
Mars-Bench: A Benchmark for Evaluating Foundation
Models for Mars Science Tasks

Mirali Purohit1,3 � Bimal Gajera1∗ Vatsal Malaviya1∗ Irish Mehta1∗ Kunal Kasodekar1
Jacob Adler2 Steven Lu3 Umaa Rebbapragada3 Hannah Kerner1

1School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, USA
2School of Earth and Space Exploration, Arizona State University, Tempe, AZ, USA
3Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA

Abstract

Foundation models have enabled rapid progress across many specialized domains1

by leveraging large-scale pre-training on unlabeled data, demonstrating strong2

generalization to a variety of downstream tasks. While such models have gained3

significant attention in fields like Earth Observation, their application to Mars4

science remains limited. A key enabler of progress in other domains has been5

the availability of standardized benchmarks that support systematic evaluation.6

In contrast, Mars science lacks such benchmarks and standardized evaluation7

frameworks, which have limited progress toward developing foundation models for8

Martian tasks. To address this gap, we introduce Mars-Bench, the first benchmark9

designed to systematically evaluate models across a broad range of Mars-related10

tasks using both orbital and surface imagery. Mars-Bench comprises 20 datasets11

spanning classification, segmentation, and object detection, focused on key geologic12

features such as craters, cones, boulders, and frost. We provide standardized, ready-13

to-use datasets and baseline evaluations using models pre-trained on natural images,14

Earth satellite data, and state-of-the-art vision-language models. Results from all15

analyses suggest that Mars-specific foundation models may offer advantages over16

general-domain counterparts, motivating further exploration of domain-adapted pre-17

training. Mars-Bench aims to establish a standardized foundation for developing18

and comparing machine learning models for Mars science.19

1 Introduction20

Over the past few years, foundation models have revolutionized specialized domains such as medical21

imaging [42, 46], Earth Observation (EO) [30, 54, 2], law [9, 10], and astronomy [34, 44, 58]. These22

models, pre-trained on large and diverse datasets, offer strong generalization capabilities and enable23

efficient fine-tuning on downstream tasks with minimal data. The EO community has embraced24

foundation models in the last 3-4 years, with an explosion of methods, datasets, and benchmarks25

aimed at improving performance across a wide range of geospatial tasks.26

The key driver of progress in these domains has been the development of high-quality, standardized27

benchmarks. For example, BigBio [18] and MIMIC-IV [28] have accelerated model advancements28

by providing consistent evaluation protocols for medical applications. Benchmarks like Geo-Bench29

[32] and PANGAEA [41] have accelerated progress in EO applications by providing a suite of30

standardized classification and segmentation tasks for evaluating geospatial foundation models. Geo-31
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Figure 1: Representative samples from selected Mars-Bench datasets, from all three task categories.

Bench enables model developers to assess generalization across diverse data sources and use cases,32

creating a pathway for systematic progress.33

However, no such benchmark exists for Martian applications. Machine learning research for Mars34

science applications thus lags behind other science domains [3]. Although recent studies have35

presented machine learning solutions for a range of Martian applications, including crater detection36

[40, 77, 11], landmark classification [71, 65], and cone segmentation [48, 74], these solutions and37

datasets lack standardization and interoperability. This results in task-specific models or datasets that38

cannot be easily evaluated as downstream tasks for foundation models or other machine learning39

advances. This results in limited evaluation of proposed Mars foundation model approaches on 1-240

downstream tasks, limiting the ability to assess model generalization or robustness [63, 70, 68, 20, 50].41

This gap is particularly surprising given the richness of available Mars data. Orbiters such as the42

Mars Reconnaissance Orbiter (MRO) [78] and Mars Odyssey have captured millions of images over43

the last 20-25 years, while surface rovers like Curiosity and Perseverance have amassed petabytes44

of high-resolution images. These datasets offer immense potential to study critical questions of45

planetary science, such as the past presence of water on Mars and the planet’s habitability. Yet, the full46

value of these datasets remains untapped by the ML community due to their lack of standardization,47

incomplete documentation, and inconsistent formatting for ML workflows.48

We introduce Mars-Bench, the first comprehensive benchmark designed to systematically evaluate49

machine learning models across a diverse set of Mars-related tasks using both orbital and surface50

imagery. To create this benchmark, we curated and revamped existing datasets, performing quality51

checks and corrections where necessary and standardizing them in a unified, ML-ready format. The52

goal of Mars-Bench is to provide a common framework to assess and compare the performance of53

foundation models on Martian data, facilitating reproducibility and accelerating scientific discovery54

in planetary science. Our key contributions are as follows:55

• Diverse task coverage: Mars-Bench includes 20 datasets, summarized in Table 1, spanning three56

task types: classification, segmentation, and object detection. We also provide a few-shot and57

partitioned versions of each dataset for evaluation under varying training sample sizes.58

