folding shirts or bussing tables, receiving instructions in pure natural language.103

SmolVLA While very effective, models like π0 can prove to be difficult to deploy in resource-104

constrained scenarios. SmolVLA [Shukor et al., 2025] focuses precisely on resource-constrained105

deployment, developing a compact robotics model trained without rewards. In particular, SmolVLA106

couples a lightweight SigLIP vision encoder with a sub-400M parameter vision-language model107

backbone, and adds an action head as action expert, yielding a model with a total of sub-500M param-108

eters. Despite its size, SmolVLA still retains the VLA recipe—joint image-language conditioning109

and chunked action prediction—and Shukor et al. [2025] report competing scores against baselines110

including both ACT [Zhao et al., 2023b] and π0 [Black et al., 2024]. Crucially for fine-tuning and111

inference, the authors report SmolVLA can be fine-tuned and run on consumer-grade GPUs and even112

CPUs.113

3 Analysis114

In this study, we assess SmolVLA’s [Shukor et al., 2025] internal consistency when producing action115

chunks for a cube-stacking manipulation task, where the robot must (i) grasp a cube from an arbitrary116

location and (ii) place it in stable equilibrium atop a second cube in a different location 1. In our117

work, we resort to the openly available implementation of SmolVLA provided with LeRobot [Cadene118

et al., 2024]. Importantly, we evaluate the model consistency before and after fine-tuning SmolVLA119

on a dataset of cube stacking demonstrations1. Our findings hint reward-free training does impact the120

1huggingface.co/lerobot/datasets/svla_so100_stacking
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Figure 2: Empirical histograms of the L2-norm differences ∥AH
t+1−AH

t ∥2 between successive action
chunks at early, intermediate, and final stages of training. The increasingly narrow distributions
indicate reduced temporal variability for successive chunks (with Chunk-0← AH

t and Chunk-1←
AH

t+1.

Figure 3: 1D PCA projection of successive action chunks Chunk-0 and Chunk-1 visualized over
H = 50 timesteps over the course of training. Visualizations illustrate the pair of chunks scoring the
median value for L2 difference over the course of training. In the worst case, PCA explains 60%+ of
the total variance.
inner consistency of the model on overlapping action chunks. In particular, as training progresses the121

model becomes more and more consistent across chunks obtained for successive observations despite122

not having been explicitly instructed nor influenced to. Conversely, a control-experiment using π0123

does not result in the same behavior, and in fact π0’s consistency decreases as fine-tuning progresses124

(Figure 1).125

Figure 1(B) confirms reward-free training induces SmolVLA to generate internally coherent action126

chunks over successive timesteps, capturing smooth and semantically consistent transitions without127

explicit temporal regularization at training time—this seems to be indicating consistency emerges128

from reproducing human demonstrations. Importantly, Figure 2 shows empirical distributions of129

∥AH
t+1 −AH

t ∥2 over training, underscoring how the narrowing dynamics matches the progress of130

the training process, and that task-specific training results in improvements in temporal consistency.131

To further validate this claim, we visualize representative chunk pairs p = {AH
t ,AH

t+1} whose132

L2-norm difference corresponds to the distribution’s median value during training, and present a133

1D-projection of the otherwise 6D joint representation through PCA (Figure 3). The PCA projection134

onto the principal component reveals progressively tighter alignment between successive chunks135

as training proceeds. Additionally, overlaying the joint-space trajectories of these median chunk136

pairs empirically demonstrates the reduction in drift over training the downstream task space, further137

validating the impact of training on execution consistency for successive action chunks.138

4 Conclusions139

Our findings highlight a divergence in temporal consistency across VLA models: while fine-tuning140

SmolVLA increases the similarity of successive action chunks, π0 exhibits the opposite trend.141

This contrast suggests that model scale and pretraining may differently shape chunk-level training142

dynamics, and motivates further investigation into consistency as a key property of visuomotor143

policies.144
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