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Abstract

Subsampling is used in convolutional neural networks (CNNs) in the form of
pooling or strided convolutions, to reduce the spatial dimensions of feature maps
and to allow the receptive fields to grow exponentially with depth. However, it
is known that such subsampling operations are not translation equivariant, unlike
convolutions that are translation equivariant. Here, we first introduce translation
equivariant subsampling/upsampling layers that can be used to construct exact
translation equivariant CNNs. We then generalise these layers beyond translations
to general groups, thus proposing group equivariant subsampling/upsampling. We
use these layers to construct group equivariant autoencoders (GAEs) that allow
us to learn low-dimensional equivariant representations. We empirically verify
on images that the representations are indeed equivariant to input translations
and rotations, and thus generalise well to unseen positions and orientations. We
further use GAEs in models that learn object-centric representations on multi-
object datasets, and show improved data efficiency and decomposition compared
to non-equivariant baselines.

1 Introduction

Convolutional Neural Networks (CNNs) are known to be more data efficient and show better
generalisation on perceptual tasks than fully-connected networks, due to translation equivariance
encoded in the convolutions: when the input image/feature map is translated, the output feature
map also translates by the same amount. In typical CNNs, convolutions are used in conjunction
with subsampling operations, in the form of pooling or strided convolutions, to reduce the
spatial dimensions of feature maps and to allow receptive field to grow exponentially with depth.
Subsampling/upsampling operations are especially necessary for convolutional autoencoders
(ConvAEs) (Masci et al., 2011) because they allow efficient dimensionality reduction. However,
it is known that subsampling operations implicit in strided convolutions or pooling layers are not
translation equivariant (Zhang, 2019), hence CNNs that use these components are also not translation
invariant. Therefore such CNNs and ConvAEs are not guaranteed to generalise to arbitrarily
translated inputs despite their convolutional layers being translation equivariant.

Previous work, such as Zhang (2019); Chaman and Dokmanić (2020), has investigated how to enforce
translation invariance on CNNs, but does not study equivariance with respect to symmetries beyond
translations, such as rotations or reflections. In this work, we first describe subsampling/upsampling
operations that preserve exact translation equivariance. The main idea is to sample feature maps on
an input-dependent grid rather than a fixed one as in pooling or strided convolutions, and the grid is
chosen according to a sampling index computed from the inputs (see Figure 1). Simply replacing the
subsampling/upsampling in standard CNNs with such translation equivariant subsampling/upsampling
operations leads to CNNs and transposed CNNs that can map between spatial inputs and low-
dimensional representations in a translation equivariant manner.
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Figure 1: Equivariant subsampling on 1D feature maps with a scale factor c = 2. The input feature
map has length 8, and initially we sample from odd positions determined by Equation (1) (top). When
the original feature map is shifted to the right by 1 unit (bottom left), the sampling index becomes 1,
so we instead sample from even positions. When the feature map is shifted to the right by 2 units
(bottom right), we again sample from odd positions, but the outputs have been shifted to the right by
1 unit correspondingly.

We further generalise the proposed subsampling/upsampling operations from translations to arbitrary
groups, proposing group equivariant subsampling/upsampling. In particular we identify subsampling
as mapping features on groups G to features on subgroups K (vice versa for upsampling), and
identify the sampling index as a coset in the quotient space G/K. See Appendix A for a primer
on group theory that is needed to describe this generalisation. We note that group equivariant
subsampling is different to coset pooling introduced in Cohen and Welling (2016), which instead
gives features on the quotient space G/K, and discuss differences in detail in Section 4. Similar
to the translation equivariant subsampling/upsampling, group equivariant subsampling/upsampling
can be used with group equivariant convolutions to produce group equivariant CNNs. Using such
group equvariant CNNs we can construct group equivariant autoencoders (GAEs) that separate
representations into an invariant part and an equivariant part.

While there is a growing body of literature on group equivariant CNNs (G-CNNs) (Cohen and Welling,
2016, 2017; Worrall et al., 2017; Weiler et al., 2018b,a; Thomas et al., 2018; Weiler and Cesa, 2019a),
such equivariant convolutions usually preserve the spatial dimensions of the inputs (or lift them to
even higher dimensions) until the final invariant pooling layer. There is a lack of exploration on
how to reduce the spatial dimensions of such feature maps while preserving exact equivariance, to
produce low-dimensional equivariant representations. This work attempts to fill in this gap. Such low-
dimensional equivariant representations can be employed in representation learning methods, allowing
various advantages such as interpretability, out-of-distribution generalisation, and better sample com-
plexity. When using such learned representations in downstream tasks such as abstract reasoning,
reinforcement learning, video modelling, scene understanding, it is especially important for represen-
tations to be equivariant rather than invariant in these tasks, because transformations and how they act
on feature spaces are critical information, rather than nuisance as in image classification problems.

