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Abstract

Spatio-temporal Gaussian processes (GPs) are important probabilistic tools for inference
and learning in climate science, epidemiology, or any time-driven general GP modelling
problem. The current gold-standard methods for scaling GPs to large data sets are various
flavours of pseudo-point methods. These methods do not cope well with long or unbounded
temporal observation horizons, which undermines their efficiency and effectively turns the
computational scaling back to cubic in the number of temporal observations. On the other
hand, if the temporal part in the GP prior admits a Markov form, the inference can be
sped up to linear in the number of temporal observations by using state space models. In
this work we show how to combine the most widely used pseudo-point method, Titsias’
variational approach, with the state space approximation framework. Our approach hinges
on a surprising conditional independence property which applies to space–time separable
GPs. By utilising pseudo-point approximations over space, and state space approximations
through time, we are able to construct an approximation that is more scalable and widely
applicable to spatio-temporal problems than either method on their own.

1. Introduction

Large spatio-temporal data containing millions of observations arise in various domains,
such as climate science. While Gaussian process (GP) models (Rasmussen and Williams,
2006) are effective in such settings, their computational expense is prohibitive if they are
employed naively. Consequently, approximation is necessary. In this work we combine the
complementary strengths of pseudo-point (Quiñonero-Candela and Rasmussen, 2005; Bui
et al., 2017) and state-space (Särkkä et al., 2013; Särkkä and Solin, 2019) approximations
to tackle spatio-temporal problems.

At its core this work hinges on an observation made by O’Hagan (1998) that, if a GP’s
kernel is separable, then it possesses a surprising kind of conditional independence property.
Interestingly, this observation appears to have gone largely unnoticed within the GP com-
munity. This facilitates the combination of pseudo-point and state-space approximations,
resulting in algorithms that scale linearly in time. In particular, we show (i) how the con-
ditional independence property can be exploited to significantly accelerate the variational
inference scheme of Titsias (2009) for GPs with separable kernels and sum-separable ker-
nels, (ii) how this can be straightforwardly combined with the Markov property exploited
by state-space approximations (Särkkä and Solin, 2019) to obtain an accurate approximate
inference algorithm for sum-separable spatio-temporal GPs, that scales linearly in time, and
(iii) how the earlier work of Hartikainen et al. (2011) on this topic is more closely-related
to Snelson and Ghahramani (2005) than previously realised.
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2. Pseudo-Point Approximations

Consider a GP prior f ∼ GP(m,κ) and an observation (likelihood) model with N ob-
servations y ∈ RN made at locations x ∈ XN , with conditional distribution p(y | f) =∏N
n=1 p(yn | fn), fn := f(xn). The seminal work of Titsias (2009), later clarified by

de G. Matthews et al. (2016), introduced the following approximation to the posterior
distribution over f :

q(f) = q(u) p(f6=u |u) , (1)

where um := f(zm) are the pseudo-points for a collection of M pseudo-inputs z1:M , and
f6=u := f \ u are all of the random variables in f except those used as pseudo-points. We

assume that q(u) is Gaussian with mean m̂u and covariance matrix Ĉu; subject to the
constraint imposed in Eq. (1) this family contains the optimal choice for q(u) if each con-
ditional p(yn | f(xn)) is Gaussian, and is otherwise the de-facto standard choice (Hensman
et al., 2013). This yields the approximate posterior predictive distribution at any collection
of test points x∗

q(f∗) = N
(
f∗;mf∗ + Cf∗uΛu(m̂u −mu),Cf∗ −Cf∗uΛuCuf∗ + Cf∗uΛuĈuΛuCuf∗

)
, (2)

where Λu := C−1
u is the inverse of the covariance matrix between all pseudo-points, Cf∗u

is the cross-covariance between the prediction points and pseudo-points under f , and mu

and mf∗ are the mean vectors at the pseudo points and prediction points respectively.
Supposing that the conditionals are Gaussian, which we denote by p(y | f) = N (y; f ,S) for
some positive-definite diagonal matrix S ∈ RN×N , it is possible to optimise q(u) analytically
and obtain a closed-form expression for the ELBO, known as the saturated bound :

L = logN (y;mf ,CfuΛuCuf + S)− 1

2
tr
(
S−1(Cf −CfuΛuCuf )

)
. (3)

Through the use of the matrix inversion and determinant lemmas, this quantity can be
computed using only O

(
NM2

)
operations. This is typically acceptable for regression tasks

where the inputs are sampled i.i.d. as the value of M required as N increases generally
seems not to grow too fast—indeed Burt et al. (2019) showed that if the inputs xn are
sampled i.i.d. from a Gaussian then the value of M required scales roughly logarithmically
in N . However, Bui and Turner (2014) noted that this is typically not the case for time
series problems, where the interval in which the observations live typically grows linearly
in N . Moreover Tobar (2019) showed that to ensure the posterior approximation does not
degrade, the density of the pseudo-points must not drop below a rate analogous to the
Nyquist-Shannon rate. Consequently the number of pseudo-points M required to maintain
a good approximation must grow linearly in N , so the cost of accurate approximate inference
using pseudo-point methods is really O

(
N3
)

in this case.

