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ABSTRACT

Modeling multi-modal time-series data is critical for capturing system-level dy-
namics, particularly in biosignals where modalities such as ECG, PPG, EDA, and
accelerometry provide complementary perspectives on interconnected physiolog-
ical processes. While recent self-supervised learning (SSL) advances have im-
proved unimodal representation learning, existing multi-modal approaches often
rely on CLIP-style contrastive objectives that overfit to easily aligned features and
misclassify valid cross-modal relationships as negatives, resulting in fragmented
and non-generalizable embeddings. To overcome these limitations, we propose
ProtoMM, a novel SSL framework that introduces a shared prototype dictionary
to anchor heterogeneous modalities in a common embedding space. By clustering
representations around shared prototypes rather than explicit negative sampling,
our method captures complementary information across modalities and provides a
coherent “common language” for physiological signals. In this work, we focus on
developing a Pulse Motion foundation model with ProtoMM and demonstrate that
our approach outperforms contrastive-only and prior multimodal SSL methods,
achieving state-of-the-art performance while offering improved interpretability of
learned features.

1 INTRODUCTION

Digital biomarkers (for stress, physical activity, sleep, etc.) obtained from wearable sensors, such
as smart watches and smartphones, provide unprecedented opportunities to give individuals novel
insights into their states of health and wellness throughout their daily life, along with new tools
for managing their health-related behaviors (Rehg et al., 2017). In order to realize this potential,
however, it is critical to develop effective models for multi-modal time series biosignal data, so that
complementary sensing modalities can be leveraged to overcome the ambiguities and noise that are
inherent in wearable signals collected in the field environment.

Recently, there has been substantial progress in developing unimodal Foundation Models (FMs)
which are pre-trained using large datasets on modalities such as accelerometry (Xu et al., 2024b;
Yuan et al., 2024), ECG (Abbaspourazad et al., 2023; McKeen et al., 2024), and PPG (Saha et al.,
2025; Pillai et al., 2024). These models have demonstrated effective generalization to downstream
tasks and have established new benchmarks for performance. Building on these successes, recent
works have focused on the challenge of how to align multiple signal modalities in pretraining multi-
modal FMs, often using CLIP-style contrast objectives that pull temporally aligned signals together
(Thapa et al., 2024; Deldari et al., 2022; 2024; Zhang et al., 2025). A key challenge is to ensure
that the resulting multimodal embedding captures both between-modality information (i.e., features
shared across modalities, such as the features of the cardiac cycle that are present in all cardio-
vascular signals such as ECG, PPG, and ICG) and within-modality information (i.e., features that
are unique to a single modality, such as the signatures of kinematic motion that are present in ac-
celerometry). When modalities are highly complementary, such as PPG and accelerometry, there is
a danger that the alignment process could emphasize between-modality features at the expense of
within-modality features. This is because cardiovascular activity (as captured in the PPG signal) is
only indirectly connected to kinematic movement (as captured via accelerometry), e.g. through the
increase in cardiac activity which accompanies strenuous exercise. Emphasizing signal alignment
could inadvertently discard information which is unique to each modality and critical for down-
stream tasks such as stress detection.
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This paper introduces ProtoMM, a novel self-supervised alignment strategy for pre-training a pulse
motion foundation models with PPG and accelerometry signal modalities. The goal of ProtoMM
is to test the hypothesis that alignment of complementary signal modalities can be facilitated
via a prototype-based approach, in which biosignals are discretized into prototype vectors as
part of the embedding process. We hypothesize that these protypes will be effective in encoding
within-modality features and preserving them during the embedding process. ProtoMM achieves
this goal by first creating multiple augmented views from each modality. Embeddings from all
views, derived using different augmentations of the same modality or from different modalities
entirely, are then projected onto a shared set of prototype vectors. The model is trained using a
Multimodal Prototype Prediction loss, where the prototypes probabilities of one view must predict
the prototype assignment of another. By enforcing this consistency across all pairs of views, the
prototypes become discrete, learnable anchors for the shared latent space for both within-modality
and between-modality information. We develop and test ProtoMM for the task of joint multi-modal
modeling of PPG and accelerometry data. This is beneficial because PPG can be used to detect
the physiological stress response through cardiovascular changes (Jahanjoo et al., 2024), while
integrating accelerometer data is essential to disambiguate between responses due to physical
activity versus responses caused by psychological stress (Sevil et al., 2020; Sun et al., 2012).

