
A Unified Framework for Model Editing

Anonymous ACL submission

Abstract

We introduce a unifying framework that brings001
two leading "locate-and-edit" model editing002
techniques – ROME and MEMIT – under a003
single conceptual umbrella, optimizing for the004
same goal, which we call the preservation-005
memorization objective. ROME uses an006
equality constraint to perform one edit at a007
time, whereas MEMIT employs a more flex-008
ible least-square constraint that allows for009
batched edits. Following the preservation-010
memorization objective, we present Equality-011
constrained Mass Model Editing algorithm012
for Transformers or EMMET, a new batched013
memory-editing algorithm that uses a closed-014
form solution for the equality-constrained ver-015
sion of the preservation-memorization objec-016
tive. EMMET is a batched-version of ROME017
and is able to perform batched-edits up to a018
batch-size of 10,000 with very similar perfor-019
mance to MEMIT across multiple dimensions.020
With EMMET, we unify and achieve symmetry021
within the "locate-and-edit" algorithms, allow-022
ing batched-editing using both objectives.023

1 Introduction024

As new facts emerge constantly, it’s crucial to025

keep models up-to-date with the latest knowledge.026

Model editing (Yao et al., 2023) gives us the abil-027

ity to edit facts stored inside a model as well as028

update incorrectly stored facts. In this paper, we029

focus on two popular parameter modifying model030

editing methods which infuse knowledge within031

models without needing an additional hypernet-032

work (Chauhan et al., 2023). These methods are033

ROME (Rank-One Model Editing) (Meng et al.,034

2022a) and MEMIT (Mass Editing Memory in035

Transformer) (Meng et al., 2022b). These methods036

directly update specific "knowledge-containing"037

parts of the model without requiring the need to038

train additional models and can be applied to any039

transformer based large language model (LLMs).040

MEMIT also uniquely allows for batched edits (ap- 041

pendix A.1). 042

In this paper, we present a unifying conceptual 043

framework for ROME and MEMIT and show that 044

both methods optimize the same objective. We call 045

this the preservation-memorization objective of 046

model editing, where new knowledge is injected or 047

memorized such that representations of certain vec- 048

tors are preserved through the editing process. We 049

show that ROME optimizes an equality-constrained 050

version of the objective whereas MEMIT optimizes 051

a more relaxed least-squares version of the objec- 052

tive, which allows for a simple closed-form solu- 053

tion for making batched edits. We then highlight 054

that MEMIT consists of two separate steps - an 055

optimization objective and an algorithm that dis- 056

tributes the edits into multiple layers. The power 057

of MEMIT in many cases comes from these edit- 058

distribution algorithms. 059

Finally, we present a closed-form solution for 060

making batched edits with the equality-constraint 061

under the preservation-memorization objective in 062

the form of EMMET - an Equality-constrained 063

Mass Model Editing algorithm for Transformers. 064

With EMMET, batched edits can be performed for 065

batch sizes upto 10,000 with its performance match- 066

ing MEMIT across multiple dimensions. We evalu- 067

ate EMMET on three models - GPT2-XL (Radford 068

et al., 2019), GPT-J (Wang and Komatsuzaki, 2021) 069

and Llama-2-7b (Touvron et al., 2023) on standard 070

model editing datasets - CounterFact (Meng et al., 071

2022a,b) and zsRE (Levy et al., 2017). The code 072

for EMMET can be found here1. 073

The main contributions of our paper are: 074

• We unify two popular model editing tech- 075

niques (ROME and MEMIT) under the same 076

conceptual framework called the preservation- 077

memorization. 078

1https://github.com/myanonymousrepo/unified_
model_editing

1

https://github.com/myanonymousrepo/unified_model_editing
https://github.com/myanonymousrepo/unified_model_editing

Figure 1: A diagrammatic representation of the preservation-memorization objective.

