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Abstract

Deep Neural Networks (DNNs), including archi-
tectures such as Vision Transformers (ViTs), have
achieved remarkable success in medical imaging
tasks. However, their performance typically hinges
on the availability of large-scale, high-quality la-
beled datasets—resources that are often scarce or
infeasible to obtain in medical domains. Genera-
tive Data Augmentation (GDA) offers a promising
remedy by supplementing training sets with syn-
thetic data generated via generative models like
Diffusion Models (DMs). Yet, this approach in-
troduces a critical challenge: synthetic data often
contains significant noise, which can degrade the
performance of classifiers trained on such aug-
mented datasets. Prior solutions, including data
selection and re-weighting techniques, often rely
on access to clean metadata or pretrained exter-
nal classifiers. In this work, we propose Infor-
mative Data Selection (IDS), a principled sam-
ple re-weighting framework grounded in the In-
formation Bottleneck (IB) principle. IDS assigns
higher weights to more informative synthetic sam-
ples, thereby improving classifier performance in
GDA-enhanced training for thorax disease classi-
fication. Extensive experiments demonstrate that
IDS significantly outperforms existing data se-
lection and re-weighting baselines. Our code is
publicly available at https://github.com/
Statistical-Deep-Learning/IDS.

1 INTRODUCTION

Recent advances have significantly propelled the use of deep
neural networks (DNNs) in medical imaging tasks, particu-
larly for disease classification from chest X-rays [Guendel
et al., 2018, Xiao et al., 2023]. Early approaches primarily

employed convolutional neural networks (CNNs), such as
U-Net [Ronneberger et al., 2015], to facilitate effective rep-
resentation learning from radiographic data. More recently,
Vision Transformers (ViTs) [Dosovitskiy et al., 2020] have
been adopted for similar purposes [Xiao et al., 2023], ben-
efiting from their ability to model long-range feature de-
pendencies. Although both CNN- and ViT-based methods
have demonstrated promising performance, their success is
critically contingent on the availability of high-quality anno-
tated datasets [Feng et al., 2020]. In medical domains, how-
ever, acquiring such annotations is often difficult [El Jiani
et al., 2022, Xiao et al., 2023] or even infeasible [Esteva
et al., 2021, Price and Cohen, 2019, Ali et al., 2023, Ra-
mudu et al., 2023], due to constraints in resources or con-
cerns over data privacy. To mitigate this limitation, self-
supervised learning (SSL) approaches, including restorative
learning [Xiao et al., 2023], have been explored to extract
informative representations from unlabeled data. In parallel,
building on the momentum of recent generative modeling
breakthroughs [Rombach et al., 2022, Akrout et al., 2023],
generative data augmentation (GDA) [Sarıyıldız et al., 2023,
Lei et al., 2023, Azizi et al., 2023b, Trabucco et al., 2024a]
has emerged as a compelling strategy to synthesize labeled
training samples via deep generative models, thereby en-
hancing the diversity and scale of training datasets.

Generative Data Augmentation (GDA) for Disease Clas-
sification. Data scarcity and the absence of high-quality
labeled training data have long hindered progress in both
medical imaging and general computer vision. To address
this limitation, recent work on generative data augmentation
(GDA) [Sarıyıldız et al., 2023, Lei et al., 2023, Azizi et al.,
2023b, Trabucco et al., 2024a] has explored the use of gen-
erative models, including Generative Adversarial Networks
(GANs) [Zhang et al., 2021, Li et al., 2022] and Diffusion
Models (DMs) [He et al., 2023b, Tian et al., 2023, Yuan
et al., 2022, Bansal and Grover, 2023, Vendrow et al., 2023],
to synthesize realistic training samples. These approaches
have yielded promising outcomes in both general computer
vision [Sarıyıldız et al., 2023, Azizi et al., 2023b, Trabucco
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Figure 1: Figures in the first row illustrate examples of
thresholded Grad-CAM visualization for OTR, REVAR and
IDS. For each of the examples, we also present the ground-
truth bounding box for the disease. The thresholded heatmap
areas are considered as the disease localization areas. IoU
score between the disease localization area and the ground-
truth bounding box is shown below each example. Figures
in the second row illustrate the correlation between IoU
scores for disease localization and importance weights for
OTR [Guo et al., 2022], REVAR [Jain et al., 2024], and
IDS in the CheXpert dataset. The disease name and Spear-
man Correlation Coefficients (SCC) [Spearman, 1961] are
attached in the parenthesis. A larger absolute value of a posi-
tive SCC between two variables indicates a stronger positive
correlation, which refers to a correlation between two vari-
ables where as one variable increases, the other variable
tends to increase as well. As a result, a cell with more blue
indicates more synthetic images falling in that cell. The red
lines in the figures are the linear regression results between
the IoU scores and the importance weights, which visual-
izes the correlation. It is observed that the linear regressors
in red suggest a stronger positive correlation between the
IoU scores and the importance weights by our IDS than
that for competing baselines, which is further quantitatively
evidenced by the higher SCC for IDS than the competing
baselines. The correlation analysis on NIH ChestX-ray14 is
illustrated in Figure 5 in Section D.2 of the supplementary.