• Scientific relevance: Mars-Bench covers a wide range of geologic features commonly studied59

in Mars science, including craters, cones, boulders, landslides, dust devils, atmospheric dust, etc.60
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These tasks reflect real scientific use cases relevant to planetary scientists and geologists, who61

co-developed the Mars-Bench. Samples from few Mars-Bench datasets are shown in Figure 1.62

• Comprehensive evaluation: Since no standardized pre-trained model exists for Mars data, we63

benchmarked performance using ImageNet-pretrained models under different training settings. We64

analyzed model behavior with different training set sizes. We also evaluated Mars-Bench using65

pre-trained EO models as well as proprietary vision-language models, including Gemini and GPT.66

• Code, reproducibility, and baseline models: We release full code support for all experiments in67

this paper, along with tools for dataset handling and results visualization. To facilitate community68

adoption and reproducibility, we also provide well-documented guidelines and publicly release all69

baseline models evaluated on Mars-Bench. These models can serve as strong starting points for70

future applications; for example, generating initial global maps of specific geologic features (e.g.,71

cones), which experts can later refine with minimal annotation effort.72

2 Related Work73

Over the past decade, evaluation benchmarks have played a fundamental role in identifying the74

limitations of existing foundation models, steering their progress in natural language processing75

(NLP) and computer vision (CV). For instance, general-purpose natural language understanding76

(NLU) benchmarks [67, 69, 59] have facilitated the development of large language models (LLMs)77

such as GPT [5], LLaMA [62], and Gemini [61]. Even in specialized domains, including medical78

[46, 18, 28], legal [17, 21], scientific discovery [39, 7], security [4], and finance [26], various79

benchmarks have driven progress in building domain-specific foundation models. Thus, development80

of quality evaluation benchmarks is necessary for building better foundation models.81

In the remote sensing domain, Geo-Bench [32] has defined standardized evaluation protocols for a82

broad set of EO tasks and has quickly become a de facto benchmark. Since its release, Geo-Bench83

has been used to evaluate most foundation models proposed for EO over the past two years, enabling84

consistent comparisons across models. Other notable efforts include SustainBench [75], which targets85

seven sustainable development goals, AiTLAS [12], which aggregates 22 EO datasets focused solely86

on classification tasks, and PANGAEA [41], which includes 11 evaluation datasets covering diverse87

satellite sensors.88

Despite substantial progress in other domains toward foundation models and dataset benchmarks, no89

benchmark currently exists for Mars science applications. The absence of a standardized evaluation90

framework has hindered the development of foundation models (and machine learning solutions more91

generally) for Mars-related tasks. While specialized datasets exist across different applications, most92

require significant effort to restructure into an ML-ready format or make interoperable with other93

datasets. Furthermore, some datasets are not usable without expert guidance from planetary scientists,94

further slowing progress. To address this gap, we introduce Mars-Bench, the first benchmark to95

facilitate the development and evaluation of foundation models for Mars science tasks.96

3 Mars-Bench97

Mars-Bench was created by curating, organizing, restructuring, and correcting existing Mars science98

datasets following the design principles explained in Section 3.1. While creating each dataset, our99

goal was to ensure accessibility and usability and provide task diversity as described in Section 3.2.100

3.1 Design Principles101

Ease of Use A key goal was to create an accessible and user-friendly ready-to-use benchmark,102

supported by standardized data-loading code. We focused on unifying the data format across all tasks103

to reduce the engineering effort for researchers and practitioners using the dataset. We provide all104

possible formats in each task if there are multiple common formats. For example, different object105

detection models may require COCO, Pascal VOC, or YOLO format, so we provide annotations in106

all three formats to ensure it is easily usable in all cases and reduce time for conversion from one107

format to another.108

Expert-Validated Corrections Given the domain-specific nature of Mars science, ensuring high data109

quality is critical. We conducted expert-driven quality analysis and corrections wherever necessary.110
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Classification