• We disentangle the MEMIT objective from079

the MEMIT algorithm which distributes ed-080

its within multiple layers. We hope this081

sparks further research in edit-distribution al-082

gorithms.083

• We present a closed-form solution to equality-084

constrained memorization in the form of085

EMMET, a batched version of ROME. EM-086

MET is a new batched-editing algorithm that087

achieves symmetry between the two objec-088

tives of "locate-and-edit" class of algorithms089

and shows that batched edits can be made us-090

ing both objectives.091

2 Background092

Facts for model editing are usually represented in093

a key-value format where the key vector has max-094

imal correspondence to retrieval of a fact and the095

value vector enables us to get the target output after096

editing (Meng et al., 2022a; Geva et al., 2020). As097

an example, let us say we are editing a new fact098

into the model - "The president of USA is John099

Cena". In this fact, ke is the vector representation100

of the phrase - "The president of USA is," and ve is101

the vector representation of the output at the layer102

being edited such that "John Cena" is produced as103

output at the final layer of the model. This is picto-104

rially represented in step 2 in Figure 1. For a more105

detailed explanation of the creation of key-value106

vectors, we refer readers to (Meng et al., 2022a).107

The success of model editing is measured using108

standard model editing metrics (Meng et al., 2022a;109

Yao et al., 2023) described below:110

• Efficacy Score (ES) indicates if an edit has111

been successfully made to a model. It is 112

measured as the percentage of edits where 113

P (new fact) > P (old fact) for a query 114

prompt used to edit the model. 115

• Paraphrase Score (PS) represents the gen- 116

eralization ability of model under an edit. 117

It is measured as the percentage of edits 118

where P (new fact) > P (old fact) under para- 119

phrases of the query prompt. 120

• Neighborhood Score (NS) represents locality 121

of model editing. In other words, it measures 122

if editing of a fact affects other facts stored 123

inside a model. NS represents the percentage 124

of facts in the neighborhood of the edited fact 125

that remain unaltered post-edit. 126

• Generation Entropy (GE) represents the flu- 127

ency of a model post edit. It is calculated by 128

measuring the weighted average of bi-gram 129

and tri-gram entropies of text generated by an 130

edited model. This quantity drops if the gener- 131

ated text is repetitive, a common failure case 132

of model editing (Meng et al., 2022a; Gupta 133

and Anumanchipalli, 2024). 134

• Score (S) is a quantify defined by (Meng et al., 135

2022a) to represent a combination of edit suc- 136

cess, generalization and locality. It is the har- 137

monic mean of ES, PS, and NS. 138

2

Figure 2: Figure shows a diagrammatic representation of a transformer layer. The layer being edited by ROME,
MEMIT and EMMET is the projection weight matrix inside the MLP layer (Wproj).

3 Preservation-Memorization : A139

Unifying Framework for ROME and140

MEMIT141

Both ROME and MEMIT base their work on view-142

ing the weights of the feed-forward layer in a trans-143

former as linear associative memories (Kohonen,144

1972; Anderson, 1972). Under this paradigm, lin-145

ear operations in a transformer (feed-forward lay-146

ers) are viewed as a key-value store for information.147

In this section, we re-introduce both ROME and148

MEMIT in a new light - a unifying conceptual149

framework of the preservation-memorization ob-150

jective.151

Let W represent the weights of the feed-forward152

layer we want to edit2, and let k be a key-vector153

representative of a fact that we are either editing or154

preserving, and is the input vector to W . The layers155

being edited are shown in an expanded diagram of156

a transformer layer (Vaswani et al., 2017) in Figure157

2. The output of a single transformer layer for a158

general decoder-only LLM can be written as:159

al = LN(Att(hl−1) + hl−1) (1)160

ml = W l
proj

(
NL(W l

fca
l + blfc)

)
+ blproj (2)161

hl = LN(ml + al) (3)162

Here, Att is the multi-head attention function,163

NL refers to the non-linearity used in the MLP mod-164

ule of the model and LN refers to layer normaliza-165

tion. The keys are outputs of the first linear layer,166

or kl = NL(alW l
fc + blfc), whereas vl = ml. A167

detailed explanation on creation of key-vectors and168

value-vectors is given in Appendix A.3.169

In the model editing process, the weights of an170

intermediate layer of the model are changed from171

W0 to Ŵ , where k0 is used to indicate a key-vector172

2These layers are found by causal tracing methods (Meng
et al., 2022a,b)

