
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ARE NEURAL SCALING LAWS LEADING QUANTUM
CHEMISTRY ASTRAY?

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural scaling laws are driving the machine learning community toward training
ever-larger foundation models across domains, assuring high accuracy and
transferable representations for extrapolative tasks. We test this promise in
quantum chemistry by scaling model capacity and training data from quantum
chemical calculations. As a generalization task, we evaluate the resulting models’
predictions of the bond dissociation energy of neutral H2, the simplest possible
molecule. We find that, regardless of dataset size or model capacity, models
trained only on stable structures fail dramatically to even qualitatively reproduce
the H2 energy curve. Only when compressed and stretched geometries are
explicitly included in training do the predictions roughly resemble the correct
shape. Nonetheless, the largest foundation models trained on the largest and
most diverse datasets containing dissociating diatomics exhibit serious failures
on simple diatomic molecules. Most strikingly, they cannot reproduce the trivial
repulsive energy curve of two bare protons, revealing their failure to learn the
basic Coulomb’s law involved in electronic structure theory. These results suggest
that scaling alone is insufficient for building reliable quantum chemical models.

1 INTRODUCTION

What makes a physics model “good”? At its essence, any model is, by construction, a simplification
of complex reality. Yet, a useful one would ideally reflect our current understanding of physics
by incorporating as many known first-principle laws as possible while applying Occam’s razor to
reproduce the correct empirical observations for the correct reasons. For example, in quantum
chemistry, Kohn-Sham density functional theory (Hohenberg & Kohn, 1964; Kohn & Sham, 1965)
is an exact theory that states the existence of an exact universal functional that yields the exact energy
of a given electron density. In practice, this exact functional’s closed-form analytical expression
is unknown and must be approximated. Encouragingly, it has been observed that non-empirical
functionals without any fitted parameters tend to not only become more accurate as they satisfy more
known exact constraints on the hierarchy of “Jacob’s ladder” of density functional approximations
but are also more accurate and generalizable than parameterized counterparts (Perdew & Schmidt,
2001; Medvedev et al., 2017; Goerigk & Grimme, 2011; Kaplan et al., 2023; Khan, 2025).

In contrast, machine learning (ML) models attempt to represent physical interactions from data,
often by learning a direct statistical mapping from input to labeled outputs. Therefore, the central
premise of using ML models to predict chemical properties is that their inference can be accurate
while being orders-of-magnitude faster than ab initio methods that solve the Schrödinger equation
(Rupp et al., 2012). The ML community, particularly the deep learning subfield, has also broadly
observed across several domains encompassing e.g. natural language processing, computer vision,
protein structure prediction, and chemistry that models trained with larger amounts of data, compute,
and model parameters systematically improve performance in a power-law fashion (Cortes et al.,
1993; Bahri et al., 2024; Hestness et al., 2017; Kaplan et al., 2020; Alabdulmohsin et al., 2022;
Jumper et al., 2021; Dubey et al., 2024; Hoffmann et al., 2022; Cheng et al., 2024; Frey et al.,
2023; Jiang et al., 2025; Hattori et al., 2025). Such “neural scaling laws” are encouraging a
paradigm toward the development of large “foundation models” trained on vast amounts of diverse
data (Bommasani, 2021). Accordingly, these models can demand enormous amounts of monetary,
natural, and compute resources in their training (Cottier et al., 2024; Hao, 2025) but are claimed
to have produced meaningful representations with strong generalization capabilities, as implicated
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by universal approximation theorems (Augustine, 2024). However, it remains unclear whether
large-scale quantum chemical foundation models can truly learn essential physics required to
reliably generalize to novel molecules and materials beyond their training set.

In this work, we investigate whether large neural networks trained on quantum chemical data can
indeed capture the governing physics needed for reliable generalization, by scaling models on two
large datasets of equilibrium-geometry molecules. Our scaling experiments agree with the literature
that increasing the number of training samples improves performance — at least, on the hold-out test
split. We find that irrespective of training data quantity and model capacity, there is no discernible
improvement in the models’ reproductions of the bond dissociation energy (BDE) curve of H2, the
smallest and simplest possible molecule. The models improve modestly only when non-ground-state
structures are included in the training set. However, even the largest foundation models trained on
over 101M structures that include dissociating bonds can fail to qualitatively describe the BDE
curves of H2 and other diatomic molecules. More disconcertingly, they cannot reproduce the
trivial energy curve for a system of two bare protons produced from the fundamental and classical
Coulomb’s law. Contrary to the current pervasive inclination in the ML community to favor scaling,
our results indicate that training ever-larger models on ever-larger datasets does not necessarily lead
to “good” quantum chemical models that give correct answers for the correct reasons.