In summary, we make the following contributions: (i) We propose subsampling/upsampling operations
that preserve translational equivariance. (ii) We generalise the proposed subsampling/upsampling op-
erations to arbitrary symmetry groups. (iii) We use equivariant subsampling/upsampling operations to
construct GAEs that gives low-dimensional equivariant representations. (iv) We empirically show that
representations learned by GAEs enjoys many advantages such as interpretability, out-of-distribution
generalisation, and better sample complexity.

2 Equivariant Subsampling and Upsampling

2.1 Translation Equivariant Subsampling for CNNs

In this section we describe the proposed translation equivariant subsampling scheme for feature maps
in standard CNNs. Later in Section 2.2, we describe how this can be generalised to group equivariant
subsampling for feature maps on arbitrary groups.

Standard subsampling Feature maps in CNNs can be seen as functions defined on the integer grid,
e.g. Z for 1D feature maps, and Z2 for 2D. Hence we represent feature maps as f : Z → Rd, where
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d is the number of feature map channels. For simplicity, we start with 1D and move on to the 2D
case. Typically, subsampling in CNNs is implemented as either strided convolution or (max) pooling,
and they can be decomposed as

CONVc
k = SUBSAMPLINGc ◦ CONV1

k

MAXPOOLc
k = SUBSAMPLINGc ◦ MAXPOOL1

k

where subscripts denote kernel sizes and superscripts indicate strides. c ∈ N is the scale factor for
SUBSAMPLING, and this operation simply restricts the input domain of the feature map from Z to cZ,
without changing the corresponding function values.

Translation equivariant subsampling In our equivariant subsampling scheme, we instead restrict
the input domain to cZ + i, the integers ≡ i mod c, where i is a sampling index determined by the
input feature map. The key idea is to choose i such that it is shifts by t(modc) when the input is
translated by t, to ensure that the same features are subsampled upon translation. Let i be given by
the mapping Φc : IZ → Z/cZ. IZ denotes the space of vector functions on Z and Z/cZ is the space
of remainders upon division by c.

i = Φc(f) = mod(argmax
x∈Z

∥f(x)∥1, c) (1)

where ∥ · ∥1 denotes L1-norm (other choices of norm are equally valid). Other choices for Φc are
equally valid as long as they satisfy translation equivariance, ensuring that the same features are
subsampled upon translation of the input:

Φc(f(· − t)) = mod(Φc(f) + t, c). (2)

Note that this holds for Equation (1) provided the argmax is unique, which we assume for now (see
Appendix B.1 for a discussion of the non-unique case). We can decompose the subsampled feature
map defined on cZ + i into its values and the offset index i, expressing it as [fb, i] ∈ (IcZ,Z/cZ),
where fb is the translated output feature map such that fb(cx) = f(cx+ i) for x ∈ Z.

The subsampling operation described above, which maps from IZ to (IcZ,Z/cZ) is translation
equivariant: when the feature map f is translated to the right by t ∈ Z, one can verify that fb will
be translated to the right by c⌊ i+t

c ⌋, and the sampling index for the translated inputs would become
mod(i+ t, c). We provide an illustration for c = 2 in Figure 1, and describe formal statements and
proofs later for the general cases in Section 2.2.

Multi-layer case For the subsequent layers, the feature map fb is fed into the next convolution,
and the sampling index i is appended to a list of outputs. When the above translation equivariant
subsampling scheme is interleaved with convolutions in this way, we obtain an exactly translation
equivariant CNN, where each subsampling layer with scale factor ck produces a sampling index
ik ∈ Z/ckZ. Hence the equivariant representation output by the CNN with L subsampling layers
is a final feature map fL and a L-tuple of sampling indices (i1, . . . , iL). This tuple can in fact be
expressed equivalently as a single integer by treating the tuple as mixed radix notation and converting
to decimal notation. We provide details of this multi-layer case in Appendix B.2, including a rigorous
formulation and its equivariance properties.

