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Abstract
Motif scaffolding seeks to design scaffold struc-
tures for constructing proteins with functions de-
rived from the desired motif, which is crucial for
the design of vaccines and enzymes. Previous
works approach the problem by inpainting or con-
ditional generation. Both of them can only scaf-
fold motifs with fixed positions, and the condi-
tional generation cannot guarantee the presence
of motifs. However, prior knowledge of the rel-
ative motif positions in a protein is not readily
available, and constructing a protein with multi-
ple functions in one protein is more general and
significant because of the synergies between func-
tions. We propose a Floating Anchor Diffusion
(FADiff) model. FADiff allows motifs to float
rigidly and independently in the process of diffu-
sion, which guarantees the presence of motifs and
automates the motif position design. Our exper-
iments demonstrate the efficacy of FADiff with
high success rates and designable novel scaffolds.
To the best of our knowledge, FADiff is the first
work to tackle the challenge of scaffolding mul-
tiple motifs without relying on the expertise of
relative motif positions in the protein. Code is
available at https://github.com/aim-uofa/FADiff.

1. Introduction
The design of proteins with specific functions is significant
for vaccines and enzymes (Correia et al., 2014; Linsky et al.,
2020; Sesterhenn et al., 2020). One crucial way is to de-
sign stable scaffolds to support desired motifs (Watson et al.,
2023; Trippe et al., 2023; Ingraham et al., 2023). Here
motifs refer to protein structure fragments, which impart
biological functions to proteins (Hutchinson & Thornton,
1996). Motif scaffolding has already proven to be significant
in the wet experiment since drugs have been designed by
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solving specific instances of the motif-scaffolding problem
(Procko et al., 2014; Siegel et al., 2010). The development
of generative models, especially diffusion models, speeds
up solving the motif scaffolding problem (Song et al., 2021;
Yim et al., 2023; Huang et al., 2022). Scaffolding multi-
ple motifs in one protein is more general and significant
because of the synergies between functions. However, previ-
ous works focus on scaffolding one motif at a fixed location.
Adapting these approaches to scaffolding multiple motifs
requires prior knowledge of relative positions between mul-
tiple motifs which is not readily available.

Previous works approach the motif-scaffold problem via
conditional generation or inpainting. Conditional generation
methods like SMCdiff (Trippe et al., 2023) are only able
to scaffold one motif while the presence of motifs is not
guaranteed. For inpainting methods, like Chroma (Ingraham
et al., 2023) and RFdiffusion (Watson et al., 2023), they
fix both the structure position and sequence position of
desired motifs. Consequently, to scaffold multiple motifs,
the relationship between their positions must be supplied to
the model in advance, necessitating domain knowledge that
isn’t always readily available. Even for a single motif, the
sequence position is fixed.

To tackle the challenge of supporting multiple motifs, we
propose a novel model dubbed Floating Anchor Diffusion
model (FADiff), which not only ensures the existence of
motifs but also automates motif position design without the
need for prior domain expertise. The underlying principle of
FADiff rests on treating the anchor motifs as rigid entities,
thus permitting motifs to maintain their structures while
floating. Given that a motif is composed of amino acids, it
is likewise guided within the network alongside other amino
acids. With the intent to preserve the structure of motifs, we
treat them as rigid anchors during the diffusion process. The
movement of motifs is dictated by their constituent amino
acids, which further shapes the formation of the diffusion
process with rigid movable substructures in this work.

Utilizing FADiff, we assure the presence of desired motifs,
considering them not just as generation conditions, but as
fundamental components of the generation results, analo-
gous to the inpainting. Contrarily, while inpainting methods
fixate the positions of the motifs, FADiff brings innova-
tion to the table by independently determining the positions
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of each motif. Specifically, anchor motifs within FADiff
maintain independent and rigid mobility. Guided by their in-
ternal amino acids, this property further enables the flexible
movement of these anchor motifs towards rational positions.
FAdiff encourages flexible motif scaffolding, negating the
need for not readily available domain expertise to assign the
structural or sequential arrangement within the generated
protein structure.

To demonstrate the efficacy and generalization of our FAD-
iff, we carried out a comprehensive series of experiments.
The empirical findings indicate that given multiple motifs,
FADiff can effectively position them while concurrently
generating designable scaffolds to support them. It is worth
noting that, once trained on the task of scaffolding two mo-
tifs, FADiff can be extrapolated to scaffold any other number
of motifs. These observations indicate that FADiff poten-
tially offers a general solution to the multi-motif scaffolding
problem.

To the best of our knowledge, FADiff is the first work to
tackle the problem of scaffolding multiple motifs without
the need for prior knowledge of the relative positions of
multiple motifs, which is often unobtainable. The main
contributions of our work can be summarized as follows:

• We propose a practical and significant problem of scaf-
folding multiple motifs where the prior knowledge of
their relative positions is not readily available.

• We propose a new diffusion model, floating anchor
diffusion (FADiff) to tackle the problem of scaffold-
ing multiple motifs. FADiff assures the existence of
motifs and automates the design of motif position by
facilitating the rigid movement of the motifs.

• Our experiments demonstrate that FADiff can float the
anchor motifs to rational positions and generate des-
ignable scaffolds to support them. The generalization
of FADiff indicates its potential to be a general solution
to multiple motif scaffolding.

2. Related Works
2.1. Motif scaffolding problem

Multi-motif scaffolding is a central task in protein design.
For example, a protein boasting high specificity can be fash-
ioned by assimilating several recognized binding motifs
(Pawson & Scott, 1997; Cao et al., 2022; Jiang et al., 2023).
Furthermore, via expert knowledge, a pair of EF-hand mo-
tifs are effectively merged into the protein structure (Wang
et al., 2022). Importantly, in many instances, either sequence
or structure relative positions between motifs remain unde-
termined. While this situation permits the resolution of
some issues, it persistently demands considerable experi-
mentation, human intervention, and specialized knowledge

(Roel-Touris et al., 2023; Davila-Hernandez et al., 2023;
Roy et al., 2023). Additionally, these strategies display
pronounced shortcomings, particularly when confronting
conditions devoid of suitable templates and references in
the Protein Data Bank (PDB) (Berman et al., 2000). FAD-
iff provides a general solution to multi-motif scaffolding
without any reliance on domain expertise.