2 BACKGROUND

We provide a brief overview of the following topics that pertain to our experiments described in
section 3: theoretical quantum chemistry, ML applications in quantum chemistry, neural scaling
laws, and foundation models.

2.1 QUANTUM CHEMISTRY

Quantum chemistry uses quantum mechanical principles to accurately calculate properties of an
arbitrary chemical system composed of electrons, protons, and neutrons. This requires solving
the Schrödinger equation (Schrödinger, 1926), which for N electrons is a linear partial differential
equation, given in its time-independent form as

ĤΨ(r1, . . . , rN ) = EΨ(r1, . . . , rN ) (1)

where Ψ(r1, . . . , rN ) is the antisymmetric and normalized wavefunction describing the state, E
is the total energy, and each ri denotes the spatial-spin coordinate of the ith electron. In atomic
units, the non-relativistic Hamiltonian operator, Ĥ , corresponds to E of Ψ and is defined under the
Born-Oppenheimer approximation (Born & Oppenheimer, 1927) of stationary nuclei as

Ĥ = −
∑
i

1

2
∇2

ri −
∑
i

∑
j

Zj

|ri −Rj |
+

∑
i

∑
k>i

1

|ri − rk|
+
∑
j

∑
l>j

ZjZl

|Rj −Rl|
(2)

where Rj is the position of the jth nucleus and Zj is its nuclear charge. From left to right, the
terms respectively represent the electronic kinetic energy, the potential energy from electron-nucleus
interactions, the potential energy from electron-electron repulsions, and the potential energy from
nucleus-nucleus repulsions. Unfortunately, a closed-form solution to the Schrödinger equation in
its differential form does not exist for multi-electron systems due to the electronic repulsion term
(Tew et al., 2007). Moreover, the exponential increase with N in the dimension of the Hilbert space
spanned by the different electronic configurations (Kohn, 1999) necessitates alternative solution
methods that are computationally tractable.

2.1.1 KOHN-SHAM DENSITY FUNCTIONAL THEORY

One such widely-employed method (Jones, 2015) is density functional theory (DFT). It is an exact
theory rooted in the universal Hohenberg-Kohn theorems (Hohenberg & Kohn, 1964) that concerns
any system of electrons in any external potential:

• Theorem 1: To within an additive constant, the external potential, and thereby the total
system energy is a unique functional of the ground-state electron density, n.
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• Theorem 2: From the set of v-representable trial densities (Levy, 1979) associated with
antisymmetric ground-state wavefunctions that are non-negative everywhere and normalize
to N , the ground-state energy of the system is minimized at its ground-state density, n0.

Consequently, DFT dramatically reduces the concerned configuration space to simply three spatial
dimensions that define n. Then, by introducing single-electron orbitals through an auxiliary
non-interacting system that exactly reproduces n0 (Kohn & Sham, 1965) to solve the non-interacting
electronic kinetic energy, one has Kohn-Sham DFT (KSDFT). Attractively, KSDFT requires just the
exchange-correlation functional to be approximated, which comprises just a small percentage of E.
It is also relatively inexpensive compared to wavefunction-based methods as its computational time
complexity is formally at least O(N3) due to orthonormalization of the orbitals and diagonalization
of the Kohn-Sham Hamiltonian matrix (Lee & Dieng, 2025). However, its accuracy can vary widely
depending on the utilized functional (Goerigk & Grimme, 2011).