Translation equivariant upsampling As a counterpart to subsampling, upsampling operations
increase the spatial dimensions of feature maps. We propose an equivariant upsampling operation
that takes in a feature map f ∈ IcZ and a sampling index i ∈ Z/cZ, and outputs a feature map
fu ∈ IZ, where we set fu(cx + i) = f(cx) and 0 everywhere else. This works well enough in
practice, although in conventional upsampling the output feature map is often a smooth interpolation
of the input feature map. To achieve this with equivariant upsampling, we can additionally apply
average pooling with stride 1 and kernel size > 1.

2D Translation equivariant subsampling When feature maps are 2D, they can be represented as
functions on Z2. The sampling index becomes a 2-element tuple given by:

(x∗, y∗) = argmax(x,y)∈Z2∥f(x)∥1
(i, j) = (mod(x∗, c),mod(y∗, c))

and we subsample feature maps by restricting the input domain to cZ2 + (i, j). The multi-layer
construction and upsampling is analogous to the 1D-case.
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2.2 Group Equivariant Subsampling and Upsampling

In this section, we propose group equivariant subsampling by starting off with the 1D-translation
case in Section 2.1, and provide intuition for how each component of this special case generalises
to arbitrary discrete groups G. We then proceed to mathematically formulate group equivariant
subsampling, and prove that it is indeed G-equivariant.

Feature maps on groups First recall that the feature maps for the 1D-translation case were defined
as functions on Z, or f ∈ IZ for short. To extend this to the general case, we consider feature maps f
as functions on a group G, i.e. f ∈ IG = {f : G → V }2 where V is a vector space, as is done in e.g.
group equivariant CNNs (G-CNNs) (Cohen and Welling, 2016). Note that translating feature maps f
on Z by displacement u is effectively defining a new feature map f ′(·) = f(· − u). In the general
case, we say that the group action on the feature space is given by

[π(u)f ](g) = f(u−1g) (3)

where π is a group representation describing how u ∈ G acts on the feature space.

Recap: translation equivariant subsampling Recall that standard subsampling that occurs in
pooling or strided convolutions for 1D translations amounts to restricting the domain of the feature
map from Z to cZ, whereas equivariant subsampling also produces a sampling index i ∈ Z/cZ, an
integer mod c, and that this is equivalent to restricting the input domain to cZ + i. i is given by the
translation equivariant mapping Φc : IZ → Z/cZ. We can translate the input domain back to cZ,
and represent the output of subsampling as [fb, i] ∈ (IcZ,Z/cZ), where fb is the translated output
feature map and fb(cx) = f(cx+ i) for x ∈ Z.

Group equivariant subsampling Similarly in the general case, for a feature map f ∈ IG, standard
subsampling can be seen as restricting the domain from the group G to a subgroup K, whereas
equivariant subsampling additionally produces a sampling index pK ∈ G/K, where the quotient
space G/K = {gK : g ∈ G} is the set of (left) cosets of K in G. Note that we have rewritten i
as p to distinguish between the 1D translation case and the general group case. This is equivalent
to restricting the f to the coset pK. The choice of the coset pK is given by equivariant map
Φ : IG → G/K (the action of G on G/K is given by u(gK) = (ug)K for u, g ∈ G), such that
pK = Φ(f). This restriction of f to pK can also be thought of as having an output feature map fb
on K and choosing a coset representative element p̄ ∈ pK, such that fb(k) = f(p̄k). This choice of
coset representative is described by a function s : G/K → G, such that p̄ = s(pK). The function s
is called a section and should satisfy s(pK)K = pK.

Now let us formulate subsampling and upsampling operations Sb↓GK and Su↑GK mathematically and
prove its G-equivariance. Let IK = {f : K → V ′} be the space of feature map on K. Sb↓GK takes
in a feature map f ∈ IG and produces a feature map fb ∈ IK and a coset in G/K. In reverse, the
upsampling operation Su↑GK takes in a feature map in IK , a coset in G/K, and produces a feature
map in IG. We use a section s : G/K → G to represent a coset with a representative element in G,
and point out that equivariance holds for any choice of s.