et al., 2024a] and medical applications such as image classi-
fication [Akrout et al., 2023] and anomaly detection [Wolleb
et al., 2022]. Motivated by these successes, this work in-
vestigates whether augmenting benchmark thorax disease
datasets with synthetic images generated by diffusion mod-
els can improve the performance of deep neural networks
(DNNs) for thorax disease classification.

Challenges in GDA for Disease Classification. Despite
the potential of GDA, synthetic data produced by genera-
tive models often exhibit substantial noise [He et al., 2023a,
Azizi et al., 2023a], which can negatively impact the per-
formance of classifiers trained on such augmented datasets.
To mitigate this, prior studies have employed data selec-
tion [Chhabra et al., 2024] or sample re-weighting tech-

niques [He et al., 2023a], where noisy or low-quality syn-
thetic samples are either discarded or down-weighted during
training. Sample re-weighting methods [Shu et al., 2019,
Guo et al., 2022, Jain et al., 2024] typically rely on training a
meta-network using clean metadata to assign higher weights
to more informative samples. However, these methods as-
sume access to such metadata, which is often unavailable or
impractical to obtain in the medical domain without signifi-
cant expert involvement. Closest to our problem setting is
CBF [He et al., 2023a], which uses a CLIP Filter strategy
to remove noisy synthetic images based on the zero-shot
classification confidence from the vision-language model
CLIP [Radford et al., 2021]. However, CLIP’s pretraining on
generic image-text pairs may limit its effectiveness on spe-
cialized domains such as thorax X-ray disease classification,
undermining its reliability in this setting.

Our Contributions. This work introduces a principled sam-
ple re-weighting framework based on the Information Bot-
tleneck (IB), which circumvents the need for clean metadata
or external classifiers and delivers state-of-the-art results
in GDA for thorax disease classification. Our contributions
are as follows. First, we propose IDS, a novel IB-driven
re-weighting method, which assigns importance weights
to synthetic samples to improve classifier performance on
augmented datasets. Unlike prior approaches [Shu et al.,
2019, Guo et al., 2022, Jain et al., 2024, Chhabra et al.,
2024, He et al., 2023a], IDS is metadata- and classifier-free.
Second, we introduce an optimization framework where
the re-weighting network minimizes an IB loss by gener-
ating importance weights that guide the computation of
class centroids in both input and representation spaces.
This formulation allows us to derive a separable varia-
tional upper bound, termed the VIB, enabling tractable
optimization via minibatch SGD. Cross-entropy loss and
VIB are jointly optimized to train both the classifier and re-
weighting network. Experiments on CheXpert [Irvin et al.,
2019], COVIDx [Pavlova et al., 2022], and NIH ChestX-
ray14 [Wang et al., 2017] benchmarks show that IDS out-
performs existing re-weighting [Shu et al., 2019, Guo et al.,
2022, Jain et al., 2024] and selection [He et al., 2023a,
Chhabra et al., 2024] approaches. Finally, we analyze the
correlation between the importance weights and Intersection
over Union (IoU) scores for disease localization across base-
lines and IDS. Higher IoU between the predicted disease
region and the ground-truth bounding box indicates more in-
formative samples. As shown in Figure 1, IDS demonstrates
a stronger correlation between IoU and learned weights than
baselines, validating its effectiveness in prioritizing high-
value synthetic data. Further ablation results are detailed in
Section 4.3.