Name Observation
Source

Geologic
Feature

Image
Size # Classes Train Val Test # Bands Sensor/

Instrument
Published

Year Cite

mb-atmospheric_dust_cls_edr MRO (O) Atmospheric dust 100× 100 2 9817 4969 5214 1 HiRISE 2019 [13]
mb-atmospheric_dust_cls_rdr MRO (O) Atmospheric dust 100× 100 2 9817 4969 5214 1 HiRISE 2019 [13]

mb-change_cls_ctx MRO (O) Surface change 150× 150 2 36 10 10 1 CTX 2019 [29]
mb-change_cls_hirise MRO (O) Surface change 100× 100 2 3103 670 670 1 HiRISE 2019 [29]

mb-domars16k MRO (O) Landmark 200× 200 15 11305 3231 1614 1 CTX 2020 [71]
mb-frost_cls MRO (O) Frost 299× 299 2 30124 11415 12249 1 HiRISE 2024 [14]

mb-landmark_cls MRO (O) Landmark 227× 227 8 6997 2025 1793 1 HiRISE 2021 [65]
mb-surface_cls Curiosity (R) Surface 256× 256 36 6580 1293 1594 3 Mastcam, MAHLI 2018, 2021 [65, 66]

mb-surface_multi_label_cls Opportunity, Spirit (R) Surface 1024× 1024 25 1762 443 739 1 Pancam 2020 [8]

Segmentation

Name Observation
Source

Geologic
Feature

Image
Size # Classes Train Val Test # Bands Sensor/

Instrument
Published

Year Cite

mb-boulder_seg MRO (O) Boulder 500× 500 2 39 6 4 1 HiRISE 2023 [47]
mb-conequest_seg MRO (O) Cone 512× 512 2 2236 319 643 1 CTX 2024 [48]

mb-crater_binary_seg Mars Odyssey (O) Crater 512× 512 2 3600 900 900 1 THEMIS 2012 [56]
mb-crater_multi_seg Mars Odyssey (O) Crater 512× 512 5 3600 900 900 1 THEMIS 2021 [33]

mb-mars_seg_mer Opportunity, Spirit (R) Terrain 1024× 1024 7 744 106 214 1 Navcam, Pancam 2022 [35]
mb-mars_seg_msl Curiosity (R) Terrain 500× 560 7 2893 413 828 3 Mastcam 2022 [35]

mb-mmls MRO (O) Landslide 128× 128 2 275 31 256 7 CTX 2024 [45]
mb-s5mars Curiosity (R) Terrain 1200× 1200 10 4997 200 800 3 Mastcam 2022 [76]

Object Detection

Name Observation
Source

Geologic
Feature

Image
Size # Classes Train Val Test # Bands Sensor/

Instrument
Published

Year Cite

mb-boulder_det MRO (O) Boulder 500× 500 1 39 6 4 1 HiRISE 2023 [47]
mb-conequest_det MRO (O) Cone 512× 512 1 1158 167 333 1 CTX 2024 [48]
mb-dust_devil_det MRO (O) Dust devil ∼ 750× 750 1 1404 201 402 1 CTX 2024 [22]

Table 1: Overview of Mars-Bench datasets across all three task categories. To distinguish the
benchmarked versions from their original sources, all dataset names are prefixed with "mb-", which
indicates Mars-Bench. Observation sources are labeled as O (Orbiter) and R (Rover).

All segmentation datasets underwent validation by domain experts, and several classification datasets111

were reviewed and revised through direct correspondence with the original dataset authors. Details112

on which datasets were corrected or modified are provided in the Appendix.113

Dataset Splits All datasets in Mars-Bench include standardized train, validation, and test splits to114

facilitate consistent and reproducible evaluation. For datasets that did not originally include predefined115

splits, we generated them following standard practices. When original splits were available, we116

preserved them to maintain alignment with prior work. These splits ensure that future methods can117

be compared fairly and under consistent evaluation settings.118

Cross-Domain Dataset Partitioning In some cases, we partition datasets based on attributes such as119

sensor type, data modality, task category, or mission origin. This design choice allows users to analyze120

model performance across domain shifts, e.g., evaluating cross-sensor or cross-mission generalization121

by isolating specific factors. Rather than aggregating data into a single dataset, separating them122

enables experiments in which scientists are often interested, such as how a model trained on one123

sensor performs on data from another. A more detailed discussion of these partitioning strategies is124

provided in the Appendix.125

Permissive License All datasets included in Mars-Bench have permissive licenses allowing their126

re-use in the benchmark. We release the Mars-Bench version of all datasets with a Creative Commons127