2.2. Generative models for scaffolding motifs

The advent of generative protein models (De Bortoli et al.,
2022; Lee et al., 2023; Madani et al., 2023; Trippe et al.,
2023; Gruver et al., 2023; Lisanza et al., 2023) has instigated
a dramatic evolution in protein design. Motif-scaffolding,
a pivotal undertaking within protein design, has been con-
sistently broached by diverse diffusion model techniques
throughout the years. Generative models try to solve the
motif scaffolding problem by conditional generation or in-
painting. For example, SMCDiff (Trippe et al., 2023) and
Chroma(Ingraham et al., 2023) take motifs as guidance for
their pre-trained unconditional model to generate proteins
with motifs in it. RFdiffusion (Watson et al., 2023) fixes the
motifs in a protein and paints the scaffold. However, both
two methods fail to scaffold multiple motifs since the motif
positions in the protein are manually determined and fixed
for them. The conditional generative methods even cannot
guarantee the presence of motifs in the generated protein.
FADiff solves the problem by enabling the motifs to float
rigidly in the diffusion process, which leads to the automatic
position design and the existence of motifs in the generated
protein.

3. Preliminaries and Notation
3.1. The multi-motif scaffolding problem

A protein P = {A,X} is defined by its amino acid se-
quence A = {a1, a2, · · · , an} and backbone structure
X = [x1,x2, · · · ,xn]

T ∈ Rn,3, where n denotes the num-
ber of amino acids in a protein. ai ∈ C20 denotes the type of
i-th amino acids, where C is a set of 20 genetically-encoded
amino acids. xi ∈ R3 is the i-th C-α residue backbone
coordinates in 3D. The 3D structure of a protein can be
determined by its corresponding amino acid sequence, i.e.,
X(A). In addition, the order of the amino acids in the se-
quence, i.e., the sequence position, is also an important
piece of implicit information in A, denoted by D. Thus,
the amino acid sequence consists of the sequence position
and amino acid types, i.e., A = {Cn,D}. We can define a
protein as:

Definition 3.1 (Protein structure). A protein structure con-
sists of amino acid sequence A and backbone structure X,
where A contains both the amino acid types C and index in
sequence D, i.e., P = {A,X} = {Cn,D,X}
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Figure 1. In the denoising process, we keep the motifs translating and rotating rigidly, which means the internal structure of motifs is
maintained while their positions in the protein are flexible. The orange and blue colors indicate the anchor motifs that float rigidly. The
green color indicates the scaffold residues. The coordinate system in color denotes the virtual coordinate system, which is the geometry
center of each motif.

Given a protein P, we can divide it into the functional motif
M and the scaffold S. Since multiple motifs exist in one
protein, M = {M1,M2, · · · ,Mm}, the protein is denoted
as P = MP∪SP = {M1,M2, · · · ,Mm, S}, where m is the
number of motifs. Therefore, we can define the scaffolded
motif and scaffolding as:

Definition 3.2 (Scaffolded motif and scaffold). We can
describe a scaffolded motif MP in a protein with its po-
sitions in the protein and its internal structure, specifi-
cally, the internal structure MX, the internal sequence MA,
the position in the protein structure XM, and the posi-
tion in the protein sequence AM of motif, i.e., MP =
{MX,MA,XM,AM}. Similarly, the scaffolding can be
defined as SP = {SX, SA,XS,AS}

The common motif-scaffolding settings focus on the back-
bone generation and the order of residues D in protein amino
acids sequence A is considered. Therefore we ignore the
C in A in the below as per the common setup. Inpainting
methods (Ingraham et al., 2023; Watson et al., 2023) for
motif scaffolding require the motif structure, its position in
the protein structure, and its sequence position in the protein
sequence prior, which can be remarked as:
Remark 3.3 (Motif-scaffolding by inpainting). Inpainting
methods seek to predict the scaffolding structures SP given
the motif structure MP, i.e., SP = f(MX,MA,XM,AM).

The motif position in the protein XM,AM is specified man-
ually in inpainting methods, which is not readily available.

The conditional generation methods (Trippe et al., 2023)
require only the motif internal structures to predict the struc-
ture of the whole protein, which can be remarked as:
Remark 3.4 (Motif-scaffolding by conditional generation).
Conditional generation methods sought to predict the protein
structures P given the motif’s internal structure, i.e., P =
f(MX,MA).

In the conditional generation, the presence of motifs is not
guaranteed. For multiple motifs which are encoded together,
the relative position between them is fixed.

To maintain the motif in the generated protein and enable
the automatic position design, we formulate the multiple
motif scaffolding problem as:

Definition 3.5 (Multiple motif scaffolding problem). Given
the internal structure of multiple motifs, the multiple motif
scaffolding seeks to predict the scaffolding and the motif po-
sitions in the protein, i.e., {SP,XM,AM} = f(MX,MA)

3.2. Backbone parameterization

We adopt the protein backbone parameterization and nota-
tions in FrameDiff (Yim et al., 2023). Each residue back-
bone is parameterized by an orientation preserving rigid
transformation (frame) T ∈ R4×4 that maps from fixed
coordinates N∗,C∗

α,C
∗,O∗ ∈ R3 centers at C∗

α = (0, 0, 0).
Thus, the main atom coordinates of the i-th residue on the
backbone are obtained as

[Ni,Ci, (Cα)i] = Ti · [N∗,C∗
α,C

∗],

where Ti is an operation of the special Euclidean (SE(3))
group. Each transformation Ti can be decomposed into
rotation Ri ∈ R3×3 and translation Xi ∈ R3, i.e., Ti =
(Ri,Xi), where Ri ∈ SO(3). Therefore, given a coor-
dinate v ∈ R3 in the i-th frame, its location in the fixed
coordinate is given as

Tiv = Riv +Xi. (1)

Further, with an additional torsion angle ϕ, the coordinates
of atom O in the residue can be determined. Different from
FrameDiff, FADiff takes each motif as rigid and enables
their movement in the diffusion process, as shown in Fig. 1,
i.e., the structure of each motif is preserved and can float
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Figure 2. A) Given multiple motifs with their internal structure MX and MA. We specify the sequence position of residues by finding the
shortest chain with a greedy algorithm like the traveling salesman problem (TSP), where the distances are the gaps between the atoms C
and N of two residues. In both the forward process and reverse process, we take the motifs as rigid and enable them to float rigidly. B)
Generally, we reform the noise and updates for each motif. C) The preprocess of TSP. The orange and blue colors indicate the motifs. The
residues in green are generated scaffolds.

rigidly. The movement of each motif is steered by the
average of its constituent residues. To get the translation of
each residue caused by the rigid anchor motif rotation, we
define a virtual coordinate system with a rotation matrix of
identity I and a translation of Xv = XM.