We validate the potential of ProtoMM via thorough experimental evaluation that first demonstrate
how ProtoMM captures within and between modality information, next demonstrate how the
explicit modeling of latent states via discrete prototypes is particularly useful in our multimodal
setting. With this, ProtoMM achieves achieves superior performance against state-of-the-art
multimodal self-supervised learning methodologies, and we can qualitatively validate that our
prototypes capture morphological similarities with higher-level semantic information. We will
release our model weights and a codebase with the full training methodology, architecture, and
reproducible evaluation code, upon acceptance. The main contributions of this work are:

1. We introduce ProtoMM, a novel multimodal self-supervised framework for pulse motion foun-
dation model, that resolves a key limitation of existing alignment methods. By using a shared set
of prototypes and a swapped prediction objective, our model is designed to capture both within-
modality (unique) and between-modality (shared) information.

2. We conduct extensive experiments by evaluating its transferability on three downstream datasets
across six distinct tasks. We obtain superior performance, showing that ProtoMM consistently
outperforms leading multimodal and unimodal baselines.

3. We demonstrate that the explicit nature of our prototype-based learning leads to improved inter-
pretability. Through qualitative analysis, we show that individual prototypes can learn to repre-
sent specific, semantically meaningful physiological and behavioral states.

2 RELATED WORK

In recent years, learning useful representations from unlabeled sensor data has become the predom-
inant paradigm, leveraging the ease of wearable sensors to record large quantities of data in nat-
uralistic conditions (Bycroft et al., 2018). Popular approaches include future prediction (Narayan-
swamy et al., 2024; Haresamudram et al., 2021), contrasting between randomly augmented segments
(Tang et al., 2020; Haresamudram et al., 2022), probabilistic transformation prediction (Saeed et al.,
2019; Yuan et al., 2024), and reconstruction of randomly masked data (Haresamudram et al., 2020;
Narayanswamy et al., 2024; Xu et al., 2025; Miao et al., 2024).

Contrastive Representation Learning for Time-Series Data: Prior work has demonstrated that
contrasting randomly transformed windows of sensor data is highly effective, e.g., SimCLR (Tang
et al., 2020). Similarly, motif-based positive pair generation for contrastive training has shown great
promise (Xu et al., 2024a;b). Using data from a single modality, these methods essentially learn
within-modality information.

Alternatively, approaches like ColloSSL (Jain et al., 2022), CroSSL (Deldari et al., 2024), and CO-
COA (Deldari et al., 2022) mine positives and negatives across sensors and modalities. They evalu-
ate using diverse modalities, including accelerometers, gyroscopes, ECG, EMG, and EDA. As such,
a critical drawback is the non-trivial nature of mining the pairs. More recently, aligning sensor
data with natural language descriptions has emerged as an effective option, essentially adopting the
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Figure 1: ProtoMM processes augmented segments from multiple modalities (i.e. PPG and Ac-
celerometry) through dedicated encoders to produce the embeddings. The embeddings are then
projected onto a shared set of prototype vectors, and the model is trained with a Multimodal Proto-
type Prediction Loss (LMPP) that learns to capture both within- and between modality information
without relying on negative sampling.

CLIP framework (Radford et al., 2021) for time-series data. Methods such as IMU2CLIP (Moon
et al., 2022), Ts2Act (Xia et al., 2024), and SensorLM (Zhang et al., 2025) have demonstrated
the capabilities of such modeling. As such, a majority of these methods model only the com-
mon between-modality information. Our approach–ProtoMM–models both within- and between-
modality information. Further, it sidesteps the challenges associated with mining positive/negative
pairs by enforcing consistency between cluster assignments of augmented inputs.

Prototype-Based Representation Learning: Instead of instance-based discrimination used in ap-
proaches like SimCLR, SwAV (Caron et al., 2020) jointly clusters the data using prototype vectors,
and enforces consistency between soft cluster assignments produced by different augmented inputs.
VQ-VAE (Van Den Oord et al., 2017) also employs such vectors, and combines an autoencoder with
vector quantization in order to perform online clustering with hard assignment. This setup has been
extended to pose data as well (Zhang et al., 2023; Wang et al., 2024). Instead of the autoencoder,
VQ-Wav2vec (Baevski et al., 2019; 2020) and VQ-CPC (Haresamudram et al., 2024) use CPC (Oord
et al., 2018) as the base. As such, vector quantization based methods perform hard assignments of
the prototype vectors. Our work builds on SwAV, which performs soft cluster assignments, leading
to richer expressivity as there can be semantic overlap within the prototype vectors.

3 PROTOMM: METHODOLOGY AND DESIGN

We introduce ProtoMM, a multimodal self-supervised learning framework for pre-training pulse
motion foundation model, which learns semantically meaningful representations by aligning mul-
timodal time-series data to a shared set of prototypes. Our approach generalizes the swapped as-
signment prediction mechanism, originally proposed in the unimodal, two-view setting by SwAV
(Caron et al., 2020), to a more general setting involving an arbitrary number of modalities as well
as views per modality. By enforcing both within and between-modal consistency, the model learns
features that are robust to augmentations while being coherent across different sensor modalities.