Attribution 4.0 (CC BY 4.0) license, permitting open access and use.128

3.2 Tasks and Datasets129

Mars-Bench offers a diverse collection of 20 datasets spanning three task categories: classification,130

segmentation, and object detection. Within these categories, the benchmark supports several subtasks,131

i.e., classification includes binary, multi-class, and multi-label settings, while segmentation includes132

both binary and multi-class settings. These tasks are constructed from two primary sources of133

observation: orbiters (satellites) and surface rovers. In total, the benchmark integrates data from 2134

Mars orbiters, 3 rovers, and 6 distinct imaging sensors.135

The benchmark covers a wide range of scientifically relevant geologic features that are of high136

interest to the planetary science community and have been extensively studied in prior literature.137

Mars-Bench was co-developed with expert planetary scientists to ensure its relevance to Mars138

science. The datasets include geologic features such as boulders, cones, craters, landslides, dust139

devils, frost, and atmospheric dust. Additionally, multi-class datasets have diverse classes, such as140

terrain-related classes (e.g., soil, sand, rock, bedrock), landmark-specific features (e.g., Swiss cheese141

terrain, spiders, dark dunes), and surface-related elements (e.g., ground, ridges, rover tracks), as well142

4



as rover components (e.g., inlet, dust removal tool, scoop). This diversity highlights the breadth of143

Mars-Bench in terms of task design, sensor modalities, and variety in geologic features.144

Unlike EO datasets in which many classes, such as airports or farmland, can be annotated at scale145

via crowd-sourcing, Mars science datasets often require annotation by domain experts in planetary146

science or geology. This process is highly specialized and time-consuming, sometimes taking months147

to years for high-quality labeling. As a result, as shown in Table 1, several datasets in Mars-Bench148

are relatively small in size. By including these small-data tasks, Mars-Bench provides a valuable149

testbed for research on label-limited scenarios.150

3.3 Using the Dataset151

Availability All datasets included in Mars-Bench will be publicly released through Hugging Face152

Datasets1. Each dataset follows a standardized schema and is accompanied by metadata, documenta-153

tion, and loading scripts to enable easy integration into ML pipelines.154

Target Audience Mars-Bench offers a diverse set of benchmarks designed to evaluate and compare the155

performance of foundation models for Mars-related tasks. It serves researchers developing models for156

planetary applications as well as those interested in the geologic features and data types represented157

in Mars-Bench. Mars-Bench is also designed to support the broader computer vision and machine158

learning communities. Researchers studying distribution shift, generalization, or domain adaptation159

can benefit from its coverage of underrepresented, real-world geospatial scenarios; similar in spirit160

to WILDS [31]. By offering datasets with unique imaging conditions and semantics, Mars-Bench161

enables research beyond planetary science.162

Baseline Models In addition to datasets and code, we release baseline models for each dataset163

included in Mars-Bench. We will release the models that currently achieve the best performance on164

their respective datasets. By making these models publicly available, we aim to lower the barrier for165

applied research. For example, researchers seeking to generate global maps of features such as cones166

or craters can use our pre-trained models to produce initial predictions, which can then be refined by167

domain experts with minimal annotation effort.168

Software Tools To promote reproducibility and facilitate future research, we release an open-source169

toolkit that encapsulates the complete Mars-Bench experimental pipeline 2. The repository includes170

configuration files and executable scripts that reproduce every experiment reported in this study,171

while permitting users to vary model architectures, hyperparameters, and data partitions with minimal172

effort. In addition, the toolkit provides utilities for loading datasets, and visualizing both objective173

metrics and qualitative results at the task level as well as in aggregate.174

4 Experiments175

Model Selection For each task category, we select well-established and widely adopted model archi-176

tectures representative of current best practices. For classification tasks, we evaluate ResNet101 [23],177

SqueezeNet1.1 [24], InceptionV3 [60], Swin Transformer (SwinV2-B) [38], and Vision Transformer178

(ViT-L/16) [15] architectures. For segmentation, we use U-Net [57], DeepLabV3+ [6], SegFormer179

[73], and Dense Prediction Transformer (DPT) [52]architectures. For object detection, we evaluate180

