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Abstract

We introduce a unifying framework that brings
two leading "locate-and-edit" model editing
techniques — ROME and MEMIT - under a
single conceptual umbrella, optimizing for the
same goal, which we call the preservation-
memorization objective. ROME uses an
equality constraint to perform one edit at a
time, whereas MEMIT employs a more flex-
ible least-square constraint that allows for
batched edits. Following the preservation-
memorization objective, we present Equality-
constrained Mass Model Editing algorithm
for Transformers or EMMET, a new batched
memory-editing algorithm that uses a closed-
form solution for the equality-constrained ver-
sion of the preservation-memorization objec-
tive. EMMET is a batched-version of ROME
and is able to perform batched-edits up to a
batch-size of 10,000 with very similar perfor-
mance to MEMIT across multiple dimensions.
With EMMET, we unify and achieve symmetry
within the "locate-and-edit" algorithms, allow-
ing batched-editing using both objectives.

1 Introduction

As new facts emerge constantly, it’s crucial to
keep models up-to-date with the latest knowledge.
Model editing (Yao et al., 2023) gives us the abil-
ity to edit facts stored inside a model as well as
update incorrectly stored facts. In this paper, we
focus on two popular parameter modifying model
editing methods which infuse knowledge within
models without needing an additional hypernet-
work (Chauhan et al., 2023). These methods are
ROME (Rank-One Model Editing) (Meng et al.,
2022a) and MEMIT (Mass Editing Memory in
Transformer) (Meng et al., 2022b). These methods
directly update specific "knowledge-containing"
parts of the model without requiring the need to
train additional models and can be applied to any
transformer based large language model (LLMs).

MEMIT also uniquely allows for batched edits (ap-
pendix A.1).

In this paper, we present a unifying conceptual
framework for ROME and MEMIT and show that
both methods optimize the same objective. We call
this the preservation-memorization objective of
model editing, where new knowledge is injected or
memorized such that representations of certain vec-
tors are preserved through the editing process. We
show that ROME optimizes an equality-constrained
version of the objective whereas MEMIT optimizes
a more relaxed least-squares version of the objec-
tive, which allows for a simple closed-form solu-
tion for making batched edits. We then highlight
that MEMIT consists of two separate steps - an
optimization objective and an algorithm that dis-
tributes the edits into multiple layers. The power
of MEMIT in many cases comes from these edit-
distribution algorithms.

Finally, we present a closed-form solution for
making batched edits with the equality-constraint
under the preservation-memorization objective in
the form of EMMET - an Equality-constrained
Mass Model Editing algorithm for Transformers.
With EMMET, batched edits can be performed for
batch sizes upto 10,000 with its performance match-
ing MEMIT across multiple dimensions. We evalu-
ate EMMET on three models - GPT2-XL (Radford
et al., 2019), GPT-J (Wang and Komatsuzaki, 2021)
and Llama-2-7b (Touvron et al., 2023) on standard
model editing datasets - CounterFact (Meng et al.,
2022a,b) and zsRE (Levy et al., 2017). The code
for EMMET can be found here!.

The main contributions of our paper are:

* We unify two popular model editing tech-
niques (ROME and MEMIT) under the same
conceptual framework called the preservation-
memorization.

1https: //github.com/myanonymousrepo/unified_
model_editing
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k, is the key vector representing
the query phrase

v, is a vector such that the output of
the LLM is “John Cena”

Figure 1: A diagrammatic representation of the preservation-memorization objective.

* We disentangle the MEMIT objective from
the MEMIT algorithm which distributes ed-
its within multiple layers. We hope this
sparks further research in edit-distribution al-
gorithms.

* We present a closed-form solution to equality-
constrained memorization in the form of
EMMET, a batched version of ROME. EM-
MET is a new batched-editing algorithm that
achieves symmetry between the two objec-
tives of "locate-and-edit" class of algorithms
and shows that batched edits can be made us-
ing both objectives.