representing facts we want to preserve from the 173

original model, and ke being key-vectors represent- 174

ing facts we want to insert into the model. Let ve 175

be the desired output at the layer being edited cor- 176

responding to input ke such that the correct fact is 177

recalled by the model when finally generating text. 178

Our objective is then to preserve the represen- 179

tations of selected input vectors before and after 180

editing, or in other words, minimize the error be- 181

tween W0k0 and Ŵk0, while forcing the output 182

representation of the vector ke to be ve, or in other 183

words - memorizing the fact represented by (ke, 184

ve). This process is shown pictorially in Figure 1. 185

In ROME-style, this objective of model editing 186

is optimized by the following equation: 187

argmin
Ŵ

∥∥∥ŴK0 −W0K0

∥∥∥︸ ︷︷ ︸
preservation

s.t. Ŵke = ve︸ ︷︷ ︸
memorization

(4) 188

where K0 = [k01 |k02 | . . . | k0N] is a matrix con- 189

taining all the vectors whose representations we 190

want to preserve in a row. 191

We call this the preservation-memorization ob- 192

jective of model editing because it allows us to 193

retain existing knowledge or skills of a model by 194

keeping the same representations of selected key- 195

vectors before and after editing, while memorizing 196

a new fact ke, whose representation are forced to 197

be ve, where ve is by definition the output repre- 198

sentation for ke that generates the target answer at 199

final layer. 200

The solution for ROME can then be written as: 201

Ŵ = W0 +∆ where (5) 202

∆ = (ve −W0ke)
kTe C

−1
0

kTe C
−1
0 ke

(6) 203

Here, C0 = K0K
T
0 is assumed to be an invert- 204

ible matrix and the denominator kTe C
−1
0 ke is a 205

3

scalar.206

MEMIT on the other hand optimizes a relaxed207

version of the same objective:208

argmin
Ŵ

λ||ŴK0 −W0K0||︸ ︷︷ ︸
preservation

+ ||ŴKE − VE ||︸ ︷︷ ︸
memorization

(7)209

where KE = [ke1 |ke2 | . . . | keE] is a matrix con-210

taining a row of vectors representing the edits we211

are making and VE = [ve1 |ve2 | . . . | veE] represents212

their target representations.213

The above optimization objective aims to mod-214

ify the output representations of vectors in KE to215

VE by minimizing the least square error between216

them instead of requiring them to be equal with217

an equality constraint. This is the major differ-218

ence between the objectives of ROME and MEMIT,219

where ROME poses the memorization part of the220

objective as an equality constraint whereas MEMIT221

relaxes the equality constraint to a least-square ob-222

jective. This allows Meng et al. (2022b) to find223

a closed-form solution for making E edits to the224

model in a single update, represented by the matrix225

KE . The solution for the MEMIT objective is:226

Ŵ = W0 +∆ where

∆ =
(
VE −W0KE

)
KT

E

(
λC0 +KEK

T
E

)−1

(8)227

We deliberately write the first term in both solu-228

tions in a similar form. The first term in ∆ repre-229

sents the residual error (represented by R) of the230

new associations (KE , VE) when evaluated on the231

old weights W0. R ≜ ve−W0ke is a vector in case232

of ROME since we are only able to make singular233

edits, whereas R ≜ VE − W0KE is a matrix for234

MEMIT consisting of a row of vectors correspond-235

ing to each edit in the batch.236

To summarize, in this section we show that237

ROME and MEMIT can be seen as two realiza-238

tions of the preservation-memorization (PM) ob-239

jective of model editing, where ROME enforces240

memorization using an equality constraint whereas241

MEMIT enforces memorization as a least square242

objective. The least-square constraint in MEMIT243

allows to reach a closed form solution for batch244

updates.245

4 Edit-Distribution Algorithms246

The difference in objectives is not the only differ-247

ence between ROME and MEMIT. MEMIT (Meng248

et al., 2022b) also additionally distributes its ed- 249

its into multiple layers, which has been one of the 250

reasons for success of MEMIT at large batch sizes. 251

This distribution is done by using the formula: 252

∆l =

(
V L
E −W l

0K
l
E

)
L− l + 1

K lT
E

(
C l
0 +K l

EK
lT
E

)−1

(9) 253

where ∆l represents the change in weights at 254

layer l, where l ∈ {L−(n−1), L−(n−2), . . . L} 255

represents one of the n layers being edited. V L
E = 256

VE are the representations of the fact being edited 257

at the final edit layer, which is represented by L. 258

All other representations of KE and C0 are calcu- 259

lated at the layer l being edited. For n = 1, the 260

formula reduces to equation 8. We call this algo- 261

rithm a type of edit-distribution algorithm, which 262

is applied post-hoc after finding the closed-form 263

solutions to the PM-objective. 264

The edit-distribution algorithm is separate from 265

the solutions of the ROME and MEMIT objectives, 266

therefore, we can apply the edit-distribution algo- 267

rithm when using ROME, as well as use MEMIT 268

without distributing the edits into multiple layers. 269

The formula for using the MEMIT edit-distribution 270

algorithm on ROME is as follows: 271

∆l = (vLe −W l
0k

l
e)

kl
T

e C l−1

0

klTe C l−1

0 kle
(10) 272

Prior works on model editing do not differen- 273

tiate between the MEMIT-objective and the edit- 274

distribution algorithm, and as a consequence we 275

never see edits using ROME being distributed to 276

multiple layers or MEMIT being used on only a 277

single layer. 278

4.1 Impact of edit-distribution Algorithms 279

The key advantage of the edit-distribution algo- 280

rithm is apparent when making batched edits. In 281

this section, we perform two experiments to ana- 282

lyze this. First, we compare single edits in ROME 283

and MEMIT with and without edit distribution on 284

1k randomly selected facts from the CounterFact 285

dataset. Following that, we compare batched edit- 286

ing in MEMIT with and without edit distribution. 287

Both experiments are performed on three differ- 288

ent models - GPT2-XL (1.5B), GPT-J (6B) and 289

Llama2-7B. 290

The results are shown in Table 1 for edits without 291

distribution and Table 3 for edits with distribution. 292

4

ALGORITHM MODEL
Efficacy Generalization Locality Fluency Score

ES ↑ EM ↑ PS ↑ PM ↑ NS ↑ NM ↑ GE ↑ S ↑

ROME GPT2-XL (1.5B) 100.0 99.8 97.9 71.74 75.31 10.48 618.6 89.57

GPT-J (6B) 100.0 99.8 97.25 73.65 81.94 13.92 617.1 92.34

LLAMA-2 (7B) 100.0 99.9 96.7 68.65 80.79 20.62 585.96 91.69

MEMIT GPT2-XL (1.5B) 100.0 99.7 97.85 71.74 75.21 10.49 618.54 89.51

GPT-J (6B) 100.0 99.8 97.05 72.25 82.06 13.94 616.6 92.34

LLAMA-2 (7B) 99.6 97.4 91.7 57.8 82.83 21.68 593.04 90.86

Table 1: Comparison between ROME and MEMIT when editing only a single layer for CounterFact dataset.

(a) Efficacy Score (ES) (b) Paraphrase Score (PS) (c) Neighborhood Score (NS)

Figure 3: Performance comparison of model editing using MEMIT when editing just one layer against multiple
layers using the MEMIT edit-distribution algorithm on the CounterFact dataset.

We use the more stable version of ROME called r-293

ROME as presented in (Gupta and Anumanchipalli,294

2024) that does not lead to model collapse and295

improves generalization. We see that solutions296

to both ROME and MEMIT objectives perform297

equally well at making singular edits across dif-298

ferent metrics, without needing to distribute the299

edits to multiple layers. To highlight the useful-300

ness of edit-distribution algorithms, we compare301

MEMIT when making batched edits. The results302

are shown in Figure 3. When only editing a single303

layer, we see that MEMIT is able to successfully304

make batched edits up to a batch size of 1024 for305

GPT2-XL, 256 for Llama-2-7b and a batch-size306

as large as 4096 for GPT-J3. After this point, the307

performance of model editing increases when mak-308

ing edits on multiple layers, except for Llama-2-7b.309

All hyperparameters for all models were chosen as310

is from prior work (Meng et al., 2022a,b; Yao et al.,311

2023; Zhang et al., 2024) (appendix A.2).312

With these experiments, we want to highlight313

two key points - firstly, when comparing the effec-314

tiveness of two optimization objectives, the eval-315

uation should not be conflated with the edit dis-316

tribution algorithms. Secondly, the MEMIT edit-317

distribution algorithm is not perfect and currently is318

3In our experiments we find GPT-J to be an easier model
to edit compared to other models. This is both intriguing but
also not the best model to evaluate model editing success.

