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ABSTRACT

Deep neural networks’ generalization capacity has been studied in a variety of1

ways, including at least two distinct categories of approach: one based on the2

shape of the loss landscape in parameter space, and the other based on the struc-3

ture of the representation manifold in feature space (that is, in the space of unit4

activities). These two approaches are related, but they are rarely studied together5

and explicitly connected. Here, we present a simple analysis that makes such a6

connection. We show that, in the last phase of learning of deep neural networks,7

compression of the manifold of neural representations correlates with the flatness8

of the loss around the minima explored by SGD. We show that this is predicted9

by a relatively simple mathematical relationship: flatter loss gives a lower upper10

bound on metrics of the compression of neural representations. Our results build11

on the prior work of Ma and Ying, which shows how flatness (i.e., small eigenval-12

ues of the loss Hessian) develops in late phases of learning and leads to robustness13

to perturbations in network inputs. Moreover, we show there is no similarly di-14

rect connection between local dimensionality and sharpness, suggesting that this15

property may be controlled by different mechanisms than volume and hence may16

play a complementary role in neural representations. Overall, we advance a dual17

perspective on generalization in neural networks in both parameter and feature18

space.19

1 INTRODUCTION20

Deep neural networks’ generalization capacity has been studied in many ways. Generalization is21

a complex phenomenon influenced by myriad factors, including model architecture, dataset size22

and diversity, and the specific task used to train a network. Researchers continue to develop new23

techniques to enhance generalization (Elsayed et al., 2018; Galanti et al., 2023). From a theoretical24

point of view, we can identify two distinct categories of approach. These are works that study25

neural network generalization in the context of (a) properties of minima of the loss function that26

learning algorithms find in parameter space (Dinh et al., 2017; Andriushchenko et al., 2023), and (b)27

properties of the representations that optimized networks find in feature space – that is, in the space28

of their neural activations (Ben-Shaul & Dekel, 2022; Ben-Shaul et al., 2023; Rangamani et al.,29

2023; Papyan et al., 2020).30

One of the most widely studied factors that influence generalization is the shape of the loss landscape31

in parameter space. Empirical studies and theoretical analyses have shown that training deep neural32

networks using stochastic gradient descent (SGD) with a small batch size and a large learning rate33

often converges to flat and wide minima (Ma & Ying, 2021; Blanc et al., 2020; Geiger et al., 2021;34

Li et al., 2022; Wu et al., 2018; Jastrzebski et al., 2018; Xie et al., 2021; Zhu et al., 2019). Flat35

minima refer to regions in the loss landscape where the loss function has a relatively large basin:36

put simply, the loss doesn’t change much in different directions around the minimum. Many works37

conjecture that flat minima lead to a simpler model (shorter description length), and thus are less38

likely to overfit and more likely to generalize well (Jastrzebski et al., 2018; Yang et al., 2023; Wu39

et al., 2018). However, whether flatness positively correlates with the network’s generalization40

capability remains unsettled (Dinh et al., 2017; Andriushchenko et al., 2023; Yang et al., 2021).41

In particular, Dinh et al. (2017) argues that one can construct very sharp networks that generalize42
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well through reparametrization. However, more recent work (Andriushchenko et al., 2023) shows43

that even reparametrization-invariant sharpness cannot capture the relationship between sharpness44

and generalization.45

In our work, we investigate how the sharpness of the loss function near learned solutions in param-46

eter space influences local geometric features of neural representations. We demonstrate that as this47

sharpness decreases and the minima become flatter, there is a set of mathematical bounds that imply48

that the neural representation must undergo at least a specific, computable level of compression.49

This process, which is related to previous results including the concept of neural collapse (Farrell50

et al., 2022; Kothapalli et al., 2022; Zhu et al., 2021; Ansuini et al., 2019; Recanatesi et al., 2019;51

Papyan et al., 2020), refers to the emergence of a more compact and by some measures lower di-52

mensional structure in the neural representation space. Compression in the feature space enables53

networks to isolate the most crucial and discriminative features of input data. As a model becomes54

less sensitive to small perturbations or noise in the input data, it gains increased robustness against55

variations between training and test data. This simple and direct relationship between compression56

and robustness creates a valuable lens into networks’ potential to generalize.57

We find that bounds that apply to two different metrics of compression – volumetric ratio and maxi-58

mum local sensitivity – include different terms, and therefore predict different levels of compression59

for each. Moreover, we study the factors that contribute to the tightness of the bounds, or lack60

thereof – and hence may allow representations to display trends that in practice appear to contradict61

the theoretical predictions of the bounds. We also note that local dimensionality is a compression62

metric of a distinct nature, and therefore does not necessarily correlate with sharpness. Taken to-63

gether, this reveals that the impact of loss function sharpness on the neural representation is more64

complex than a simple (and single) compression effect. These effects, despite their nuance, shed65

light on the complex link between sharpness and generalization.66

Throughout, we focus on the second, or final, stage of learning, which proceeds after SGD has al-67

ready found parameters that give near-optimal performance (i.e., zero training error) on the training68

data (Ma & Ying, 2021; Tishby & Zaslavsky, 2015; Ratzon et al., 2023). Here, additional learning69

still occurs, which changes the properties of the solutions in both feature and parameter space in70

very interesting ways.71

Our work makes the following novel contributions:72

• The paper identifies two representation space quantities that are bounded by sharpness73

– volume compression and maximum local sensitivity (MLS) – and gives new explicit74

formulas for these bounds that are reparametrization-invariant.75

• The paper conducts empirical experiments with both VGG10 and MLP networks and finds76

that volume compression and MLS are indeed strongly correlated with sharpness.77

• The paper finds that sharpness, volume compression, and MLS are also correlated, if more78

weakly, with test loss and hence generalization.79

In these ways, we help reveal the interplay between key properties of trained neural networks in80

parameter space and representation space. Specifically, we identify a sequence of equality condi-81

tions for the bounds that link the volume and MLS of the neural representations to the sharpness in82

parameter space. These conditions are helpful in explaining why there are the mixed results on the83

relationship between sharpness and generalization in the literature, by looking through the additional84

lens of the induced representations. Our findings altogether suggest that allied views into representa-85

tion space offer a valuable dual perspective to that of parameter space landscapes for understanding86

the effects of learning on generalization.87

Our paper proceeds as follows. First, we review arguments of Ma & Ying (2021) that flatter minima88

can constrain the gradient of the loss with respect to network inputs and extend the formulation to89

the multidimensional input case (Sec. 2). Next, we prove that lower sharpness implies a lower upper90

bound on two metrics of the compression of the representation manifold in feature space: the local91

volume and the maximum local sensitivity (MLS) (Sec. 3.1, Sec. 3.2). We conclude our findings92

with simulations that confirm our central theoretical results and show how they can be applied in93

practice (Sec. 4).94
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2 BACKGROUND AND SETUP95