Formally, given an equivariant map Φ : IG → G/K (we will discuss how to construct such a map
in Section 2.3), and a fixed section s : G/K → G such that p̄ = s(pK), the subsampling operation
Sb↓GK : IG → IK ×G/K is defined as:

pK = Φ(f), fb(k) = f(p̄k) for k ∈ K

[fb, pK] = Sb↓GK(f ; Φ), (4)

while the upsampling operation Su↑GK : IK ×G/K → IG is defined as:

fu(g) = f(p̄−1g) if g ∈ K else 0

fu = Su↑GK(f, pK). (5)

2This is not to be confused with the space of Mackey functions in, e.g., Cohen et al. (2019), and rather it is
the space of unconstrained functions on G.
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To make the output of the upsampling dense rather than sparse, one can apply arbitrary equivariant
smoothing functions such as average pooling with stride 1 and kernel size > 1, to compensate for the
fact that we extend with 0s rather than values close to their neighbours. In practice, we observe that
upsampling without any smoothing function works well enough.

The statement on the equivariance of Sb↓GK and Su↑GK requires we specify the action of G on the
space IK ×G/K, which we denote as π′. For any u ∈ G,

p′K = upK, f ′
b = π(p̄′−1up̄)fb

[f ′
b, p

′K] = π′(u)[fb, pK] (6)

Lemma 2.1. π′ defines a valid group action of G on the space IK ×G/K.

We can now state the following equivariance property (See Appendix D for a proof):
Proposition 2.2. If the action of group G on the space IG and IK × G/K are specified by π, π′

(as defined in Equations (3) and (6)), and Φ : IG → G/K is an equivariant map, then the
operations Sb↓GK and Su↑GK as defined in Equations (4) and (5) are equivariant maps between IG
and IK ×G/K.

In fact, we can also prove the converse (See Appendix D):

Proposition 2.3. If Sb↓GK : IG → IK ×G/K (as defined in Equation (4)) is an equivariant map,
then the corresponding Φ : IG → G/K must be equivariant.

The above implies that Φ must depend on the input feature map f .

2.3 Constructing Φ

We use the following simple construction of the equivariant mapping Φ : IG → G/K for subsam-
pling/upsampling operations, although any equivariant mapping would suffice. For an input feature
map f ∈ IG, we define

pK = Φ(f) := (argmax
g∈G

∥f(g)∥1)K (7)

Provided that the argmax is unique, it is easy to show that (up) · K = Φ(π(u)f), hence Φ is
equivariant. In practice one can insert arbitrary equivariant layers to f before and after we take the
norm ∥ · ∥1 to avoid a non-unique argmax (see Appendix F). Note that the argmax function alone
may not be noise-robust. In Appendix E.2, we empirically show that applying smoothing equivariant
layers before taking the argmax would improve the stability of the output sampling indices.

Non-unique argmax case When the input feature map f ∈ IG has inherent symmetries, i.e. there
exists u ∈ G, u ̸= e, such that f = π(u)f , one cannot avoid a non-unique argmax in Equation (7).
That is because if there is a unique argmax g∗ such that g∗ = argmaxg∈G ∥f(g)∥1, we would have:

f(u−1g∗) = f(g∗) = max
g∈G

∥f(g)∥1

Therefore u−1g∗ is also a valid argmax, hence the argmax is not unique. For symmetric inputs, the
equivariant map Φ would give a set of sampling indices (cosets) rather than a single one. If we
instead consider including this set of sampling indices in zeq, and let group acts on this set, it can
be shown that the exact equivariance would still hold. In practice, we uniformly sample a sampling
index from this set to perform subsampling, and the subsampled feature maps will be the same for
all sampling indices from this set because the inputs are symmetric. This complexity is unavoidable
because an equivariant map that maps the feature map to a single coset does not exist in this case.
However, perfectly symmetric inputs are very rare for real-world applications and we only encounter
this problem for synthetic data.

3 Application: Group Equivariant Autoencoders

Group equivariant autoencoders (GAEs) are composed of alternating G-convolutional layers and
equivariant subsampling/upsampling operations for the encoder/decoder. One important property
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of GAEs is that the final subsampling layer of the encoder subsamples to a feature map defined
on the trivial group {e}, outputting a vector (instead of a feature map) that is invariant. For the
1D-translation case, suppose the input to the final subsampling layer is a feature map f defined on Z.
Then the final layer produces an invariant vector fb(0) = f(iL) where iL = argmaxx∈Z ∥f(x)∥1.
Note that there is no scale factor cL here. Intuitively we can think of this as setting the scale factor
cL = ∞. Hence the encoder of the GAE outputs a representation that is disentangled into an
invariant part zinv = fb(0) (the vector output by the final subsampling layer) and an equivariant part
zeq = (i1, ..., iL).