3. State-Space Approximations to Sum-Separable Spatio-Temporal GPs

Särkkä et al. (2013) and Särkkä and Solin (2019) showed that a given separable spatio-
temporal GP f(τ, r) can be approximated by another GP f̄(τ, r, d), where d ∈ {1, . . . , D}
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picks one of D latent dimensions which render f̄ Markov in τ , the first of which approxi-
mates f . This approximation can generally be made tight, and achieves equality in vari-
ous interesting cases (e.g., Matérn-family GPs). f̄ is specified implicitly through a linear
stochastic differential equation, meaning that inference can be performed via efficient filter-
ing / smoothing in a Linear-Gaussian State-Space Model (LGSSM). Let f̄t be the collection
of random variables in f̄ at inputs given by the Cartesian product between the singleton {t},
NT arbitrary locations in space r1:NT , and all of the latent dimensions {1, . . . , D}. Further,
let the kernel of f be separable: κ((r, τ), (r′, τ ′)) = κr(r, r′)κτ (τ, τ ′). Any collection of such
finite dimensional marginals f̄ := f̄1:T , each using the same r1:NT , form an LGSSM with
NTD-dimensional state-space, and dynamics

f̄t = Atf̄t−1 + et, et ∼ N (0,Cr
f ⊗Qt) , s.t. fn,t = Hf̄n,t, (4)

yn,t = fn,t + wn,t, wn,t ∼ N (0,Sn,t) , (5)

where H =
[
1 0 . . . 0

]
∈ R1×D ignores all but the first dimension of f̄n,t, At and Qt

are functions of κτ , and Cr
f is the covariance matrix associated with κr and r1:NT . This

formulation can be straightforwardly extended to sums of separable processes (App. B).
While this formulation truly scales linearly in T it has two clear limitations, (i) all locations
of observations must lie on a rectilinear time-space grid if any computational gains are to
be achieved; and (ii) inference scales cubically in NT , meaning that inference is rendered
infeasible by time or memory constraints if a large number of spatial locations are observed.

4. Exploiting Separability to Obtain the Best of Both Worlds

We now combine the pseudo-point and state-space approximations, and show how a tem-
poral conditional independence property means that the optimal approximate posterior is
Markov. This in turn leads to a closed-form expression for the optimum under Gaussian
observation models, and the existence of a simplified LGSSM in which exact inference yields
optimal approximate inference in the original model.

Pseudo-Point Approximation of State-Space Augmentation We perform approxi-
mate inference in a GP f by applying the standard variational pseudo-point approximation
(Sec. 2) to its state-space augmentation (Sec. 3) f̄ :

q
(
f̄
)

:= q(ū) p
(
f̄6=ū

∣∣ ū) , (6)

where the pseudo-points ū = ū1:T form a rectilinear grid of points in time, space, and
the latent dimensions with the same structure as f̄ in Sec. 3, but replacing r1:NT with a
collection of Mτ spatial pseudo-inputs, for a total of TMτD pseudo-points. p(ū) is therefore
Markov-through-time, so has block-tridiagonal precision Λū (Grigorievskiy et al., 2017).

Crucially, we will now relax the assumption that f must associated with inputs on a
rectilinear grid, requiring only that each observation is made at one of the T times at which
we have placed pseudo-points. We denote the number of observations at time t by Nt.

Exploiting Conditional Independence Due to O’Hagan (1998)’s conditional indepen-
dence property, p

(
f̄t
∣∣ ū) = p

(
f̄t
∣∣ ūt); see App. A for details. Consequently, the reconstruc-
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tion terms in the ELBO depend only on ūt as opposed to the entirety of ū:

L =

T∑
t=1

Nt∑
n=1

Eq(ūt)
[
Ep(fn,t | ūt)[log p(yn,t | fn,t)]

]
−KL[q(ū) ||p(ū)] (7)

This property yields substantial computational savings in both the separable and sum-
separable case (App. B.1).