2.1.2 G4(MP2) THEORY

Gaussian-4(MP2) theory (Pople et al., 1989; Curtiss et al., 2011; 2007b;a), G4(MP2), is a
compositve wavefunction method (Helgaker et al., 2008). It can robustly predict energies to
within chemical accuracy of 1 kcal/mol relative to experimental data for molecules containing first-,
second-, and third-row main-group elements. It achieves this by performing several calculations
at different levels of theory, including: Hartree-Fock (Slater, 1930) energies extrapolated to the
complete basis set limit; coupled cluster singles and doubles perturbative triples (CCSD(T)) (Csirik
& Laestadius, 2023) energies calculated with the 6-31G* basis set (Rassolov et al., 1998); and
frozen-core energy corrections calculated with second-order Møller-Plesset perturbation theory
(MP2) (Møller & Plesset, 1934) using the G3MP2LargeXP (Curtiss et al., 2007b) and 6-31G(d)
basis sets (Rassolov et al., 1998).

2.2 MACHINE LEARNING IN QUANTUM CHEMISTRY

Although KSDFT and G4(MP2) are highly-accurate, their computational time complexity of O(N3)
or worse (e.g. CCSD(T) scales as O(N7) (Ratcliff et al., 2017)) means ab initio quantum chemical
calculations are prohibitively expensive for even small molecules. Therefore, ML has been applied
extensively to quantum chemistry to bypass the computational barrier of repeatedly having to
explicitly solve the Schrödinger equation for each new molecule and material. In other words,
ML models can learn a statistical mapping from the external potential defined by the sets of nuclear
charges, {Zj}, and nuclear coordinates, {Rj}, to any given property (Rupp et al., 2012). This
is akin to the universal functional stated in Hohenberg and Kohn’s first theorem. Of course, the
important distinction is that these ML models can be orders-of-magnitude faster than traditional
quantum chemical methods without much loss in accuracy. We refer the reader to many excellent
references that comprehensively review the numerous ML applications in chemistry (Schütt et al.,
2020; Westermayr et al., 2021; Keith et al., 2021; Sajjan et al., 2022; Huang et al., 2023; Huang &
Von Lilienfeld, 2021; von Lilienfeld & Burke, 2020; Von Lilienfeld, 2018; Hansen et al., 2013; von
Lilienfeld et al., 2020; Dral, 2020; Malica et al., 2025).

2.2.1 NEURAL SCALING LAWS

The accuracy of a ML model’s predictions has been empirically observed to depend on the quality
and quantity of the training data, and the employed learning algorithm. As mentioned in section 1,
for neural network architectures, neural scaling laws refer to observations that more training data and
larger models reduce prediction errors as a power-law. For example, Frey et al. (2023) showed that
state-of-the-art graph neural network architectures like SchNet (Schütt et al., 2017), PaiNN (Schütt
et al., 2021), Allegro (Musaelian et al., 2023), and SpookyNet (Unke et al., 2021a) tend to improve
their predictions of atomic forces with increasing model capacity, c, defined as

c = d× w (3)

where d is the number of convolutional layers and w is the embedding dimension. Moreover, they
show monotonic improvements to the loss with increasing dataset size.
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2.2.2 FOUNDATION MODELS

Neural scaling laws are motivating the development of foundation models (Bommasani, 2021),
which can be broadly defined as large models trained on large and diverse datasets that can
subsequently be fine-tuned for a wide range of downstream tasks. Examples include BERT (Devlin
et al., 2019), GPT-3 (Brown et al., 2020), and CLIP (Radford et al., 2021) for text- and image-related
tasks. The assumption is that they have learned general representations that can offer potential
solutions to data-scarce and extrapolative regimes. Unsurprisingly, this is appealing for chemical
applications and many chemical foundation models have accordingly been developed (Yuan et al.,
2025; Choi et al., 2025; Pyzer-Knapp et al., 2025; Alampara et al., 2025; Ahmad et al., 2022; Batatia
et al., 2023; Chen & Ong, 2022; Unke et al., 2021b; Wood et al., 2025; Soares et al., 2024; Beaini
et al., 2023; Merchant et al., 2023; Yang et al., 2024).

3 EXPERIMENTS

Here, we are interested in whether neural scaling laws and foundation models indeed produce “good”
quantum chemical models by having learned general and physically-meaningful representations that
would allow for these large models to be reliably applied to novel molecules and materials.