3.3. Diffusion model for protein backbone generation

We follow the Riemannian score-based generative modeling
of De Bortoli et al. (2022) and Yim et al. (2023). Denoising
score matching (DSM) aims to approximate the Stein score
∇ log pt(x), which is unavailable in practice, with a score
network sθ(t, ·) through minimizing the DSM loss:

L(θ) = E
[
λt∥∇ log pt|0(X

(t)|X(0))− sθ(t,X
(t))∥2

]
,

where X, pt|0, λt > 0, and θ denote the data distribution,
the density of X(t) given X(0), a weight, and the network
parameters, respectively. The expectation E is over the
t ∼ U([0, TF ]) and (X(0),X(t)).

3.4. Additional notations

The motif and scaffold parts of proteins are denoted by
subscript M and S respectively. R = {RM,RS} =
{RM1,RM2, · · · ,RMm,RS} and X = {XM,XS} =
{XM1,XM2, · · · ,XMm,XS} denote the rotation and
translation of all the residues in a protein. T = {R,X}
denotes the position of residues. We denote noise, pertur-
bation, and update by the notation with a δ subscript. For
example, the noise to the rotation and translation is denoted
as Rδ and Xδ respectively. The average operation · over

motifs indicates the average over each motif part, respec-
tively. [·, ·] indicates the two elements, i.e. motif elements
and scaffold elements.

4. Floating Anchor Diffusion
To tackle the challenge of generating scaffolds to support
multiple motifs without prior knowledge of their relative
positions, we propose a Floating Anchor Diffusion model
(FADiff) as shown in Fig. 2. The core concept of FADiff lies
in treating the motifs as rigid and enabling them to move
rigidly. The motivation can be summarized as (1) For mul-
tiple motifs, their relative positions cannot be determined
manually. Therefore, FADiff allows them to float indepen-
dently in the diffusion process. (2) Since motif scaffolding
needs the presence of motifs in the designed protein, FADiff
preserves the structure of each motif as anchors rigidly. (3)
Motifs are composed of amino acids, thus the movements
are determined by their internal amino acids. Generally, we
average the movement of residues inside each motif to steer
it and make the whole process consistent with the diffusion
process as shown in Fig. 1.

4.1. Forward diffuse the protein backbone

To model the forward diffusion process on protein backbone,
q(X

(t)
M ,X

(t)
S |X(t−1)

P ), we add noise to the frames following
FrameDiff (Yim et al., 2023) but average the noise on motifs
for treating the motif as rigid. We divide the transformation
of frames into rotation and translation.
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4.1.1. ROTATION

For a randomly sampled SO(3) rotation noise Rδ to rotation
R(t−1), we estimate the movement of motifs with the aver-
age of their constituent residues, i.e., the noise is reformed
as:

Rδ
′ =

[
((R(t−1))−1R(t−1)Rδ(R(t−1))−1R(t−1))M,

(Rδ)S
]

(2)

The two items indicate the motif part and scaffold part re-
spectively. The average operation · over motifs indicates
the average over each motif part respectively. The reformed
noise in Eq. (2) is obtained as follows. With a randomly
sampled noise Rδ, in order to maintain the rigidity of mo-
tifs, we estimate the movement of motifs with the average
value of their constituent residues. Specifically, we define
a virtual frame at the geometry center of motifs with a ro-
tation matrix of identity I and a translation of Xv = XM.
Then we apply the noise to each residue to get the possible
transformation of frames R(t)′ = R(t−1)Rδ. The rotation
transformation between the original and transformed mo-
tif in the virtual coordinate system is R(t)′(R(t−1))−1 =
R(t−1)Rδ(R

(t−1))−1. To estimate the rotation of anchor
motifs efficiently, we average the quaternion of its con-
stituent residues, i.e.,

[∆RM,∆RS] = (3)[
(R(t−1)Rδ(R(t−1))−1)M, (R(t−1)Rδ(R

(t−1))−1)S

]
,

Without loss of generalization, any other rotation average
methods can be applied here to estimate the rotation of
motifs. Finally, we transform the rotation of the anchor
motif under the coordinates of the virtual frame back to
each residue as

R(t) = [∆RM,∆RS]R
(t−1). (4)

The transform from R(t−1) to R(t) i.e., the noise actually
added to R(t−1) is:

Rδ
′ = (R(t−1))−1[∆RM,∆RS]R

(t−1), (5)

which is used to calculate the rotation score. The details can
be found in Appendix B.1. To get the translation of motifs’
constituent residues, we first estimate the translation of their
constituent residues caused by their rotations, which can be
obtained as:

∆XM = ∆RM(X(t−1)
M −Xv) +Xv −X(t−1)

M (6)

4.1.2. TRANSLATION

Given a randomly sampled noise on translation Xδ , we also
average the noise on each motif, respectively, as

Xδ
′ =

[
XδM,XδS

]
, (7)

which is used for translation score calculation. Then X(t) is
obtained through

X(t) = X(t−1) +Xδ
′. (8)

Finally, the noised data T for the score network to denoise
is

T(t) = (R(t),X(t) + [∆XM, 0S]) (9)

4.2. Denoising score matching

Given T(t), the score network is designed to conduct iter-
ative updates on the frames across a sequence of L layers,
eventually yielding the predicted protein position T̂(t−1)

(Jumper et al., 2021; Mao et al., 2024). Then the score is
calculated with T(t) and T̂(t−1). To keep the motifs rigid,
we average the update for motifs like that in the forward
diffusion process. When calculating the score, we remove
the residue translations caused by the rigid rotation to keep
consistent with the diffusion process.

4.2.1. FRAME UPDATE

Similar to the process in forward diffusion, we reform the
predicted update R̂δ on R(l−1) as:

R̂′
δ =

[
((R(l−1))−1R(l−1)R̂δ(R(l−1))−1R(l−1))M,

(R̂δ)S

]
(10)

we first estimate the rotation of each anchor motif with the
average of its internal residue rotation. Then the rotation of
each residue can be obtained as

R(l) =
[
∆R̂M,∆R̂S

]
R(l−1), (11)

[∆R̂M,∆R̂S] =[
(R(l−1)R̂δ(R(l−1))−1)M, (R(l−1)R̂δ(R

(l−1))−1)S

]
.

