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Abstract

Stochastic processes are random variables with values in some space of paths.
However, reducing a stochastic process to a path-valued random variable ignores
its filtration, i.e. the flow of information carried by the process through time. By
conditioning the process on its filtration, we introduce a family of higher order
kernel mean embeddings (KMEs) that generalizes the notion of KME and captures
additional information related to the filtration. We derive empirical estimators
for the associated higher order maximum mean discrepancies (MMDs) and prove
consistency. We then construct a filtration-sensitive kernel two-sample test able
to pick up information that gets missed by the standard MMD test. In addition,
leveraging our higher order MMDs we construct a family of universal kernels
on stochastic processes that allows to solve real-world calibration and optimal
stopping problems in quantitative finance (such as the pricing of American options)
via classical kernel-based regression methods. Finally, adapting existing tests for
conditional independence to the case of stochastic processes, we design a causal-
discovery algorithm to recover the causal graph of structural dependencies among
interacting bodies solely from observations of their multidimensional trajectories.

1 Introduction

The idea of embedding probability distributions into a reproducing kernel Hilbert space (RKHS)
via kernel mean embeddings (KMEs) has become ubiquitous in many areas of statistics and data
science such as hypothesis testing [1, 2], non-linear regression [3, 4], distribution regression [5, 6]
etc. Despite strong progress in the study of KMEs, most of the examples considered in the literature
tend to focus on random variables supported on some finite (possibly high) dimensional euclidean
spaces like Rd. The study of KMEs for function-valued random variables has been largely ignored.

Stochastic processes are random variables with values in some space of paths. However, reducing a
stochastic process to a path-valued random variable ignores its filtration, which can be informally
thought of as the flow of information carried by the process through time. A question that naturally
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Figure 1: Schematic overview of the construction of the 1st order predictive KME µ1
X|FX

(Sec. 3.2). Here
X is a stochastic process with sample paths taking their values in V . The red contours indicate the portion
of its filtration FX upon which the conditioning is applied, i.e. the available information about X from start
up to time t. As explained in Sec. 3.2, the 1st order predictive KME µ1

X|FX
is a path whose value at time t is

a HS(V )-valued random variable representing the law of X conditioned on its filtration FXt . Equivalently
µ1
X|FX

is a stochastic process with sample paths taking their values inHS(V ).

emerges from the study of many random, time-evolving systems like financial markets is how does
the information available up to present time affect the future evolution of the system?

Formally, this question can be addressed by conditioning a process on its filtration (Sec. 3.1 and 3.2).
In this paper we introduce a family of higher order KMEs that generalizes the notion of KME to
capture additional, filtration-related information (Sec. 3.3 and 3.5). In view of concrete applications,
we derive empirical estimators for the associated higher order MMDs and use one of them to construct
a filtration-sensitive kernel two-sample test (Sec. 3.4) demonstrating with simulated data its ability to
capture information that otherwise gets missed by the standard MMD test (Sec. 4.1). Furthermore,
we construct a family of universal kernels on stochastic processes (Sec. 3.6) that allows to solve
challenging, real-world optimisation problems in quantitative finance such as the pricing of American
options via classical kernel-based regression methods (Sec. 4.2). Finally, we adapt existing tests for
conditional independence to the case of stochastic processes in order to design a causal-discovery
algorithm able to recover the causal graph of structural dependencies among interacting bodies solely
from observations of their multidimensional trajectories (Sec. 4.3).

1.1 Related work

The notion of conditioning is a powerful probabilistic tool allowing to understand possibly complex,
non-linear interactions between random variables. As their unconditional counterparts, conditional
distributions can also be embedded into RKHSs [7]. Recently, conditional KMEs have received in-
creased attention, especially in the context of graphical models [8], state-space models [9], dynamical
systems [10], causal inference [11, 12, 13], two-sample and conditional independence hypothesis
testing [14, 13, 15] and others. Embeddings of distributions via KMEs have also shown their success
in the context of distribution regression (DR), which is the task of learning a function mapping a
collection of samples from a probability distribution to scalar targets [16, 17, 18]. More recently,
a framework for DR that addresses the setting where inputs are sample paths from an underlying
stochastic process is proposed in [6]. The authors make extensive use of the signature transform
[19, 20] and of the signature kernel [21, 22], two well established tools in stochastic analysis.