the only way to distribute edits into multiple layers, 319

where the residual in the update is distributed with 320

specific ratios through different layers. We hope 321

these experiments will bring more focus to edit dis- 322

tribution algorithms and boost further research in 323

these methods. 324

5 Introducing EMMET 325

In section 3, we show that ROME and MEMIT 326

are both algorithms optimizing the preservation- 327

memorization objective of model editing, where 328

ROME does memorization using an equality con- 329

straint wherease MEMIT uses a least-square objec- 330

tive for memorization. Thus, we ask the question - 331

can we perform batched-editing under an equality 332

constraint for memorization? 333

In this section, we provide a closed-form 334

solution for batched-editing where memoriza- 335

tion is done with equality constraints under 336

the presevation-memorization objective, and thus 337

present a batched-version of ROME, a method we 338

call EMMET - Equality-constrained Mass Model 339

Editing in a Transformer. 340

Derivation: Let K0 = [k01 |k02 | . . . | k0N] repre- 341

sent N key-vectors whose representations we want 342

to preserve. Additionally, let ke1, k
e
2 . . . k

e
E repre- 343

sent key-vectors for E facts we want to edit in the 344

model at the same time. Then according to the 345

5

(a) Efficacy Score (ES) (b) Paraphrase Score (PS) (c) Neighborhood Score (NS)

(d) Generation Entropy (GE) (e) Score (S)

Figure 4: Single layer editing performance of EMMET as a function of batch size when compared to MEMIT on
the CounterFact dataset.

preservation-memorization objective, we want to346

find new weights Ŵ for a weight matrix W0 such347

that:348

argmin
Ŵ

∥∥∥ŴK0 −W0K0

∥∥∥︸ ︷︷ ︸
preservation

s.t.

Ŵkei = vei ∀i ∈ [1, 2 . . . E]︸ ︷︷ ︸
memorization

(11)349

As can be seen in the above equation, the preser-350

vation of representations happens in the first term351

whereas memorization of all the new facts are352

forced using an equality constrain in the second353

term. The above equation is solved using lagrange-354

multipliers. The Lagrangian for the above equation355

for multiple equality constraints requires a summa-356

tion of lagrange multipliers and equals:357

L(Ŵ , λi) =
1

2
ŴK0K

T
0 Ŵ

T − ŴK0K
T
0 W

T
0

+
1

2
W0K0K

T
0 W

T
0 −

E∑
i=1

λT
i (Ŵkei − vei)

(12)358

To solve the system of equations, we put δL
δŴ

= 0359

to get:360

ŴK0K
T
0 = W0K0K

T
0 +

E∑
i=1

λik
eT

i (13)361

which is same as: 362

(Ŵ −W0)K0K
T
0 =

E∑
i=1

λik
eT

i = ΛKT
E (14) 363

where Λ = [λ1 |λ2 | . . . | λE] and KE = 364

[ke1 |ke2 | . . . | keE]. Here, Λ and KE are matrices 365

created using a row of vectors. We set K0K
T
0 = 366

C0 (assuming that C0 is invertible4) to get the up- 367

date equation of EMMET: 368

Ŵ = W0 + ΛKT
EC

−1
0 (15) 369

where Λ = [λ1 |λ2 | . . . | λE], KE = 370

[ke1 |ke2 | . . . | keE] and C0 = K0K
T
0 . 371

The unknown matrix of lagrange multipliers (Λ) 372

can be found using the constraint ŴKE = VE in 373

the previous equation. It comes out to be: 374

Λ = (VE −W0KE)
(
KT

EC
−1
0 KE

)−1
(16) 375

Replacing the above equation in equation 15 376

gives us the update equation for EMMET: 377

Ŵ = W0 +∆ where

∆ = (VE −W0KE)
(
KT

EC
−1
0 KE

)−1
KT

EC
−1
0
(17) 378

4In practice, we find that C0 is always invertible as long
as the number of key-vectors in K0 are large enough

6

(a) Efficacy Score (ES) (b) Paraphrase Score (PS) (c) Neighborhood Score (NS)

(d) Generation Entropy (GE) (e) Score (S)

Figure 5: Performance comparison of EMMET and MEMIT when distributing the edit over multiple layers using
the MEMIT edit-distribution algorithm on the CounterFact dataset.