The Optimal Approximate Posterior is Markov As an immediate consequence of
Eq. (7), by the same argument as that made by Opper and Archambeau (2009) the optimal
approximate posterior precision has the form

Λ̂∗ū = Λū +

G1 0
. . .

0 GT


︸ ︷︷ ︸

G

, Gt := −2∇Ĉūt

Nt∑
n=1

Eq(ūt)
[
Ep(fn,t | ūt)[log p(yn,t | fn,t)]

]
. (8)

G is block-diagonal with the same block-sizes as Λū, so Λ̂∗ū is also block-tridiagonal and the
optimal approximate posterior is Markov; see App. C for details. Moreover, Ashman et al.
(2020) (App. A) show that Gt can be written as a sum of Nt rank-1 matrices.

Optimal Approx. Posterior under Gaussian Observation Model In the case that
each p(yn,t | fn,t) = N (yn,t; fn,t,Sn,t), an explicit expression for the optimal parameters of

the approximate posterior N
(
ū; m̂∗ū, [Λ̂

∗]−1
ū

)
can be obtained from Eq. (8):

Λ̂∗ū = Λū + G, where Gt := H>utΛutCutftS
−1
t CftutΛutHut , (9)

m̂∗ = mū + [Λ̂∗]−1
ū H>uΛuCufS

−1(y −mf ), (10)

where Hut := IMτ ⊗ H, Hu := IT ⊗ Hut , St := blk-diag(S1,t, . . . ,SNt,t), S :=
blk-diag(S1, . . . ,ST ), and ΛuCuf are block-diagonal; see App. A.3.

Approximate Inference via Exact Inference in an Approximate Model This
optimal approximate posterior over ū is equal to the exact posterior under the simpler
state-space model given by

p̃(ū) := p(ū) , p̃(yt | ūt) :=

Nt∏
n=1

N
(
yn,t;mfn,t + Cfn,tutΛutHu(ūt −mūt),Sn,t

)
, (11)

that is, p̃(ū |y) = N
(
ū; m̂∗ū, [Λ̂

∗]−1
ū

)
. This is analogous to the relationship between the

approximate model employed by the Deterministic Training Conditional (DTC) (Seeger
et al., 2003), and the variational approximation (Titsias, 2009). Indeed, this model is
precisely that employed by DTC, and it can be exploited both to perform approximate
inference and the saturated bound; see App. D. This allows for approximate inference to
be performed by running exact inference in an LGSSM, which scales linearly in time and
can re-use existing code. For example, it is clear that the parallelised inference procedure
derived by Särkkä and Garćıa-Fernández (2020) could be utilised in this approximation.
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Computational Intensity The total number of flops required to compute the saturated
ELBO is roughly TM3

τ +M2
τ

∑T
t=1Nt. This is a great deal fewer when T is large than the

M3 +M2N = M3
τ T

3 +M2
τ T

2N required if the bound is computed naively.

Related Work The conditional independence property exploited to develop the varia-
tional approximation in this section also shines new light on the work of Hartikainen et al.
(2011). Specifically, performing inference in the approximate model they introduce would
yield FITC (Snelson and Ghahramani, 2005) exactly ; see App. E.

The popular Kronecker-product methods for separable kernels explored by (Saatçi, 2012)
are unable to handle heteroscedastic observation noise / missing data, scale cubically in
time, and require observations to lie on a rectilinear grid. Our approach suffers none of
these drawbacks.

5. Experiments: Proof-of-Concept

We conducted two simple proof-of-concept experiments on synthetic data with a separable
GP to verify our approach to approximate inference, more detail in App. G. Similar evalu-
ation of a sum-separable kernel is in App. H; evaluation on real-world problems is on-going.
All timing experiments are conducted using a single thread on a 2019 MacBook Pro with
2.6 GHz CPU. In both experiments we consider quite a large temporal extent, but only
moderate spatial, since we expect the proposed method to perform well in such situations.
If the spatial extent of a data set is very large relative to the characteristic spatial variation,
pseudo-point methods will struggle and, by extension, so will our method.

Arbitrary Spatial Locations Fig. 1 (lhs) shows how inputs were arranged for this
experiment; at each time 10 spatial locations were sampled uniformly between 0 and 10.
The spatial location of pseudo-inputs are regular between 0 and 10. The right hand side
shows that when using pseudo-points we are indeed able to achieve substantial performance
improvements relative to exact inference by utilising the state-space methodology, while
retaining a tight bound. Approximating the log marginal likelihood well for T = 105 time
points (N = 106 observations total), takes just over 10s in this example.