2 RELATED WORKS

2.1 MEDICAL IMAGE ANALYSIS WITH DEEP
LEARNING

Deep learning has achieved significant advances in photo-
graphic image analysis [Lin et al., 2017b,a], driving grow-
ing interest in its application to medical imaging. Convolu-
tional neural networks (CNNs), particularly architectures
such as U-Net [Falk et al., 2018, Zhou et al., 2018], have
laid the foundation for state-of-the-art performance across
multiple medical imaging tasks, including image classifi-
cation [Wang et al., 2019, Ma et al., 2020], object detec-
tion [Falk et al., 2019, Yang and Yu, 2021], and semantic
segmentation [Yang and Yu, 2021, Yao et al., 2021]. More
recently, vision transformers have demonstrated superior
performance over CNNs on a wide range of tasks [Zhu
et al., 2021, Cai et al., 2023], further advancing the state of
the art. Given the challenge of limited annotated medical
data, self-supervised learning strategies—especially con-
trastive learning approaches [Caron et al., 2020, Xiao et al.,
2023]—have gained prominence for pre-training models
in this domain [Xiao et al., 2023, Chen et al., 2021]. How-
ever, unlike photographic images, radiographic images of-
ten exhibit high inter-image similarity due to standardized
acquisition protocols [Xiang et al., 2021, Haghighi et al.,
2022], which poses unique challenges for contrastive learn-
ing [He et al., 2020, Chen et al., 2020]. To address these
challenges, restorative strategies such as masked autoen-
coders (MAE) [He et al., 2022] have been employed for
pre-training, yielding improvements in representation learn-
ing for medical imaging [Xiao et al., 2023].

2.2 INFORMATION BOTTLENECK PRINCIPLE

The Information Bottleneck (IB) principle [Tishby et al.,
2000] offers a theoretical framework for understanding gen-
eralization in deep neural networks (DNNs). It suggests that
an optimal representation should compress input data while
preserving task-relevant information, thereby maximizing
mutual information with target outputs and minimizing mu-
tual information with inputs. Deep Variational Information
Bottleneck (Deep VIB) [Alemi et al., 2017] was the first to
incorporate the IB principle into deep learning objectives.
Empirical [Lai et al., 2021, Zhou et al., 2022] and theoreti-
cal [Kawaguchi et al., 2023] studies confirm that networks
better aligned with the IB principle tend to exhibit stronger
performance and generalization. Within the medical imag-
ing literature, IB has been widely adopted to guide learning
of task-discriminative representations [Wang et al., 2023,
Schott et al., 2024, Li et al., 2023]. While most of these
works leverage IB for enhancing representation learning in
DNNs, our work is distinct in that it employs the IB princi-
ple to guide the selection of high-quality synthetic samples
for data augmentation in medical image classification—a

novel application of the IB framework in this context.

2.3 GENERATIVE DATA AUGMENTATION, DATA
SELECTION, AND SAMPLE RE-WEIGHTING

Generative data augmentation (GDA)—the process of gen-
erating synthetic samples to improve model training—has
emerged as a vital yet challenging topic in deep learning.
Recent studies [Sarıyıldız et al., 2023, Lei et al., 2023, Az-
izi et al., 2023b, Trabucco et al., 2024a] have employed
deep generative models [He et al., 2023b, Tian et al., 2023,
Yuan et al., 2022, Bansal and Grover, 2023, Vendrow et al.,
2023] to synthesize realistic and diverse training data. In the
medical imaging domain, GDA has similarly been adopted
to alleviate annotation scarcity [Jiang et al., 2018, Sharma
and Hamarneh, 2019, Cha et al., 2020, Akrout et al., 2023,
Shin et al., 2018], with several works demonstrating im-
provements in downstream model performance. However,
a major concern with synthetic data is the potential intro-
duction of noise [Azizi et al., 2023b, Trabucco et al., 2024b,
Na et al., 2024], which can compromise model accuracy.
To address this, recent methods fall into three major cate-
gories: (1) improving generative quality via model refine-
ment [Sarıyıldız et al., 2023, Zhou et al., 2023]; (2) data
selection, which identifies a high-quality subset of samples
from noisy data [Wu et al., 2021, Nguyen et al., 2020, Song
et al., 2023, Lin et al., 2023, He et al., 2023a, Chhabra
et al., 2024]; and (3) data re-weighting, where samples are
assigned importance weights to modulate their influence
during training [Mo et al., 2019, Shu et al., 2019, Guo et al.,
2022, Jain et al., 2024]. For instance, Classifier-Based Filter-
ing (CBF) [He et al., 2023a] selects synthetic samples based
on CLIP zero-shot classification confidence, assuming that
high-confidence samples are more likely to be useful. Mean-
while, re-weighting approaches like Meta-Weight-Net [Shu
et al., 2019], OTR [Guo et al., 2022], and REVAR [Jain
et al., 2024] employ meta-learning to derive adaptive sample
weights from clean meta-datasets. Each of these paradigms
addresses different aspects of the quality-control challenge
in using synthetic data for effective model training.