3.1 PROBLEM SETUP AND NOTATION

We define a multimodal time-series as Xt = {Xt,1,Xt,2, . . . ,Xt,M}, where M is the number of
sensor modalities and Xt,m ∈ RTm×Cm represents the data for the m-th modality. The subscript
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t indicates that all modal data are temporally aligned to the same window; we omit it for brevity
when the context is clear. The dimensions Tm and Cm allow for varying sampling frequencies and
channel sizes across modalities.

A data augmentation module, A(·), is used to generate A distinct views for each modality, creating
an augmented set {X̃(a)

m } for all modalities m ∈ {1, . . . ,M} and views a ∈ {1, . . . , A}. Each
augmented view X̃

(a)
m is then passed through a modality-specific encoder Em(·) to produce a nor-

malized embedding E
(a)
m = Em(X̃

(a)
m ), where E

(a)
m ∈ RE . The resulting set of embeddings can

then be aligned using a shared prototype space.

3.2 SHARED PROTOTYPE SPACE

To align representations across modalities, we introduce a set of P trainable prototype vectors,
organized as columns in a matrix P = [p1,p2, . . . ,pP ] ∈ RE×P . This prototype space is shared
across all modalities and training instances, serving as a common set of semantic anchors.

Each embedding E
(a)
m is projected onto the prototypes yielding similarity scores S ∈ RP . To

convert these scores into a soft assignment, we use two distinct transformations. First, we compute
a probability distribution U

(a)
m using a softmax function with a temperature parameter τ . Second,

we compute an assignment target V(a)
m using the Sinkhorn-Knopp algorithm (Cuturi, 2013), which

enforces an equipartition constraint to prevent mode collapse by ensuring all prototypes are utilized
equally across a batch.

S(a)
m = E(a)

m P (1)

U (a)
m = Softmax(S(a)

m /τ) (2)

V (a)
m = Sinkhorn(S(a)

m ) (3)

Now, the probability vector U and an assignment target V can be aligned via a cross entropy loss:

ℓ(zt, qs) = −V · logU (4)

3.3 MULTIMODAL PROTOTYPE PREDICTION LOSS

The key intuition of our method is that any pair of views originating from the same underlying
system, regardless of modality, should be able to predict each other’s prototype assignment. This is
enforced through a swapped prediction loss comprising two components.

First, the within-modality loss, Lwithin-mod, enforces consistency between all pairs of augmentations
within a modality:

Lwithin-mod =

M∑
m=1

A∑
a=1

A∑
b=1,b ̸=a

ℓ
(
U (a)

m ,V (b)
m

)
(5)

Second, the between-modality loss, Lbetween-mod, enforces consistency between all pairs from
different modalities:

Lbetween-mod =

M∑
m=1

M∑
n=1,n̸=m

A∑
a=1

A∑
b=1

ℓ
(
U (a)

m ,V (b)
n

)
(6)

Our final objective, the Multimodal Prototype Prediction Loss (LMSP), is a linear combination of
these two losses, normalized for stability:

LMPP =
1

A×M
(αLwithin-mod + (1− α)Lbetween-mod), (7)

The hyperparameter α ∈ [0, 1] balances the contribution of the two objectives. Setting α = 1
reduces the objective to independent, unimodal swapped prediction on each modality found in SwAV
(Caron et al., 2020). In this work, we set α = 0.5 to equally weight both sources of learning.
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Figure 2: t-SNE of learned prototypes (gray), with k-means centroids (blue) and their top-three
nearest accelerometer time-series. Panel borders denote ground-truth labels (green = Unstressed,
red = Stressed). Each centroid captures a distinct motion motif, from active oscillatory bursts (top
left) to sedentary plateaus (top right).

4 EXPERIMENTAL DESIGN

In Section 4.1, we first detail our large-scale pre-training dataset, along with the architecture and
training settings. Then, in Section 4.2, we describe the unimodal and multimodal baselines that we
compare against. Finally, in Section 4.3, we discuss our downstream datasets, their associated tasks,
as well as our evaluation procedure.

4.1 PRE-TRAINING SETUP

Our pre-training data comprises the initial 10 days of data from the large-scale Mobile Open Obser-
vation of Daily Stressors (MOODS) study Neupane et al. (2024). It contains 794,872 synchronized
30-second segments of accelerometer and PPG signals from 122 participants (39 men, 77 women,
6 non-binary; mean age 38±13 years). The data was collected ”in-the-wild” from a wrist-worn
WearOS smartwatch as participants went about their daily lives without specific instructions. Fur-
ther details on the study design are available in Neupane et al. (2024).