Consider a feedforward neural network f with input data x ∈ RM and parameters θ. The output of96

the network is:97

y = f(x;θ) , (1)

with and y ∈ RN (N < M ). Consider a quadratic loss L(y,ytrue) = 1
2 ||y − ytrue||2 function of98

the outputs and ground truth ytrue. In the following, we’ll simply write L(y), L(f(x,θ)) or simply99

L(θ) to highlight the dependence of the loss on the output, the network or its parameters.100

During the last phase of learning, Ma and colleagues have recently argued that SGD appears to101

regularize the sharpness of the loss (Li et al., 2022) (see also (Wu et al., 2018; Jastrzebski et al.,102

2018; Xie et al., 2021; Zhu et al., 2019)). This is to say that the dynamics of SGD lead network103

parameters to minima where the local loss landscape is flatter or wider. This is best captured by the104

sharpness, measured by the sum of the eigenvalues of the Hessian:105

S(θ) = Tr(H) , (2)

with H = ∇2L(θ) being the Hessian. A solution with low sharpness is a flatter solution. Following106

(Ma & Ying, 2021; Ratzon et al., 2023), we define θ∗ to be an “exact interpolation solution” on the107

zero training loss manifold in the parameter space (the zero loss manifold in what follows), where108

f(xi,θ
∗) = yi for all i’s (with i ∈ {1..n} indexing the training set) and L(θ∗) = 0. On the zero109

loss manifold, in particular, we have110

S(θ∗) =
1

n

n∑
i=1

∥∇θf(xi,θ
∗)∥2F (3)

where ∥·∥F is the Frobenius norm. We give the proof of this equality in Appendix A. In practice,111

the parameter θ will never reach an exact interpolation solution due to the gradient noise of SGD,112

however, Eq. (3) is a good enough approximation of the sharpness as long as we find an approximate113

interpolation solution (Lemma. A.1).114

In order to see why minimizing the sharpness of the solution leads to more compressed representa-115

tions, we need to move from parameter space to input space. To do so we review the argument of Ma116

& Ying (2021) that relates variations in input data x and input weights. Let W be the input weights117

(the parameters of the first linear layer) of the network, and θ̄ the rest of the parameters. Following118

(Ma & Ying, 2021), as the weights W multiply the inputs x we have the following identities:119

∥∇Wf(Wx; θ̄)∥F =

√∑
i,j,k

J2
jkx

2
i = ∥J∥F ∥x∥2 ≥ ∥J∥2∥x∥2

∇xf(Wx; θ̄) = WTJ ,

(4)

where J = ∂f(Wx;θ̄)
∂(Wx) is a complex expression as computed in, e.g., backpropagation. From Eq. (4)120

and the sub-multiplicative property of the Frobenius norm and the matrix 2-norm, we have:121

∥∇xf(Wx; θ̄)∥F ≤ ∥W∥F
∥x∥2

∥∇Wf(Wx; θ̄)∥F ,

∥∇xf(Wx; θ̄)∥2 ≤ ∥W∥2
∥x∥2

∥∇Wf(Wx; θ̄)∥F .
(5)

If the norms ∥W∥F or ∥W∥2 and ∥x∥2 are not excessively large or small respectively, these bounds122

control the gradient with respect to inputs via the gradient with respect to weights. This in turn123

reveals the impact of flatness in the loss function:124

1

n

n∑
i=1

∥∇xf(xi,θ
∗)∥kF ≤ ∥W∥kF

mini∥xi∥k2
1

n

n∑
i=1

∥∇Wf(xi,θ
∗)∥kF

≤ ∥W∥kF
mini∥xi∥k2

1

n

n∑
i=1

∥∇θf(xi,θ
∗)∥kF .

(6)
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We define G := 1
n

∑n
i=1∥∇xf(xi,θ

∗)∥2F when k = 2. Similarly,125

1

n

n∑
i=1

∥∇xf(xi,θ
∗)∥k2 ≤ ∥W∥k2

mini∥xi∥k2
1

n

n∑
i=1

∥∇θf(xi,θ
∗)∥kF . (7)

Thus, in (Ma & Ying, 2021), the effect of input perturbations is constrained by the sharpness of the126

loss function. The flatter the minimum of the loss, the lower the effect of input space perturbations127

on the network function f(x,θ∗) as determined by gradients.128

3 FROM ROBUSTNESS TO INPUTS TO COMPRESSION OF REPRESENTATIONS129

We now further analyze variations in the input and how they propagate through the network to shape130

representations of sets of inputs. Although we only study the representations of the output of the131

network here, our results apply to representations of any middle layer, through defining f to be132

the transformation from input to the middle layer of interest. Ovearll, we focus on 3 key metrics133

of network representations: local dimensionality, volumetric ratio, and maximum local sensitivity.134

These quantities enable us to establish and evaluate the influence of input variations and, in turn,135

sharpness on neural representation properties.136

3.1 WHY SHARPNESS BOUNDS LOCAL VOLUMETRIC TRANSFORMATION IN137

REPRESENTATION SPACE138

Consider an input data point x̄ drawn from the training set: x̄ = xi for a specific i ∈ {1..n}. Let139

the set of all possible perturbations around x̄ in input space be the ball B(x̄)α ∼ N (x̄, αI), where140

α depends on the perturbation’s covariance, given as CB(x) = αI, with I as the identity matrix.141

We’ll explore the network’s representation of inputs by measuring the expansion or contraction of142

the ball B(x̄)α as it propagates through the network. We first propagate the ball through the network143

transforming each point x into its image f(x). Following a Taylor expansion for points within144

B(x̄)α as α → 0 we have:145

f(x) = f(x̄) +∇x(f(x̄,θ
∗))(x− x̄). (8)

We can express the limit of the covariance matrix Cf(B(x)) of the output f(x) as146

C lim
f := lim

α→0
Cf(B(x)α) = α∇xf(x̄,θ

∗)∇T
x f(x̄,θ

∗) , (9)