Grid-with-Missings Fig. 2 (lhs) shows how (pseudo-)inputs were arranged for this ex-
periment for Mτ = 10; the same 50 spatial locations are considered at each time point, but
5 of the observations are dropped at random, for a total of Nt = 45 observations per time
point – our largest case therefore involves N = 4.5 × 106 observations. The right of the
figure shows that we able to compute a good approximation to the log marginal likelihood
using roughly a third of the computation required by the standard state-space approach to
inference. The extent of the improvement here will vary from setting-to-setting depending
on how many pseudo-points are required at each point in time to account for the observa-
tions – for example, the gains relative to exact state-space inference will be greater if fewer
pseudo-points-per-observation can be used.

6. Conclusion

This work shows that for GPs with sum-separable kernels, there exists a natural and effi-
cient manner which to combine pseudo-point and state-space approximations. Preliminary
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Figure 1: Arbitrary Spatial Locations experiment. Left: Locations of (pseudo-)inputs for Mτ = 10.
10 locations in space chosen randomly at each time point. Right: Time to compute ELBO
vs performing exact inference. ELBO tight for Mτ = 20; see Fig. 3.
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Figure 2: Grid-with-Missings experiment. Left: Locations of (pseudo-)inputs – note the grid struc-
ture with 50 observations per time point, of which 5 are missing. Right: Time to compute
ELBO vs performing exact inference naively and via state-space methods (sde). ELBO
tight for Mτ = 20; see Fig. 3.

synthetic experiments show that approach can yield substantial improvements to computa-
tional efficiency whilst retaining a high degree of accuracy.

The methods presented can be straightforwardly combined with approximations for
non-Gaussian likelihoods, such as those discussed by Wilkinson et al. (2020), Chang et al.
(2020), and Ashman et al. (2020). Due to the Markov property there is a natural way
to parametrise the approximate posterior (App. F) in such cases, that is analogous to
parametrising the filtering distributions. This parametrisation might also be useful when
dealing with problems in which mini-batching (Hensman et al., 2013) is desirable.
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Appendix A. Conditional Independence in Separable Gaussian models

This section splits cleanly into four subsections. Everything in here follows from the defi-
nitions presented in this paper, a main result from O’Hagan (1998), the properties of the
Kronecker product, and basic linear algebra. The second subsection contains the key result.

A.1. Kronecker Structure in the State-Space Prior

In the separable case, there is Kronecker structure that persists through the LGSSM prior.
Our starting point is an LGSSM whose transition dynamics are of the form

f̄t = [IN ⊗At] f̄t−1 + εt, (12)

εt ∼ N (0,Cr ⊗Qt) , (13)

f̄0 ∼ N (m0,C
r ⊗Cτ

0) , (14)

where t ∈ {1, ..., T}. Here f might comprise the finite-dimensional marginals over e.g. f
and its derivatives at both observation locations and pseudo-inputs. Note that this is the
standard form of the LGSSM that separable spatio-temporal GPs are converted to.

First consider the marginal covariance matrix of ft:

V
[
f̄t
]

= [IN ⊗At]V
[
f̄t−1

]
[IN ⊗At]

> + Cr ⊗Qt. (15)

Adopting the inductive hypothesis V
[
f̄t−1

]
= Cr ⊗Cτ

t−1, it is clear from Eq. (14) that the
base case holds:

V
[
f̄0
]

= Cr ⊗Cτ
0 (16)

Furthermore
V
[
f̄t
]

= Cr ⊗
[
AtC

τ
t−1A

>
t + Qt

]
︸ ︷︷ ︸

Cτt

, (17)

so the Kronecker structure of the marginal covariance at time t is clear, as is the method
by which it can be computed.

Now consider the covariance between two time points, t < t′ w.l.o.g:

V
[
f̄t′ , f̄t

]
= E

[{
[IN ⊗At′ ] (f̄t′−1 −mt′−1) + εt′

}
(f̄t −mt)

>
]

= [IN ⊗At′ ]V
[
f̄t′−1, f̄t

]
. (18)

Assuming the inductive hypothesis

V
[
f̄t′ , f̄t

]
= Cr ⊗Cτ

t′t (19)

and inducting on t′, the base case (t′ = t) follows immediately from the result in Eq. (17),
and the induction step shows that

V
[
f̄t′ , f̄t

]
= Cr ⊗

[
At′C

τ
t′−1,t

]︸ ︷︷ ︸
Cτ
t′t

. (20)
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A.2. Conditional Independence given Current Pseudo-Points

Fortunately, under the assumption of separability it is very straightforward to compute
the approximate posterior marginal distribution over f̄t,n given the approximate posterior
marginal distribution over ūt. This is a consequence of property derived by O’Hagan (1998),
which we generalise here to vector-valued RVs.