The translation of each residue caused by the rotation is:

∆X̂M = ∆R̂M(X(l−1)
M −Xv) +Xv −X(l−1)

M.
(12)

Then the X(l) is derived with Eq. (1) as:

X(l) =
[
(R(l−1)X̂δ)M −∆X̂M +∆X̂M, (R(l−1)X̂δ)S

]
+X(l−1) (13)

The details of Eq. (13) can be found in the Appendix B.2.
We adopt VFN-Diff (Mao et al., 2024), a SE(3) diffusion
protein structure generation model as our score network in
this work. Without loss of generalization, any other SE(3)
diffusion model can be used as a score network here.
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4.2.2. SCORE CALCULATION

To keep consistent with the score-based diffusion process
(Song et al., 2021; Yim et al., 2023), we remove the residue
translations caused by the rigid anchor motif rotation for the
score calculation. Similar to the process above, we have the
translation caused by rigid anchor motif rotation as:

∆X′
M = (R(t))−1R̂(0)(X(t) −Xv) +Xv −X(t), (14)

where R̂(0) = R(l) is the prediction of the network. Fi-
nally, the rotation and translation for score calculation are
R(l) and X(l) − [∆X′

M, 0S]. The details can be found at
Appendix B.3.

4.3. Training loss

With the DSM loss in Eq. (4.3), the scheduler for rotation
as λr

t = 1/E[∥ log p(t|0)(R
(t)
n |R(0))∥2SO(3)], and the sched-

uler for translation as λx
t = (1− e−t/e−t/2) following Yim

et al. (2023), we have the DSM loss as:

Ldsm = E
[
λt∥∇ log pt|0(X

(t)|X(0))− sθ(t,X
(t))∥2

]
,

which is consistent with the score-based diffusion model.
More details can be found in the Appendix B.4.

Since the broken C-N bonds are found in early experiments,
we have two auxiliary losses to get the distance between
the atom C and N of two residues into the right range with
Eq. (15) and to get the atoms in the right place with Eq. (16)
following (Jumper et al., 2021; Yim et al., 2023) as follows:

Lc−n =
1

4n

n∑
i=1

∑
x∈Ω

∥x(0)
i − x̂

(0)
i ∥2, (15)

Lbb =
1

Z

n∑
i,j=1

∑
a,b∈Ω

1{dijab < 0.6}∥dijab − d̂ijab∥
2, (16)

Z =

 n∑
i,j=1

∑
a,b∈Ω

1{dijab < 0.6}

− n,

where Ω is the set of atoms {C,Cα,O,N}. dijab andd̂ijab
indicate the ground truth and predicted distance between
atom a and b in residue i and j. With 1{dijab < 0.6}, we
leave alone the distances larger than 0.6Å. For more details
in Appendix C.3

4.4. Sampling

Euler-Maruyama discretization with 500 steps implemented
as a geodesic random walk is adopted in this work following
De Bortoli et al. (2022); Yim et al. (2023); Watson et al.
(2023). In this work, the sequence is constructed by finding
the shortest chain, like the traveling salesman problem (TSP)
where the distance is the gap between atoms C and N of two
residues. More details are in the Appendix B.5.

5. Experiments
We trained FADiff on the task of scaffolding two motifs
of lengths from 20 to 80 residues with the virtual motif
(VM) dataset. We first analyze the performance of FADiff
on the evaluation set of the VM dataset. Then we evalu-
ate the performance and generalizability of FADiff on the
multi-motif scaffolding (MS) Benchmark and analyze the
generated samples in terms of designability. An ablation
study is conducted to evaluate the effectiveness of TSP and
noise scale. Finally, we compare our approaches with the
conditional generation and inpainting methods which further
demonstrate the efficacy of FADiff.

5.1. Setup

Dataset. Two datasets are utilized in this work, includ-
ing the virtual motif dataset (VM dataset) from the PDB
database (Berman et al., 2000) for training and the evalu-
ation multi-motif scaffolding benchmark MS Benchmark
that we collected from the PROSITE database(Sigrist et al.,
2012). VM dataset contains 59,128 proteins with chain
lengths from 60 to 512 residues extracted from the PDB
database. For each entry, we randomly crop two fragments
with lengths of 20 to 80 residues from the protein as vir-
tual motifs for training. MS Benchmark contains 16,251
functional motifs with lengths between 10 and 20 residues
(Xiong, 2006) that naturally exist.

Evaluation metrics. We mainly employ the self-
consistence TM-score (scTM) to evaluate the designablitity
of generated structures and the in silico Success Rate (SR)
to evaluates the performance of the model following previ-
ous works (Trippe et al., 2023; Zhang & Skolnick, 2005;
Ingraham et al., 2023). A higher TM-score or scTM in-
dicates two structures are more similar. scTM is the TM-
score between the generated structures and the reconstructed
structure through ProteinMPNN (Dauparas et al., 2022) and
ESMFold (Lin et al., 2023) as shown in Fig 7. The gener-
ated structure is designable if scTM > 0.5. SR is the ratio
of designable structures in the generation. Following previ-
ous work (Trippe et al., 2023; Zhang & Skolnick, 2005), for
each group motif to be scaffolded, we generate 5 samples for
each length of 160 to 410 residues and run ESMFold 8 times
to get the highest scTM. Motif RMSD, i.e., the difference
between the desired motif and corresponding structure in the
generated protein, used in conditional generation methods
(Trippe et al., 2023) to evaluate the presence of motifs is
not applicable here since it is 0 for our model consistently.
Details can be found in Appendix D.2.

Compared approaches. We mainly compare FADiff with
conditional generation methods (Trippe et al., 2023) and
inpainting methods (Watson et al., 2023; Ingraham et al.,
2023). We adapt inpainting methods to multiple motif scaf-
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Figure 3. Statistic analysis and visualization of generation results for scaffolding 3, 4, 5, and two huge domains of length more than 100
residues. A) scTM distribution. The samples over the red dashed line are designable. 59.18%, 46.00%, 36.15%, and 60.00% generated
protein structures are designable for scaffolding 3, 4, 5, and two huge domains. B) Generated protein structures. The green colors indicate
the generated scaffolds and the other colors indicate the motifs. The numbers below each generated structure indicate the scTM score.