Our covariance expressions capture the distribution of points in B(x̄)α as they go through the net-147

work f(x̄,θ∗).148

Now we quantify how a network compresses its input volumes via the local volumetric ratio, be-149

tween an hypercube of side length h at x and its image under transformation f :150

dVolratio|f(x,θ∗) = lim
h→0

Vol(f(x,θ∗))

Vol(x)

=
√
det (∇xfT∇xf)

(10)

which is equal to the square root of the product of all positive eigenvalues of C lim
f . Exploiting the151

bound on the gradients derived earlier in Eq. (5), we derive a similar bound for the volumetric ratio:152

dVolratio|f(x,θ∗) ≤
(
Tr∇xf

T∇xf

N

)N/2

= N−N/2∥∇xf(x,θ
∗)∥NF

(11)

where the first line uses the inequality between arithmetic and geometric means and the second the153

definition of the Frobenius norm. Introducing the averaged volumetric ratio across all input points154

dV ratio(θ∗) = 1
n

∑n
i=1 dVol

ratio|f(xi,θ∗), we obtain:155

dV ratio(θ∗) ≤ N−N/2

n

n∑
i=1

∥∇xf(x,θ
∗)∥NF ≤ nmax(N/2−1,0)∥W∥NF

mini∥xi∥N2

(
S(θ∗)

N

)N/2

. (12)
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for all N ≥ 1. A detailed derivation of the above inequality is given in Appendix B. Eq. (12) implies156

that flattened minima of the loss function in parameter space contribute to the compression of the157

data’s representation manifold. Our analysis demonstrates that these two phenomena are linked by158

the robustness properties of the network to input perturbations.159

3.2 MAXIMUM LOCAL SENSITIVITY AS AN ALLIED METRIC TO TRACK NEURAL160

REPRESENTATION GEOMETRY161

We observe that the equality condition in the first line of Eq. (11) rarely holds in practice, since to162

achieve equality, we need all singular values of the Jacobian matrix ∇xf to be identical. Our exper-163

iments in Sec. 4 show that the local dimensionality decreases rapidly with training onset, indicating164

that ∇xf
T∇xf has a non-uniform eigenspectrum. Moreover, the volume will decrease rapidly as165

the smallest eigenvalue vanishes. Thus, although sharpness upper bounds the volumetric ratio, it166

does not correlate well with the it, nor does volumetric ratio give an accurate estimate of sharpness.167

Fortunately, considering only the maximum eigenvalue instead of the product alleviates this prob-168

lem (recall that det
(
∇xf

T∇xf
)

in the definition Eq. (10) or volumetric ratio is the product of all169

eigenvalues): we define the maximum local sensitivity (MLS) to be the largest singular value of170

∇xf . The MLS is equivalently the matrix 2-norm of ∇xf . Intuitively, it is the largest possible local171

change of f(x) when the norm of the perturbation to x is regularized. We denote the sample mean172

of MLS as MLS. Given this definition, we obtain a bound of MLS using the Frobenius norm of the173

first linear layer, the quadratic mean of the input norm, and the sharpness.174

MLS =
1

n

n∑
i=1

∥∇xf(xi,θ
∗)∥2 ≤ ∥W∥2

√√√√ 1

n

n∑
i=1

1

∥xi∥22
S(θ∗)1/2 . (13)

The derivation of the above bound is included in Appendix C, where we use Cauchy-Swartz in-175

equality to tighten the bound in Eq. (7). As an alternative measure of compressed representations,176

we empirically show in Appendix D.2 that MLS has higher correlation with sharpness and test loss177

than the other two measures we consider in the feature space. We include more analysis of the178

tightness of this bound in Appendix D and discuss its connection to other works therein.179

3.3 LOCAL DIMENSIONALITY IS TIED TO, BUT NOT BOUNDED BY, SHARPNESS180

Now we introduce a local measure of dimensionality based on this covariance, the local Participation181

Ratio, given by:182

DPR(f(x̄)) = lim
α→0

Tr[Cf(B(x))]
2

Tr[(Cf(B(x)))2]
=

Tr[C lim
f ]2

Tr[(C lim
f )2]

(14)

(cf. (Gao et al., 2017; Litwin-Kumar et al., 2017; Recanatesi et al., 2022)). This quantity can be183

averaged across a set of samples: DPR(θ
∗) = 1

n

∑n
i=1 DPR(f(xi)). This quantity in some sense184

represents the sparseness of the eigenvalues of C lim
f : if we let λ be all the eigenvalues of C lim

f ,185

then the local dimensionality can be written as DPR = (∥λ∥1/∥λ∥2)2, which attains its maximum186

value when all eigenvalues are equal to each other, and its minimum when all but one eigenvalue187

is non-zero. Note that the quantity retains the same value when λ is arbitrarily scaled, therefore it188

is hard to find a relationship between local dimensionality and ∥∇xf(x,θ
∗)∥2F , which is basically189

∥λ∥1.190

4 EXPERIMENTS191

4.1 SHARPNESS AND COMPRESSION: VERIFYING THE THEORY192

The theoretical results derived above show that during the later phase of training – the interpolation193

phase – measures of compression of the network’s representation is upper bounded by a function194

of the sharpness of the loss function in parameter space. This links sharpness and compression of195

representation: the flatter is the loss landscape, the lower is the upper bound on the representation’s196

compression metrics.197
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Figure 1: Trends in key variables across SGD training of the VGG10 network with fixed batch size
(equal to 20) and varying learning rates (0.05, 0.1 and 0.2). After the loss is minimized (so that an
approximate interpolation solution is found) sharpness and volumes decrease together. Moreover,
higher learning rates lead to lower sharpness and hence stronger compression. From left to right:
train loss, test accuracy, sharpness (square root of Eq. (3)), log volumetric ratio (Eq. (10)), left-hand
side of Eq. (6) with k = 2 (axes titled G), and local dimensionality of the network output (Eq. (14)).