YOLO11 [53], SSD [37], RetinaNet [36], and Faster R-CNN [55].181

Training Settings We analyze model performance under three different training strategies: (1)182

training from scratch with randomly initialized weights, (2) using a pre-trained model as a frozen183

feature extractor, and (3) full fine-tuning of pre-trained models with all weights trainable. As noted in184

Section 1, no existing foundation model has been trained specifically for Mars tasks. Therefore, we185

use models pre-trained on large-scale datasets such as ImageNet (for classification and segmentation)186

or COCO (for detection) as initialization for transfer learning or feature extraction.187

Hyperparameter Tuning Since the performance of deep learning models is often sensitive to188

hyperparameter choices, we conducted a grid search over several hyperparameter configurations for189

each model, task, and training type combination. The best-performing setting was selected based on190

1https://huggingface.co/collections/Mirali33/mars-bench-68266f81a27313eddaa539f1
2https://github.com/kerner-lab/MarsBench/
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early stopping criteria applied to validation metrics. All hyperparameter ranges and selected values191

for each configuration are detailed in the Appendix to ensure reproducibility.192

4.1 Reporting Results193

We adopt an identical methodology to [1] and [32] to present our results derived from thousands of194

experiments. Our objective is to report both task-specific outcomes and aggregated results across all195

tasks with reliable confidence intervals as recommended by [1]. Specifically, for each combination of196

model, dataset, and training strategy, we first conduct hyperparameter tuning to identify the optimal197

settings. Subsequently, we retrain each combination using the selected hyperparameters on seven198

distinct random seeds, since prior work indicates that results based on only 3–5 random seeds may199

not be sufficiently robust [1]. We follow the exact evaluation and reporting methodology as in [1]200

and [32], including IQM computation, bootstrapped confidence intervals, and normalization; detailed201

reporting setup and metrics are provided in the Appendix.202

5 Results and Analysis203

In this section, we present baseline results for the classification and segmentation benchmarks. Due204

to space constraints, results for object detection tasks are provided in the Appendix. We structure our205

analysis around key research questions, which are addressed in the subsections below.206

5.1 Which model architecture performs best on Mars science tasks, when pre-trained on207

natural images?208
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Figure 2: Classification Benchmark under Feature Extraction setting: Normalized F1-score of all
baselines across six datasets (higher the better). Aggregated plot shows the average over all datasets.
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Figure 3: Segmentation Benchmark under Feature Extraction setting: Normalized IoU of all
baselines across six datasets (higher the better). Aggregated plot shows the average over all datasets.

Figures 2 and 3 show the bootstrapped IQM of normalized performance metric (as defined in Section209

4.1) across six classification and six segmentation datasets and one training strategy (feature extraction210

with frozen backbone), along with aggregated results. We report F1-score for classification tasks and211

IoU for segmentation tasks. The datasets are selected in a way that ensures a diverse set of geologic212

features. For example, if two datasets cover the same feature type (e.g., landmarks), we report results213

for only one of them. Additional results, including those for alternative training regimes and other214

datasets, are reported in the Appendix.215

In classification tasks, SqueezeNet1.1 consistently underperforms relative to other architectures,216

likely due to its small parameter count. In contrast, ViT-L/16 and SwinV2-B Transformer exhibit217

competitive performance, with both showing strong generalization across datasets. Notably, some218
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models display narrower confidence intervals than others, suggesting they are more stable and better219

suited to specific tasks.220

For segmentation, U-Net achieves the highest overall performance despite having a relatively wide221

confidence interval in some datasets. It outperforms both transformer-based models (SegFormer and222

DPT) on nearly all datasets as well as in aggregate metrics. The DPT model, in particular, shows223

highly unstable results with large confidence intervals, making it less reliable. These results suggest224

that, despite its simplicity, U-Net remains a strong baseline for segmentation tasks in Mars science225

applications.226

5.2 What is the effect of training set size on the performance of each model?227
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Figure 4: Classification vs Train size: Normalized F1-score of baselines with a growing size (from
1% to 100%) of the training set. Shaded regions indicate confidence intervals over multiple runs.
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Figure 5: Segmentation vs Train size: Normalized IoU of baselines with a growing size (from 1%
to 100%) of the training set. Shaded regions indicate confidence intervals over multiple runs.