A B

ESMFold
FADiff

Figure 4. A) The distribution of scTM for inference results with
varying lengths. The samples above the red dashed line are des-
ignable. B) visualization results were obtained by training the
model on two motifs and testing on five motifs. ‘ESMFold’ de-
notes protein structures constructed through the ProteinMPNN and
ESMFold, with a preference for closer structural resemblance. Our
model demonstrates generalization capability.

folding by randomly assigning the relative structure position
of two motifs since they require positions of motifs as input
as Remark 3.3. Due to the probable absence of motifs in
the conditional generation, one generation is successful if
(1) scTM > 0.5 and (2) the motifRMSD < 0.1 following
previous works (Trippe et al., 2023).

5.2. Experimental results

The evaluation of FADiff on the VM dataset demonstrates its
ability to generate designable protein structures with a high
tm-score. Experiments on the MS Dataset for two motifs
demonstrate the efficacy of FADiff with a high ratio of
designable structures in the generated samples. To evaluate
the generalizability of FADiff, experiments on scaffolding
more than two motifs are conducted with FADiff trained on

the two-motif scaffolding task. Finally, an ablation study is
conducted to demonstrate the effectiveness of the choice in
implementation.

5.2.1. EVALUATION ON VM DATASET

The TM-score between the protein structure where the vir-
tual motifs are located and the structures generated by FAD-
iff in the evaluation set of the VM dataset is shown in Fig. 8.
The TM-score of 67.5% generated structures is above 0.5
which indicates that the generated structure and the original
structures are similar, demonstrating the ability of FADiff to
generate designable protein structures. Besides, the novelty
of generated proteins provides insight into a way to design
novel proteins, i.e., scaffolding motifs, as shown in Table 4.
More details can be found in Appendix D.3.1.

5.2.2. EVALUATION ON MS BENCHMARK

Scaffold two motifs. We evaluate FADiff on the task of
scaffolding two functional motifs from the MS Benchmark.
The ratio of designable protein structures generated by FAD-
iff is 73.05% as shown in Fig. 4A. The performance of
FADiff varies with the length of the generated protein due to
the bias of training data. The distribution of proteins varies
with their lengths in the VM dataset.FADiff also demon-
strates commendable performance on scaffolding 5 motifs,
as depicted in Fig. 4B.

Generalization of FADiff. To evaluate the generalization
of FADiff, we apply FADiff trained on the task of scaffold-
ing two virtual motifs to scaffold 3, 4, 5, and two huge
domains as shown in Fig. 3. (1) Scaffold more than two
motifs: The average in silico success rates of FADiff for
scaffolding 3, 4, and 5 motifs achieve 62.38%, 58.40%,

7
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Table 1. In silico success rate (%) for different lengths,
with/without TSP, and different translation noise scales in sam-
pling. TSP and Random indicate the preprocessing method. /2
and ×2 indicate the translation noise scale in sampling.

Method 160 210 260 310 360

FADiff 76.67 71.67 81.67 65.00 86.67
Random 49.33 60.00 60.00 54.67 82.67

/2 69.23 76.92 76.92 60.00 83.08
×2 70.00 70.00 75.00 78.33 83.33

46.67%. (2) Scaffold huge domains: We further design
scaffolds for two huge domains with lengths of more than
100 residues which are also never trained with. Domains
are also functional parts of proteins. The average in silico
success rate for two huge domains achieves 80.00%, which
further demonstrates the generalization of FADiff. The gen-
eralization is achieved since FADiff treats all the residues
equally. The decrease in success rate for scaffolding more
motifs is caused by the increasing difficulty, especially with
fewer scaffold residues.

5.3. Ablation study

Noise scale on translation. Since the motifs are much
bigger than residues, it is straightforward to increase the
translation noise to enable the residues of scaffolds to navi-
gate in the scale of motifs. We train a model without increas-
ing the noise scale on translation and test it on scaffolding
two motifs. The average scTM is 0.213 and the average SR
is close to 0% due to significant translation prediction errors.
Please refer to Appendix C.1 for more details.

TSP for sequence construction. To evaluate the efficacy
of TSP, we randomly connect the residues to construct the
amino acid sequence. Although TSP outperforms the ran-
dom connection consistently, the random connection also
leads to a high average in silico success rate of 60.67% as
shown in Table 1. More details are in Appendix D.3.3.

Noise scale in sampling. With different noise scales on
translation in sampling, the performance of FADiff varies
little and achieves a high average in silico success rate of
72.56% and 72.22% for the reducing by half (/2) and aug-
menting by twice the noise scale (×2).

5.4. Comparison

We compare FADiff with conditional generation and inpaint-
ing methods. The inpainting is adopted to scaffold multi-
ple motifs by randomly assigning their relative positions.
One generation is successful for the conditional generation
method if the motif RMSD is less than 1 and scTM > 0.5
following Trippe et al. (2023). FADiff outperforms inpaint-

Table 2. In silico success rate (%) for different lengths with differ-
ent scaffolding methods, where Condition indicates the conditional
generation method.

Method 160 210 260 310 360

FADiff 76.67 71.67 81.67 65.00 86.67
Inpainting 51.58 56.84 62.11 60.00 79.47
Condition 23.75 22.50 21.25 23.75 16.25

ing and conditional generation consistently in the success
rate of scaffolding two motifs over all different lengths of
proteins as shown in Table 2. The generated structures by
conditional generation have high scTM scores while the
existence of desired motifs is not ensured. 87.25% of the
generated structures’ scTM scores are over 0.5, indicating
they are designable. However, the motif RMSD of only
21.50% generated structures is under 0.1, which indicates
the absence of desired motifs in the generation. Inpainting
outperforms the conditional generation methods since the
presence of motifs in the generation is guaranteed. However,
the randomly assigned inappropriate relative positions of
motifs lead to the failure in the generation. With FADiff,
we ensure the existence and automate the design of motif
relative positions by enabling the motifs to float rigidly.

For more results on specific motifs and case studies, please
refer to Appendix D.3.

6. Discussion
Why FADiff operate effectively without the expertise
on the relative positions of multiple motifs? Previous
works fail to scaffold multiple motifs due to the strong corre-
lation between sequence position and structure position. In
previous works, like RFDiffusion, the positions of multiple
motifs on the amino sequence A and in the protein structure
X should be specified manually. Since the protein struc-
ture X is determined by the amino sequence A, i.e. X(A)
and XM(AM), the manually assigned positions are almost
unable to achieve the correlation. However, FADiff allows
the anchor motifs to float to a rational position as a rigid,
enabling the automatic design of relative positions of mul-
tiple motifs. Therefore, even with a random connection to
construct the amino acid sequence, FADiff also achieves a
high success rate by steering the motifs to a rational position
determined by the sequence.