It remains to test in practice, however, whether these bounds are sufficiently tight so that a clear198

relationship between sharpness and representation collapse appears. As one such test, we ran the199

following experiment. We trained a network (Simonyan & Zisserman, 2015) to classify images from200

the CIFAR-10 dataset, and calculated the sharpness (Eq. (2)), the log volumetric ratio (Eq. (10)) and201

the left-hand side of Eq. (6) (the gradient with respect to the inputs, a quantity we term G in the202

figures below) during the training phase (Fig 1 and 2). We trained the network (VGG10) using SGD203

on images from 2 classes (out of 10) so that convergence to the interpolation regime, i.e. zero error,204

was faster. We explored the influence of two specific parameters that have a substantial effect on205

the network’s training: learning rate and batch size. For each pair of learning rate and batch size206

parameters, we computed all quantities at hand across 100 input samples and five different random207

initializations for network weights.208

In the first set of experiments, we studied the link between a decrease in sharpness during the latter209

phases of training and volume compression (Fig. 1). We noticed that when the network reaches the210

interpolation regime, and the sharpness decreases, so does the volume. The quantity G similarly211

decreases. All these results were consistent across multiple learning rates for a fixed batch size (of212

20): specifically, for learning rates that gave lower values of sharpness, volume was lower as well.213

We then repeated the experiments while keeping the learning rate fixed (lr=0.1) and varying the214

batch size. The same broadly consistent trends emerged linking a decrease in the sharpness to a215

compression in the representation volume (Fig. 2). However, we also find that while sharpness stops216

decreasing after about iteration 50 · 103 for batch size 32, the volume keeps decreasing as learning217

proceeds. This suggests that there may be other mechanisms at play, beyond sharpness, in driving218

the compression of volumes.219

We repeat the experiments with an MLP trained on the FashionMNIST dataset (Fig. E.8 and220

Fig. E.7). Although the sharpness does not noticeably decrease at the end of the training, the sharp-221

ness has the same trend as G, which is consistent with our bound. The volume keeps decreasing after222

the sharpness plateaus, but it is also decreasing at a much slower rate, again matching our theory223

while suggesting that an additional factor is also involved in its decrease.224

4.2 SHARPNESS AND COMPRESSION ON TEST SET DATA225

Even though Eq. (3) is exact for interpolation solutions only (i.e., those with zero loss), we found226

that the test loss is small enough (Fig. 3) so that it should be a good approximation for test data as227

well. Therefore we analyzed our simulations to study trends in sharpness and volume for these held-228

out test data as well (Fig. 3). We discovered that this sharpness increased rather than diminished as229
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Figure 2: Trends in key variables across SGD training of the VGG10 network with fixed learning
rate size (equal to 0.1) and varying batch size (8, 20, and 32). After the loss is minimized (so that
an interpolation solution is found) sharpness and volumes decrease together. Moreover, lower batch
sizes lead to lower sharpness and hence stronger compression. From left to right in row-wise order:
train loss, test accuracy, sharpness (square root of Eq. (3)), log volumetric ratio (Eq. (10)), left-hand
side of Eq. (6) with k = 2 (axes titled G), and local dimensionality of the network output (Eq. (14)).

a result of training. We hypothesized that sharpness could correlate with the difficulty of classifying230

testing points. This was supported by the fact that the sharpness of misclassified test data was even231

greater than that of all test data. Again we see that G has the same trend as the sharpness. Despite232

this increase in sharpness, the volume followed the same pattern as the training set. This suggests233

that compression in representation space is a robust phenomenon that can be driven by additional234

phenomena beyond sharpness. Nevertheless, the compression still is weaker for misclassified test235

samples that have higher sharpness than other test samples. Overall, these results emphasize an236

interesting distinction between how sharpness evolves for training vs. test data.237
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Figure 3: Trends in key variables across SGD training of the VGG10 network with fixed learning rate
(equal to 0.1) and batch size (equal to 20) for samples of the test set. After the loss is minimized,
we compute sharpness and volume on the test set. Moreover, the same quantities are computed
separately over the entire test set or only on samples that are misclassified. In order from left to right
in row-wise order: train loss, test loss, sharpness (Eq. (2)), log volumetric ratio (Eq. (10)), left-hand
side of Eq. (6) with k = 2 (axes titled G), and local dimensionality of the network output (Eq. (14)).

4.3 SHARPNESS AND LOCAL DIMENSIONALITY238

Lastly, we analyze the representation’s local dimensionality in a manner analogous to the analysis239

of volume and MLS. A priori, it is ambiguous whether the dimensionality of the data representation240

should increase or decrease as the volume is compressed. For instance, the volume could decrease241

while maintaining its overall form and symmetry, thus preserving its dimensionality. Alternatively,242

one or more of the directions in the relevant tangent space could be selectively compressed, leading243

to an overall reduction in dimensionality.244

Figures 1 and 2 show our experiments computing the local dimensionality over the course of learn-245

ing. Here, we find that the local dimensionality of the representation decreases as the loss decreases246

to near 0, which is consistent with the viewpoint that the network compresses representations in247
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feature space as much as possible, retaining only the directions that code for task-relevant features248

(Berner et al., 2020; Cohen et al., 2020). However, the local dimensionality exhibits unpredictable249

behavior that cannot be explained by the sharpness once the network is near the zero-loss manifold250

and training continues. This discrepancy is consistent with the bounds established by our theory,251

which only bound the numerator of Eq. (14). It is also consistent with the property of local dimen-252

sionality that we described in Sec. 3.3 overall: it encodes the sparseness of the eigenvalues but it253

does not encode the magnitude of them. This shows how local dimensionality is a distinct quality254

of network representations compared with volume, and is driven by mechanisms that differ from255

sharpness alone. We emphasize that the dimensionality we study here is a local measure, on the256

finest scale around a point on the “global” manifold of unit activities; dimension on larger scales257

(i.e., across categories or large sets of task inputs (Farrell et al., 2022; Gao et al., 2017)) may show258

different trends.259

5 CONCLUSION260

This work presents a dual perspective, uniting views in both parameter and in feature space, of261

several key properties of trained neural networks that have been linked to their ability to generalize.262

We identify two representation space quantities that are bounded by sharpness – volume compression263

and maximum local sensitivity – and give new explicit formulas for these bounds. We conduct264

experiments with both VGG10 and MLP networks and find that the predictions of these bounds are265

born out for these networks, illustrating how MLS in particular is strongly correlated with sharpness.266

We also establish that sharpness, volume compression, and MLS are correlated, if more weakly, with267

test loss and hence generalization. Overall, we establish explicit links between sharpness properties268

in parameter spaces and compression and robustness properties in representation space.269