When it comes to stochastic processes, it was first shown in [23] that weak convergence of random
variables does not always account for the information contained in the filtration, as highlighted by
means of numerous numerical examples in [24, 25]. This limitation is addressed in [23, 26] through
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the construction of a sequence of so–called adapted topologies5 (τn)n≥1 that become progressively
finer6 as n increases (with τ1 coinciding with the weak topology). In particular, higher order adapted
topologies are shown to capture more filtration-related information than their weak counterpart. This
characteristic becomes relevant for example in some optimal stopping problems such as the pricing
of American options, where the pricing function can be shown to be discontinuous with respect to
the weak topology, but is continuous with respect to the second order adapted topology7 [24, 28, 27].
Leveraging properties of the signature transform, it has been shown that adapted topologies are
intimately related to a family of higher order MMDs [29]. However, providing empirical estimators
for these discrepancies that can be deployed on real-world tasks remains a challenge. In this paper
we propose to address this challenge by presenting an alternative construction to this higher order
MMDs using the language of kernels and KMEs. The results in [29] serve as a strong theoretical
background for the present paper.

2 Preliminaries

We begin with a brief summary of tools from stochastic analysis needed to define higher order
KMEs. Let X (Rd) = {x : [0, T ]→ Rd} a compact set of continuous, piecewise linear, Rd-valued
paths defined over a common time interval [0, T ], obtained for example by linearly interpolating a
multivariate time series. For any path x ∈ X (Rd) we denote its kth coordinate by x(k) : [0, T ]→ R,
for k ∈ {1, . . . , d}. More generally we denote by X (V ) = {x : [0, T ] → V } a compact set of
continuous, piecewise linear paths with values in a Hilbert space V with a countable basis.

2.1 The signature transform

The signature transform S : X (V ) → HS(V ) is a feature map defined for any path x ∈ X (V ) as
the following infinite collection of statistics

S(x) =

(
1,
{
S(x)(k1)

}d
k1=1

,
{
S(x)(k1,k2)

}d
k1,k2=1

, . . .

)
(1)

where each term is a real number equal to the iterated integral

S(x)(k1,...,kj) =

∫
. . .

∫

0<s1<...<sj<T

dx(k1)s1 . . . dx(kj)sj (2)

The signature feature space HS(V ) is defined as the following direct sum of tensor powers of V

HS(V ) =
∞⊕

k=0

V ⊗k = R⊕ V ⊕ (V )⊗2 ⊕ . . . (3)

where ⊗ denotes the standard tensor product of vector spaces [30, 19].

2.2 The signature kernel

Because V is Hilbert HS(V ) is also Hilbert [21]. The signature kernel kS : X (V )×X (V )→ R is
a characteristic kernel defined for any pair of paths x, y ∈ X (V ) as the following inner product

kS(x, y) = 〈S(x),S(y)〉HS(V ) (4)

The recent article [22] establishes a surprising connection between the signature kernel and a certain
class of partial differential equations (PDEs), culminating in the following kernel trick for kS .
Theorem 1. [22, Thm. 2.5] For any x, y ∈ X (V ) the signature kernel satisfies the equation
kS(x, y) = ux,y(T, T ), where ux,y : [0, T ]× [0, T ]→ R is the solution of the hyperbolic PDE

∂2ux,y
∂s∂t

= 〈ẋs, ẏt〉V ux,y (5)

with boundary conditions ux,y(0, ·) = ux,y(·, 0) = 1 and where żs = dzr
dr

∣∣
r=s

.

5We say that a sequence of random variables {Xn}n∈N converges to a random variable X in the topology τ
if and only if for every τ -open neighbourhood U of X there exists N ∈ N such that Xn ∈ U as soon as n ≥ N .