How does FADiff generalize to scaffold multiple motifs?
In both the diffusion and reverse processes, all the residues
of motifs and scaffolds are considered equally for FAD-
iff. Only for the update of residue positions, we average
the movement of motif residues to steer the motifs. The
whole process can be considered consistent with the dif-
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fusion model for protein backbone generation. A FADiff
trained on scaffolding two virtual motifs of lengths from 20
to 80 can be applied to scaffolding more than two motifs
and huge domains with a length of more than 100 residues.

7. Conclusion
To tackle the challenge of automatically designing relative
positions and preserving the presence of multiple motifs.
We propose a Floating Anchor Diffusion (FADiff) model for
scaffolding multiple motifs for the first time. FADiff solves
the problem by taking the anchor motifs as rigid respectively
and allowing them to float flexibly. Our experiments on
the benchmark demonstrate the efficacy and generalization
of FADiff, providing insights for future wet experiments
and a new way to construct novel protein structures. It is
straightforward to apply FADiff to other generation tasks
where multiple substructures should be preserved while their
positions in the generation are flexible.

Impact Statement
The goal of this work is to advance the field of Machine
Learning and Computational Biology. While there are many
potential societal consequences of our work, we believe that
none of which must be specifically highlighted here.
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A. Notations
The notations in this paper follow the principle that M with a subscript describes the structure of Motifs solely and M as a
subscript describes the position or structure of motifs in the designed protein. The notations used in this paper are described
in Table. 3 and Fig. 5.

Protein & Motif
P A protein with both structure and sequence
A Protein amino acid sequence. A = {Cn,D}
X Protein 3D structure
ai ∈ C20 The i-th amino acid type
xi ∈ R3 The i-th C-α residue backbone coordinates in 3D
D Sequence position. The index of amino acids in the sequence
MP Scaffolded motif in a protein
MX Internal structure of motif without scaffolding
MA Internal sequence of motif without scaffolding
AM Scaffolded motif position in the protein sequence
XM Scaffolded motif position in the protein structure
SP Scaffolding in a protein
SX Internal structure of scaffolding without motif
SA Internal sequence of scaffolding without motif
AS Scaffolding position in the protein sequence with motif
XS Scaffolding position in the protein structure with motif
Parameterization
T ∈ R4×4 Residue portions (transformation). Orientation preserving rigid transformation (frame)
Ri ∈ R3×3 Rotation
Xi ∈ R3 Translation

Table 3. Notations for FADiff

Figure 5. Illustration of notations

B. Method details
B.1. Noise on rotation

Given the rotation R(t) and R(t−1), we can calculate the transformation from R(t−1) to R(t) as:

Rδ
′ = (R(t−1))−1R(t). (17)

With Eq. (4), the equation above is further derived as:

Rδ
′ = (R(t−1))−1 [∆RM,∆RS]R

(t−1) (18)
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The transformation is consistent with the diffusion process of FrameDiff. With Eq. (3), we have:

Rδ
′ = (R(t−1))−1

[
(R(t−1)Rδ(R(t−1))−1)M, (R(t−1)Rδ(R

(t−1))−1)S

]
R(t−1)

=
[(

(R(t−1))−1R(t−1)Rδ(R(t−1))−1R(t−1)
)
M

, ((R(t−1))−1R(t−1)Rδ(R
(t−1))−1)R(t−1)

S

]
=

[(
(R(t−1))−1R(t−1)Rδ(R(t−1))−1R(t−1)

)
M

, (Rδ)S

]
B.2. Translation update

Eq. (13) is derived as follows: Since the model gives an update under the coordinate system of the local frame. We first get
the update of translation under the fixed coordinate system through Eq. (1) as:

X̂world
δ = R(l−1)X̂δ

There are two parts of translation updates: (1) the model expected translation update X̂world
δ (Eq. (B.2)), and (2) the rigid

motif rotation caused translation ∆X̂M (Eq. (12)). We believe the model’s expected translation update is translating the
residues to rational positions. In contrast, the translation from the rigid anchor motif rotation interferes with the movement
to the rational position. Therefore, we remove the translation update caused by rotation, then average them on the motif
residues as:

X̂update
δ = [(X̂world

δ −∆X̂M)M, (X̂world
δ )S] (19)

Finally, we add the translation update to X(l−1) to get X(l) as:

X(l) = X̂update
δ +X(l−1)

Eq. (19)
= [(X̂world

δ −∆X̂M)M, (Xworld
δ )S] +X(l−1)

Eq. (B.2)
=

[
(R(l−1)X̂δ)M −∆X̂M +∆X̂M, (R(t−1)X̂δ)S

]
+X(l−1).

B.3. Translation for score calculation

Given the predicted rotation matrix R̂(0) from the model, the noised rotation matrix R(t), and the noised translation X(t),
we can derive the translation caused by the rigid anchor motif as follows: The rotation from t = 0 to t = t is:

R0→t = (R̂(0))−1R(t) (20)

Then the translation caused by the rotation is:

∆XM
′ = R−1

0→t(X
(t) −Xv) +Xv −X(t)

Eq. (20)
= ((R̂(0))−1R(t))−1(X(t) −Xv) +Xv −X(t)

= (R(t))−1R̂(0)(X(t) −Xv) +Xv −X(t)

B.4. Relationship between FADiff and other score-based diffusion models

In this work, we adopt the FrameDiff (Yim et al., 2023) as the pipeline for the diffusion process. Without loss of
generalization, any other score-based diffusion models can be used here. We explain that FADiff is consistent with
FrameDiff below First, we review the FrameDiff. In the forward diffusion process, the noise is added to translation and
rotation as:

R(t) = R(0)Rδ(t)

X(t) = X(0) +Xδ(t), (21)

where the score s for translation and rotation can be calculated as:

sFrame
r = scorer(Rδ(t), t)

sFrame
x = scorex(X

(t),X(0), t). (22)
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The score network gives the predicted denoised rotation and translation R̂(0) and X̂(0), with which the score can be
calculated as:

s′Frame
r = scorer((R̂

(0))−1R(t), t)

s′Frame
x = scorex(X

(t), X̂(0), t).