To assess how training set size impacts model performance, we conducted experiments by varying228

the amount of labeled training data. Specifically, we trained each model using 1%, 2%, 5%, 10%,229

20%, 25%, 50%, and 100% of the available training data, while keeping the validation and test sets230

fixed. For each configuration, we performed multiple runs and report the average normalized test231

metric, as shown in Figures 4 and 5.232

From the aggregated results, we observe a consistent trend: increasing the training set size generally233

leads to improved performance in both classification and segmentation tasks. However, dataset-level234

analysis reveals that the rate of improvement and error margins vary significantly depending on235

the model and dataset. This shows the differing levels of difficulty among datasets in Mars-Bench,236

highlighting the benchmark’s overall challenge.237

In classification, transformer-based models such as SwinV2-B and ViT-L/16 consistently outperform238

smaller convolutional models like SqueezeNet1.1. In contrast, for segmentation tasks, U-Net out-239

performs transformer-based models such as DPT and SegFormer across most training sizes. DPT240

not only shows lower overall performance but also exhibits high variance across runs, as reflected in241

wide confidence intervals.242

5.3 How do models that are trained for EO tasks perform on Mars-Bench?243

Although there are no published foundation models for Mars orbital or surface imagery, there are244

many foundation models for Earth orbital imagery. To assess cross-domain generalization, we245
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evaluated foundation models pre-trained on EO data. Specifically, SatMAE [54], CROMA [19],246

and Prithvi [27] on selected Mars-Bench classification tasks. These models were originally trained247

on Earth satellite data that vary in geography, scale, and semantics but share the overhead imaging248

perspective found in many Mars datasets. We compare them to a ViT-L/16 model pre-trained on249

ImageNet to establish a general-domain baseline (Figure 6).250
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Figure 6: Classification vs Train size for EO baselines: Normalized
F1-score with a growing size (from 1% to 100%) of the training set.
Shaded regions indicate confidence intervals over multiple runs.

Although EO pre-trained251

models performed well on252

all datasets, the ImageNet253

pre-trained ViT performed254

better. One possible expla-255

nation is that although ViT256

is pre-trained on natural im-257

ages and EO models are258

pre-trained on satellite data,259

ViT is pre-trained on 14260

million images, while Sat-261

MAE, CROMA, and Prithvi262

are pre-trained on 1 million263

or less than 1 million im-264

ages. Additionally, diver-265

sity in ImageNet, because266

as discussed in the litera-267

ture, diversity and/or geographical coverage of pre-training data can affect the performance of268

the model [16, 43, 49, 51]. Among EO foundation models, the Prithvi model in particular consis-269

tently showed low performance and large error bars. All these results show that, despite EO models270

pre-trained on satellite data, Earth and Mars orbital imagery differ significantly in ways that likely271

impact model transferability. For instance, Martian imagery lacks vegetation, water bodies, and272

human-made structures, which are common in EO datasets. Additionally, Mars exhibits unique273

geological formations, color distributions, and atmospheric conditions that are totally different than274

Earth imagery. These domain gaps suggest that while EO-pretrained models can offer a reasonable275

starting point, foundation models specifically trained on Mars data are likely to yield more robust and276

generalizable performance across Martian tasks.277

5.4 How do proprietary VLMs, such as Gemini and GPT, perform on Mars-Bench?278

With the rapid advancement of vision-language models (VLMs), such as Gemini [61] and GPT [5],279

there is increasing interest in evaluating their effectiveness beyond general-purpose tasks. These280

models, trained on diverse multimodal datasets, have demonstrated strong performance on various281

open-domain vision benchmarks with minimal supervision. However, their applicability to Mars282

science, has not been explored. Evaluating VLMs on Mars-Bench provides valuable insight into their283

ability to generalize to planetary science tasks without domain-specific fine-tuning.284

We focused on evaluating the reasoning capabilities of these models by explicitly prompting them285

with context-rich instructions, rather than relying solely on direct answer generation. We used the286

Gemini 2.0 Flash and GPT-4o Mini models, both from their May 2025 checkpoints.287

Task Gemini GPT
Accuracy F1-score Accuracy F1-score

mb-domars16k 0.34 0.32 0.36 0.30
mb-surface_cls 0.43 0.44 0.42 0.41

mb-frost_cls 0.50 0.55 0.43 0.54
mb-atmospheric_dust_cls_edr 0.43 0.50 0.68 0.56

mb-crater_multi_seg 0.37 0.41 0.49 0.51
mb-mars_seg_msl 0.86 0.84 0.79 0.70

Table 2: Performance of Gemini and GPT on Mars-Bench.