First consider the prior joint distribution over f̄t,n, ūt, and ūt′ :f̄t,nūt
ūt′

 ∼ N

mf̄

t,n

mū
t

mū
t′

 ,
 Cr

f̄n
⊗Cτ

t

Cr
ūf̄n
⊗Cτ

t Cr
ū ⊗Cτ

t

Cr
ūf̄n
⊗Cτ

t′t Cr
ū ⊗Cτ

t′t Cr
ū ⊗Cτ

t′


 . (21)

The upper triangle of the covariance matrix is given by symmetry. Note that this covariance
matrix follows from the results in the preceding section with

f̄t :=

[
f̄t,n
ūt

]
. (22)

From the usual rules of conditioning for Gaussians, we deduce that the covariance matrix
of f̄t,n, ūt′ | ūt is [

Cr
f̄n
⊗Cτ

t

Cr
ūf̄n
⊗Cτ

t′t Cr
ū ⊗Cτ

t′

]
−
[
α
β γ

]
, (23)

where

α :=
[
Cr

f̄nū
⊗Cτ

t

]
[Cr

ū ⊗Cτ
t ]−1

[
Cr

ūf̄n
⊗Cτ

t

]
(24)

β := [Cr
ū ⊗Cτ

t′t] [Cr
ū ⊗Cτ

t ]−1
[
Cr

ūf̄n
⊗Cτ

t

]
(25)

γ := [Cr
ū ⊗Cτ

t′t] [Cr
ū ⊗Cτ

t ]−1 [Cr
ū ⊗Cτ

tt′ ] . (26)

Observe that the off-diagonal block is

Cr
ūf̄n
⊗Cτ

t′t − β = Cr
ūf̄n
⊗Cτ

t′t −
(
Cr

ū (Cr
ū)−1 Cr

ūf̄n

)
⊗
(
Cτ
t′t (Cτ

t )−1 Cτ
t

)
= Cr

ūf̄n
⊗Cτ

t′t −Cr
ūf̄n
⊗Cτ

t′t

= 0,

from which it follows that
f̄t,n ⊥⊥ ūt′ | ūt (27)

for any t′. Moreover
f̄t,n ⊥⊥ ū1:T\t | ūt (28)

follows from this result and the marginalisation property of Gaussians. Consider the co-
variance of the conditional distribution f̄t,n, ū1:T\t | ūt, assuming w.l.o.g. that t = T : Cf̄T,n|ū Cf̄T,nū1|ūT Cf̄T,nū2|ūT

Cū1 f̄T,n|ūT Cū1|ūT Cū1ū2|ūT . . .
...

 . (29)

10
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Observe that by the marginalisation property of Gaussians, any of Cf̄T,nū1|ūT , Cf̄T,nū2|ūT ,

etc being non-zero would contradict property Eq. (27). It must therefore hold that they are
indeed zero, so property Eq. (28) must hold if Eq. (27) does.

A.3. Block-Diagonal Structure

Furthermore, this conditional independence property implies that

CftūC
−1
ū =

[
0 . . . Cf̄tūtC

−1
ūt . . . 0

]
. (30)

This is easily proven by considering that, were it not the case, then

E[ft | u] 6= E[ft | ut] , (31)

contradicting property Eq. (28). From this it follows from repeated application of Eq. (30)
that the larger matrix Cf ūC

−1
ū is block-diagonal, and is given by

Cf ūC
−1
ū =


Cf1ū1C

−1
ū1

Cf2ū2C
−1
ū2

. . .

CfT ūTC
−1
ūT
.