Since all the layers for the update are the same, we take the last layer for example, and then R̂(t−1) can be derived as:

R(l) = R(l−1)R̂δ (23)

R̂(0) = R(t)R̂δ (24)

Then the score can be calculated as:

s′Frame
r = scorer(R̂

−1
δ , t)

s′Frame
x = scorex(X

(t), X̂(0), t). (25)

FrameDiff seeks to match sr and sx to s′r and s′x. The object to optimize is:

min ∥sr − s′r∥2 + ∥sx − s′x∥2

min ∥ scorer(Rδ(t), t)− scorer(R̂
−1
δ , t)∥2 + ∥ scorex(X(t),X(0), t)− scorex(X

(t), X̂(0), t)∥2 (26)

For an ideal FrameDiff, R̂δ = Rδ
−1 and X̂(0) = X(0). To keep consistent with FrameDiff, the score network should

predict R̂δ = Rδ
−1 and the whole model should predict the X̂(0) = X(0).

Generally, the model should predict the noise added to the rotation and translation in the forward diffusion process. In
FADiff, we get consistency by making the model predict the noise actually added to the original data, i.e., the Rδ

′ and Xδ
′.

The whole process is listed below. In the forward process, the rotation and translation noise for each residue of motifs are:

Rδ
′ =

[(
(R(0))−1R(0)Rδ(R(0))−1R(0)

)
M

, (Rδ)S

]
,

Xδ
′ =

[
XδM,XδS

]
. (27)

Then the noised data is derived as:

R(t) =
[
(R(0)Rδ(R(0))−1R(0))M, (R(0)Rδ)S

]
,

X(t) =
[(

X(0) +∆XM +Xδ

)
M

,
(
X(0) +Xδ

)
S

]
, (28)

where ∆XM is the translation caused by the rotation of rigid anchor motif as Eq. (6) and Eq. (2):

∆XM = (R(0)Rδ(R(0))−1)M(X(0)
M −Xv) +Xv −X(0)

M

The score is calculated as:

sFA
r = scorer(

[(
(R(0))−1R(0)Rδ(R(0))−1R(0)

)
M

, (Rδ)S

]
, t),

sFA
x = scorex(

[(
X(0) +Xδ

)
M

,
(
X(0) +Xδ

)
S

]
,X(0), t), (29)

without the translation caused by the rotation. The score network gives the predicted denoised rotation and translation
R̂(t−1) and X̂(t−1).

The predicted rotation and translation is the updated frame from the last layer as Eq. (11) and Eq. (13):

R(l) =
[
(R(l−1)R̂δ(R(l−1))−1)M, (R(l−1)R̂δ(R

(l−1))−1)S

]
R(l−1)

X(l) =
[
(R(l−1)X̂δ)M −∆X̂M +∆X̂M, (R(l−1)X̂δ)S

]
+X(l−1) (30)
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Since all the layers for the update are the same, we take the last layer for example, and then the equation above is derived as:

R̂(0) =
[(

R(t)R̂δ(R(t))−1R(t)
)
M

, (R(t)R̂δ)S

]
(31)

X̂(0) =
[
(R(t)X̂δ)M −∆X̂M +∆X̂M, (R(t)X̂δ)S

]
+X(t) (32)

With Eq. (14), the translation of each residue caused by the rotation is:

∆X̂M = (R(t))−1R̂(0)(X(t) −Xv) +Xv −X(t). (33)

Finally, the predicted scores from the model are :

s′FA
r = scorer(

[((
R(t)R̂δ(R(t))−1R(t)

)−1

M
R(t)

)
M

, (((R(t)R̂δ)S)
−1R(t))S

]
, t),

= scorer(

[((
R(t)R̂δ(R(t))−1R(t)

)−1

M
R(t)

)
M

, (R̂−1
δ )S

]
, t), (34)

s′FA
x = scorex(

[(
X(0) +Xδ

)
M

,
(
X(0) +Xδ

)
S

]
, X̂(0) − [∆X̂M, 0S], t)

= scorex(
[(

X(0) +Xδ

)
M

,
(
X(0) +Xδ

)
S

]
, [(X̂(0) −∆X̂)M, X̂

(0)
S ], t) (35)

We can explain the derivation in two parts. The scaffolding part is consistent with FrameDiff obviously with Eq. (34) and
Eq. (35), which is the same as FrameDiff. For the motif part, substituting Eq. (28), Eq. (31) and Eq. (33) into Eq. (34)
and Eq. (35) yields the same form as Eq. (29). When we relax the equation with the average to be themselves, and further
substitute X̂(0) = X(0) and R̂δ = Rδ

−1 into the equation, the equation gets the same as Eq. (29).

B.5. Sampling

B.5.1. TSP FOR SEQUENCE CONSTRUCTION

In sampling, we randomly sample residues of the scaffold with a Gaussian distribution to decide their translation and rotation.
The motifs are put at the origin of the fixed coordinate. Then we construct a distance map by calculating the distance
between the atoms C and N of two residues, which should be the length of the peptide bond in a naturally existing protein.
Besides, to maintain the motif structure, we change the distance between two residues connected in the motif to 0 and the
distance from the scaffold residues to the connected motif residues to be infinite. Finally, with a greedy algorithm to find the
shortest chain like the TSP, a sequence is obtained.

B.5.2. RANDOM CONNECTION FOR SEQUENCE CONSTRUCTION

In sampling, we randomly sample residues of the scaffold with a Gaussian distribution to decide their translation and rotation.
The motifs are put at the origin of the fixed coordinate. Then we construct a distance map where we set the distance between
two residues connected in the motif to 0 and the distance from the scaffold residues to the connected motif residues to be
infinite to maintain the motif structure. And the distances between other residues are given randomly. Finally, with a greedy
algorithm to find the shortest chain like the TSP, a sequence is obtained.

C. Training details
C.1. Hyper-parameters

We follow the FrameDiff (Yim et al., 2023) for all the parameters except the coordinate scale. We train FADiff for 90,000
steps with a coordinate scale of 0.1 and 0.02 based on the pre-trained VFN-Diff (Mao et al., 2024). Here the coordinate
scale c is used in the adding noise stage:

xt = c · (x(t−1) · c+ xδ),

where xδ is the Gaussian noise. The coordinate scale of 0.1 follows Yim et al. (2023); however, the model trained with the
coordinate scale of 0.02 works much better since the coordinate scale is much larger than a single amino acid.
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C.2. Hardware

We train FAdiff for 90,000 steps in around 20 hours. All our experiments are conducted on a computing cluster with 8
GPUs of NVIDIA GeForce RTX 4090 24GB and CPUs of AMD EPYC 7763 64-Core of 3.52GHz. All the inferences are
conducted on a single GPU of NVIDIA GeForce RTX 4090 24GB.