3.1 H2 AS A FUNDAMENTAL TEST

To investigate this, we consider whether scaling deep neural networks trained on molecules in their
equilibrium geometries can lead to accurate predictions of the bond dissociation energy (BDE)
curve at different bond lengths, R, of neutral H2 — the smallest and simplest possible molecule
consisting of only two protons, two electrons, and one bond. The BDE curve for a diatomic
plots the total energy versus bond length, R, normalized by subtracting the summed energies
of the two isolated atoms from the total system energy. This offers a simple evaluation of the
generalization capabilities of the models since there are no complications arising from functional
groups, conformational degrees of freedom, relativistic effects (Pyykkö, 2012), unexpected spin
multiplicities, core electrons, dipole moments, or the need for large basis sets (Boese et al., 2003).

However, the BDE curve of H2 is still challenging to accurately describe because of the
strong-correlation limit approached in the exchange-correlation energy as the bond dissociates,
at which each electron should be localized to their individual nuclei. This regime is accurately
described as a multi-reference system where many Slater determinants contribute to the exact
wave function. Consequently, single-determinant methods like KSDFT, which assumes the
electron density can be described by one Slater determinant, would often be inadequate to provide
quantitatively accurate estimates of the H2 BDE. Therefore, it may perhaps be unrealistic for the
trained models to exactly reproduce the exact BDE curve. Nonetheless, we expect that they are
capable of reproducing the BDE curve to the accuracy of the level of theory used to generate the
training data. Further, we maintain that a model that has properly learned the basic physics involved,
as may be anticipated from neural scaling laws, should capture some essential features: no kinks
and divergent behavior in the BDE curve; an asymptotic plateau in the energy as the inter-nuclear
distance increases; and the obvious limit of lim

R→0
E → +∞ as the nuclear-nuclear repulsion energy,

Enn, dominates and diverges due to the inverse-R relation given by

Enn =
ZjZl

R
(4)

In our work, we obtain reference curves from spin-restricted calculations performed using PySCF
(Sun et al., 2018).

3.2 SCALING

Here, we describe our scaling experiments in which SchNet models are trained on large, high-quality
quantum chemical datasets. Our objective is to systematically explore how training models of larger
capacity on larger datasets affects predictive accuracy of predicting molecular energies.
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3.2.1 SCHNET

We perform the scaling experiments by training SchNet models, implemented in PyTorch
Geometric (Fey & Lenssen, 2019; pyt, a;b), of various c by taking combinations of d ∈ {3, 6}
and w ∈ {100, 250, 500}. For all models, the number of hidden channels is set to w, 50 Gaussians
are used to expand the pairwise distances, the cutoff distance for the interatomic interactions is 5.0
Å, and each node collects at most 32 neighbors within this cutoff. Each model is trained on several
training set sizes, Ntrain ∈ {10x, 5 · 10x | x ≥ 2, x ∈ Z}, where x is capped by the dataset size.
For x ≤ 3, the batch size is set to 10 samples and for x ≥ 4, the batch size is set to 50 samples.
“Warm-up” is performed where the learning rate for a given epoch, ϵ, within the first ten epochs is
set to ϵ/10. After this warm-up period, the learning rate is decreased to and kept fixed at 5 · 10−4.
However, if the tracked value of the lowest validation loss fails to decrease after twenty epochs, the
learning rate is scaled by 0.5. If the validation loss does not decrease after 50 epochs, training is
terminated. All models are trained with gradient descent using PyTorch (Paszke et al., 2019) for up
to 1000 epochs using the AdamW optimizer (Loshchilov & Hutter, 2017) with mean squared errors
as training and validation losses. We also clip gradients by their Euclidean norms with a threshold
value of 1000. Each model is trained on a single node on compute clusters, utilizing one NVIDIA
RTX A6000 GPU, 16 CPU cores, and 64 GB of RAM. The model parameters at the epoch where the
validation loss is the smallest during training are saved as the best-performing model. 1000 samples
are removed from the dataset and fixed as the test set across all Ntrain. For each model, 1000 samples
are randomly chosen from the remaining dataset and used as the validation set.