To ensure fair comparison, all models and modalities use the same encoder architecture: a 1D
ResNet-26 with a kernel size of 11, a stride of 2, and a final embedding dimension of 512. The
only architectural difference is the number of input channels for the initial convolution layer: 3
for accelerometer data, 1 for PPG, and 4 for the early-fusion models that concatenate inputs. In
Table 1, the ”Input” column denotes early-fusion models with concatenated inputs as P+A and mul-
timodal models with separate encoders as P|A. We also use a consistent set of augmentations: for
the accelerometer, we use an empirically-established set comprising additive Gaussian noise, scal-
ing, 3D rotation, negation, time reversal, channel shuffle, segment shuffle, and time warping (Tang
et al., 2020; Xu et al., 2024b). For the single-channel PPG signal, we use the same set, omitting the
inapplicable rotation and channel shuffling augmentations.

We utilize the Adam optimizer (Kingma, 2014) with a learning rate of 10−5, no weight decay, and
batch size of 256. Models are trained for 100 epochs or 96 hours (whichever comes first) on an
NVIDIA L40S GPU. Both training and validation loss are calculated per batch but aggregated at
epoch level, and the checkpoint with lowest validation loss is used for all downstream experiments.

4.2 BENCHMARKS

We compare ProtoMM against a comprehensive suite of multimodal and unimodal self-supervised
baselines. Unless otherwise specified, all baselines are trained from scratch using the identical
pre-training setup described above. Shared or modality-specific projection heads are incorporated
following each baseline’s original specifications. The baselines are as follows:
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• CLIP (Radford et al., 2021; Thapa et al., 2024): Employs a contrastive loss to align the represen-
tations of temporally-paired between-modal signals.

• COCOA (Deldari et al., 2022): A multimodal contrastive method that aligns representations
across modalities. The positive pairs are obtained from other temporally aligned sensors, whereas
the negatives are mined from the same sensor, but from temporally misaligned data.

• CroSSL (Deldari et al., 2024): It stacks embeddings from modality-specific encoders, and per-
forms random masking in the embedding space. A between-modal aggregator is utilized to obtain
global embeddings, and the training is performed using the VICReg loss

• FOCAL (Liu et al., 2023): A multimodal contrastive method that factorized representations into
orthogonal between and within-modal subspaces, while enforcing temporal locality. Training in
the frequency domain uses temporal and spectral augmentations to form within-modal positives,
and temporally aligned sensors to form between-modal positives.

• SLIP (Mu et al., 2022): A straightforward multimodal method that combines SimCLR and CLIP
objectives to learn within and between-modality interactions, respectively.

• SimCLR (Chen et al., 2020): A unimodal contrastive learning framework that utilizes augmented
versions of input data. This is the unimodal version of SLIP.

• ProtoMM Within-Mod: An unimodal ablation of our method with α = 1 that only performs
within-modal. This is equivalent to applying SwAV (Caron et al., 2020).

4.3 DOWNSTREAM EVALUATION SETUP

For evaluation, we use three datasets that contain synchronous PPG and accelerometer data, along
with annotations: MOODS (stress detection, activity recognition) (Neupane et al., 2024), WESAD
(stress detection) (Schmidt et al., 2018), and PPG-DaLiA (activity recognition, instantaneous heart
rate prediction) (Reiss et al., 2019). All signals are resampled to 50 Hz to match the sampling
frequency in pre-training dataset. After pre-training is complete, we freeze the model encoders and
train a linear probe on the downstream tasks. For multimodal models, we generally will concatenate
the embeddings from the PPG and accelerometer encoders to form the final representation. This is
indicated by P+A in the ”Out” column in our Results Table 1 and 2. For unimodal baselines, we use
the single embedding directly. This is indicated by a P in the Out column in our Results Table 1.

• MOODS contains PPG and accelerometer signals collected using a Fossil Sport (Version 4) smart-
watch from 122 participants. For stress detection (Stressed vs. Unstressed), we split the dataset
into 1-minute windows following previous works (Mishra et al., 2018; Toshnazarov et al., 2024);
whereas for binary activity recognition (Stationary vs. Non-stationary), we use 20-second samples
for downstream evaluations.

• WESAD uses a wrist-worn Empatica E4 (McCarthy et al., 2016) to record accelerometer data
(at 32 Hz) and blood volume pulse (at 64 Hz) from 15 participants. The stress detection task
includes four sessions: Stress, Baseline, Amusement, and Meditation. For the binary classification
task, following prior work (Schmidt et al., 2018; Dahal et al., 2023; Lange et al., 2024), we drop
Meditation, merge Baseline and Amusement into Non-stress, while retaining the original Stress
sessions. Each session is segmented into non-overlapping 1-minute windows for downstream
evaluations.