6A topology τ1 is said to be finer than a topology τ2 if every τ2-open set is also τ1-open.
7The second order adapted topology τ2 is equivalent to the adapted Wasserstein distance [27].
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Hence, evaluating kS at a pair of paths (x, y) is equivalent to solving the PDE (5); in this paper we
solve PDEs numerically via a finite difference scheme (see Appendix B for additional details). In
what follows, we denote byHS(V ) the RKHS associated to kS .

2.3 Stochastic processes and filtrations

We take (Ω,F ,P) as the underlying probability space. A (discrete time) stochastic process X is a
random variable with values on X (V ). We denote by PX = P ◦X−1 the law of X . Assuming the
integrability condition EX [kS(X,X)] <∞, the 1st order kernel mean embedding (KME) of X is
defined as8 the following point inHS(V )

µ1
X = EX [kS(X, ·)] =

∫

x∈X (V )

kS(x, ·)PX(dx) (6)

Accordingly, given two stochastic processesX,Y , their 1st order maximum mean discrepancy (MMD)
is the standard MMD distance with kernel kS given by the following expression

D1
S(X,Y ) =

∥∥µ1
X − µ1

Y

∥∥
HS(V )

(7)

Because the signature kernel kS is characteristic, it is a classical result [1, 31] that the 1st order MMD
is a sufficient statistics to distinguish between the laws of X and Y , in other words

D1
S(X,Y ) = 0 ⇐⇒ PX = PY (8)

Despite the fact that stochastic processes are path-valued random variables, they encode a much
richer structure compared to standard Rd-valued random variables, that goes well beyond their laws.
This additional structure is described mathematically by the concept of filtration of a process X ,
defined as the following family of σ-algebras

FX = (FXt)t∈[0,T ], (9)
where for any t ∈ [0, T ], FXt

is the σ-algebra generated by the variables {Xs}s∈[0,t]. Note that FX
is totally ordered in the sense that FXs

⊂ FXt
for all s < t, which naturally explains why filtrations

are good mathematical descriptions to model the flow information carried by the process X .

In the next section, we will present our main findings and introduce a family of higher order KMEs and
corresponding higher order MMDs as generalizations of the standard KME and MMD respectively.
We will do so by conditioning stochastic processes on elements of their filtrations.

3 Higher order kernel mean embeddings

We begin by describing how KMEs can be extended to conditional laws of stochastic processes.

3.1 Conditional kernel mean embeddings for stochastic processes

Let X,Y be two stochastic processes. For a given path x ∈ X (V ), define the 1st order conditional
kernel mean embeddings µ1

Y |X=x ∈ HS(V ) and µ1
Y |X : HS(V )→ HS(V ) as follows

µ1
Y |X=x = E[kS(Y, ·)|X = x] =

∫

y∈X (V )

kS(·, y)PY |X=x(dy) (10)

µ1
Y |X = E[kS(Y, ·)|X] =

∫

y∈X (V )

kS(·, y)PY |X(dy) (11)

Note that whilst µ1
Y |X=x is a single point inHS(V ), the 1st order conditional KME µ1

Y |X describes
a cloud of points onHS(V ). Each point in this cloud is indexed by a path x ∈ X (V ). Equivalently,
µ1
Y |X constitutes a PX -measurable,HS(V )-valued random variable.

These embeddings allow to extend the applications of conditional KMEs to the case where the random
variables are (possibly multidimensional) stochastic processes. In particular one can directly obtain
conditional independence criterions for stochastic processes (see Appendix A.1), enabling to deploy
standard kernel-based causal learning algorithms [13], as we demonstrate in Sec. 4. Next we describe
how in the case of stochastic processes, conditioning on filtrations is an important mathematical
operation to model real-world time-evolving systems.