For the general group case, instead of specifying scale factors as in Section 2.1, we specify a sequence
of nested subgroups G = G0 ≥ G1 ≥ · · · ≥ GL = {e}, where the feature map for layer l is defined
on subgroup GL. For example, for the p4 group G = Z ⋊ C4, we can use the following sequence for
subsampling: Z⋊C4 ≥ 2Z⋊C4 ≥ 4Z⋊C4 ≥ 8Z⋊C2 ≥ {e}. Note that for the final two layers of
this example, we are subsampling translations and rotations jointly.

We lift the input defined on the homogeneous input space to IG (see Appendix A.3 for details on
homogeneous spaces and lifting), and treat f0 ∈ IG as inputs to the autoencoders. The group
equivariant encoder ENC can be described as follows:

[fl, plGl] = Sb↓
Gl−1

Gl
(G-CNNE

l−1(fl−1); Φl)

[zinv, zeq] = [fL(e), (p1G1, p2G2, . . . , pLGL)] (8)
where l = 1, . . . , L and G-CNNl(·) denotes G-convolutional layers before the lth subsampling layer.

The decoder DEC simply goes in the opposite direction, and can be written formally as:
fL is defined on GL = {e} and fL(e) = zinv

fl−1 = G-CNND
l−1(Su↑

Gl−1

Gl
(fl, plGl)) (9)

where l = L, . . . , 1 and f̂ = f0 gives the final reconstruction.

Recall from Section 2.1 that the tuple (i1, . . . , iL) can be expressed equivalently as a single integer.
Similarly, the tuple (p1G1, p2G2, . . . , pLGL) can be expressed as a single group element in G. We
show in Appendix B.2 that the action implicitly defined on the tuple via Equation (6) simplifies
elegantly to the left-action on the single group element in G.

We now have the following properties for the learned representations (see Appendix D for a proof):
Proposition 3.1. When ENC and DEC are given by Equations (8) and (9), and the group actions are
specified as in Equation (3) and Equation (6), for any g ∈ G and f ∈ IG, we have

[zinv, g · zeq] = ENC(π(g)f)

π(g)f̂ = DEC(zinv, g · zeq)

4 Related Work

Group equivariant neural networks The equivariant subsampling/upsampling that we propose
deals with feature maps (functions) defined on the space of the group G or its subgroups K, which
transform under the regular representation with the group action. Hence our equivariant subsam-
pling/upsampling is compatible with lifting-based group equivariant neural networks defined on
discrete groups (Cohen and Welling, 2016; Hoogeboom et al., 2018; Romero and Hoogendoorn,
2020; Romero et al., 2020) that define a mapping between feature maps on G. We also discuss the
extension of group equivariant subsampling to be compatible with those defined on continuous/Lie
groups (Cohen et al., 2018a; Esteves et al., 2018; Finzi et al., 2020; Bekkers, 2020; Hutchinson et al.,
2021) in Section 6. This is in contrast to group equivariant neural networks that do not use lifting
and use irreducible representations, defining mappings between feature maps on the input space X.
(Cohen and Welling, 2017; Worrall et al., 2017; Thomas et al., 2018; Kondor et al., 2018; Weiler
et al., 2018b,a; Weiler and Cesa, 2019a; Esteves et al., 2020; Fuchs et al., 2020).

Coset pooling In particular, Cohen and Welling (2016) propose coset pooling, which is also a
method for equivariant subsampling. Here a feature map f on G is mapped onto a feature map Φ(f)
on G/K (as opposed to K, for our equivariant subsampling) as follows:

Φ(f)(gK) = POOLk∈Kf(gk) (10)
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such that the feature values on the coset gK are pooled. For the 1D-translation case, where G =
Z,K = cZ, this amounts to pooling over every cth pixel, which disrupts the locality of features as
opposed to our equivariant subsampling that preserves locality, and hence is more suitable to use
with convolutions for translation equivariance. See Figure 2 for a visual comparison. As such, the
p4-CNNs in Cohen and Welling (2016) use standard max pooling with stride=2 rather than coset
pooling for Z2, and coset-pooling is only used in the final layer to pool over feature maps across
90-degree rotations, achieving exact rotation equivariance but imperfect translation equivariance. In
our work, we use translation equivariant subsampling in the earlier layers and rotation equivariant
subsampling in the final layers to achieve exact roto-translation equivariance.