C.3. Training loss

Since the method of FADiff is general, any other score-based diffusion model can be adopted as our backbone. All the
training loss weights and other settings remain the same except the coordinate scale as explained in the Appendix C.1

D. Experiment
D.1. Dataset Detail

D.1.1. DISTRIBUTION OF SEQUENCE LENGTH OF THE VM DATASET

The number of proteins in the VM dataset varies with the sequence length as shown in Fig. 6.

Figure 6. The distribution of sequence length for the VM dataset.

D.1.2. MOTIF DATASET

The motif dataset is extracted from PROSITE, a database maintained by Swiss Institute of Bioinformatics (SIB), which
contains 1942 documentation entries, 1311 patterns, and 1400 ProRules (dated January 24, 2024). It contains patterns,
profiles, and rules for recognizing specific motifs in protein sequences.

The dataset consists of 16,251 motif fragments, based on their representation in the Protein Data Bank (PDB), which
involved aligning protein sequences and atom coordinates with known motifs.

D.2. Evaluation Metrics

Following Trippe et al. (2023), we calculate the scTM of one generated structure as follows: (1) we utilize the ProteinMPNN
(Dauparas et al., 2022) to design the amino acid sequence. (2) The designed sequence from the ProteinMPNN is input
into the ESMFold (Lin et al., 2023) to get the structure. (3) The TM-score between the structures from the ESMFold and
generated from our model is calculated as the scTM. The workflow is illustrated in Fig. 7.

We calculate the in silico Success Rate following Trippe et al. (2023) as follows: (1) for each group of motifs, we generate
5 samples for each length. (2) each generated sample is input into the ProteinMPNN to design the sequence. (3) each
sequence is input into the ESMfold 8 times to get the folding protein structures. (4) We calculate the TM score between
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our generation and the 8 folding results from ESMFold and take the highest TM score as scTM from this generation. One
generation is successful if the scTM > 0.5

Figure 7. For self-consistency evaluation, we utilize a pre-trained fixed-backbone sequence-design model, namely ProteinMPNN, to
design the scaffold sequence from the generated protein structure. Then we put the designed sequence to ESMFold to obtain the full
protein structure. Finally, we calculate the TM-score between the predicted structure and the original backbone structure. In the figure, the
orange, blue, and green colors indicate the motif 2BGS, 1G79, and the scaffold.

We have also calculated the diversity and pdbTM for each generation. Diversity is the ratio of unique clusters in the number
of generated samples where the clusters are produced by MaxCluster (Herbert & Sternberg, 2008) following previous
works. pdbTM indicates the novelty of generated protein structures. Each generated protein structure is compared with the
structures in PDB (Berman et al., 2000) to get the TM-score between two structures as pdbTM score, one generation is
novel if the pdbTM < 0.7.

D.3. Experimental Results

D.3.1. EVALUATION ON VM DATASET

The distribution of TM-scores on the VM dataset is shown in Fig. 8A. Hign TM-score indicates the generated protein
structure is similar to the native structures where the desired motifs are located.

D.3.2. EVALUATION ON MS DATASET

The diversity of all the generations is 1, so we just mention it in the appendix. The pdbTM which indicates the Novelty of
generation for each generation, is shown in Table 4. Following previous works Yim et al. (2023); Mao et al. (2024); Watson
et al. (2023), one generated structure is novel if the pdbTM< 0.7, here we show the ratio of novel protein structures in the
generation comparing with FrameDiff and VFNDiff.

Method FADiff VFN-Diff FrameDiff# Motif 2 3 4 5

pdbTM<0.7
overall 84.60% 89.23% 90.33% 93.75% 41.67% 54.67%

designable 82.94% 85.66% 86.88% 89.91% 1.67% 1.33%

Table 4. pdbTM for each generation. The numbers indicate the ratio of novel protein structures in the generated samples.
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Figure 8. A. TM-score distribution on evaluation dataset of VM dataset. B. The generated structure with a high tm-score closely matches
the native structure, while a low tm-score indicates the generated structure differs from the native structure (grey). The four-digit number
below each structure indicates the protein identifier and the number in the brackets denotes the TM score.

D.3.3. ABLATION STUDY

The whole results of the ablation study on all the lengths are shown in Table 5.

Method 160 210 260 310 360 410 Avg

FADiff 76.67 71.67 81.67 65.00 86.67 56.67 73.05
Random 49.33 60.00 60.00 54.67 82.67 57.33 60.67

/2 69.23 76.92 76.92 60.00 83.08 69.23 72.56
×2 70.00 70.00 75.00 78.33 83.33 56.67 72.22

Table 5. In silico success rate (SR%) for different lengths, with/without TSP, and with different translation noise scales in sampling. TSP
and Random indicate the sequence construction method. /2 and ×2 indicate the noise scale on translation in sampling. The Avg indicates
the Average success rate for one method.

Noise scale on translation in training The failed cases from the FADiff trained without increasing the noise scale on
translation are shown in Fig. 9 and Fig. 10.

Figure 9. Failed case 1 Figure 10. Failed case 2

TSP for sequence construction TSP is performed in the first 100 steps while random is performed at the first step only.
Here, we show the results of performing TSP with different settings in Fig. 11 and Table 6. If we conduct TSP throughout
the entire sampling process, this will cause the model to be unable to converge because the position of amino acids on
the sequence is constantly changing. However, if we conduct TSP in the first 100 steps, this will steer the motifs to the
appropriate position because the noise is gradually decreasing during the first 100 steps. Besides, conducting TSP only in
the first 100 steps will not cause the model to fail to converge. Performing TSP multiple times results in a better scTM than
only performing TSP once in the first 100 steps.
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Figure 11. 50 interval, 100 interval, and 200 interval indicate that we perform TSP every 50, 100, and 200 steps in sampling. Random
indicates TSP is not performed. 100 interval 1 time and FADiff indicate that we only perform TSP in the first 100 steps two times or
multiple times (every step) in the first 100 steps.

Method 160 210 260 310 360 410

Random 49.33 60.00 60.00 54.67 82.67 57.33
100 interval 1 time 67.50 67.50 60.00 62.50 90.00 50.00

FADiff 76.67 71.67 81.67 65.00 86.67 56.67

Table 6. In silico success rate (SR%) for different TSP settings.

D.3.4. COMPARISON

We also compare FADiff with inpainting and conditional generation methods. FADiff outperforms inpainting consistently
on the SCTM score as shown in Fig. 12.

Figure 12. TM-score of inpainting methods and FADiff on generation different lengths of scaffoldings.
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