We write the update equation of EMMET in a fa-379

miliar form, where the residual R = VE −W0KE380

is modified by some matrix operations to update381

the models with new edits. Additionally, when382

we put E = 1, the KE matrix reduces to a single383

vector ke and equation 17 reduces to the ROME384

update equation (equation 5). With EMMET, we385

complete the unification of ROME and MEMIT386

under the preservation-memorization objective and387

achieve a symmetry with the usage of these algo-388

rithms. EMMET allows for making batched-edits389

as well as singular when using equality constraints390

for memorization, much similar to MEMIT with391

least-square based memorization.392

5.1 Stabilizing EMMET393

There are two important matrices that are being394

inverted in EMMET and MEMIT. The first one is395

C0 = K0K
T
0 , which is defined identically in both396

algorithms, whereas D = KT
EC

−1
0 KE is only in-397

verted in EMMET. While the invertibility of both398

matrices are assumed, they are not always guaran-399

teed. Each of the matrices K0 or KE can be written400

as a row of column vectors as explained in section401

3, and thus C0 can be written as a sum of outer402

products:403

C0 = K0K
T
0 =

∑
i

k0i k
0T

i (18)404

where k0i represent a key-vector we want to pre- 405

serve. For an LLM of dimension d, the dimension- 406

ality of a key-vector is usually 4d (Figure 2), which 407

is the dimensionality of the square matrix C0. If C0 408

is a 4d-dimensional square matrix which is a sum- 409

mation of rank-1 matrices, it is invertible as long 410

as there are atleast 4d-independent vectors in the 411

summation, or 4d-independent vectors in K0. For 412

example, for Llama-2-7b with hidden dimension of 413

4096, the dimensionality of key vectors are 16384. 414

So as long as representations of atleast 16384 in- 415

dependent key-vectors are being preserved while 416

editing, C0 will be an invertible matrix. In practice, 417

we preserve representations of a much larger num- 418

ber of vectors, and hence this condition is almost 419

always satisfied. 420

The matrix D = KT
EC

−1
0 KE is a square matrix 421

of dimensionality equal to the number of edits. If 422

given that C0 is invertible, D is invertible as long 423

as KE is full-rank, which means all key-vectors 424

corresponding to facts being memorized are inde- 425

pendent of each other. While this is not guaranteed, 426

it can be verified before editing and facts corre- 427

sponding to non-independent keys can be removed 428

from a batch. In practice, we do not find invert- 429

ibility of D being an issue. However, we find that 430

D is often ill-conditioned, which means that the 431

ratio of the largest and smallest eigenvalues of D 432

explodes. This doesn’t necessarily mean that the 433

7

(a) EMMET (b) MEMIT

Figure 6: Downstream performance of post-edit Llama2-
7b model for EMMET and MEMIT on four GLUE tasks.
Batch index 0 refers to downstream performance before
editing, with the performance of 5 independent edits of
batch size 256.