• PPG-DaLiA contains accelerometer data (at 32 Hz) and blood volume pulse (at 64 Hz), collected
using an Empatiaca E4 (McCarthy et al., 2016) worn on the wrist and ECG (700 Hz) from chest-
worn RespiBAN (biosignalsplux, 2019) to offer the ground truth of heart rate prediction. Fifteen
subjects followed a semi-structured daily life protocol comprising eight distinct activities (Sitting,
Ascending and Descending stairs, Table soccer, Cycling, Driving, Lunch break, Walking, and
Working), with transient segments between activities annotated as an additional class. For model
input, we segment all signals into 8-second windows with a 2-second sliding step.

We report macro F1-score and accuracy for classification tasks (stress, activity) and mean absolute
error (MAE) and R2 for the regression task (heart rate prediction).

5 RESULTS AND DISCUSSION

In this section we discuss four key findings. First, we clearly demonstrate that prototype-based
approach improves upon the established contrastive learning setup. Next, we contrast ProtoMM
against a full suite of multimodal benchmarks and demonstrate state-of-the-art performance. Then,
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Table 1: Linear-probe evaluation of unimodal and multimodal baselines. ProtoMM achieves best
overall performance which indicates that grounding the alignment in a shared, discrete prototype
space is a more effective mechanism for learning both shared and unique features simultaneously.

MOODS WESAD PPG-DaLiA

Stress (2) Activity (2) Stress (4) Stress (2) Activity (9) HR (R)

Model In Out ↑F1 ↑Acc ↑F1 ↑Acc ↑F1 ↑Acc ↑F1 ↑Acc ↑F1 ↑Acc ↓MAE ↑R2

SimCLR A A 0.477 0.598 0.861 0.925 0.557 0.629 0.793 0.836 0.559 0.560 15.37 0.101
SimCLR P P 0.527 0.607 0.655 0.857 0.349 0.517 0.692 0.699 0.302 0.399 8.14 0.670
PMM WMod A A 0.464 0.604 0.857 0.924 0.533 0.584 0.675 0.726 0.586 0.577 15.45 0.097
PMM WMod P P 0.470 0.611 0.595 0.848 0.522 0.607 0.847 0.877 0.285 0.397 8.29 0.670
SimCLR P+A P+A 0.488 0.601 0.849 0.919 0.445 0.596 0.721 0.753 0.542 0.536 9.91 0.534
PMM WMod P+A P+A 0.467 0.600 0.836 0.913 0.486 0.562 0.753 0.795 0.543 0.547 15.07 0.155
CLIP P|A P+A 0.524 0.578 0.869 0.930 0.496 0.618 0.910 0.918 0.640 0.624 9.37 0.609
COCOA P|A P+A 0.520 0.579 0.858 0.924 0.508 0.607 0.778 0.808 0.620 0.601 9.43 0.615
CroSSL P|A P+A 0.461 0.622 0.751 0.882 0.431 0.494 0.783 0.808 0.553 0.540 11.47 0.464
FOCAL P|A P+A 0.514 0.590 0.846 0.918 0.632 0.708 0.866 0.890 0.595 0.599 12.17 0.410
SLIP P|A P+A 0.524 0.586 0.867 0.929 0.500 0.652 0.848 0.863 0.633 0.625 8.89 0.634
ProtoMM P|A P+A 0.532 0.591 0.872 0.932 0.623 0.719 0.910 0.918 0.656 0.638 8.74 0.648

KEY: Encoder (In)put, Final Embedding (Out)put; (A)ccel, (P)PG; + designates concatenation, | designates separate encoders

we demonstrate how ProtoMM performs well because it is able to effectively integrate within- and
between-modality information. Finally, we visualize the learned prototype space, and through ex-
amples show how the prototypes capture semantic meaning and specific morphologies.

Prototypes Explicitely Improve Performance. SLIP serves as the prototype-free analogue to
ProtoMM. We utilize identical architecture and augmentation set for both models, making them
equivalent up to the final embedding layer that produces E(a)

m . Then, ProtoMM projects these em-
beddings onto a learned set of prototypes before applying a swapped prediction loss across between-
and within-modality pairs, but SLIP directly applies a contrastive (NT-Xent) loss to the embeddings
themselves across all between- and within-modality pairs. Consequently, this comparison enables
us to quantify the contribution of the prototype mechanism.