2 Background

Facts for model editing are usually represented in
a key-value format where the key vector has max-
imal correspondence to retrieval of a fact and the
value vector enables us to get the target output after
editing (Meng et al., 2022a; Geva et al., 2020). As
an example, let us say we are editing a new fact
into the model - "The president of USA is John
Cena". In this fact, k. is the vector representation
of the phrase - "The president of USA is," and v, is
the vector representation of the output at the layer
being edited such that "John Cena" is produced as
output at the final layer of the model. This is picto-
rially represented in step 2 in Figure 1. For a more
detailed explanation of the creation of key-value
vectors, we refer readers to (Meng et al., 2022a).

The success of model editing is measured using
standard model editing metrics (Meng et al., 2022a;
Yao et al., 2023) described below:

 Efficacy Score (ES) indicates if an edit has

been successfully made to a model. It is
measured as the percentage of edits where
P(new fact) > P(old fact) for a query
prompt used to edit the model.

Paraphrase Score (PS) represents the gen-
eralization ability of model under an edit.
It is measured as the percentage of edits
where P(new fact) > P(old fact) under para-
phrases of the query prompt.

Neighborhood Score (NS) represents locality
of model editing. In other words, it measures
if editing of a fact affects other facts stored
inside a model. NS represents the percentage
of facts in the neighborhood of the edited fact
that remain unaltered post-edit.

Generation Entropy (GE) represents the flu-
ency of a model post edit. It is calculated by
measuring the weighted average of bi-gram
and tri-gram entropies of text generated by an
edited model. This quantity drops if the gener-
ated text is repetitive, a common failure case
of model editing (Meng et al., 2022a; Gupta
and Anumanchipalli, 2024).

Score (S) is a quantify defined by (Meng et al.,
2022a) to represent a combination of edit suc-
cess, generalization and locality. It is the har-
monic mean of ES, PS, and NS.
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Figure 2: Figure shows a diagrammatic representation of a transformer layer. The layer being edited by ROME,
MEMIT and EMMET is the projection weight matrix inside the MLP layer (Wp,.;).

3 Preservation-Memorization : A
Unifying Framework for ROME and
MEMIT

Both ROME and MEMIT base their work on view-
ing the weights of the feed-forward layer in a trans-
former as linear associative memories (Kohonen,
1972; Anderson, 1972). Under this paradigm, lin-
ear operations in a transformer (feed-forward lay-
ers) are viewed as a key-value store for information.
In this section, we re-introduce both ROME and
MEMIT in a new light - a unifying conceptual
framework of the preservation-memorization ob-
jective.

Let W represent the weights of the feed-forward
layer we want to edit?, and let k be a key-vector
representative of a fact that we are either editing or
preserving, and is the input vector to WW. The layers
being edited are shown in an expanded diagram of
a transformer layer (Vaswani et al., 2017) in Figure
2. The output of a single transformer layer for a
general decoder-only LLM can be written as:

a' = LN(Att(h!1) + nl~1) (1)
ml = Wiy (NL(Wha' +050)) + b0 @
ht = LN(m! 4+ d) (3)

Here, Att is the multi-head attention function,
NL refers to the non-linearity used in the MLP mod-
ule of the model and LN refers to layer normaliza-
tion. The keys are outputs of the first linear layer,
or k! = NL(alVV]lcC + bL.), whereas v! = ml. A
detailed explanation on creation of key-vectors and
value-vectors is given in Appendix A.3.

In the model editing process, the weights of an
intermediate layer of the model are changed from
Wy to W, where kg is used to indicate a key-vector

These layers are found by causal tracing methods (Meng
et al., 2022a,b)

representing facts we want to preserve from the
original model, and k. being key-vectors represent-
ing facts we want to insert into the model. Let v,
be the desired output at the layer being edited cor-
responding to input k. such that the correct fact is
recalled by the model when finally generating text.

Our objective is then to preserve the represen-
tations of selected input vectors before and after
editing, or in other words, minimize the error be-
tween Wyko and Wko, while forcing the output
representation of the vector k. to be v, or in other
words - memorizing the fact represented by (k.,
ve). This process is shown pictorially in Figure 1.