Figure 2: Coset (max) pooling vs. equivariant subsampling.

Unsupervised disentangling and object discovery GAEs produce equivariant (zeq) and invariant
(zinv) representations, effectively separating position and pose information with other semantic
information. This relates to unsupervised disentangling (Higgins et al., 2017; Chen et al., 2018; Kim
and Mnih, 2018; Zhao et al., 2017) where different factors of variation in the data are separated in
different dimensions of a low-dimensional representation. However unlike equivariant subsampling,
there is no guarantee of any equivariance in the low-dimensional representation, making the resulting
disentangled representations less interpretable. Works on unsupervised object discovery (Burgess
et al., 2019; Greff et al., 2019; Engelcke et al., 2020; Locatello et al., 2020) learn object-centric
representations, and we showcase GAEs in MONet (Burgess et al., 2019) where we replace their
VAE with a V-GAE in order to separate position and pose information and learn more interpretable
representations of objects in a data-efficient manner.

Shift-invariance in CNNs As early as Simoncelli et al. (1992), it has been discussed that shift-
invariance cannot hold for conventional subsampling. Although standard subsampling operations
such as pooling or strided convolutions are not exactly shift invariant, they do not prevent strong
performance on classification tasks (Scherer et al., 2010). Nonetheless, Zhang (2019) integrates anti-
aliasing to improve shift-invariance, showing that it leads to better performance and generalisation
on classification tasks. Chaman and Dokmanić (2020) explore a similar strategy to our equivariant
subsampling by partitioning feature maps into polyphase components and select the component
with the highest norm. However, unlike the proposed group equivariant subsampling/upsampling
which tackle general equivariance for arbitrary discrete groups, both works focus only on translation
invariance.

Equivariant/invariant autoencoders GAEs learn exact low-dimensional equivariant representa-
tions under the autoencoding framework, and this has also been explored in previous work. Locatello
et al. (2019) constructs autoencoders that are equivariant to the D12 group (30◦ rotations and reflec-
tions) but not to translations, and the dimension of their learned representation grows with the group
size. Lohit and Trivedi (2020) explores a rotation-invariant encoder on spheres with a global pooling
layer and a rotation-invariant loss function, without inserting subsampling layers between convolu-
tional layers. Moreover, unlike the work above that focuses on group equivariant neural networks,
Hinton et al. (2011); Sabour et al. (2017); Kosiorek et al. (2019) learn equivariant representations with
capsule networks. However, general capsule networks do not come guaranteed exact equivariances or
invariances.

5 Experiments

In this section, we compare the performance of GAEs with equivariant subsampling to their non-
equivariant counterparts that use standard subsampling/upsampling in object-centric representation
learning. We show that GAEs give rise to more interpretable representations that show better sample
complexity and generalisation than their non-equivariant counterparts. In Appendix E.1, we show
that we can also observe generalisation performance gains when using group equivariant subsampling
for classification tasks.
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Input Reconstruction

Input movie

Reconstructed movie with replaced

Figure 3: (Left) Manipulating reconstructions by modifying the equivariant part zeq. The second
column are the original reconstructions, which match the inputs well. The subsequent columns are
reconstructions decoded from modified zeq. We transform zeq with a sequence of group elements, and
show the resulting reconstructions. (Right) Manipulating reconstruction shape by modifying zinv.

Models and Baselines (G-)Convolutional autoencoders (G)ConvAE are composed of alternating
(G-)convolutional layers and subsampling/upsampling operations with a final MLPs applied to the
flattened feature maps. We categorize models by the types of equivariance preserved by the con-
volutional layers. We consider three different discrete symmetry groups: p1 (only translations), p4
(composition of translations and 90 degree rotations), p4m (composition of translations, 90 degree
rotations and mirror reflection). The baseline models are: ConvAE-p1 (standard convolutional autoen-
coders), GConvAE-p4, GConvAE-p4m, where the corresponding equivariance is preserved in the
(G-)convolutional layers but not in the subsampling/upsampling operations. The equivariant counter-
parts of these baseline models are GAE-p1, GAE-p4, GAE-p4m, where the subsampling/upsampling
operations are also equivariant. For baseline models, we use a scale factor of 2 for all subsam-
pling/upsampling layers. For GAEs, we subsample first the translations, then rotations, followed by
reflections, all with scale factor 2. e.g. for GAE-p4m, the feature maps at each layer are defined on the
following chain of nested subgroups: Z2⋊ (C4⋊C2) ≥ (2Z)2⋊ (C4⋊C2) ≥ (4Z)2⋊ (C4⋊C2) ≥
(8Z)2 ⋊ (C4 ⋊ C2) ≥ (16Z)2 ⋊ (C2 ⋊ C2) ≥ {e}. As in Cohen and Welling (2016), we rescale the
number of channels such that the total number of parameters of these models roughly match each
other.