8The 1st order KME is the standard KME with the signature kernel kS .
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3.2 Conditioning stochastic processes on their filtrations

Financial markets are examples of complex dynamical systems that evolve under the influence
of randomness. An important objective for financial practitioners is to determine how actionable
information available up to present could affect the future market trajectories. The task of conditioning
on the past to describe the future of a stochastic process X can be formulated mathematically by
conditioning X on its filtration FXt

for any time t ∈ [0, T ].

More precisely, consider the 1st order KME of the conditional law PX|FXt
, which is defined as the

following FXt -measurable,HS(V )-valued random variable

µ1
X|FXt

= E[kS(X, ·)|X[0,t]] =

∫

x∈X (V )

kS(·, x)PX|FXt
(dx) (12)

where X[0,t] denotes the stochastic process X restricted to the sub-interval [0, t] ⊂ [0, T ]. By varying
the time index t, we can form the following ordered collection of 1st order KMEs

µ1
X|FX

=
(
µ1
X|FXt

)
t∈[0,T ]

(13)

that we term 1st order predictive KME of the process X . By construction, µ1
X|FX

describes a path
taking its values in the space ofHS(V )-valued random variables, in other words it is itself a stochastic
process 9 (see Fig. 1). Hence, the law of µ1

X|FX
can itself be embedded via KMEs into a "higher-order

RKHS" (see next section), making the full procedure iterable, as we shall discuss next.

We note that for each time t, the random variable µ1
X|FXt

in eq. (12) is the Bochner integral of
kS(·, x) with respect to the probability measure PX|FXt

. Since we assumed that V is a compact
set, the path space X (V ) is also compact. Hence, the function x 7→ kS(·, x) is continuous, the set
K = {kS(·, x) : x ∈ X (V )} is compact as continuous image of a compact set, and therefore its
Bochner integral µ1

X|FXt
takes values in the closed convex hull of K, which is again a compact

subset in the RKHS HS(V ). Consequently the path t 7→ µ1
X|FXt

belongs to a compact subset of
X (HS(V )), which satisfies the assumptions introduced in Section 2.

3.3 Second order kernel mean embedding and maximum mean discrepancy

The 2nd order KME is the point inHS(HS(V )) defined as the KME of the 1st order predictive KME

µ2
X =

∫

x∈X (HS(V ))

kS(·, x)Pµ1
X|FX

(dx) (14)

The 2nd order MMD of X,Y is the norm of the difference inHS(HS(V )) of their 2nd order KMEs,

D2
S(X,Y ) =

∥∥µ2
X − µ2

Y

∥∥
HS(HS(V ))

(15)

The next theorem states that the 2nd order MMD of two stochastic processes X,Y is a stronger
discrepancy measure than the 1st order MMD.
Theorem 2. Given two stochastic processes X,Y

D2
S(X,Y ) = 0 ⇐⇒ PX|FX

= PY |FY
(16)

Furthermore
D2
S(X,Y ) = 0 =⇒ D1

S(X,Y ) = 0 (17)
but the converse is not generally true.

Proof. All proofs are given in Appendix D.

Next we make use of Thm. 2 in the context of two-sample hypothesis testing [1, 31] for stochastic
processes. In Sec. 4 we will show by means of a numerical example that the 2nd order MMD is able
to capture filtration-related information otherwise ignored by the 1st order MMD.

9Because PX = PX|FXT
, all the information about the law of X is contained in just the terminal point of

the trajectory traced by µ1
X|FX

(Fig. 1).
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3.4 A filtration-sensitive kernel two-sample test

Suppose we are given m sample paths {xi}mi=1 ∼ X and n sample paths {yi}ni=1 ∼ Y . A classical
two-sample test [1] for X,Y tests a null-hypothesis

H0 : PX = PY against the alternative HA : PX 6= PY (18)

The probability of falsely rejecting the null is called the type I error (and similarly the probability of
falsely accepting the null is called the type II error). If the type I error can be bounded from above by
a constant α, then we say that the test is of level α. In [31, Sec. 8] it is shown that rejecting the null if
D̂1
S(X,Y )2 > cα (for some cα that depends on m,n and α) gives a test of level α, where D̂1

S(X,Y )
denotes the classical unbiased estimator of the 1st order MMD [1]. This choice of threshold is
conservative and can be improved by using data-dependent bounds such as in permutation tests (we
refer to the MMD testing literature for extra details [1, 32, 33]).