In ROME-style, this objective of model editing
is optimized by the following equation:

argmin HWKO — WOKQH s.t. Wk:e = Ve
W —_—

memorization

preservation
“)
where Ko = [k} [k |...| k%] is a matrix con-
taining all the vectors whose representations we
want to preserve in a row.

We call this the preservation-memorization ob-
jective of model editing because it allows us to
retain existing knowledge or skills of a model by
keeping the same representations of selected key-
vectors before and after editing, while memorizing
a new fact k., whose representation are forced to
be v, where v, is by definition the output repre-
sentation for k. that generates the target answer at
final layer.

The solution for ROME can then be written as:

W:WO—I—A where 5
kTest

A = e—Wk‘eA 6

e Wokdyrery, @

Here, Cy = KQKOT is assumed to be an invert-
ible matrix and the denominator k! Cj ke is a



scalar.
MEMIT on the other hand optimizes a relaxed
version of the same objective:

argmin ||W Ko — WoKo|| + |[WEKg — Val|

w N
preservation

memorization
(7
where Kg = [k{ |kS |...| k%] is a matrix con-
taining a row of vectors representing the edits we
are making and Vi = [vf |05 |...]| v;] represents
their target representations.

The above optimization objective aims to mod-
ify the output representations of vectors in Kg to
VE by minimizing the least square error between
them instead of requiring them to be equal with
an equality constraint. This is the major differ-
ence between the objectives of ROME and MEMIT,
where ROME poses the memorization part of the
objective as an equality constraint whereas MEMIT
relaxes the equality constraint to a least-square ob-
jective. This allows Meng et al. (2022b) to find
a closed-form solution for making E edits to the
model in a single update, represented by the matrix
KE. The solution for the MEMIT objective is:

W =Wy+A where

A= (Vg — WoKg)KE(ACo + KpKE) ™
(8)

We deliberately write the first term in both solu-
tions in a similar form. The first term in A repre-
sents the residual error (represented by R) of the
new associations (K g, VE) when evaluated on the
old weights Wy. R £ y. — Wok, is a vector in case
of ROME since we are only able to make singular
edits, whereas R = Vi — WK is a matrix for
MEMIT consisting of a row of vectors correspond-
ing to each edit in the batch.

To summarize, in this section we show that
ROME and MEMIT can be seen as two realiza-
tions of the preservation-memorization (PM) ob-
jective of model editing, where ROME enforces
memorization using an equality constraint whereas
MEMIT enforces memorization as a least square
objective. The least-square constraint in MEMIT
allows to reach a closed form solution for batch
updates.

4 Edit-Distribution Algorithms

The difference in objectives is not the only differ-
ence between ROME and MEMIT. MEMIT (Meng

et al., 2022b) also additionally distributes its ed-
its into multiple layers, which has been one of the
reasons for success of MEMIT at large batch sizes.
This distribution is done by using the formula:

L 1l
at = B ) o ety
©)
where Al represents the change in weights at
layer I, wherel € {L—(n—1),L—(n—2),...L}
represents one of the n layers being edited. VEL =
Vg are the representations of the fact being edited
at the final edit layer, which is represented by L.
All other representations of K g and Cy are calcu-
lated at the layer [ being edited. For n = 1, the
formula reduces to equation 8. We call this algo-
rithm a type of edit-distribution algorithm, which
is applied post-hoc after finding the closed-form
solutions to the PM-objective.

The edit-distribution algorithm is separate from
the solutions of the ROME and MEMIT objectives,
therefore, we can apply the edit-distribution algo-
rithm when using ROME, as well as use MEMIT
without distributing the edits into multiple layers.
The formula for using the MEMIT edit-distribution
algorithm on ROME is as follows:

T ~-1
ke CO

L _ (L l1.l
A= (ve WOke)/{?leTC(l)_lké

(10)

Prior works on model editing do not differen-
tiate between the MEMIT-objective and the edit-
distribution algorithm, and as a consequence we
never see edits using ROME being distributed to
multiple layers or MEMIT being used on only a
single layer.