matrix is singular (non-invertible), but it does mean434

that numerical computations involving the matrix435

inverse are unstable and can lead to large numerical436

errors. To counter this, we set D = D+αI , where437

α is set to 0.1 after an ablation over multiple batch438

sizes. This allows for stable batched edits using439

EMMET.440

5.2 Batch Editing with EMMET441

We begin by experimenting with EMMET for442

model editing with varied batch sizes on GPT2-443

XL, GPT-J and Llama-2-7b on the CounterFact444

and zsRE (Levy et al., 2017) datasets. The ex-445

act implementation details can be found in section446

A.2. We compare the performance of EMMET and447

MEMIT on batch sizes up to 10,000 while edit-448

ing both single (to directly compare the optimiza-449

tion objectives) and multiple layers. The single450

layer editing comparison between EMMET and451

MEMIT can be found in Figure 4. We see that452

both methods have almost identical performance in453

practice across different metrics. MEMIT performs454

slightly better than EMMET for Llama-2-7b, as in-455

dicated by ES, PS and S metrics. We then apply the456

MEMIT edit-distribution on EMMET and compare457

it with MEMIT. The results are shown in Figure 5.458

We see that in this case, EMMET performs slightly459

better than MEMIT for Llama-2-7b. The results on460

the zsRE dataset tell a similar story and can be seen461

in Figure 7 and 8. These results present EMMET462

as a viable new batched-editing algorithm.463

Previous work (Gu et al., 2024; Gupta et al.,464

2024) has shown that model editing is often accom-465

panied by model degradation. Gupta et al. (2024)466

show this by evaluating the edited model on down-467

stream tasks from the popular GLUE benchmark468

(Wang et al., 2018). We adopt their evaluation set-469

ting and evaluate both EMMET and MEMIT on470

four downstream tasks - sentiment analysis (SST2) 471

(Socher et al., 2013), paraphrase detection (MRPC) 472

(Dolan and Brockett, 2005), natural language infer- 473

ence (NLI) (Dagan et al., 2005; Haim et al., 2006; 474

Giampiccolo et al., 2007; Bentivogli et al., 2009) 475

and linguistic acceptability classification (Warstadt 476

et al., 2019) for doing downstream evaluation. The 477

results are shown in Figure 6 for a batch size of 478

256. The results for other batch sizes can be found 479

in Appendix A.2. We find that both EMMET and 480

MEMIT also degrade the model similarly. 481

Although EMMET is unable outperform 482

MEMIT, it is an important piece in unifying model 483

editing under the preservation-memorization frame- 484

work. Both algorithms are able to make successful 485

batched edits upto a batch-size of 10,000 and lead 486

to similar model degradation. EMMET imposes a 487

"theoretically" stronger memorization constraint, 488

yet we do not see an improvement in editing ef- 489

ficacy. This indicates that we may be reaching 490

the limit of model editing capabilities under the 491

preservation-memorization objective. 492

6 Conclusion 493

In this paper we unite two popular model 494

editing techniques, ROME and MEMIT, under 495

the preservation-memorization objective, with 496

ROME performing equality-constrained edits and 497

MEMIT operating under a least-square constraint. 498

We disentangle the edit-distribution algorithm pro- 499

posed in MEMIT from the optimization objective, 500

presenting them as separate entities, emphasizing 501

that a fair comparison of future model editing tech- 502

niques with MEMIT should be based on the objec- 503

tive of MEMIT rather than conflating it with the 504

edit-distribution algorithm. 505

Finally, we present EMMET - Equality- 506

constrained Mass Model Editing in a Transformer, 507

a new batched-editing algorithm based on 508

the preservation-memorization objective where 509

batched-memorization happens under an equality 510

constraint. Our experiments show that EMMET 511

performs similarly to MEMIT across multiple di- 512

mensions and metrics. EMMET completes batched 513

editing using both types of objectives and truly 514

unifies model editing under the preservation mem- 515

orization framework. We hope that this unifying 516

framework improves the intuitive understanding of 517

these algorithms and fuels future research based on 518

both intuition and mathematics. 519

8

7 Limitations520

While our technique may streamline error correc-521

tion processes, it does not address deeper struc-522

tural limitations within models, such as edited523

models inadvertently amplifying existing errors or524

introducing new inaccuracies. Furthermore, the525

effectiveness of our method varies depending on526

the complexity of the model architecture and the527

nature of the edited knowledge as evidenced by528

our experiments. Despite having a theoretically529

‘stronger’ memorization objective, EMMET is not530

able to outperform MEMIT, which also indicates531

that we might have reached a saturation point for532

model editing using naive implementations of the533

preservation-memorization objective, underscoring534

the fact that significant progress is yet to be made535

in understanding edit distribution and its implica-536

tions. Thus, while our work contributes to a deeper537

understanding of model behavior, it is essential to538

recognize and account for these limitations in the539

interpretation and application of our findings.540

8 Ethical Considerations541

While our model editing method allows users to542

effectively correct for errors or update facts in mod-543

els, caution is warranted. Our technique also intro-544

duces concerns for potential misuse such as mali-545

cious actors inserting harmful or false knowledge546

in LLMs that is absent from the original training547

data. As such, we warn readers that LLMs should548

not be considered reliable knowledge bases.549

References550

James A Anderson. 1972. A simple neural network551
generating an interactive memory. Mathematical552
biosciences, 14(3-4):197–220.553

Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo554
Giampiccolo. 2009. The fifth pascal recognizing555
textual entailment challenge. TAC, 7:8.556

Vinod Kumar Chauhan, Jiandong Zhou, Ping Lu, So-557
heila Molaei, and David A Clifton. 2023. A brief558
review of hypernetworks in deep learning. arXiv559
preprint arXiv:2306.06955.560

Roi Cohen, Eden Biran, Ori Yoran, Amir Globerson,561
and Mor Geva. 2023. Evaluating the ripple effects562
of knowledge editing in language models. arXiv563
preprint arXiv:2307.12976.564

Ido Dagan, Oren Glickman, and Bernardo Magnini.565
2005. The pascal recognising textual entailment chal-566
lenge. In Machine learning challenges workshop,567
pages 177–190. Springer.568

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao 569
Chang, and Furu Wei. 2021. Knowledge neu- 570
rons in pretrained transformers. arXiv preprint 571
arXiv:2104.08696. 572

Nicola De Cao, Wilker Aziz, and Ivan Titov. 2021. Edit- 573
ing factual knowledge in language models. arXiv 574
preprint arXiv:2104.08164. 575

Bill Dolan and Chris Brockett. 2005. Automati- 576
cally constructing a corpus of sentential paraphrases. 577
In Third International Workshop on Paraphrasing 578
(IWP2005). 579

Mor Geva, Roei Schuster, Jonathan Berant, and Omer 580
Levy. 2020. Transformer feed-forward layers are key- 581
value memories. arXiv preprint arXiv:2012.14913. 582

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and 583
William B Dolan. 2007. The third pascal recognizing 584
textual entailment challenge. In Proceedings of the 585
ACL-PASCAL workshop on textual entailment and 586
paraphrasing, pages 1–9. 587

Jia-Chen Gu, Hao-Xiang Xu, Jun-Yu Ma, Pan Lu, Zhen- 588
Hua Ling, Kai-Wei Chang, and Nanyun Peng. 2024. 589
Model editing can hurt general abilities of large lan- 590
guage models. arXiv preprint arXiv:2401.04700. 591

Akshat Gupta and Gopala Anumanchipalli. 2024. Re- 592
building rome: Resolving model collapse dur- 593
ing sequential model editing. arXiv preprint 594
arXiv:2403.07175. 595

Akshat Gupta, Anurag Rao, and Gopala Anu- 596
manchipalli. 2024. Model editing at scale leads to 597
gradual and catastrophic forgetting. arXiv preprint 598
arXiv:2401.07453. 599

R Bar Haim, Ido Dagan, Bill Dolan, Lisa Ferro, Danilo 600
Giampiccolo, Bernardo Magnini, and Idan Szpektor. 601
2006. The second pascal recognising textual entail- 602
ment challenge. In Proceedings of the Second PAS- 603
CAL Challenges Workshop on Recognising Textual 604
Entailment, volume 7, pages 785–794. 605

Teuvo Kohonen. 1972. Correlation matrix memories. 606
IEEE transactions on computers, 100(4):353–359. 607

Omer Levy, Minjoon Seo, Eunsol Choi, and Luke 608
Zettlemoyer. 2017. Zero-shot relation extrac- 609
tion via reading comprehension. arXiv preprint 610
arXiv:1706.04115. 611

Kevin Meng, David Bau, Alex Andonian, and Yonatan 612
Belinkov. 2022a. Locating and editing factual as- 613
sociations in gpt. Advances in Neural Information 614
Processing Systems, 35:17359–17372. 615

Kevin Meng, Arnab Sen Sharma, Alex Andonian, 616
Yonatan Belinkov, and David Bau. 2022b. Mass- 617
editing memory in a transformer. arXiv preprint 618
arXiv:2210.07229. 619

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea 620
Finn, and Christopher D Manning. 2021. Fast model 621
editing at scale. arXiv preprint arXiv:2110.11309. 622

9

Eric Mitchell, Charles Lin, Antoine Bosselut, Christo-623
pher D Manning, and Chelsea Finn. 2022. Memory-624
based model editing at scale. In International Con-625
ference on Machine Learning, pages 15817–15831.626
PMLR.627

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,628
Dario Amodei, Ilya Sutskever, et al. 2019. Language629
models are unsupervised multitask learners. OpenAI630
blog, 1(8):9.631

Richard Socher, Alex Perelygin, Jean Wu, Jason632
Chuang, Christopher D Manning, Andrew Y Ng, and633
Christopher Potts. 2013. Recursive deep models for634
semantic compositionality over a sentiment treebank.635
In Proceedings of the 2013 conference on empiri-636
cal methods in natural language processing, pages637
1631–1642.638