By demonstrating both how these links can be tight, and how and when they may also become loose,270

we show that taking this dual perspective can bring more clarity to the often confusing question of271

what quantifies how well a network will generalize in practice. Indeed, many works, as reviewed in272

the introduction, have demonstrated how sharpness in parameter space can lead to generalization,273

but recent studies have established contradictory results. We show how looking at quantities not274

only in the parameter space (sharpness), but also in the feature space (compression, maximum local275

sensitivity, etc.) may help explain the wide range of results.276

This said, we view our study as a starting point to open doors between two often-distinct perspectives277

on generalization in neural networks. Additional theoretical and experimental research is warranted278

to systematically investigate the implications of our findings, with a key area being further learning279

problems, such as predictive learning, beyond the classification tasks studied here. Nevertheless, we280

are confident that highly interesting and clarifying findings lie ahead at the interface between the281

parameter and representation space quantities explored here.282

REFERENCES283

Maksym Andriushchenko, Francesco Croce, Maximilian Müller, Matthias Hein, and Nicolas Flam-284

marion. A modern look at the relationship between sharpness and generalization. arXiv preprint285

arXiv:2302.07011, 2023.286

Alessio Ansuini, Alessandro Laio, Jakob H. Macke, and Davide Zoccolan. Intrinsic dimension287

of data representations in deep neural networks. Advances in Neural Information Processing288

Systems, 32, 2019.289

Ido Ben-Shaul and Shai Dekel. Nearest class-center simplification through intermediate layers. In290

Topological, Algebraic and Geometric Learning Workshops 2022, pp. 37–47. PMLR, 2022.291

Ido Ben-Shaul, Ravid Shwartz-Ziv, Tomer Galanti, Shai Dekel, and Yann LeCun. Reverse engineer-292

ing self-supervised learning. arXiv preprint arXiv:2305.15614, 2023.293

Julius Berner, Philipp Grohs, and Arnulf Jentzen. Analysis of the generalization error: Empirical294

risk minimization over deep artificial neural networks overcomes the curse of dimensionality in295

the numerical approximation of black–scholes partial differential equations. SIAM Journal on296

Mathematics of Data Science, 2(3):631–657, 2020. Publisher: SIAM.297

8

Highlight



Under review as a conference paper at ICLR 2024

Guy Blanc, Neha Gupta, Gregory Valiant, and Paul Valiant. Implicit regularization for deep neural298

networks driven by an ornstein-uhlenbeck like process, 2020. URL http://arxiv.org/299

abs/1904.09080.300

Uri Cohen, SueYeon Chung, Daniel D. Lee, and Haim Sompolinsky. Separability and geometry of301

object manifolds in deep neural networks. Nature communications, 11(1):746, 2020. Publisher:302

Nature Publishing Group UK London.303

Lijun Ding, Dmitriy Drusvyatskiy, Maryam Fazel, and Zaid Harchaoui. Flat minima generalize for304

low-rank matrix recovery, 2023.305

Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima can generalize306

for deep nets. In International Conference on Machine Learning, pp. 1019–1028. PMLR, 2017.307

Gamaleldin Elsayed, Dilip Krishnan, Hossein Mobahi, Kevin Regan, and Samy Bengio. Large308

margin deep networks for classification. Advances in neural information processing systems, 31,309

2018.310

Matthew Farrell, Stefano Recanatesi, Timothy Moore, Guillaume Lajoie, and Eric Shea-Brown.311

Gradient-based learning drives robust representations in recurrent neural networks by balancing312

compression and expansion. Nature Machine Intelligence, 4(6):564–573, 2022. Publisher: Nature313

Publishing Group UK London.314

Tomer Galanti, Liane Galanti, and Ido Ben-Shaul. Comparative generalization bounds for deep315

neural networks. Transactions on Machine Learning Research, 2023.316

Peiran Gao, Eric Trautmann, Byron Yu, Gopal Santhanam, Stephen Ryu, Krishna Shenoy, and Surya317

Ganguli. A theory of multineuronal dimensionality, dynamics and measurement. BioRxiv, pp.318

214262, 2017.319

Khashayar Gatmiry, Zhiyuan Li, Ching-Yao Chuang, Sashank Reddi, Tengyu Ma, and Stefanie320

Jegelka. The inductive bias of flatness regularization for deep matrix factorization, 2023.321

Mario Geiger, Leonardo Petrini, and Matthieu Wyart. Landscape and training regimes in deep322

learning. Physics Reports, 924:1–18, 2021. ISSN 0370-1573. doi: 10.1016/j.physrep.323

2021.04.001. URL https://www.sciencedirect.com/science/article/pii/324

S0370157321001290.325

Stanisław Jastrzebski, Zachary Kenton, Devansh Arpit, Nicolas Ballas, Asja Fischer, Yoshua Ben-326

gio, and Amos Storkey. Three Factors Influencing Minima in SGD, September 2018. URL327

http://arxiv.org/abs/1711.04623. arXiv:1711.04623 [cs, stat].328

Vignesh Kothapalli, Ebrahim Rasromani, and Vasudev Awatramani. Neural collapse: A review on329

modelling principles and generalization. arXiv preprint arXiv:2206.04041, 2022.330

Zhiyuan Li, Tianhao Wang, and Sanjeev Arora. What happens after SGD reaches zero loss? –a331

mathematical framework, 2022. URL http://arxiv.org/abs/2110.06914.332

Ashok Litwin-Kumar, Kameron Decker Harris, Richard Axel, Haim Sompolinsky, and LF Abbott.333

Optimal degrees of synaptic connectivity. Neuron, 93(5):1153–1164, 2017.334

Chao Ma and Lexing Ying. On linear stability of SGD and input-smoothness of neural networks,335

2021. URL http://arxiv.org/abs/2105.13462.336

Mor Shpigel Nacson, Kavya Ravichandran, Nathan Srebro, and Daniel Soudry. Implicit bias of the337

step size in linear diagonal neural networks. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song,338

Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International339

Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research,340

pp. 16270–16295. PMLR, 17–23 Jul 2022. URL https://proceedings.mlr.press/341

v162/nacson22a.html.342

Vardan Papyan, XY Han, and David L Donoho. Prevalence of neural collapse during the terminal343

phase of deep learning training. Proceedings of the National Academy of Sciences, 117(40):344

24652–24663, 2020.345

9

http://arxiv.org/abs/1904.09080
http://arxiv.org/abs/1904.09080
http://arxiv.org/abs/1904.09080
https://www.sciencedirect.com/science/article/pii/S0370157321001290
https://www.sciencedirect.com/science/article/pii/S0370157321001290
https://www.sciencedirect.com/science/article/pii/S0370157321001290
http://arxiv.org/abs/1711.04623
http://arxiv.org/abs/2110.06914
http://arxiv.org/abs/2105.13462
https://proceedings.mlr.press/v162/nacson22a.html
https://proceedings.mlr.press/v162/nacson22a.html
https://proceedings.mlr.press/v162/nacson22a.html