4.1 Impact of edit-distribution Algorithms

The key advantage of the edit-distribution algo-
rithm is apparent when making batched edits. In
this section, we perform two experiments to ana-
lyze this. First, we compare single edits in ROME
and MEMIT with and without edit distribution on
1k randomly selected facts from the CounterFact
dataset. Following that, we compare batched edit-
ing in MEMIT with and without edit distribution.
Both experiments are performed on three differ-
ent models - GPT2-XL (1.5B), GPT-J (6B) and
Llama2-7B.

The results are shown in Table 1 for edits without
distribution and Table 3 for edits with distribution.



Efficacy Generalization Locality Fluency Score
ALGORITHM MODEL
ES 1 EM 1 PS 1 PM 1t NS 1 NM 1 GE 1 St
ROME GPT2-XL (1.5B) 100.0 99.8 97.9 71.74 75.31 10.48 618.6 89.57
GPT-J (6B) 100.0 99.8 97.25 73.65 81.94 13.92 617.1 92.34
LLAMA-2 (7B) 100.0 99.9 96.7 68.65 80.79 20.62 585.96 91.69
MEMIT GPT2-XL (1.5B) 100.0 99.7 97.85 71.74 75.21 10.49 618.54 89.51
GPT-J (6B) 100.0 99.8 97.05 72.25 82.06 13.94 616.6 92.34
LLAMA-2 (7B) 99.6 97.4 91.7 57.8 82.83 21.68 593.04 90.86
Table 1: Comparison between ROME and MEMIT when editing only a single layer for CounterFact dataset.
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Figure 3: Performance comparison of model editing using MEMIT when editing just one layer against multiple

layers using the MEMIT edit-distribution algorithm on the CounterFact dataset.

We use the more stable version of ROME called r-
ROME as presented in (Gupta and Anumanchipalli,
2024) that does not lead to model collapse and
improves generalization. We see that solutions
to both ROME and MEMIT objectives perform
equally well at making singular edits across dif-
ferent metrics, without needing to distribute the
edits to multiple layers. To highlight the useful-
ness of edit-distribution algorithms, we compare
MEMIT when making batched edits. The results
are shown in Figure 3. When only editing a single
layer, we see that MEMIT is able to successfully
make batched edits up to a batch size of 1024 for
GPT2-XL, 256 for Llama-2-7b and a batch-size
as large as 4096 for GPT-J°. After this point, the
performance of model editing increases when mak-
ing edits on multiple layers, except for Llama-2-7b.
All hyperparameters for all models were chosen as
is from prior work (Meng et al., 2022a,b; Yao et al.,
2023; Zhang et al., 2024) (appendix A.2).

With these experiments, we want to highlight
two key points - firstly, when comparing the effec-
tiveness of two optimization objectives, the eval-
uation should not be conflated with the edit dis-
tribution algorithms. Secondly, the MEMIT edit-
distribution algorithm is not perfect and currently is

3In our experiments we find GPT-J to be an easier model
to edit compared to other models. This is both intriguing but
also not the best model to evaluate model editing success.

the only way to distribute edits into multiple layers,
where the residual in the update is distributed with
specific ratios through different layers. We hope
these experiments will bring more focus to edit dis-
tribution algorithms and boost further research in
these methods.

5 Introducing EMMET

In section 3, we show that ROME and MEMIT
are both algorithms optimizing the preservation-
memorization objective of model editing, where
ROME does memorization using an equality con-
straint wherease MEMIT uses a least-square objec-
tive for memorization. Thus, we ask the question -
can we perform batched-editing under an equality
constraint for memorization?

In this section, we provide a closed-form
solution for batched-editing where memoriza-
tion is done with equality constraints under
the presevation-memorization objective, and thus
present a batched-version of ROME, a method we
call EMMET - Equality-constrained Mass Model
Editing in a Transformer.