The results in Table 1 confirm the advantages of our prototype-based method. It demonstrates su-
perior performance over its direct prototype-free analogue, SLIP, on every metric across all six
downstream tasks. The performance gains are particularly pronounced on the WESAD dataset,
where ProtoMM improves the F1-score for 4-class stress detection by a significant 24.6% (0.623 vs.
0.500) and for binary stress detection by over 7% (0.910 vs. 0.848).

Interestingly, performance gains remain isolated to the multimodal setting. In unimodal settings,
SimCLR consistently outperforms its prototype-based counterpart, ProtoMM W-Mod. This aligns
with prior work in unimodal time-series self-supervision (Meng et al., 2023). We hypothesize this
is for two reasons: first, prototypes may act as a shared, discretized vocabulary that provides a
common language to translate between disparate data streams like PPG and accelerometry. Second,
as a negative-free method, ProtoMM avoids the “false negative” problem of contrastive learning.
This issue is actively explored in the multimodal vision-language alignment domain (Byun et al.,
2024; Chun, 2025), suggesting its potential relevance for multimodal time-series alignment as well.

ProtoMM Achieves State-of-the-art Performance. Table 1 presents comparisons against all
baseline methods, which show that ProtoMM achieves SOTA results. It achieves the best overall
performance in 4/6 downstream tasks and outperforms all other multimodal methods in 5/6 tasks.

The results show a clear trend where multimodal models outperform their unimodal counterparts,
particularly on complex classification tasks. This highlights the value of alignment: one modality
provides essential context that the other lacks. For example, heart rate information from PPG can
help disambiguate activities with similar motion profiles from accelerometry, such as ascending
versus descending stairs classes in PPG DaLiA activity classification or how research has shown
that accelerometry and PPG signals can be used together for stress prediction (Sevil et al., 2020; Wu
et al., 2015). The one exception to this trend is in the HR regression tasks. This highlights a key
nuance in multimodal learning. Heart Rate is a metric that can be derived directly from the raw PPG
waveform, and accelerometry signal gives little to no information on the heart rate. Therefore, the
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Table 2: ProtoMM achieves the best performance at α=0.5, showing that the unified MPP objective
successfully captures both within- and between-modality information.

MOODS WESAD PPG-DaLiA

Stress (2) Activity (2) Stress (4) Stress (2) Activity (9) HR (R)

α Model In Out ↑F1 ↑Acc ↑F1 ↑Acc ↑F1 ↑Acc ↑F1 ↑Acc ↑F1 ↑Acc ↓MAE ↑R2

.5 ProtoMM P|A P+A 0.532 0.591 0.872 0.932 0.623 0.719 0.910 0.918 0.656 0.638 8.74 0.648
0 PMM BMod P|A P+A 0.461 0.604 0.719 0.874 0.578 0.663 0.783 0.808 0.496 0.502 10.45 0.536
1 PMM WMod P|A P+A 0.498 0.592 0.855 0.923 0.612 0.685 0.858 0.890 0.618 0.603 9.14 0.611

KEY: Encoder (In)put, Final Embedding (Out)put; (A)ccel, (P)PG; + designates concatenation, | designates separate encoders

Table 3: Integrating multimodal information into a unimodal embedding improves performance.
ProtoMM rows show the performance of an unimodal embedding that was pre-trained multimodally
(with both PPG and Accelerometer), while ProtoMM Within-Mod rows show the performance of an
embedding pre-trained in isolation on just that single sensor.

MOODS WESAD PPG-DaLiA

Stress (2) Acitivity (2) Stress (4) Stress (2) Activity (9) HR (R)

α Model In Out ↑F1 ↑Acc ↑F1 ↑Acc ↑F1 ↑Acc ↑F1 ↑Acc ↑F1 ↑Acc ↓MAE ↑R2

.5 ProtoMM P|A A 0.496 0.597 0.872 0.931 0.620 0.663 0.837 0.863 0.615 0.597 15.0 0.152
1 PMM WMod A A 0.464 0.604 0.857 0.924 0.533 0.584 0.675 0.726 0.586 0.577 15.5 0.097

.5 ProtoMM P|A P 0.541 0.613 0.747 0.882 0.518 0.607 0.855 0.863 0.332 0.426 8.16 0.686
1 PMM WMod P P 0.470 0.611 0.595 0.848 0.522 0.607 0.847 0.877 0.285 0.397 8.29 0.670

KEY: Encoder (In)put, Final Embedding (Out)put; (A)ccel, (P)PG; + designates concatenation, | designates separate encoders

inclusion of accelerometry within the embedding model only serves to further obfuscate the final
embedding, such that multimodal models generally do worse. However, ProtoMM is able to more
effectively disentangle the modalities, to better preserve within-modal PPG-specific information,
achieving the best multimodal performance.