However, as discussed in Sec. 3.3 comparing the laws PX ,PY via the estimator above might be
insufficient to capture filtration-related information about X,Y . To overcome this limitation we
propose instead to test the null-hypothesis

H0 : PX|FX
= PY |FY

against the alternative HA : PX|FX
6= PY |FY

(19)

Using Thm. 2, one can immediately construct a filtration-sensitive kernel two-sample test for (19)
provided one can build an empirical estimator of the 2nd order MMD D2

S(X,Y ). In the rest of this
section we explain how to obtain such an estimator and ultimately show its consistency.

Assuming availability of m sample paths {x̃i}mi=1 from the stochastic process µ1
X|FX

and n sample
paths {ỹi}ni=1 from µ1

Y |FY
, an estimator of the squared 2nd order MMD is given by

D̂2
S(X,Y )2 =

1

m(m− 1)

m∑

i,j=1
i 6=j

kS(x̃i, x̃j)− 2

mn

m,n∑

i,j=1

kS(x̃i, ỹj) +
1

n(n− 1)

n∑

i,j=1
i 6=j

kS(ỹi, ỹj)

Computing this estimator boils down to evaluating the signature kernel kS(x̃, ỹ) on sample paths
x̃ ∼ µ1

X|FX
and ỹ ∼ µ1

Y |FY
. By Thm. 1, the signature kernel solves the following PDE

∂2ux̃,ỹ
∂s∂t

=
(〈
x̃s−δ, ỹt−δ

〉
HS(V )

−
〈
x̃s−δ, ỹt

〉
HS(V )

−
〈
x̃s, ỹt−δ

〉
HS(V )

+
〈
x̃s, ỹt

〉
HS(V )

)
ux̃,ỹ

where the two derivatives in eq. (5) have been approximated by finite difference with time increment
δ. It remains to explain how to estimate, for any s, t ∈ [0, T ], the inner product

〈
x̃s, ỹt

〉
HS(V )

from
sample paths of X and Y . This can be achieved using the formalism of cross-covariance operators
[34] as thoroughly explained in Appendix A, which yields to the following approximation

〈
x̃s, ỹt

〉
HS(V )

≈ kxs
>(Kx,x

s,s +mλIm)−1Kx,y
T,T (Ky,y

t,t + nλIn)−1kyt (20)

where kxs ∈ Rm,kyt ∈ Rn are the vectors10

[kxs ]i = kS(xi[0,s], x[0,s]), [kyt ]i = kS(yi[0,t], y[0,t])

and Kx,x
s,s ∈ Rm×m, Kx,y

T,T ∈ Rm×n, Ky,y
t,t ∈ Rn×n are the matrices

[Kx,x
s,s ]i,j = kS(xi[0,s], x

j
[0,s]), [Kx,y

T,T ]i,j = kS(xi[0,T ], y
j
[0,T ]), [Ky,y

t,t ]i,j = kS(yi[0,t], y
j
[0,t])

and where Im (resp. In) is the m×m (resp. n× n) identity matrix. The corresponding algorithm
and its complexity analysis are provided in Appendix B.

The next theorem ensures that the estimator D̂2
S(X,Y ) is consistent for the 2nd order MMD.

Theorem 3. D̂2
S(X,Y ) is a consistent estimator for the 2nd order MMD, i.e.

|D̂2
S(X,Y )−D2

S(X,Y )| p→ 0 as m,n→∞ (21)

with {xi}mi=1 ∼ X , {yi}ni=1 ∼ Y and where convergence is in probability.