Under review as a conference paper at ICLR 2024

Akshay Rangamani, Marius Lindegaard, Tomer Galanti, and Tomaso A Poggio. Feature learning346

in deep classifiers through intermediate neural collapse. In International Conference on Machine347

Learning, pp. 28729–28745. PMLR, 2023.348

Aviv Ratzon, Dori Derdikman, and Omri Barak. Representational drift as a result of implicit reg-349

ularization, 2023. URL https://www.biorxiv.org/content/10.1101/2023.05.350

04.539512v3. Pages: 2023.05.04.539512 Section: New Results.351

Stefano Recanatesi, Matthew Farrell, Madhu Advani, Timothy Moore, Guillaume Lajoie, and Eric352

Shea-Brown. Dimensionality compression and expansion in deep neural networks. arXiv preprint353

arXiv:1906.00443, 2019.354

Stefano Recanatesi, Serena Bradde, Vijay Balasubramanian, Nicholas A Steinmetz, and Eric Shea-355

Brown. A scale-dependent measure of system dimensionality. Patterns, 3(8), 2022.356

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image357

recognition, 2015.358

Naftali Tishby and Noga Zaslavsky. Deep learning and the information bottleneck principle, 2015.359

URL http://arxiv.org/abs/1503.02406.360

Kaiyue Wen, Zhiyuan Li, and Tengyu Ma. Sharpness minimization algorithms do not only minimize361

sharpness to achieve better generalization, 2023.362

Lei Wu, Chao Ma, and Weinan E. How SGD Selects the Global Minima in Over-parameterized363

Learning: A Dynamical Stability Perspective. In Advances in Neural Information Processing Sys-364

tems, volume 31. Curran Associates, Inc., 2018. URL https://papers.nips.cc/paper_365

files/paper/2018/hash/6651526b6fb8f29a00507de6a49ce30f-Abstract.366

html.367

Zeke Xie, Issei Sato, and Masashi Sugiyama. A Diffusion Theory For Deep Learning Dynamics:368

Stochastic Gradient Descent Exponentially Favors Flat Minima, January 2021. URL http:369

//arxiv.org/abs/2002.03495. arXiv:2002.03495 [cs, stat].370

Ning Yang, Chao Tang, and Yuhai Tu. Stochastic gradient descent introduces an effective landscape-371

dependent regularization favoring flat solutions. Physical Review Letters, 130(23):237101, 2023.372

doi: 10.1103/PhysRevLett.130.237101. URL https://link.aps.org/doi/10.1103/373

PhysRevLett.130.237101. Publisher: American Physical Society.374

Yaoqing Yang, Liam Hodgkinson, Ryan Theisen, Joe Zou, Joseph E Gonzalez, Kannan Ramchan-375

dran, and Michael W Mahoney. Taxonomizing local versus global structure in neural network376

loss landscapes. Advances in Neural Information Processing Systems, 34:18722–18733, 2021.377

Zhanxing Zhu, Jingfeng Wu, Bing Yu, Lei Wu, and Jinwen Ma. The Anisotropic Noise in Stochastic378

Gradient Descent: Its Behavior of Escaping from Sharp Minima and Regularization Effects, June379

2019. URL http://arxiv.org/abs/1803.00195. arXiv:1803.00195 [cs, stat].380

Zhihui Zhu, Tianyu Ding, Jinxin Zhou, Xiao Li, Chong You, Jeremias Sulam, and Qing Qu. A ge-381

ometric analysis of neural collapse with unconstrained features. Advances in Neural Information382

Processing Systems, 34:29820–29834, 2021.383

10

https://www.biorxiv.org/content/10.1101/2023.05.04.539512v3
https://www.biorxiv.org/content/10.1101/2023.05.04.539512v3
https://www.biorxiv.org/content/10.1101/2023.05.04.539512v3
http://arxiv.org/abs/1503.02406
https://papers.nips.cc/paper_files/paper/2018/hash/6651526b6fb8f29a00507de6a49ce30f-Abstract.html
https://papers.nips.cc/paper_files/paper/2018/hash/6651526b6fb8f29a00507de6a49ce30f-Abstract.html
https://papers.nips.cc/paper_files/paper/2018/hash/6651526b6fb8f29a00507de6a49ce30f-Abstract.html
https://papers.nips.cc/paper_files/paper/2018/hash/6651526b6fb8f29a00507de6a49ce30f-Abstract.html
https://papers.nips.cc/paper_files/paper/2018/hash/6651526b6fb8f29a00507de6a49ce30f-Abstract.html
http://arxiv.org/abs/2002.03495
http://arxiv.org/abs/2002.03495
http://arxiv.org/abs/2002.03495
https://link.aps.org/doi/10.1103/PhysRevLett.130.237101
https://link.aps.org/doi/10.1103/PhysRevLett.130.237101
https://link.aps.org/doi/10.1103/PhysRevLett.130.237101
http://arxiv.org/abs/1803.00195
Highlight



Under review as a conference paper at ICLR 2024

A PROOF OF EQ. (3)384

Lemma A.1. If θ is an approximate interpolation solution, i.e. ∥f(xi,θ)− yi∥ < ε for i ∈385

{1, 2, · · · , n}, and second derivatives of the network function ∥∇θ2
j
f(xi,θ)∥ < M is bounded,386

then387

S(θ∗) =
1

n

n∑
i=1

∥∇θf(xi,θ
∗)∥2F +O(ε) (15)

Proof. Using basic calculus we get388

S(θ) = Tr(∇2L(θ))

=
1

2n

n∑
i=1

Tr(∇2
θ ∥f(xi,θ)− yi∥2)

=
1

2n

n∑
i=1

Tr∇θ(2(f(xi,θ)− yi)
T∇θf(xi,θ))

=
1

n

n∑
i=1

m∑
j=1

∂

∂θj
((f(xi,θ)− yi)

T∇θf(xi,θ))j

=
1

n

n∑
i=1

m∑
j=1

∂

∂θj
(f(xi,θ)− yi)

T∇θj
f(xi,θ)

=
1

n

n∑
i=1

m∑
j=1

∥∥∇θj
f(xi,θ)

∥∥2
2
+ (f(xi,θ)− yi)

T∇2
θj
f(xi,θ)

=
1

n

n∑
i=1

∥∇θf(xi,θ)∥2F +
1

n

n∑
i=1

(f(xi,θ)− yi)
T∇2

θj
f(xi,θ).