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017.639
Axiomatic attribution for deep networks. In Interna-640
tional conference on machine learning, pages 3319–641
3328. PMLR.642

Chenmien Tan, Ge Zhang, and Jie Fu. 2023. Massive643
editing for large language models via meta learning.644
arXiv preprint arXiv:2311.04661.645

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-646
bert, Amjad Almahairi, Yasmine Babaei, Nikolay647
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti648
Bhosale, et al. 2023. Llama 2: Open foundation649
and fine-tuned chat models, 2023. URL https://arxiv.650
org/abs/2307.09288.651

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob652
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz653
Kaiser, and Illia Polosukhin. 2017. Attention is all654
you need. Advances in neural information processing655
systems, 30.656

Alex Wang, Amanpreet Singh, Julian Michael, Felix657
Hill, Omer Levy, and Samuel R Bowman. 2018.658
Glue: A multi-task benchmark and analysis platform659
for natural language understanding. arXiv preprint660
arXiv:1804.07461.661

Ben Wang and Aran Komatsuzaki. 2021. GPT-J-662
6B: A 6 Billion Parameter Autoregressive Lan-663
guage Model. https://github.com/kingoflolz/664
mesh-transformer-jax.665

Alex Warstadt, Amanpreet Singh, and Samuel R Bow-666
man. 2019. Neural network acceptability judgments.667
Transactions of the Association for Computational668
Linguistics, 7:625–641.669

Yunzhi Yao, Peng Wang, Bozhong Tian, Siyuan Cheng,670
Zhoubo Li, Shumin Deng, Huajun Chen, and Ningyu671
Zhang. 2023. Editing large language models: Prob-672
lems, methods, and opportunities. arXiv preprint673
arXiv:2305.13172.674

Ningyu Zhang, Yunzhi Yao, Bozhong Tian, Peng Wang,675
Shumin Deng, Mengru Wang, Zekun Xi, Shengyu676
Mao, Jintian Zhang, Yuansheng Ni, et al. 2024. A677

comprehensive study of knowledge editing for large 678
language models. arXiv preprint arXiv:2401.01286. 679

Zexuan Zhong, Zhengxuan Wu, Christopher D Man- 680
ning, Christopher Potts, and Danqi Chen. 2023. 681
Mquake: Assessing knowledge editing in language 682
models via multi-hop questions. arXiv preprint 683
arXiv:2305.14795. 684

A Appendix 685

Batch Size Num Batches Total Edits
4 25 100
16 10 160
64 5 320
256 5 1280
1024 3 3072
4096 2 8192

10,000 1 10,000

Table 2: Statistics for batch size and number of batches
used to create the numbers for this paper.

A.1 Related Work 686

Model editing methods can be broadly classified 687

into two types - methods that add information in- 688

context (Mitchell et al., 2022; Zhong et al., 2023; 689

Cohen et al., 2023), and methods that modify the 690

parameters of underlying model (De Cao et al., 691

2021; Mitchell et al., 2021; Meng et al., 2022a,b; 692

Tan et al., 2023). Various model editing techniques 693

have been proposed in the past that tackle this prob- 694

lem in different ways. (Dai et al., 2021) first iden- 695

tify knowledge containing neurons in a model us- 696

ing integrated gradients (Sundararajan et al., 2017) 697

and then modify the selected neurons to edit facts 698

in a model. This method is not scalable with in- 699

creasing model sizes as it requires us to find ac- 700

tivations for each neuron in the model. (De Cao 701

et al., 2021) and (Mitchell et al., 2021) train a hy- 702

pernetwork (Chauhan et al., 2023) that generates 703

the new weights of the model being edited. While 704

these methods have been optimized to scale with 705

a square-root dependence on the size of the edited 706

model, it still requires training of additional edit- 707

ing models dependent on each source model being 708

edited. Other methods add the most relevant up- 709

dated knowledge in context (Mitchell et al., 2022; 710

Cohen et al., 2023; Zhong et al., 2023). While such 711

methods provide a viable alternative to model edit- 712

ing, in this paper, we focus on parameter-modifying 713

model editing methods, namely ROME (Meng 714

et al., 2022a) and (Meng et al., 2022b). 715

10

https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax

(a) Efficacy Accuracy (EM) (b) Paraphrase Accuracy (PM) (c) Neighborhood Accuracy (NM)

Figure 7: Single layer editing performance of EMMET as a function of batch size when compared to MEMIT on
the zsRE dataset.

ALGORITHM MODEL
Efficacy Generalization Locality Fluency Score

ES ↑ EM ↑ PS ↑ PM ↑ NS ↑ NM ↑ GE ↑ S ↑

ROME GPT2-XL (1.5B) 100.0 99.79 97.78 71.75 76.16 10.93 617.56 89.93

GPT-J (6B) 100.0 99.8 97.95 72.07 81.46 13.42 615.9 92.35

LLAMA-2 (7B) 99.68 92.29 98.1 73.34 77.59 19.07 589.44 90.6

MEMIT GPT2-XL (1.5B) 100.0 99.79 97.57 71.75 76.14 10.96 617.9 89.87

GPT-J (6B) 100.0 99.79 97.1 72.86 81.96 14.24 615.97 92.31

LLAMA-2 (7B) 99.58 91.34 97.99 72.18 77.8 19.27 589.39 90.63

Table 3: Comparison between ROME and MEMIT when editing multiple layers for the CounterFact dataset.