We now iterate the procedure presented so far to define higher order KMEs and MMDs.
10Here we use the notation x[0,s] to denote the restriction of the path x to the sub-interval [0, s] ⊂ [0, T ].
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3.5 Higher order kernel mean embeddings and maximum mean discrepancies

One can iterate the procedure described in Sec. 3.3 and recursively define, for any n ∈ N>1, the nth

order KME of X as the following point inHnS(V )

µnX =

∫

x∈X (Hn−1
S (V ))

kS(·, x)Pµn−1
X|FX

(dx) (22)

where µn−1X|FX
is the (n− 1)st predictive KME of X and

HnS(V ) = HS(HS(. . .HS︸ ︷︷ ︸
n times

(V ) . . .)) (23)

The associated nth order MMD between two processes X,Y is then defined as the norm of the
difference inHnS(V ) of the two nth order KMEs

DnS(X,Y ) = ‖µnX − µnY ‖Hn
S(V ) (24)

The following result generalizes Thm. 2 in that it shows that the nth order MMD is a stronger (i.e.
finer) discrepancy measure than all the kth order MMDs of lower order 1 < k < n.
Theorem 4. Given two stochastic processes X,Y

DnS(X,Y ) = 0 =⇒ DkS(X,Y ) = 0 for any 1 < k < n (25)

but the converse is not generally true.

Other than hypothesis testing, another important application relying on the ability of distinguishing
random variables is distribution regression (DR) [5]. In the next section we make use of the nth order
MMD in the setting of DR on path-valued random variables presented in [6] and propose a family of
kernels on stochastic processes whose RKHSs contains richer classes of functions than the RKHS
associated to the universal kernel proposed in [6].

We note that since V is a Polish space (i.e., a separable, complete metric space) and the signature
maps is continuous, in view of [35, Lemma 4.33] one can easily check that all RKHSs appearing
in the present paper are separable Hilbert spaces by an induction argument and therefore all regular
conditional distributions are well–defined.

3.6 Higher order distribution regression

DR on stochastic processes describes the supervised learning problem where the input is a collection
of sample paths and the output is a vector of scalars [6]. Denote by P(X (V )) the set of stochastic
processes with sample paths on X (V ). Following the setup in [6], the goal is to learn a function
F : P(X (V )) → R from a training set of input-output pairs {(Xi, yi)} with Xi ∈ P(X (V )) and
yi ∈ R, by means of a classical two-step procedure [16, 17, 18].

Firstly, a stochastic processX ∈ P(X (V )) is embedded into its KME µ1
X ∈ HS(V ) via the signature

kernel kS . Secondly, another function G : HS(V ) → R is learnt by solving the minimization
arg minG∈HRBF

∑
i L(g(µ1

Xi
), yi), where L is a loss function, and HRBF is the RKHS associated

to the classical Gaussian kernel kRBF : HS(V ) × HS(V ) → R. This procedure materialises into
a kernel on stochastic processes whose RKHS is shown to be dense in the space of functions
F : P(X (V ))→ R that are continuous with respect to the weak topology [6, Thm. 3.3].

However, a class of approximators that is universal with respect to some topology is not guaranteed
to well approximate functions that are discontinous with respect to that topology (but potentially
continuous with respect to a finer topology). For example, financial practitioners are often interested
in calibrating financial models to market data or pricing financial instruments from observations
of market dynamics. These tasks can be formulated as DR problems on stochastic processes (see
experiments in Sec. 4.2), but the resulting learnable functions are discontinuous with respect to the
1st order MMD whilst being continuous with respect to the 2nd order MMD [27]. This motivates
the need to extend the kernel-based DR technique proposed in [6] to situations where the target
functions are not weakly continuous, which is what Thm. 5 addresses. A function f : R → R is
called globally analytic with non-negative coefficients if admits everywhere a Taylor expansion where
all the coefficients are strictly positive, i.e. for any x ∈ R we have f(x) =

∑∞
i=0 aix

i with ai > 0.
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Theorem 5. Let f : R→ R be a globally analytic function with non-negative coefficients. Define
the family of kernels Kn

S : P(X (V ))× P(X (Rd))→ R as follows

Kn
S (X,Y ) = f(DnS(X,Y )), n ∈ N≥1 (26)

Then the RKHS associated to Kn
S is dense in the space of functions from P(X (Rd)) to R which are

continuous with respect to the kth order MMD for any 1 < k ≤ n.