Data To demonstrate basic properties of GAEs and compare sample complexity under the single
object scenario, we use Colored-dSprite (Matthey et al., 2017) and a modification of FashionMNIST
(Xiao et al., 2017), where we first apply zero-padding to reach a size of 64× 64, followed by random
shifts, rotations and coloring. For multi-object datasets, we use Multi-dSprites (Kabra et al., 2019)
and CLEVR6 which is a variant of CLEVR (Johnson et al., 2017) with up to 6 objects. All input
images are resized to a resolution of 64× 64.

See Appendix F and our reference implementation 3 for more details on hyperparameters and data
preprocessing. Our implementation is built upon open source projects Harris et al. (2020); Paszke
et al. (2019); Yadan (2019); Weiler and Cesa (2019b); Engelcke et al. (2020); Hunter (2007); Waskom
(2021).

5.1 Basic Properties: Equivariance, Disentanglement and Out-of-Distribution Generalization

Equivariance The encoder-decoder pipeline in GAEs is exactly equivariant. In Figure 3, we train
GAE-p4m on 6400 examples from Colored-dSprites, and we show how to manipulate reconstructions
by manipulating the equivariant representation zeq (left). If an image x is encoded into [zinv, zeq], then
decoding [zinv, g · zeq] will give g · x̂ where x̂ is the reconstruction of x. When the input has perfect
symmetries (e.g. squares, ellipses in Figure 3), zeq is obtained by sampling from a set of sampling
indices but different sampling indices in this set would give the same reconstruction (see Section 2.3).

Disentanglement The learned representations in GAEs are disentangled into an invariant part
zinv and an equivariant part zeq. In Figure 3 (left), we vary the equivariant part while the invariant
part remains the same. In Figure 3 (right), we show the frames of a movie of a heart, and show its
reconstruction after replacing zinv representing a heart with that of an ellipse. Note that the ellipse
shape undergoes the same sequence of transformations as the heart.

3https://github.com/jinxu06/gsubsampling
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ConvAE-p1 GConvAE-p4 GAE-p1 GAE-p4

Figure 4: Generalisation to out-of-distribution object locations and poses. During training, we
constrain shapes to be in the top-left quarter, and the orientation to be always less than 90 degrees.
On the right, we compare the error of reconstructions of different models generalise on objects at
unseen locations in the first row, and how they generalise to unseen orientations in the second row.

Figure 5: Reconstruction error on single object datasets

Out-of-distribution generalisation GAEs can generalise to data with unseen object locations and
poses. We train an GAE-p4 on 6400 constrained training examples, where we only use examples
with locations in the top-left quarter and orientations within [0, 90] degrees, as shown in Figure 4.
During test time, we evaluate mean squared error (MSE) of reconstructions on unfiltered test data to
see how models generalise to unseen location and poses. Both ConvAE-p1 and GConvAE-p4 cannot
generalise well to object poses out of their training distribution. In contrast, GAE-p1 generalise to
any locations without performance degradation but not to unseen orientations, while GAE-p4, which
encodes both translation and rotation equivariance, generalises well to all locations and orientations.
We only use heart shapes for evaluation, because the square and ellipse have inherent symmetries
(see Section 2.3).

5.2 Single Object

Since GAEs are fully equivariant and can generalize to unseen object poses, it is natural to conjecture
that such models can significantly improve data efficiency when symmetry-transformed data points
are also plausible samples from the data distribution. We test this hypothesis on Colored-dSprites and
transformed FashionMNIST, and the results are shown in Figure 5. On both datasets, equivariant
autoencoders significantly outperform their non-equivariant counterparts for all considered training
set sizes. In fact, as shown in the figure, equivariant models trained with a smaller training set size
is often comparable to baseline models trained on a larger training set. Furthermore, the results
demonstrate that it is beneficial to consider symmetries beyond translations in these problems: for
both non-equivariant and equivariant models, variants that encode rotation and reflection symmetries
consistently show better performance compared to models that only consider the translation symmetry.