Derivation: Let Ko = [k |9 |...| k%] repre-
sent IV key-vectors whose representations we want
to preserve. Additionally, let k7, k5 . .. k%, repre-
sent key-vectors for E facts we want to edit in the
model at the same time. Then according to the
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Figure 4: Single layer editing performance of EMMET as a function of batch size when compared to MEMIT on

the CounterFact dataset.

preservation-memorization objective, we want to
find new weights W for a weight matrix Wy such
that:

argmin HWKO — WOKOH s.t.
w

preservation
Wk =0vf Vi€ [l1,2...F]

memorization

1D

As can be seen in the above equation, the preser-
vation of representations happens in the first term
whereas memorization of all the new facts are
forced using an equality constrain in the second
term. The above equation is solved using lagrange-
multipliers. The Lagrangian for the above equation
for multiple equality constraints requires a summa-
tion of lagrange multipliers and equals:

A 1 . A .
LW, \) = QWKOKOT Wt - WKoKIwW!

E
1 Tyx T T 1571.€ e
+§W0K0KO wi — ; A (WES —of)

(12)
To solve the system of equations, we put ;V%/ =0
to get:
E
A~ T
WEKoK] = WoKoK] + Y Aiky (13)
i=1

which is same as:

E
(W — Wo)KoKd = N\ik§ = AKL (14)
=1

where A = [)\1 |)\2 || )\E] and KE =
(k§ |kS |...| k%]. Here, A and K are matrices
created using a row of vectors. We set Ky K g =
C) (assuming that C is invertible*) to get the up-
date equation of EMMET:

W =Wy + AKEC;! (15)

where A = [)\1 |/\2 ‘ . | )\E], KE =
(kS |kS |...] k%] and Cp = KoK{ .

The unknown matrix of lagrange multipliers (A)
can be found using the constraint WK g =Vgin
the previous equation. It comes out to be:

A= (Vg —WoKg) (KECy'Kg) ™" (16)

Replacing the above equation in equation 15
gives us the update equation for EMMET:

W =Wy+A where

_ —1
A= (Vg —WoKg) (KECy ' KE)

KLey!
a7

*In practice, we find that Cj is always invertible as long
as the number of key-vectors in K are large enough
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Figure 5: Performance comparison of EMMET and MEMIT when distributing the edit over multiple layers using
the MEMIT edit-distribution algorithm on the CounterFact dataset.

We write the update equation of EMMET in a fa-
miliar form, where the residual R = Vg — Wy Kg
is modified by some matrix operations to update
the models with new edits. Additionally, when
we put ¥ = 1, the Kg matrix reduces to a single
vector k. and equation 17 reduces to the ROME
update equation (equation 5). With EMMET, we
complete the unification of ROME and MEMIT
under the preservation-memorization objective and
achieve a symmetry with the usage of these algo-
rithms. EMMET allows for making batched-edits
as well as singular when using equality constraints
for memorization, much similar to MEMIT with
least-square based memorization.

5.1 Stabilizing EMMET

There are two important matrices that are being
inverted in EMMET and MEMIT. The first one is
Co = KoK, which is defined identically in both
algorithms, whereas D = KijCg 'K is only in-
verted in EMMET. While the invertibility of both
matrices are assumed, they are not always guaran-
teed. Each of the matrices K or K g can be written
as a row of column vectors as explained in section
3, and thus Cj can be written as a sum of outer
products:

Co = KoK§ = > KK (18)

where k! represent a key-vector we want to pre-
serve. For an LLM of dimension d, the dimension-
ality of a key-vector is usually 4d (Figure 2), which
is the dimensionality of the square matrix Cy. If Cy
is a 4d-dimensional square matrix which is a sum-
mation of rank-1 matrices, it is invertible as long
as there are atleast 4d-independent vectors in the
summation, or 4d-independent vectors in K. For
example, for Llama-2-7b with hidden dimension of
4096, the dimensionality of key vectors are 16384.
So as long as representations of atleast 16384 in-
dependent key-vectors are being preserved while
editing, Cy will be an invertible matrix. In practice,
we preserve representations of a much larger num-
ber of vectors, and hence this condition is almost
always satisfied.