 (32)

A.4. A Further Conditional Independence Property

Note the Kronecker structure present in Eq. (17): this is the finite-dimensional manifestation
of the conditional independence property of separable GPs. It follows immediately from
this that

ft ⊥⊥ (ūt\ut) | ut, (33)

where ūt\ut comprises the latent variables in ūt. Note this means that the conditional
density

p(ft |ut) := N (yt;mft + CftutΛut(ut −mut),Cft −CftutΛutCutft) (34)

must be equal to

p(ft | ūt) := N (yt;mft + CftūtΛūt(ūt −mūt),Cft −CftūtΛūtCūtft) . (35)

Recalling that ut = Hutūt, it follows that

mut = Hutmūt , Cut = HutCūtH
>
ut . (36)

Substituting this into the expression for the mean in Eq. (34) yields the following:

mft + CftutΛut(Hutūt −Humūt) = mft + CftūtΛūt(ūt −mūt),

which must hold for any value of ūt. We deduce that

CftutΛutHut = CftūtΛūt . (37)

11



Combining Pseudo-Point and State Space Approximations

Substituting this result into the expressions for the covariance in Eq. (35) shows it to be
consistent with the covariance in Eq. (34):

Cft −CftūtΛūtCūtft = Cft −CftūtΛūtCūtΛūtCūtft

= Cft −CftutΛutHutCūtH
>
utΛutCutft

= Cft −CftutΛutCutΛutCutft

= Cft −CftutΛutCutft . (38)

Appendix B. Conditional Independence in Sum-Separable GPs

A sum-separable kernel

κ
(
(r, τ), (r′, τ ′)

)
=

P∑
p=1

κrp
(
r, r′

)
κτp
(
τ, τ ′

)
(39)

is not itself separable. However, we can interpret a zero-mean GP f with a sum-separable
kernel as a sum over a collection of P independent GPs fp ∼ GP(0, κp), where each κp is
separable. The covariance between f and any fp is

cov
(
f((r, τ)) , fp

(
(r′, τ ′)

))
= E

(
P∑
q=1

fq((r, τ)))fp
(
(r′, τ ′)

)
=

P∑
q=1

E
[
fq((r, τ)) fp

(
(r′, τ ′)

)]
= E

[
fp((r, τ)) fp

(
(r′, τ ′)

)]
= κrp

(
r, r′

)
κτp
(
τ, τ ′

)
, (40)

which is separable. Note that it is trivial to extend this to handle a non-zero mean GP f
by adding the mean function to the sum over the fps.

This structure persists in the state-space formulation. Consider a set of P state space
approximations f̄p, one for to each fp. The finite dimensional marginals form an LGSSM
of the form

f̄pt = Ap,tf̄
p
t−1 + εp,t, εp,t ∼ N (0,Qp,t) (41)

Let

f̄n,t :=

 f̄
1
t
...
f̄Pt

 , H> := vcat


1 1 . . . 1
0 0 0

...
0 0 0


︸ ︷︷ ︸

D×P

(42)

where vcat transforms a matrix into a column vector by stacking its columns on top of each
other, then

fn,t = Hf̄n,t (43)

yn,t = fn,t + ηn,t, ηn,t ∼ N (0,Sn,t) . (44)

12
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B.1. Extending Conditional Independence Results to Sum-Separable
Processes

To extend the results in App. A.1 first note that each f̄p1:T is independent of any other
f̄ q1:T (p 6= q) a priori. Consequently, we can apply the analysis in App. A.1 to each f̄p1:T

separately and arrive at the associated results in precisely the same way. Similarly by
introducing pseudo-points ūp1:T for each p with the same structure as ū1:T we may apply
the analysis in App. A.2 to obtain

f̄pn,t ⊥⊥ ūpt′ | ū
p
t (45)

for any t′, and
f̄pn,t ⊥⊥ ūp1:T\t | ū

p
t . (46)

Letting ūt be the concatenation of all ūpt , we further wish to show that

fn,t ⊥⊥ ū1:T\t | ūt. (47)

To do this, we first introduce some additional notation:

α := fn,t, (48)

βp := ūpt , (49)

γp := ūp1:T\t. (50)

By property 46 we know that
V[α, γp | βp] = 0, (51)

so it suffices to show that
V[α, γp | β1:P ] = V[α, γp | βp] , (52)

to which the same marginal consistency argument can be made as was used to show property
28. Since βp ⊥⊥ βq and γp ⊥⊥ βq, p 6= q, we have that

V[α, γp | β1:P ] = Cα,γp −
[
Cα,β1 . . . Cα,βP

] C
−1
β1

0
. . .

0 C−1
βP


Cβ1,γp

...
CβP ,γp


= Cα,γp −

P∑
q=1

Cα,βqC
−1
βq

Cβq ,γp

= Cα,γp −Cα,βpC
−1
βp

Cβp,γp

= V[α, γp | βp] (53)

as required. The intuition here is that no additional information is gained by additionally
conditioning fn,t on ūq1:T\t, q 6= p because they are independent a priori. From property 47
the other results in App. A follow.
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Appendix C. The Optimal Approximate Posterior Under Gaussian
Likelihoods

We first derive an expression for Gt. While the form of the reconstruction term presented
in Eq. (8) is useful in the general case, in the case that

p(yn,t | fn,t) = N (yn,t; fn,t,Sn,t) , (54)

it is most straightforwardly expressed in the vectorised form

Eq(ft)[logN (yt; ft,St)] , (55)

where yt and ft the vectors formed by stacking the individual yn,t and fn,t, and St is the
diagonal matrix comprising the Sn,t.