3.2.2 DATASETS

We train these models in a supervised fashion where nuclear charges and coordinates are used to
predict total atomization energies, ETAE, reported in the GDB-9-G4(MP2) (Narayanan et al., 2019)
and VQM24 datasets (Khan et al., 2024). ETAE is the difference between a molecule’s E and the
sum of E of its isolated constituent atoms:

ETAE =
∑
j

Eatom,j − Emolecule (5)

GDB-9-G4(MP2) contains 133,296 stable closed-shell and neutral organic molecules in their
equilibrium geometries containing no more than nine heavy atoms of C, N, O, and F in the GDB-9
database (Ramakrishnan et al., 2014; Ruddigkeit et al., 2012). These molecules’ properties were
computed using the highly-accurate G4(MP2) theory. VQM24 reports closed-shell and neutral
organic and inorganic molecules with no more than five heavy atoms of C, N, O, F, Si, P, S,
Cl, and Br. 835,947 converged molecules were computed at the ωB97X-D3/cc-pVDZ (Chai &
Head-Gordon, 2008; Dunning Jr, 1989) level of KSDFT. ωB97X-D3 is a range-separated hybrid
functional with D3 dispersion correction (Grimme et al., 2010) that has excellent performance
in main-group thermochemistry, kinetics, and noncovalent interaction benchmarks (Goerigk &
Grimme, 2011). Note that 51,072 of the molecules in the dataset converged to saddle points, as
identified by vibrational frequency calculations. Such structures correspond to transition states,
which are of highest potential energies along reaction coordinates and contain bonds that are partially
broken or formed (Braddock et al., 2024).

For both datasets, we convert ETAE to units of kcal/mol and scale by 1/25, which we find to be
beneficial in training.

3.3 FOUNDATION MODELS FOR QUANTUM CHEMISTRY

We also examine five “foundation” machine-learned interatomic potentials that can estimate the
energy of an atomic structure: UMA-S-1.1 (Wood et al., 2025), UMA-M-1.1 (Wood et al., 2025),
OMol25 eSEN-sm-cons. (Levine et al., 2025), Orb v3 conservative OMol25 (Rhodes et al., 2025;
git), and AIMNet2 (Anstine et al., 2025). As of September 2025, Rowan Benchmarks (Rowan)
reported that these five models were the most accurate ML models in predicting molecular energies
from {Zj} and {Rj} on tasks involving thermochemistry, kinetics, and non-covalent interactions
while being more accurate than popular density functionals, composite density functional methods,
and semi-empirical methods. UMA-S-1.1 (150M parameters), UMA-M-1.1 (1.4B parameters),
OMol25 eSEN-sm-cons. (6.3M parameters), and Orb v3 conservative OMol25 (25M parameters)
were all trained on the OMol25 dataset (Levine et al., 2025), which contains over 101M
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ωB97M-V/def2-TZVPD (Mardirossian & Head-Gordon, 2016; Rappoport & Furche, 2010; Hellweg
& Rappoport, 2015) KSDFT calculations that required at least 6 billion CPU hours to compute.
OMol25 includes small molecules, biomolecules, metal complexes, and electrolytes that span 83
elements, a wide range of intra- and inter-molecular interactions, conformers, reactive structures,
spin multiplicities, and charges. AIMNet2 supports H, B, C, N, O, F, Si, P, S, Cl, As, Se, Br, I, and
can handle charged molecules. Its model size is not publicly reported but it was trained on 2 · 107
ωB97M-D3/def2-TZVPP KSDFT calculations of bioactive molecules and small organic molecules
sourced from ChEMBL (Mendez et al., 2019), PubChem (Kim et al., 2023), ANI-2x (Devereux
et al., 2020), and OrbNet (Qiao et al., 2020) datasets.

3.4 SCALING DOES NOT NECESSARILY HELP H2

Figure 1: Prediction errors on test set splits of SchNet models of varying model capacity, c,
trained on different numbers of training samples from (left) GDB-9-G4(MP2) and (right) VQM24
datasets. The mean absolute error is plotted against the number of training samples on a log-log
plot. Horizontal dashed line denotes baseline accuracy of 1 kcal/mol.

As seen in Figure 1, we find that training SchNet models on both the GDB-9-G4(MP2) and VQM24
datasets on increasingly larger numbers of training samples systematically reduces all models’ test
set prediction errors. The mean absolute error decreases linearly on the log-log plot plotting error
against number of training samples, as expected from prior works in the literature regarding scaling.
In addition, models of larger values of c tend to show lower errors, which is also not unsurprising.