The matrix D = K EC’O_ 'K is a square matrix
of dimensionality equal to the number of edits. If
given that C) is invertible, D is invertible as long
as K is full-rank, which means all key-vectors
corresponding to facts being memorized are inde-
pendent of each other. While this is not guaranteed,
it can be verified before editing and facts corre-
sponding to non-independent keys can be removed
from a batch. In practice, we do not find invert-
ibility of D being an issue. However, we find that
D is often ill-conditioned, which means that the
ratio of the largest and smallest eigenvalues of D
explodes. This doesn’t necessarily mean that the
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matrix is singular (non-invertible), but it does mean
that numerical computations involving the matrix
inverse are unstable and can lead to large numerical
errors. To counter this, we set D = D + oI, where
a is set to 0.1 after an ablation over multiple batch
sizes. This allows for stable batched edits using
EMMET.

5.2 Batch Editing with EMMET

We begin by experimenting with EMMET for
model editing with varied batch sizes on GPT2-
XL, GPT-J and Llama-2-7b on the CounterFact
and zsRE (Levy et al., 2017) datasets. The ex-
act implementation details can be found in section
A.2. We compare the performance of EMMET and
MEMIT on batch sizes up to 10,000 while edit-
ing both single (to directly compare the optimiza-
tion objectives) and multiple layers. The single
layer editing comparison between EMMET and
MEMIT can be found in Figure 4. We see that
both methods have almost identical performance in
practice across different metrics. MEMIT performs
slightly better than EMMET for Llama-2-7b, as in-
dicated by ES, PS and S metrics. We then apply the
MEMIT edit-distribution on EMMET and compare
it with MEMIT. The results are shown in Figure 5.
We see that in this case, EMMET performs slightly
better than MEMIT for Llama-2-7b. The results on
the zsRE dataset tell a similar story and can be seen
in Figure 7 and 8. These results present EMMET
as a viable new batched-editing algorithm.
Previous work (Gu et al., 2024; Gupta et al.,
2024) has shown that model editing is often accom-
panied by model degradation. Gupta et al. (2024)
show this by evaluating the edited model on down-
stream tasks from the popular GLUE benchmark
(Wang et al., 2018). We adopt their evaluation set-
ting and evaluate both EMMET and MEMIT on

four downstream tasks - sentiment analysis (SST2)
(Socher et al., 2013), paraphrase detection (MRPC)
(Dolan and Brockett, 2005), natural language infer-
ence (NLI) (Dagan et al., 2005; Haim et al., 2006;
Giampiccolo et al., 2007; Bentivogli et al., 2009)
and linguistic acceptability classification (Warstadt
et al., 2019) for doing downstream evaluation. The
results are shown in Figure 6 for a batch size of
256. The results for other batch sizes can be found
in Appendix A.2. We find that both EMMET and
MEMIT also degrade the model similarly.

Although EMMET is unable outperform
MEMIT, it is an important piece in unifying model
editing under the preservation-memorization frame-
work. Both algorithms are able to make successful
batched edits upto a batch-size of 10,000 and lead
to similar model degradation. EMMET imposes a
"theoretically" stronger memorization constraint,
yet we do not see an improvement in editing ef-
ficacy. This indicates that we may be reaching
the limit of model editing capabilities under the
preservation-memorization objective.

6 Conclusion

In this paper we unite two popular model
editing techniques, ROME and MEMIT, under
the preservation-memorization objective, with
ROME performing equality-constrained edits and
MEMIT operating under a least-square constraint.
We disentangle the edit-distribution algorithm pro-
posed in MEMIT from the optimization objective,
presenting them as separate entities, emphasizing
that a fair comparison of future model editing tech-
niques with MEMIT should be based on the objec-
tive of MEMIT rather than conflating it with the
edit-distribution algorithm.

Finally, we present EMMET - Equality-
constrained Mass Model Editing in a Transformer,
a new batched-editing algorithm based on
the preservation-memorization objective where
batched-memorization happens under an equality
constraint. Our experiments show that EMMET
performs similarly to MEMIT across multiple di-
mensions and metrics. EMMET completes batched
editing using both types of objectives and truly
unifies model editing under the preservation mem-
orization framework. We hope that this unifying
framework improves the intuitive understanding of
these algorithms and fuels future research based on
both intuition and mathematics.