Out of the multimodal baselines, CLIP, COCA, and CroSSL focusing on modeling only the
between-modal information, whereas SLIP, FOCAL and our ProtoMM method are the ones
that explicitly model both between and within-modal information. However, interestingly, the
models that model both do not uniformly outperform the models that model only between-modal
information. Despite SLIP augmenting the CLIP objective with an additional within-modal loss,
their overall performance is comparable as the 2nd best models after ProtoMM. This suggests that
standard contrastive losses may struggle to balance the two objectives, potentially over-emphasizing
the more difficult between-modal alignment. ProtoMM’s success indicates that grounding the
alignment in a shared, discrete prototype space is a more effective mechanism for learning both
shared and unique features simultaneously.

Finally, the table shows the early fusion models that concatenate the raw signals before encoder
input perform poorly. Within Table 1, they are marked as P+A in the In column. This finding
demonstrates that despite both being biosignals, a naive concatenation of PPG and accelerometry is
insufficient, and modality-specific encoders are essential for learning how to capture PPG-specific
and Accelerometry-specific features from the raw sensor data.

Balancing within- and between-modal objectives. The core advantage of ProtoMM lies in its abil-
ity to effectively simultaneously and effectively capture between- and within-modality information
through a unified objective, LMPP. We validate this design choice by modifying the loss weighting
parameter to be α = 1 , such that only within-modality (Lwithin-mod) information is learned or to be
α = 0, such that only between-modality (Lbetween-mod) information is learned.

Table 2 shows that the optimal performance is achieved at α = 0.5, demonstrating that successful
multimodal integration requires explicitly modeling both the unique contributions of each modality
and their synergistic interactions. The balanced objective enables ProtoMM to learn representa-
tions that are simultaneously invariant to modality-specific augmentations while being semantically
aligned across modalities.

Between-modal Knowledge Transfer to the Other Modality. We would like to further explore
how effective ProtoMM integrates Between-modal information by training ProtoMM normally, to
capture both between-modal and within-modal information, and then instead of concatenating the
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Figure 3: t-SNE of learned prototypes (gray), with k-means centroids (blue) and their top-three near-
est PPG time-series. Panel borders denote ground-truth labels (green = Unstressed, red = Stressed).
Each centroid captures a distinct pattern, from waveforms with high amplitude and variance (middle
left) to those with a steady baseline and spiky variances (bottom right).

outputs of each modality’s embedding for evaluation, instead just using one modality’s embedding at
a time, show by the 1st and 3rd rows in Table 3. This will help us investigate whether the modality’s
trained embedding captures more information than if it was trained independently. Therefore, the
baseline is training each modality independently with a unimodal ProtoMM Within-Mod (α = 1)
with only one modality as input, shown by the 2nd and 4th rows in Table 3.

As shown in Table 3, both encoders (i.e., for the accelerometer and PPG) outperform their unimodal
ProtoMM Within-Mod counterparts on nearly all tasks, despite being evaluated without the full
multimodal embedding. This indicates that the shared prototype space encourages each encoder to
develop representations that are semantically aligned with the broader physiological context across
modalities, not just its own signal characteristics, which results in more robust and informative
features even when deployed as a unimodal embedding.

Interpreting Prototypes. To demonstrate that the explicit nature of our prototype-based learning
leads to improved interpretability, we conduct a qualitative analysis on the WESAD stress detection
dataset. We cluster the learned prototypes with k-means clustering (k=15), then for a given learned
prototype centroid, we identify the accelerometer and PPG segments with highest cosine similar-
ity in the representation space. Figure 2 and 3 shows a t-SNE projection of all prototypes, with
representative examples highlighted alongside their top-3 nearest neighbors.

These neighbors exhibit both label consistency (stressed vs. unstressed) and coherent temporal dy-
namics that correspond to distinct physiological patterns (e.g., stable low-amplitude patterns, sharp
oscillations, near-static segments with abrupt changes, strong trapezoid-like movements). This sug-
gests that the shared prototype vectors are structured in the representation space in clusters that
exhibit both label consistency and coherent physiological patterns. Rather than operating as a black
box, ProtoMM’s prototypes function as semantically meaningful anchors that capture both morpho-
logical signal characteristics and higher-level physiological contexts, offering a tangible insights into
the latent physiological state.