What is more interesting is that the SchNet models trained on GDB-9-G4(MP2) show no systematic
improvement in their abilities to even qualitatively reproduce the H2 BDE curve. As shown in
Figure 2 (top, left), all models trained on 100k samples predict essentially the same BDE curve,
regardless of c. Near the bond length of 0.77 Å, the ωB97M-V/cc-pVQZ KSDFT (Dunning Jr,
1989) and “exact” all-electron CCSD(T) (cc-pVQZ basis) calculations identify a minimum in BDE.
However, the SchNet models rather predict curves that are practically completely horizontal and
incorrectly peak to their maximum energies near 0.77 Å, despite having trained on molecules
calculated using the highly-accurate G4(MP2) method. This immediately suggests an inability of
scaling to allow the models trained on stable molecules to produce meaningful representations that
allow for generalization to simple bond stretching. This is further apparent as the models do not
obviously become more accurate with more data or greater model capacity in predicting either the
equilibrium bond length (Figure 2, top, middle) or bond dissociation energy (Figure 2, top, right).

In contrast, the models trained using VQM24 exhibit improved BDE curves (Figure 2, bottom,
left). Although they show many imperfections such as incorrect asymptotic behavior in energy
as R → 0, many kinks, and too large of a curvature near the equilibrium bond length, they are
at least able to exhibit some resemblance to the reference curve of ωB97M-V. There is still no
clear and systematic improvement with more training data in the models’ abilities to predict the
equilibrium bond lengths (Figure 2, bottom, middle) and dissociation energies (Figure 2, bottom,
right), but they are able to produce results reasonably close to the KSDFT baseline after training
on 500k samples. This improvement relative to the models trained on GDB-9-G4(MP2) appears to
arise from the saddle-point structures contained in VQM24. For comparison, GDB-9-G4(MP2) only
contains stable, non-saddle-point structures without any diatomic molecules; its smallest molecules
are H2O and HCN. Moreover, as seen in Figure 3, the smallest inter-atomic distance found in each
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Figure 2: Neutral H2 bond dissociation energy curves (left column), equilibrium bond lengths
(middle column; black dashed line indicates reference CCSD(T) and KSDFT values of 0.77 Å),
and dissociation energies (right column; dashed dark and light lines indicate reference CCSD(T)
and KSDFT values of 109 and 207 kcal/mol, respectively) obtained from CCSD(T) (cc-pVQZ
basis), ωB97M-V/cc-pVQZ KSDFT, and SchNet models of various c trained on (top) 100k
GDB-9-G4(MP2) samples and on (bottom) 500k VQM24 samples.

Figure 3: Distributions of smallest inter-atomic distance found in each sample in OMol25, VQM24,
and GDB-9-G4(MP2) datasets.

molecule ranges between 0.96 Å and 1.33 Å with a mean of 1.03 Å. In contrast, VQM24 has more
diverse bonding motifs as its smallest inter-atomic distance ranges between 0.75 Å and 2.35 Å with
a mean of 1.08 Å (Figure 3). It also contains 15 diatomic molecules of HBr, HCl, HF, N2, SiO, F2,
O2, Si2, BrF, ClF, Cl2, Br2, BrCl, PN, and P2.

3.5 ON THE LIMITS OF FOUNDATION MODELS FOR QUANTUM CHEMISTRY

From the previous comparisons of SchNet models trained on GDB-9-G4(MP2) and VQM24 in
subsection 3.4, we may expect improved performances from models trained on more diverse
datasets like OMol25. Therefore, we also assess the five state-of-the-art foundation models listed in
subsection 3.3 in reproducing the BDE curves of H2, along with those of Li2, Be2, N2, O2, and F2.
Indeed, those models produce BDE curves that closely match the ωB97M-V H2 curve (Figure 4).
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Figure 4: Bond dissociation energy curves of neutral H2, Li2, Be2, N2, O2, F2, calculated
using ωB97M-V/def2-TZVPD KSDFT and estimated using UMA-S-1.1, UMA-M-1.1, OMol25
eSEN-sm-cons., Orb v3 conservative OMol25, and AIMNet2. AIMNet2 was only applied to H2,
N2, O2, and F2 because it does not support elements of the other diatomics.