By the result in App. A.4 we have that p(ft | ūt) = p(ft |ut), so

Eq(ft)[N (yt; ft,St)] = Eq(ūt)
[
Ep(ft | ūt)[logN (yt; ft,St)]

]
= Eq(ūt)

[
Ep(ft |ut)[logN (yt; ft,St)]

]
. (56)

Recall that p(ft |ut) = N (ft;mft + CftutΛut(ut −mut),Qt) where Qt := Cft −
CftutΛutCutft , then expanding the inner expectation yields

Eq(ft)[N (yt; ft,St)] = Eq(ūt)[logN (yt;mft −CftutΛut(ut −mut))]−
1

2
tr
(
S−1
t Qt

)
. (57)

Recall that by definition, ut = Htūt, from which mut = Hutūt follows. Let Bt :=
CftutΛutHut then expanding the remaining expectation yields

Eq(ft)[N (yt; ft,St)] = logN (yt;mft + Bt(ūt −mūt))−
1

2
tr
(
S−1
t

[
Qt + BtĈūtB

>
t

])
. (58)

From this form it is clear that

Gt = −2∇Ĉūt
Eq(ft)[p(yt | ft)] = B>t S

−1
t Bt (59)

as required.
Similar manipulations that also involve KL[q(ū) ||p(ū)] produce the expression for the

optimal approximate posterior mean m̂∗ū.

Appendix D. State-Space DTC

Eq. (11) introduces the following LGSSM:

p̃(ū) := p(ū) , p̃(yt | ūt) :=

Nt∏
n=1

N
(
yn,t;mfn,t + Cfn,tutΛutHū(ūt −mūt),Sn,t

)
. (60)

To see that p̃(ū |y) = N
(
ū; m̂∗ū, [Λ̂

∗]−1
ū

)
first note that p̃(yt | ūt) can be written as

p̃(yt | ūt) = N (yt;mft + CftutΛutHut(ūt −mūt),St) . (61)
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Furthermore, it follows from this that the conditional distribution p̃(y | ū) can be expressed
succinctly as

p̃(y | ū) = N (y;mf + CfuΛuHu(ū−mū),S) , (62)

which follows from recalling that CfuΛu is a block-diagonal matrix comprising T blocks, the
tth of which is CftutΛut . From here we can simply apply the usual rules for linear-Gaussian
systems (Murphy, 2012) to obtain the desired result.

D.1. Computing Approximate Posterior Marginals

Observe that, as with any ft from the training data, the marginal distribution over some f∗t
under the approximate posterior only involves ūt as f∗t ⊥⊥ ū\t | ūt:

q(f∗t) = N
(
f∗t; m̂f∗t , Ĉf∗t

)
where

m̂f∗t := mf∗t + Cf∗tutΛutHut(m̂ūt −mūt),

Ĉf∗t := Cf∗t −Cf∗tutΛutHut

[
Cūt − [Λ̂∗ūt ]

−1
]
H>utΛutCutf∗t .

Performing smoothing in the approximate model provides m̂ūt and [Λ̂∗ūt ]
−1, from which the

optimal approximate posterior marginals are straightforwardly obtained via the above.

D.2. Compute the Saturated Bound

Recall the standard saturated bound introduced by Titsias (2009), that is obtained at the
optimal approximate posterior:

L = logN (y;mf ,Cf ūΛūCūf + S)− 1

2
tr
(
S−1[Cf −Cf ūΛūCūf ]

)
. (63)

To see how this can be computed efficiently using the approximate model, first note that
the approximate model definition in 60 implies that

p̃(y) = N
(
y;mf ,CfuΛuHuCūH

>
uΛuCuf + S

)
= N (y;mf ,Cf ūΛūCūΛūCūf + S) (64)

= N (y;mf ,Cf ūΛūCūf + S) , (65)

which is precisely the first term of Eq. (63). The second equality follows by noticing that the
action of the linear maps CfuΛuHu and Cf ūΛū are equal, which follows from the conditional
independence property in App. A.4 and the block-diagonal structure of Cf ūΛū derived in
App. A.3. This means that to compute the first term of the optimal ELBO is simply the
log marginal likelihood of the approximate model, which can be computed efficiently via
filtering.
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By application of the same two properties, the trace term can be written as

1

2

T∑
t=1

tr
(
S−1
t [Cft −CftūtΛūtCūtft ]

)
=

1

2

T∑
t=1

tr
(
S−1
t [Cft −CftūtΛūtCūtΛūtCūtft

)
=

1

2
tr
(
S−1
t [Cft −CftūtΛūtCūtΛūtCūtft

)
=

1

2
tr
(
S−1
t [Cft −CftutΛutHutCūtH

>
utΛutCutft ]

)
.