7 Limitations

While our technique may streamline error correc-
tion processes, it does not address deeper struc-
tural limitations within models, such as edited
models inadvertently amplifying existing errors or
introducing new inaccuracies. Furthermore, the
effectiveness of our method varies depending on
the complexity of the model architecture and the
nature of the edited knowledge as evidenced by
our experiments. Despite having a theoretically
‘stronger’ memorization objective, EMMET is not
able to outperform MEMIT, which also indicates
that we might have reached a saturation point for
model editing using naive implementations of the
preservation-memorization objective, underscoring
the fact that significant progress is yet to be made
in understanding edit distribution and its implica-
tions. Thus, while our work contributes to a deeper
understanding of model behavior, it is essential to
recognize and account for these limitations in the
interpretation and application of our findings.

8 Ethical Considerations

While our model editing method allows users to
effectively correct for errors or update facts in mod-
els, caution is warranted. Our technique also intro-
duces concerns for potential misuse such as mali-
cious actors inserting harmful or false knowledge
in LLMs that is absent from the original training
data. As such, we warn readers that LLMs should
not be considered reliable knowledge bases.
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A Appendix

Batch Size | Num Batches | Total Edits

4 25 100

16 10 160

64 5 320

256 5 1280
1024 3 3072
4096 2 8192

10,000 1 10,000

Table 2: Statistics for batch size and number of batches
used to create the numbers for this paper.

A.1 Related Work

Model editing methods can be broadly classified
into two types - methods that add information in-
context (Mitchell et al., 2022; Zhong et al., 2023;
Cohen et al., 2023), and methods that modify the
parameters of underlying model (De Cao et al.,
2021; Mitchell et al., 2021; Meng et al., 2022a,b;
Tan et al., 2023). Various model editing techniques
have been proposed in the past that tackle this prob-
lem in different ways. (Dai et al., 2021) first iden-
tify knowledge containing neurons in a model us-
ing integrated gradients (Sundararajan et al., 2017)
and then modify the selected neurons to edit facts
in a model. This method is not scalable with in-
creasing model sizes as it requires us to find ac-
tivations for each neuron in the model. (De Cao
et al., 2021) and (Mitchell et al., 2021) train a hy-
pernetwork (Chauhan et al., 2023) that generates
the new weights of the model being edited. While
these methods have been optimized to scale with
a square-root dependence on the size of the edited
model, it still requires training of additional edit-
ing models dependent on each source model being
edited. Other methods add the most relevant up-
dated knowledge in context (Mitchell et al., 2022;
Cohen et al., 2023; Zhong et al., 2023). While such
methods provide a viable alternative to model edit-
ing, in this paper, we focus on parameter-modifying
model editing methods, namely ROME (Meng
et al., 2022a) and (Meng et al., 2022b).
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Figure 7: Single layer editing performance of EMMET as a function of batch size when compared to MEMIT on

the zsRE dataset.

Efficacy Generalization Locality Fluency Score
ALGORITHM MODEL
ES 1 EM 1 PS 1 PM 1 NS 1 NM 1 GE 1 ST
ROME GPT2-XL (1.5B) 100.0 99.79 97.78 71.75 76.16 10.93 617.56 89.93
GPT-J (6B) 100.0 99.8 97.95 72.07 81.46 13.42 615.9 92.35
LLAMA-2 (7B) 99.68 92.29 98.1 73.34 77.59 19.07 589.44 90.6
MEMIT GPT2-XL (1.5B) 100.0 99.79 97.57 71.75 76.14 10.96 617.9 89.87
GPT-J (6B) 100.0 99.79 97.1 72.86 81.96 14.24 615.97 92.31
LLAMA-2 (7B) 99.58 91.34 97.99 72.18 77.8 19.27 589.39 90.63

Table 3: Comparison between ROME and MEMIT when editing multiple layers for the CounterFact dataset.