Figure 5: Distribution of (left) elements (denoted by nuclear charge, Z) involved in the 61,498
diatomic systems found in OMol25 dataset and (right) corresponding distribution of bond lengths.

However, there is lack of transferability to other diatomic molecules as the different models show
many peculiar and unphysical features, such as kinks and divergent behaviors. These limitations
occur although OMol25 contains a vast assortment of molecules with compressed, equilibrium, and
dissociating bonds. This is seen in Figure 3 where its distribution of smallest inter-atomic distances
range from 0.40 Å and 7.50 Å, with a mean of 1.01 Å. Also, as seen in Figure 5, it encompasses
61,498 diatomic systems involving 45 different elements spanning the periodic table from H to Pb,
with H, C, O, S, Cl, Br, and I being the most represented; its bond lengths range from 0.62 Å to 7.50
Å, with a mean of 2.38 Å. In fact, it contains diatomic systems involving all the elements that we have
examined in Figure 4 but the models still perform poorly in accurately predicting their molecular
dissociation curves. The model failures are interesting since the reference ωB97M-V functional
used to create these models’ training data has, by construction, the correct long-range asymptotic
behavior in its exchange potential that guarantees non-divergence in energies. Further, this poor
performance is unexpected considering the reported energy error of ∼0.66 kcal/mol achieved by
OMol25 eSEN-sm-cons. for bonds shorter than 6 Å (Levine et al., 2025), which is the range for the
bond lengths considered in our BDE curves.

In particular, for H2, N2, O2, and F2, AIMNet2 correctly produces energies that asymptote to 0
kcal/mol for large bond lengths. This behavior may perhaps be accredited to AIMNet2’s explicit
calculation of dispersion energy (Grimme et al., 2010; 2016) included in a system’s total energy as

E = Elocal + Edispersion + ECoulomb (6)
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where Elocal is the local configurational interaction energy, Edispersion is the dispersion interaction
energy, and ECoulomb is the Coulomb interaction energy from partial atomic charges (Anstine et al.,
2025). However, it otherwise performs very poorly as it severely underestimates relative energies at
equilibrium bond lengths and wrongly plateaus in energy as R → 0, despite its ECoulomb term.

Figure 6: Total energies for a system of two bare protons as a function of inter-proton distance,
estimated using UMA-S-1.1, UMA-M-1.1, OMol25 eSEN-sm-cons., Orb v3 conservative OMol25,
and AIMNet2. Black dashed line indicates the exact energy profile.

We also isolate the foundation models’ abilities to have learned the fundamental Coulomb’s law that
lies at the core of electronic structure theory by analyzing their predicted total energy curves for a
system of two bare protons without any electrons. As seen in Figure 6, all of the models predict that
the two-proton system is extremely stable by ∼500 kcal/mol even at long inter-proton distances. In
fact, the predicted energy has the wrong, negative sign for practically the entire curve where the
inter-proton distance is greater than ∼0.2 Å, whereas the exact energy should always be positive.

These results imply that scaling model capacity and training data is insufficient to attain accurate
and generalizable quantum chemical property predictions. This is further concerning since even the
explicit inclusion of inductive biases such as ECoulomb in AIMNet2 produces very poor results on
the diatomic systems. These deficiencies cannot be attributed to weak model expressibility since
the good results for H2 in Figure 4 clearly reveal otherwise. Thus, it is not entirely obvious what
fast, alternative ML methods can achieve this objective. Yet, it may be worthwhile to consider
techniques like ∆-ML (Ramakrishnan et al., 2015) to correct relatively-cheap semi-empirical
quantum chemistry methods, and “similarity-based learning” to select minimal amounts of data
in training models on-the-fly in data-scarce scenarios (Lemm et al., 2023; Lee et al., 2025).