(66)

These quantities are all straightforward to compute by running the approximate model
forwards through time and simply computing the marginal statistics.

Appendix E. FITC

Consider the approximate model employed by FITC:

p̃(y | ū) := N (y;mf + Cf ūΛū(ū−mū),diag(Cf −Cf ūΛūCūf ) + S) (67)

We know that in our separable setting, Cf ūΛū is block-diagonal from App. A.3. This means
that the tth block on the diagonal of the conditional covariance matrix is

Cft −CftūtΛūtCūtft , (68)

and the entire conditional distribution factorises as follows:

p̃(y | ū) =
T∏
t=1

N (yt;mft + CftūtΛūt(ūt −mūt),diag(Cft −CftūtΛūtCūtft) + St) . (69)

By comparing this with equation 5 of (Hartikainen et al., 2011), and letting the likelihood
in that equation p(yk |xk) = N (yk; [IN ⊗H]xk,St), the correspondence is clear.

Appendix F. Inference Under Non-Gaussian Likelihoods

While the optimal approximate posterior over the pseudo-points is not Gaussian, in line
with most other approximations (e.g. (Hensman et al., 2015)) we restrict it to be so. As we
have shown that the optimal approximate posterior precision is block-tridiagonal regardless
the likelihood, it follows that the optimal Gaussian approximation must be a Gauss-Markov
model. While in general such a model has a total of T (DMτ + 2(DMτ )2) free (variational)
parameters, in our case we know that the off-diagonal blocks of the precision are the same
as in the prior, meaning that there are at most T (DMτ +(DMτ )2) free (variational) param-
eters – this is also clear from Eq. (8). While one could directly parametrise the precision,
this might be inconvenient from the perspective of numerical stability and implementation
(standard filtering / smoothing algorithms do not work directly with the precision). Conse-
quently, it probably makes sense to set up a surrogate model as in line with that discussed
by Khan and Lin (2017) and Ashman et al. (2020). Alternatively one could parametrise the
filtering distributions directly, from which the posterior marginals could be obtained using
standard smoothing algorithms.

16



Combining Pseudo-Point and State Space Approximations

Appendix G. Additional Experimental Details

The kernel of the GP used in all experiments is

κ
(
(r, τ), (r′, τ ′)

)
= κr

(
r, r′

)
κτ
(
τ, τ ′

)
(70)

where κr is an Exponentiated Quadratic kernel with length scale 0.9 and amplitude 0.92,
and κτ is a Matern-3/2 kernel with length scale 1.2. The particular values of the length
scales / amplitudes are of little importance to the proof-of-concept experiments presented
in this work – they were chosen pseudo-randomly.
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Figure 3: The ELBO obtained vs the exact log marginal likelihood. The bound appears reasonably
tight when Mτ = 10 are used per time point, and very tight for Mτ = 20. Mτ = 5 is
clearly insufficient.

Appendix H. Sum-Separable Experiments

Similar experiments to those in section Sec. 5 were performed with the sum-separable ker-
nel given by adding two separable kernels of the form in Eq. (70), although with similar
length-scales and amplitudes. The results are broadly similar, although the state-space
approximations and state-space + pseudo-point approximations take a bit longer to run as
there are twice as many latent dimensions for a given number of pseudo-points than in the
separable model. As before, these experiments should be thought of purely as a proof of
concept.
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Figure 4: Time to compute log marginal likelihood exactly vs ELBO with a sum of two separable
kernels. Left: irregular samples as per Fig. 1. Right: regular samples with missing data as
per Fig. 2. Observe that, due to the increased latent dimensionality of the sum-separable
model, it takes longer to compute the ELBO (and log marginal likelihood using the vanilla
state-space approximation) than in the separable case.
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Figure 5: Analogue of Fig. 3 for Fig. 4. As before, Mτ = 5 is clearly insufficient for accurate
inference, while Mτ = 20 is very close to the log marginal likelihood.
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