A.2 Implementation Details for ROME,
MEMIT and EMMET

We use the standard implementation of ROME and
MEMIT based on (Meng et al., 2022a) and (Meng
et al., 2022b). The range of layers edited for GPT2-
XL is [13,17] (Meng et al., 2022b), for GPT-J is
[3 — 8] (Meng et al., 2022b) and for Llama-2-7b
is [4 — 8] (Yao et al., 2023; Zhang et al., 2024).
In single layer editing experiments, layer 17 was
edited for GPT2-XL (Meng et al., 2022a), layer
5 was edited for GPT-J (Meng et al., 2022a), and
layer 5 was edited for Llama-2-7b (Yao et al., 2023;
Zhang et al., 2024). These choices are directly
taken from (Meng et al., 2022a) and (Meng et al.,
2022b) for GPT2-XL and GPT-J. We follow the
work of (Yao et al., 2023) for choices of layers and
hyperparameters for llama-2-7b.

We use the multi-counterfact dataset proposed
in Meng et al. (2022b) which is created by remov-
ing conflicting facts from the counterfact dataset
(Meng et al., 2022a). We then select a random sam-
ple of 10,000 facts so that the edits are influenced
by the order in which the examples are presented
in the dataset. To create the batched editing plots,
we create multiple samples for each batch size and
average over all the edits made in that set. We
use batch sizes of 4, 16, 64, 256, 1024, 4096 and
10k. For each batch size, we use multiple batches
and average the evaluation over the total number of
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batches. The statistics are shown in Table 2. For
example, for a batch size of 1024, we first create 3
batches without replacement of size 1024, and per-
form batched edits on the 3 batches. The numbers
are then reported by averaging the performance
over 3*%1024 facts which were edited in the model.
We sample over a few batches so the results are
not biased towards a single edited batched. We
decrease the number of batches used in the sam-
ple due to computational reasons, as the amount of
time for each experiment increases with the batch
size. The same steps are followed for the zsRE
dataset.

A.3 Key-Value creation in ROME/MEMIT

We create key and value vectors for editing using
the subject, relation, object framework presented
in ROME (Meng et al., 2022a).

Sample queries under this formulation include:

Subject
France

Object
Paris

Prompt
"The capital of {S} is {O}"

Model editing involves manipulating the model
such that we’re able to alter the object that is asso-
ciated with a given input subject and prompt. In
the table provided, the transformation from "Paris"
to "London" exemplifies a potential application of
model editing under the (s, r, 0) formalization.
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Figure 8: Single layer editing performance of EMMET as a function of batch size when compared to MEMIT on

the zsRE dataset.

The subject and prompt together represent the
key vector, which is found by averaging over a set
of texts that end with the subject s in the prompt p:

1 N
Z k(z; + p)
J:1
where k(x) = NL(W;ca(x) + by.)
and a(z) = LN (Att ("1 (z)) + b~ ()

19)

p is the prompt containing the subject and rela-
tion, and x; are 50 generated random sequences
with lengths varying from 2 to 10 tokens to make
the representation of the key vector more robust to
paraphrasing. This also ensures that key vectors for
different prompts are distinct enough as two base
key vectors (with no random prefix) that have very
similar representations move further apart when
their representations with a prefix are averaged.
LN represents layer normalization and NL is the
non-linearity applied to the stream.

Next, we choose a v, vector such that the new
object o* is output for our k. vector. We set v, to
minimize the loss as shown:

N
o1 *
argmin - - Z —log PG(hl:ve)[O | ; + ]
Ve le
+Dxt, (Boizule | 7] 1| Pog—,[o | 7))
(20)

The first term tries to maximize the probability
of the target objective o™ for a prompt of the form
x; + p where p is once again our desired prompt
that was also used to generate the key vector. G(v)
represents the output of generation s.t. the hidden
layer h! = v. The second term tries to minimize
the KL divergence when an unrelated prompt p’ is
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input to the model since we want our edit to keep
unrelated knowledge unchanged.

We refer readers to the original ROME paper
for more details on how key and value vector pairs
(ke, ve) for editing are generated.

A4 EMMET and MEMIT Downstream
Performance Comparison
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Figure 9: Model - Llama2-7b. Batch size 4.
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Figure 12: Model - Llama2-7b. Batch size 1024.
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