4 CONCLUSION

Our experimental findings suggest that current deep neural network approaches rooted in scaling
face significant challenges in producing accurate and generalizable quantum chemical models, even
when trained on large, chemically diverse datasets of high-quality calculations. This limitation is
evident in the bond dissociation energy curves for H2, which are predicted to be essentially flat across
all bond lengths by SchNet models trained on the GDB-9-G4(MP2) dataset. Training on the VQM24
dataset, which comprises off-equilibrium bonding, modestly improves reproduction of the H2
curves. However, this improvement appears to stem from exposure to dissociated structures rather
than from learning underlying physical principles. This is further corroborated by the observation
of persistent issues in the predictions of state-of-the-art machine-learned interatomic potentials.
Despite being trained on the most diverse collection of elements, chemistry, and structures to date
— 101M KSDFT calculations, including 61k covering diatomic systems — their predicted energy
curves for simple diatomic molecules degrade significantly outside equilibrium bonding regions
and exhibit unphysical features. Moreover, they all incorrectly predict that two protons form a
strongly-bound system, underscoring their failure to capture the basic Coulomb’s law even when it
is incorporated as an inductive bias. These shortcomings highlight the difficulty of achieving true
physical generalization through scaling alone and suggest that current large-scale models risk acting
solely as data-driven interpolators. Overall, the intersection of quantum chemistry and ML is in need
of new strategies to make fast and accurate property predictions of novel molecules and materials.
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CODE AND DATA AVAILABILITY

Refer to this anonymized Zenodo repository for

• nuclear charges, nuclear coordinates, and atomization energies used as training data in our
scaling experiments

• model checkpoints from our scaling experiments

• Python code to implement our scaling experiments

• Python code for utilizing the foundation machine-learned interatomic potentials
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Kathryn Tunyasuvunakool, Russ Bates, Augustin Žı́dek, Anna Potapenko, et al. Highly accurate
protein structure prediction with alphafold. nature, 596(7873):583–589, 2021.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Aaron D Kaplan, Mel Levy, and John P Perdew. The predictive power of exact constraints and
appropriate norms in density functional theory. Annual Review of Physical Chemistry, 74(1):
193–218, 2023.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

John A Keith, Valentin Vassilev-Galindo, Bingqing Cheng, Stefan Chmiela, Michael Gastegger,
Klaus-Robert Muller, and Alexandre Tkatchenko. Combining machine learning and
computational chemistry for predictive insights into chemical systems. Chemical reviews, 121
(16):9816–9872, 2021.

Danish Khan. Non-linear and non-empirical double hybrid density functional. arXiv preprint
arXiv:2503.22661, 2025.

Danish Khan, Anouar Benali, Scott YH Kim, Guido Falk von Rudorff, and O Anatole von Lilienfeld.
Quantum mechanical dataset of 836k neutral closed shell molecules with upto 5 heavy atoms from
cnofsipsclbr. arXiv preprint arXiv:2405.05961, 2024.

Sunghwan Kim, Jie Chen, Tiejun Cheng, Asta Gindulyte, Jia He, Siqian He, Qingliang Li,
Benjamin A Shoemaker, Paul A Thiessen, Bo Yu, et al. Pubchem 2023 update. Nucleic acids
research, 51(D1):D1373–D1380, 2023.

Walter Kohn. Nobel lecture: Electronic structure of matter—wave functions and density functionals.
Reviews of modern physics, 71(5):1253, 1999.

Walter Kohn and Lu Jeu Sham. Self-consistent equations including exchange and correlation effects.
Physical review, 140(4A):A1133, 1965.

Siwoo Lee and Adji Bousso Dieng. Muapbek: An improved analytical kinetic energy density
functional for quantum chemistry. arXiv preprint arXiv:2505.04559, 2025.

Siwoo Lee, Jason Hattrick-Simpers, Young-June Kim, and Anatole von Lilienfeld. High-tc
superconductor candidates proposed by machine learning. Machine Learning: Science and
Technology, 2025.

Dominik Lemm, Guido Falk von Rudorff, and O Anatole Von Lilienfeld. Improved decision making
with similarity based machine learning: applications in chemistry. Machine Learning: Science
and Technology, 4(4):045043, 2023.

Daniel S Levine, Muhammed Shuaibi, Evan Walter Clark Spotte-Smith, Michael G Taylor,
Muhammad R Hasyim, Kyle Michel, Ilyes Batatia, Gábor Csányi, Misko Dzamba, Peter Eastman,
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