In Sec. 4 we will take f(x) = exp(−x2/σ) with σ > 0. This result marks the end of our analysis.
Next we apply our theoretical results in the contexts of two-sample testing, DR and causal inference.

4 Applications

Here we demonstrate the practical advantage of using 2nd order kernel mean embeddings, and
evaluate the conditional kernel mean embedding for stochastic processes on a causal discovery
task. Additional experimental details can be found in Appendix C and the code is available at
https://github.com/maudl3116/higherOrderKME.

4.1 Hypothesis testing on filtrations

We start by considering two processes Xn and X with transition probabilities depicted in Fig. 2.
Although the laws Pn and P get arbitrarily close for large n, their filtrations are very different. Indeed,
the two processes have different information structures available before time t = 1. Indeed, for any
0 < t ≤ 1, the trajectory of Xn is deterministic, whilst the progression of X remains random until
t = 1. Being able to distinguish two such stochastic processes is crucial in quantitative finance: if

p = 0.5

p = 0.5

2
n

p = 1

p = 1

p = 1

p = 0.5

p = 0.5

Figure 2: The supports of Pn (left) and P (right).

Pn and P are the laws of two traded assets, Pn gives an arbitrage opportunity. As shown in Fig. 3,
the 2nd order MMD can distinguish these two processes with similar laws (n = 5 · 105) but different
filtrations, while the 1st order MMD fails to do so.
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Figure 3: Left: Empirical distribution of the 1st order MMD. Under H0 the two measures are both equal to
P and we use 500 samples from each. UnderHA with P and Pn where n = 5 · 105, and we use 500 samples.
Right: Same for the 2nd order MMD. Histograms are obtained by computing 500 independent instances of the
MMD.

4.2 Applications of higher order distribution regression to quantitative finance

In this section we use kernel Ridge regression and support vector machine (SVM) classification
equipped with the kernel K2

S from Thm. 5 to address two real-world problems arising in quantitative
finance, notably the calibration of the rough Bergomi model [36] and the pricing of American options
[37]. We benchmark our filtration-sensitive kernel K2

S against a range of kernels, including K1
S .
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The rough Bergomi model is a rough volatility model [38] satisfying the following stochastic dynamics

dSt =
√
VtStdWt, Vt =

∫ t

0

K(s, t)dZs, Zt = ρWt +
√

1− ρ2W ′t (27)

where W,W ′ are two independent Brownian motions and K(s, t) = (t − s)h−0.5 where here
we take h = 0.2. The model in eq. (27) is non-Markovian in the sense that the conditional law
of S | FSt

depends pathwise on the past history of the process. Of particular importance is
the correct retrieval of the sign of the correlation parameter ρ [39]. We consider 50 parameter
values {ρi}50i=1 chosen uniformly at random from [−1, 1]. Each ρi is regressed on a collection of
m = 200 sample trajectories. We use an SVM classifier endowed with different kernels (Table 1).

Table 1: Quantitative finance examples. Average performances
with standard errors in parenthesis.

Kernel Rough Bergomi model
calibration (Acc.)

American option pricing
(MSE ×10−3)

RBF 87% (5%) 1.07 (0.75)
Matérn 87% (3%) 2.75 (3.05)
K1
S 91% (3%) 0.90 (0.34)

K2
S 93% (3%) 0.52 (0.07)