Therefore389 ∣∣∣∣∣S(θ)− 1

n

n∑
i=1

∥∇θf(xi,θ)∥2F

∣∣∣∣∣ < 1

n

n∑
i=1

|(f(xi,θ)− yi)
T∇2

θj
f(xi,θ)| < Mε = O(ε). (16)

390

In other words, when the network reaches zero training error and enters the interpolation phase (i.e.391

it classifies all training data correctly), Eq. (3) will be a good enough approximation of the sharpness392

because the quadratic training loss is sufficiently small.393

B PROOF OF EQ. (12)394

We first show that Eq. (6) is correct. Because of Eq. (5), we have the first inequality of Eq. (6),395

1

n

n∑
i=1

∥∇xf(xi,θ
∗)∥kF ≤ ∥W∥kF

1

n

n∑
i=1

∥∇Wf(xi,θ
∗)∥kF

∥xi∥k2

≤ ∥W∥kF
mini∥xi∥k2

1

n

n∑
i=1

∥∇Wf(xi,θ
∗)∥kF .

(17)

Since the input weights W is just a part of all the weights (θ) of the network, we have396

∥∇Wf(xi,θ
∗)∥kF ≤ ∥∇θf(xi,θ

∗)∥kF . Therefore397

∥W∥kF
mini∥xi∥k2

1

n

n∑
i=1

∥∇Wf(xi,θ
∗)∥kF ≤ ∥W∥kF

mini∥xi∥k2
1

n

n∑
i=1

∥∇θf(xi,θ
∗)∥kF . (18)

To show the correctness of Eq. (12), we discuss two cases.398

Case 1: k ≥ 2399
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Lemma B.1. For vector x, ∥x∥p ≥ ∥x∥q for 1 ≤ p ≤ q ≤ ∞.400

Proof. First we show that for 0 < k < 1, we have (|a|+ |b|)k ≤ |a|k + |b|k. It’s trivial when either401

a or b is 0. So W.L.O.G, we can assume that |a| < |b|, and divide both sides by |b|k. Therefore it402

suffices to show that for 0 < t < 1, (1+t)k < tk+1. Let f(t) = (1+t)k−tk−1, then f(0) = 0, and403

f ′(t) = k(1+t)k−1−ktk−1. Because k−1 < 0, 1+t > 1 and t < 1, tk−1 > (1+t)k−1. Therefore404

f ′(t) < 0 and f(t) < 0 for 0 < t < 1. Combining all cases, we have (|a|+ |b|)k ≤ |a|k + |b|k for405

0 < k < 1. By induction, we have (
∑

n |an|)k ≤
∑

n |an|k.406

Now we can prove the lemma using the conclusion above,407 (∑
n

|xn|q
)1/q

=

(∑
n

|xn|q
)p/q·1/p

≤

(∑
n

(|xn|q)p/q
)1/p

=

(∑
n

|xn|p
)1/p

(19)

408

Now take the xi in above lemma to be ∥∇θf(xi,θ
∗)∥2F and let p = 1, q = k/2, then we get409 (

n∑
i=1

(∥∇θf(xi,θ
∗)∥2F )k/2

)2/k

≤
n∑

i=1

∥∇θf(xi,θ
∗)∥2F . (20)

Therefore,410

∥W∥kF
mini∥xi∥k2

1

n

n∑
i=1

∥∇θf(xi,θ
∗)∥kF ≤ nk/2−1∥W∥kF

mini∥xi∥k2

(
1

n

n∑
i=1

∥∇θf(xi,θ
∗)∥2F

)k/2

=
nk/2−1∥W∥kF

mini∥xi∥k2
S(θ∗)k/2

(21)

Case 2: 1 ≤ k < 2411

Lemma B.2. For vector x ∈ Rn, ∥x∥p ≤ n1/p−1/q∥x∥q for 1 ≤ p ≤ q ≤ ∞.412

Proof. By Hölder’s inequality, we have,413

∑
i

|xi|p =
∑
i

|xi|p · 1 ≤

(∑
i

|xi|q
)p/q (∑

i

1

)1−p/q

= n1−p/q∥x∥pq (22)

Taking the p-th root on both sides gives us the desired inequality.414

Now take the xi in above lemma to be ∥∇θf(xi,θ
∗)∥F and let p = k, q = 2, then we get415 (

n∑
i=1

(∥∇θfi∥F )k
)1/k

≤ n1/k−1/2

(
n∑

i=1

∥∇θfi∥2F

)1/2

. (23)

Therefore,416

∥W∥kF
mini∥xi∥k2

1

n

n∑
i=1

∥∇θfi∥kF ≤ ∥W∥kF
mini∥xi∥k2

n1−k/2

n

(
n∑

i=1

∥∇θfi∥2F

)k/2

=
∥W∥kF

mini∥xi∥k2
S(θ∗)k/2.

(24)

Combining Eq. (21) and Eq. (24), we get Eq. (12).417
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C PROOF OF EQ. (13)418

From Eq. (5), we get419

MLS =
1

n

n∑
i=1

∥∇xfi∥2 ≤ ∥W∥2
1

n

n∑
i=1

∥∇Wf(xi,θ
∗)∥F

∥xi∥2
. (25)

Now Cauchy Swartz inequality tells us that420 (
n∑

i=1

∥∇wfi∥
∥xi∥2

)2

≤

(
n∑

i=1

1

∥xi∥2

)
·

(
n∑

i=1

∥∇Wfi∥2
)
. (26)

Therefore421

MLS ≤ ∥W∥2

√√√√ 1

n

n∑
i=1

1

∥xi∥2
·

√√√√ 1

n

n∑
i=1

∥∇Wfi∥2

≤ ∥W∥2

√√√√ 1

n

n∑
i=1

1

∥xi∥2
· S(θ∗)1/2.