6 CONCLUSION

In this paper, we presented ProtoMM, a prototype-based multimodal framework for self-supervised
learning on time-series data to pre-train a pulse motion foundation model. By leveraging a shared
prototype space, ProtoMM aligns embeddings from different sensor modalities and uncovers com-
mon latent physiological states. The learned prototypes act as cluster centers, structuring the rep-
resentation space into coherent groups that reflect both morphological similarities and higher-level
semantic consistency. Importantly, this explicit prototype space enhances interpretability, as individ-
ual prototypes correspond to meaningful physiological patterns. Comprehensive experiments across
three datasets and six downstream tasks demonstrate that ProtoMM consistently outperforms twelve
state-of-the-art baselines. Beyond contrastive or masking-based approaches, ProtoMM introduces a
prototype-based swapped prediction objective, offering a new perspective on representation learning
for multimodal time-series.
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7 REPRODUCIBILITY

Our Methods section in Section 3 presents the model and training setup, and Experiments section in
Section 4 describes the evaluation protocol and study design. Hyperparameters for every benchmark
appear in Appendix A.1. We will release our model weights and a codebase with the full training
methodology, architecture, and reproducible evaluation code, upon acceptance. The PPG-DaLiA
and WESAD datasets are publicly available, and Section 4.3 explains how we curate and preprocess
each one for our tasks.

8 ETHICS

Our paper develops models using physiological signals, with the goal of improving personal health.
We acknowledge the associated risks, including privacy issues and the possibility of widening health
disparities, as these models enable more detailed characterization of patients. Without effective reg-
ulation, patients may have limited control over their data, raising concerns about the upholding of
autonomy, a core principle of medical ethics. Our study uses de-identified data from IRB-approved
protocols, ensuring no participant identification information is included in our analysis. Neverthe-
less, we believe our work contributes positively to the field by advancing personalized health rec-
ommendations, which can enhance care quality, patient safety, and overall well-being. Additionally,
we acknowledge the use of LLMs to assist in editing and polishing the writing for this submission,
specifically, to edit phrasing and to clarify the framing of ideas in a manner that reflect the authors’
original intent.
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and Thomas Plötz. Masked reconstruction based self-supervision for human activity recognition.
In Proceedings of the 2020 ACM International Symposium on Wearable Computers, pp. 45–49,
2020.

Harish Haresamudram, Irfan Essa, and Thomas Plötz. Contrastive predictive coding for human
activity recognition. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies, 5(2):1–26, 2021.
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A APPENDIX

A.1 BENCHMARK IMPLEMENTATIONS

Our code will be made publicly available upon acceptance. All benchmark implementations ad-
here to the experimental setup described in Section 4, utilizing identical 1D ResNet-26 encoders
with global max temporal pooling to produce 512-dimensional embeddings. Each training sample
is transformed into two stochastic views, and augmentations are sampled with equal probability.
Training hyperparameters remain consistent across all methods as described in Section 4.1. Below
we detail the implementation-specific parameters for each baseline.
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• CLIP (Radford et al., 2021; Thapa et al., 2024): Pairwise contrastive alignment between tem-
porally paired modalities. We employ modality-specific single-layer projection heads with same
input and output dimensions (512). The temperature parameter is initialized to 1.0.

• COCOA (Deldari et al., 2022): We reimplement the original TensorFlow code (https://
github.com/cruiseresearchgroup/COCOA) in PyTorch while maintaining architec-
tural fidelity. Key parameters include temperature=0.1, scale loss=1/32, and lambd=3.9e-3, win-
dow = 100. Modality-specific projectors consist of a flattening layer followed by a linear projec-
tion to maintain dimensional consistency during training. Due to the method’s specific design,
global pooling is disabled during training.

• CroSSL (Deldari et al., 2024): We reimplement the original TensorFlow code (https://
github.com/Nokia-Bell-Labs/CroSSL) in PyTorch, which follows the original spatial
masking approach with coverage=0.9. Embeddings from modality-specific encoders are processed
through a shared projector network consists of several linear layers with ReLU activations in be-
tween, resulting in a final output dimension (proj size) of 32.

• FOCAL (Liu et al., 2023): We adapt the official implementation (https://github.com/
tomoyoshki/focal) to our codebase while preserving the core methodology. Modality-
specific projectors consist of two linear layers with ReLU activation. Key parameters include tem-
perature=0.5, sequence length=4, and loss weights: shared contrastive=1, private contrastive=1,
orthogonal=3, rank=5. Augmentations include standard temporal transformations followed by
frequency-domain phase shifting.

• SLIP (Mu et al., 2022): We implement both within- and between-modality contrastive losses
using the standard CLIP formulation with temperature initialized to 1.0.

• SimCLR (Chen et al., 2020): Unimodal contrastive learning with two augmented views per sam-
ple. temperature=0.1 is used for the contrastive loss.

All implementations maintain fairness through consistent encoder architecture, data preprocessing,
and evaluation protocols. Differences arise only in method-specific components as detailed above,
ensuring meaningful comparison while preserving each approach’s distinctive characteristics.
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