A.2 Implementation Details for ROME,716

MEMIT and EMMET717

We use the standard implementation of ROME and718

MEMIT based on (Meng et al., 2022a) and (Meng719

et al., 2022b). The range of layers edited for GPT2-720

XL is [13, 17] (Meng et al., 2022b), for GPT-J is721

[3 − 8] (Meng et al., 2022b) and for Llama-2-7b722

is [4 − 8] (Yao et al., 2023; Zhang et al., 2024).723

In single layer editing experiments, layer 17 was724

edited for GPT2-XL (Meng et al., 2022a), layer725

5 was edited for GPT-J (Meng et al., 2022a), and726

layer 5 was edited for Llama-2-7b (Yao et al., 2023;727

Zhang et al., 2024). These choices are directly728

taken from (Meng et al., 2022a) and (Meng et al.,729

2022b) for GPT2-XL and GPT-J. We follow the730

work of (Yao et al., 2023) for choices of layers and731

hyperparameters for llama-2-7b.732

We use the multi-counterfact dataset proposed733

in Meng et al. (2022b) which is created by remov-734

ing conflicting facts from the counterfact dataset735

(Meng et al., 2022a). We then select a random sam-736

ple of 10,000 facts so that the edits are influenced737

by the order in which the examples are presented738

in the dataset. To create the batched editing plots,739

we create multiple samples for each batch size and740

average over all the edits made in that set. We741

use batch sizes of 4, 16, 64, 256, 1024, 4096 and742

10k. For each batch size, we use multiple batches743

and average the evaluation over the total number of744

batches. The statistics are shown in Table 2. For 745

example, for a batch size of 1024, we first create 3 746

batches without replacement of size 1024, and per- 747

form batched edits on the 3 batches. The numbers 748

are then reported by averaging the performance 749

over 3*1024 facts which were edited in the model. 750

We sample over a few batches so the results are 751

not biased towards a single edited batched. We 752

decrease the number of batches used in the sam- 753

ple due to computational reasons, as the amount of 754

time for each experiment increases with the batch 755

size. The same steps are followed for the zsRE 756

dataset. 757

A.3 Key-Value creation in ROME/MEMIT 758

We create key and value vectors for editing using 759

the subject, relation, object framework presented 760

in ROME (Meng et al., 2022a). 761

Sample queries under this formulation include: 762

Subject Prompt Object
France "The capital of {S} is {O}" Paris

763

764

Model editing involves manipulating the model 765

such that we’re able to alter the object that is asso- 766

ciated with a given input subject and prompt. In 767

the table provided, the transformation from "Paris" 768

to "London" exemplifies a potential application of 769

model editing under the (s, r, o) formalization. 770

11

(a) Efficacy Accuracy (EM) (b) Paraphrase Accuracy (PM) (c) Neighborhood Accuracy (NM)

Figure 8: Single layer editing performance of EMMET as a function of batch size when compared to MEMIT on
the zsRE dataset.

The subject and prompt together represent the771

key vector, which is found by averaging over a set772

of texts that end with the subject s in the prompt p:773

ke =
1

N

N∑
j=1

k(xj + p)

where k(x) = NL(Wfca(x) + bfc)

and a(x) = LN(Att(hl−1(x)) + hl−1(x))

(19)774

p is the prompt containing the subject and rela-775

tion, and xj are 50 generated random sequences776

with lengths varying from 2 to 10 tokens to make777

the representation of the key vector more robust to778

paraphrasing. This also ensures that key vectors for779

different prompts are distinct enough as two base780

key vectors (with no random prefix) that have very781

similar representations move further apart when782

their representations with a prefix are averaged.783

LN represents layer normalization and NL is the784

non-linearity applied to the stream.785

Next, we choose a ve vector such that the new786

object o∗ is output for our ke vector. We set ve to787

minimize the loss as shown:788

argmin
ve

1

N

N∑
j=1

− logPG(hl=ve)[o
∗ | xj + p]

+DKL

(
PG(hl=ve)[x | p′] || PG(hl)=ve [x | p′]

)
(20)789

The first term tries to maximize the probability790

of the target objective o∗ for a prompt of the form791

xj + p where p is once again our desired prompt792

that was also used to generate the key vector. G(v)793

represents the output of generation s.t. the hidden794

layer hl = v. The second term tries to minimize795

the KL divergence when an unrelated prompt p′ is796

input to the model since we want our edit to keep 797

unrelated knowledge unchanged. 798

We refer readers to the original ROME paper 799

for more details on how key and value vector pairs 800

(ke, ve) for editing are generated. 801

A.4 EMMET and MEMIT Downstream 802

Performance Comparison 803

(a) EMMET (b) MEMIT

Figure 9: Model - Llama2-7b. Batch size 4.

(a) EMMET (b) MEMIT

Figure 10: Model - Llama2-7b. Batch size 16.

12

(a) EMMET (b) MEMIT

Figure 11: Model - Llama2-7b. Batch size 64.

(a) EMMET (b) MEMIT

Figure 12: Model - Llama2-7b. Batch size 1024.

(a) EMMET (b) MEMIT

Figure 13: Model - Llama2-7b. Batch size 4096.

(a) EMMET (b) MEMIT

Figure 14: Model - Llama2-7b. Batch size 10k.

13

	Introduction
	Background
	Preservation-Memorization : A Unifying Framework for ROME and MEMIT
	Edit-Distribution Algorithms
	Impact of edit-distribution Algorithms

	Introducing EMMET
	Stabilizing EMMET
	Batch Editing with EMMET

	Conclusion
	Limitations
	Ethical Considerations
	Appendix
	Related Work
	Implementation Details for ROME, MEMIT and EMMET
	Key-Value creation in ROME/MEMIT
	EMMET and MEMIT Downstream Performance Comparison