5.3 Multiple Objects

In multi-object scenes, it is often more interesting to consider local symmetries associated with
objects rather than the global symmetry for the whole image. To exploit object symmetries in
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Table 1: Reconstruction error MSE (×10−3) (mean(stddev) across 5 seeds) on multi-object datasets

Dataset Multi-dSprites CLEVR6

Training Set Size 3200 6400 12800 3200 6400 12800

MONet 2.661(0.382) 1.385(0.235) 0.326(0.076) 0.673(0.059) 0.562(0.057) 0.546(0.056)1

MONet-GAE-p1 0.659(0.103) 0.359(0.025) 0.264(0.042) 0.473(0.064) 0.432(0.052) 0.388(0.016)
MONet-GAE-p4 0.563(0.195) 0.317(0.060) 0.231(0.067) 0.461(0.025) 0.414(0.022) 0.413(0.018)

Table 2: Foreground segmentation performance in terms of ARI (mean(stddev) across 5 seeds)

Dataset Multi-dSprites CLEVR6

Training Set Size 3200 6400 12800 3200 6400 12800

MONet 0.597(0.022) 0.747(0.049) 0.891(0.009) 0.829(0.055) 0.878(0.023) 0.865(0.033)1

MONet-GAE-p1 0.762(0.049) 0.823(0.042) 0.889(0.013) 0.921(0.015) 0.917(0.032) 0.920(0.025)
MONet-GAE-p4 0.753(0.089) 0.833(0.072) 0.902(0.025) 0.878(0.055) 0.914(0.012) 0.910(0.011)

1 We excluded 2 outliers here as the baseline MONet occasionally fails during late-phase training.

image data, one needs to first discover objects and separate them from the background, which is
a challenging problem on its own. Currently, GAEs do not have inherent capability to solve these
problems. In order to investigate whether our models could improve data efficiency in multi-object
settings, we rely on recent work on unsupervised object discovery and only use GAEs to model
object components. More specifically, we explored replacing component VAEs in MONet (Burgess
et al., 2019) with V-GAEs (probabilistic version of our GAEs, where a standard Gaussian prior is
put on zinv and zeq remains deterministic), and train models end-to-end. Again we study the low
data regime to show results on data efficiency.

We train models on Multi-dSprites and CLEVR6 with training set sizes 3200, 6400 and 12800. We
consider two evaluation metrics: mean squared error (MSE) to measure the overall reconstruction
quality, and adjusted rand index (ARI), which is a clustering similarity measure ranging from 0
(random) to 1 (perfect) to measure object segmentation. As in Burgess et al. (2019), we only use
foreground pixels to compute ARI. Component VAEs in MONet use spatial broadcast decoders
(Watters et al., 2019) that broadcast the latent representation to a full scale feature map before feeding
them into the decoders, and the decoders therefore do not need upsampling. It has the implicit
effect of encouraging the smoothness of the decoder outputs. To encourage similar behaviour, we
add average pooling layers with stride 1 and kernel size 3 to our equivariant decoders. As shown
in Table 1, using GAEs to model object components significantly improves reconstruction quality,
which is consistent with our findings in single-object scenario. As shown in Table 2, using GAEs
to model object components also leads to better object discovery in the low data regimes, but this
advantage seems to diminish as the dataset becomes sufficiently large.

6 Conclusions, Limitations and Future Work

Conclusions We have proposed subsampling/upsampling operations that exactly preserve transla-
tion equivariance, and generalised them to define exact group equivariant subsampling/upsampling
for discrete groups. We have used these layers in GAEs that allow learning low-dimensional repre-
sentations that can be used to reliably manipulate pose and position of objects, and further showed
how GAEs can be used to improve data efficiency in multi-object representation learning models.

Limitations and Future work Although the equivariance properties of subsampling layers also
hold for Lie groups, we have not discussed the practical complexities that arise with the continuous
case, where feature maps are only defined on a finite subset of the group rather than the whole
group. We leave this as important future work, as well as application of equivariant subsampling
for tasks other than representation learning where equivariance/invariance is desirable e.g. object
classification, localization (See Appendix E.1 for a preliminary exploration of classification tasks).
Another limitation is that our work focuses on global equivariance, like most other works in the
literature. An important direction is to extend to the case of local equivariances e.g. object-specific
symmetries for multi-object scenes.
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