We selected six Mars-Bench288

datasets spanning classification and289

segmentation tasks. The selected290

tasks cover a range of geologic291

features to evaluate how well the292

models generalize across different293

scientific concepts. From each294

dataset, we randomly sampled 500295

test images, ensuring the label296

distribution in the sampled subset297

matched that of the original dataset.298

This sample size was chosen to balance evaluation fidelity with the computational cost associated299

with API-based model usage, particularly for GPT. We reformulated segmentation as a multi-label300

8



classification task. For both classification and segmentation, we provided system instructions defining301

each class and prompted the models to predict the relevant classes for each image. Full prompts and302

system instructions for all tasks are included in the Appendix.303

Both Gemini and GPT achieved reasonable performance on some tasks, but their results are inconsis-304

tent across datasets (Table 2). Notably, both models perform well on the mb-mars_seg_msl dataset,305

achieving an F1-score of 0.84 (Gemini) and 0.70 (GPT). This dataset involves terrain segmenta-306

tion with classes such as sand, rock, and sky, classes that are also common in natural images and307

likely well-represented in the models’ pre-training data. In contrast, performance drops significantly308

on datasets such as mb-crater_multi_seg and mb-domars16k, which require identification of309

fine-grained geologic structures like crater types and Martian landmarks.310

As noted in Section 3.2, many of these tasks demand domain expertise. Our results suggest that current311

VLMs lack sufficient specialized knowledge for accurate interpretation. These findings highlight the312

gap between general-purpose vision-language capabilities and the needs of Mars science, further313

reinforcing the importance of domain-specific model development.314

6 Research opportunities315

Mars-Bench provides valuable research opportunities, not only for the planetary science and remote316

sensing communities but also for the broader machine learning and computer vision community.317

Mars-Bench creates the following key research opportunities:318

• Mars-Bench will accelerate the development of foundation models specifically tailored to Mars319

orbital and surface-related tasks by facilitating a systematic evaluation of model performance. It320

provides essential infrastructure for benchmarking diverse models within a unified framework,321

mirroring the influential role benchmarks have historically played in other specialized domains.322

• The benchmark comprises several challenging datasets that introduce unique complexities to323

computer vision tasks. For instance, dust devil detection is particularly challenging due to the subtle324

contrast differences between dust devils and the Martian terrain. ConeQuest presents difficulties325

stemming from significant visual variability among cones collected from various Martian regions,326

challenging models to generalize across high intra-class variance. In addition, many datasets327

included in Mars-Bench are small-scale and highly imbalanced.328

• Mars-Bench significantly expands research opportunities focused on addressing distribution shifts329

and out-of-distribution generalization. These challenges are closely aligned with contemporary330

methodological advancements such as those proposed by [25, 72, 64], which emphasize robust331

model evaluation across diverse domains to enhance real-world applicability.332

7 Conclusion333

We introduced the first benchmark for evaluating models on a wide range of Mars science tasks334

using both orbital and surface imagery. Mars-Bench standardizes diverse datasets into a unified,335

machine-learning-ready format and provides code for fine-tuning and evaluating across classification,336

segmentation, and object detection tasks. Datasets in Mars-Bench also include a wide variety of337

geologic features that have been extensively studied in the literature and remain of high interest to338

the scientific community. We believe that Mars-Bench will drive the development of Mars-specific339

foundation models, improve generalization across planetary tasks, and open new research directions340

in planetary science and beyond.341

Limitations A key limitation of Mars-Bench is the absence of georeferencing for most datasets.342

This arises from the fact that the original sources of these datasets do not provide spatial metadata343

(e.g., latitude and longitude coordinates), mapping the samples to the Martian surface. As a result,344

it is currently not possible to assess the spatial distribution or coverage of Mars-Bench across345

different regions of Mars. The only exception is the ConeQuest dataset, which includes precise346

geolocation information, and we retain this spatial metadata in our release. Lack of georeferencing347

is a known challenge in remote sensing benchmarks, as it restricts the ability to conduct spatial348

analysis or regional generalization studies. Additionally, we did not explore techniques to address349

class imbalance in datasets, such as re-sampling or loss reweighting. Investigating methods to handle350

imbalance and its effect on model performance remains an important direction for future work.351
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