(27)

D EMPIRICAL ANALYSIS OF THE BOUND422

D.1 TIGHTNESS OF THE BOUND423

In this section, we mainly explore the tightness of the bound in Eq. (13) for reasons discussed in424

Sec. 3.2. First we rewrite Eq. (13) as425

MLS =
1

n

n∑
i=1

∥∇xf(xi,θ
∗)∥2 := A

≤ ∥W∥2
n

n∑
i=1

∥∇Wf(xi,θ
∗)∥F

∥xi∥2
:= B

≤ ∥W∥2

√√√√ 1

n

n∑
i=1

1

∥xi∥22

√√√√ 1

n

n∑
i=1

∥∇Wf(xi,θ∗)∥2F := C

≤ ∥W∥2

√√√√ 1

n

n∑
i=1

1

∥xi∥22
S(θ∗)1/2 := D

(28)

Thus Eq. (13) consists of 3 different steps of relaxations. We analyze them one by one:426

1. (A ≤ B) The equality holds when ∥WTJ∥2 = ∥W∥2∥J∥2 and ∥J∥F = ∥J∥2, where427

J = ∂f(Wx;θ̄)
∂(Wx) . The former equality requires that W and J have the same left singular428

vectors. The latter requires J to have zero singular values except for the largest singular429

value. Since J depends on the specific neural network architecture and training process,430

we test the tightness of this bound empirically (Fig. D.4).431

2. (B ≤ C) The equality requires ∥∇Wf(xi,θ
∗)∥F

∥xi∥2
to be the same for all i. In other words, the432

bound is tight when ∥∇Wf(xi,θ
∗)∥F

∥xi∥2
does not vary too much from sample to sample.433

3. (C ≤ D) The equality holds if the model is linear, i.e. θ = W.434

We empirically verify the tightness of the above bounds in Fig. D.4435
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Figure D.4: Empirical tightness of the bounds. We empirically verify that the inequalities in
Eq. (28) hold and test their tightness. The results are shown for a fully connected feedforward
network trained on the FashionMNIST dataset. The quantities A, B, C, and D are defined in Eq. (28).
We see that the gap between C and D is large compared to the gap between A and B or B and C.
This indicates that partial sharpness ∥∇Wf(xi,θ

∗)∥F (sensitivity of the loss w.r.t. only the input
weights) is more indicative of the change in the maximum local sensitivity (A). Indeed, correlation
analysis shows that bound C is positively correlated with MLS while bound D, perhaps surprisingly,
is negatively correlated with MLS (Fig. D.6).

D.2 CORRELATION ANALYSIS436

We empirically show how different metrics correlate with each other, and how these correlations437

can be predicted from our bounds. We train 20 VGG10 networks with different batch sizes, learning438

rates, and random initialization to classify images from the CIFAR-10 dataset, and plot pairwise439

scatter plots between 5 quantities at the end of the training: test loss, MLS, G (see Eq. (6)), log440

volume, sharpness and local dimensionality (Fig. D.5).441

We find that442

1. G and MLS are highly correlated and can be almost seen as the same quantity, scaled.443

2. Although the bound in Eq. (12) is loose, log volume correlates well with sharpness and444

MLS.445

3. Sharpness is positively correlated with the test loss, indicating that little reparametrization446

effect (Dinh et al., 2017) is happening during training, i.e. the network weights do not447

change too much during training. This is consistent with observations in Ma & Ying (2021).448

4. MLS improves the correlation with the test loss over log volume and local dimensionality.449

This is consistent with the bound Eq. (13).450

We repeat the analysis on an MLP trained on the FashionMNIST dataset, and observe the same451

phenomena (Fig. D.6).452

D.3 CONNECTION TO OTHER WORKS453

Our bound and its analysis are connected to many theoretical and experimental results. First of454

all, the right-hand side of Eq. (13) is related not only to the sharpness but also to the norm of the455

input weights. Therefore our bound takes into the effect of reparametrization, and is invariant under456

scaling of the input weights. This is consistent with the theoretical results in Dinh et al. (2017)457

which show that sharpness can be arbitrarily increased by reparametrization while the network can458

still generalize. Moreover, many works studied simplified linear models (Li et al., 2022; Ding et al.,459

2023; Nacson et al., 2022; Gatmiry et al., 2023), and showed that the flattest minima generalize well.460

Correspondingly, Eq. (28) shows that when the neural network is linear, the inequality between C461

and D becomes equality, and the flattest minima give the tightest bound on MLS. On the other hand,462

this also explains why sharpness does not always correlate with generalization when the network463

becomes more complicated (Wen et al., 2023; Andriushchenko et al., 2023): having weights that464

are other than the input weights makes the bound looser and more unpredictable. Experiments on465
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Figure D.5: Pairwise correlation among different metrics. We trained 20 different VGG10 net-
works using vanilla SGD with different learning rates, batch sizes, and random initializations and
plot pairwise scatter plots between different quantities: local dimensionality, sharpness (square root
of Eq. (3)), log volume (Eq. (10)), G (Eq. (6)), MLS (Eq. (13)) and test loss. The Pearson correla-
tion coefficient ρ is shown in the top-left corner for each pair of quantities. See Appendix D.2 for a
summary of the findings in this figure.

MLP show that the bound D in Eq. (28) can even be negatively correlated with MLS and test loss466

(Fig. D.6).467

E ADDITIONAL EXPERIMENTS468
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Figure D.6: Pairwise correlation among different metrics. We trained 20 different 4-layer MLPs
using vanilla SGD with different learning rates, batch size, and random initializations and plot
pairwise scatter plots between different quantities: local dimensionality, sharpness (square root of
Eq. (3)), log volume (Eq. (10)), G (Eq. (6)), MLS (Eq. (13)), test loss and additionally bound C and
D as defined in Eq. (28). The Pearson correlation coefficient ρ is shown in the top-left corner for
each pair of quantities. See Appendix D.2 for a summary of the findings in this figure.
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Figure E.7: Trends in key variables across SGD training of a 4-layer MLP with fixed learning
rate (equal to 0.1) and varying batch size (8, 20, and 32). After minimizing the loss, lower batch
sizes lead to lower sharpness and stronger compression. Moreover, G closely follows the trend of
sharpness during the training. From left to right: train loss, test accuracy, sharpness (square root of
Eq. (3)), log volumetric ratio (Eq. (10)), G (Eq. (6)), and local dimensionality of the network output
(Eq. (14)).
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Figure E.8: Trends in key variables across SGD training of a 4-layer MLP with fixed batch size
(equal to 20) and varying learning rates (0.05, 0.1 and 0.2). After the loss is minimized, higher
learning rates lead to lower sharpness and hence stronger compression. Moreover, G closely follows
the trend of sharpness during the training. From left to right: train loss, test accuracy, sharpness
(square root of Eq. (3)), log volumetric ratio (Eq. (10)), G (Eq. (6)), and local dimensionality of the
network output (Eq. (14)).
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