One of the most studied optimal stop-
ping problems is the pricing of an
American option with a non-negative
payoff function g : Rd → R.
Stock prices are assumed to follow a
d-dimensional stochastic process X .
The price of the corresponding option
is the solution of the optimal stopping
problem supτ E[g(Xτ ) | X0], where
the supremum is taken over stopping
times τ . Despite significant advances,
pricing American options remains one
of the most computationally challeng-
ing problems in financial optimization, in particular when the underlying processX is non-Markovian.
This is the setting we consider, modelling stock prices as sample paths from fractional Brownian
motion (fBm) [40] with different Hurst exponents h ∈ (0, 1). True target prices are obtained via
expensive Monte Carlo simulations [41]. We consider 25 values of {hi}25i=1 sampled uniformly
at random in [0.2, 0.8] and use 500 samples from each fBm. As shown in Table 1 our kernel K2

S
yields the best results on both tasks (rough Bergomi model calibration and American option pricing),
systematically outperforming other classical kernels as well as the kernel K1

S introduced in [6].

4.3 Inferring causal graph for interacting bodies

Finally, we consider the task of recovering the causal relationships between interacting bodies solely
from observations of their multidimensional trajectories. We employ the multi-body interaction
simulator from [42] in order to simulate an environment where N balls are connected by invisible
physical relations (e.g. a spring) and describe 2D trajectories (see Fig. 4a with N = 3 and 2 springs).
At the beginning of a simulated episode, the initial positions of the balls are generated at random, and
during the episode, the balls are subject to forces with random intensity and direction. By simulating
m episodes we end up with m sample trajectories for each of the N balls. We use the kPC algorithm
[13]—which relies on conditional independence testing— with the signature kernel and evaluate
its ability to recover whether any two balls are connected or not. We vary m and N and report the
results in Figs. 4b and 4c. Each experiment is run 15 times, 30% of the runs are used to chose the
hyperparameters, and the reported results have been obtained on the remaining runs. We note that for
finite datasets conditional independence testing is hard without additional assumptions, as discussed
in [43, 44].
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(a) 3 interacting balls describing
trajectories in the 2D plane over
time.
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(b) Accuracy on binary classifica-
tion of edges with a varying num-
ber of sample episodes (5 balls)
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(c) Accuracy on binary classifica-
tion of edges with a varying num-
ber of balls (100 samples)
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5 Conclusion

In this paper, we introduced a family of higher order KMEs by conditioning a stochastic process on
its filtration, generalizing the classical notion of KME. We derived an empirical estimator for the 2nd

order MMD and proved its consistency. We then proposed a filtration-sensitive kernel two-sample
test and showed with simulations its ability to capture information that gets missed by the standard
MMD test. In addition, we constructed a family of universal kernels on stochastic processes that
allows to solve real-world calibration and optimal stopping problems in quantitative finance via
Ridge regression. Finally, we designed a causal-discovery algorithm using conditional independence
tests to recover the causal graph of structural dependencies among interacting bodies solely from
observations of their multidimensional trajectories.

6 Future work

Regarding the choice of kernel hyperparameters, in the setting of two-sample tests, we can use various
hyperparameter selection methods which have been proposed in the kernel literature, including
approaches aiming at maximizing the test power using the signal-to-noise-ratio as an objective
[45, 46, 47]. In the distribution regression setting, we made use of a cross validation approach.
Developing hyperparameter tuning methodologies for higher order KMEs is an interesting future work
direction and we will note that [48, 49] are certainly a good starting point for such an investigation.

Higher order KMEs have the potential to be used beyond two-sample tests and distribution regression.
For example [6] recently investigated the use of the 1st order MMD to derive an approximate
Bayesian computation (ABC) algorithm for irregular time series. Another idea that is currently being
investigated is using higher order MMDs as discriminators in autoregressive generative models for
time series, where conditioning the future trajectories on past observations is key.

We conclude with a theoretical remark. All paths considered in the present paper are piecewise linear.
Consequently, all sample paths from higher order predictive KMEs are also piecewise linear and their
KMEs are well defined. Such a nice property will not hold anymore if one considered more generic
continuous sample paths, because such regularity of sample paths from the corresponding higher
order predictive KMEs might break as noted in [29, Remark 1]. The study of how the regularity
changes by taking higher order kernel mean embeddings is an interesting direction for future work.
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