3 INFORMATIVE DATA SELECTION

Given the original training set Dreal = {xi, yi}Ni=1 for Tho-
rax disease classification, we aim to generate synthetic train-
ing set Dsyn = {x̂j , ŷj}Mj=1 with diffusion models and train
a classifier on the augmented training set Daug = Dreal∪Dsyn.
To address the adverse impact of noisy synthetic samples
in the augmented training set, we introduce Informative
Data Selection (IDS), a sample re-weighting framework
that assigns importance weights to synthetic training ex-
amples using a dedicated re-weighting network. This re-
weighting network is optimized by minimizing a variational
upper bound of the Information Bottleneck (IB) loss com-



puted over the synthetic training data, encouraging higher
weights for more informative samples and, consequently,
enhancing the performance of the classifier trained on the
augmented dataset. Section 3.1 outlines the procedure for
generating synthetic training samples using diffusion mod-
els. We present the derivation of the variational upper bound
of the IB loss in Section 3.2. Finally, Section 3.3 details the
joint training procedure of the re-weighting network and the
classification network within the IDS framework.

3.1 GENERATING SYNTHETIC TRAINING
SAMPLES WITH DIFFUSION MODELS

To generate labeled synthetic training samples, we employ a
conditional Latent Diffusion Model (LDM) [Rombach et al.,
2022] trained with Classifier-Free Guidance (CFG) [Ho and
Salimans, 2022] on latent representations of training im-
ages. These latent features are extracted using a pre-trained
variational autoencoder (VAE) encoder ve from Stable Dif-
fusion [Rombach et al., 2022], and the reconstruction is
performed via its decoder vd. As detailed in Section B.1 of
the supplementary material, we use Diffusion Transformers
(DiTs) [Peebles and Xie, 2023] as the backbone architecture
for the LDM. Let {hi}Ni=1 denote the latent representations
of the real training dataset Dreal, where hi = ve(xi) for
image xi. The LDM, parameterized by ω, is trained on the
labeled latent set {hi, yi}Ni=1 to minimize the loss LLDM de-
fined in Equation (14) of Section B.1. The detailed training
procedure is provided in Algorithm 1 in the supplementary.

After training the LDM, we generate a set of latent features
{ĥj}Mj=1 corresponding to a predefined label set {ŷj}Mj=1

using the reverse sampling formulation in Equation (13) of
Section B. The synthetic images {x̂j}Mj=1 are then recon-
structed by decoding the generated latent features through
the decoder: x̂j = vd(ĥj). In our experiments, the syn-
thetic label set is chosen to match the original class label
distribution, i.e., {ŷj}Mj=1 = {yj}Mj=1. The full generative
process is detailed in Algorithm 2 in the supplementary. The
resulting synthetic training dataset Dsyn = {x̂j , ŷj}Mj=1 is
then combined with the original dataset Dreal to form an
augmented dataset Daug = Dreal ∪ Dsyn. This augmented
dataset is subsequently used to jointly train the classifier and
sample re-weighting network within the IDS framework, as
described in Section 3.3.

3.2 VARIATIONAL UPPER BOUND FOR THE IB
LOSS

In order to assign higher importance weights to more in-
formative synthetic training samples, we propose to train
the re-weighting network by minimizing the IB loss on the
synthetic training set. To achieve this goal, we first derive
a variational upper bound for the IB loss, which can be op-
timized by standard SGD algorithms. Given the synthetic

training set Dsyn = {x̂j , ŷj}Mj=1, we first specify how to

compute the IB loss, IB(Θ) = I(Ẑ(Θ), X̂)− I(Ẑ(Θ), Ŷ ),
where Θ is the weights of a neural network, X̂ is a ran-
dom variable representing the input feature of the synthetic
training sample, which takes values in {x̂j}Mj=1, Ẑ(Θ) is a
random variable representing the learned feature of the syn-
thetic training sample, which takes values in {ẑj(Θ)}Mj=1

with ẑj(Θ) being the learned feature for the j-th synthetic
training sample. Ŷ is a random variable representing the
synthetic class label, which takes values in {yj}nj=1. We de-

fine C(θ,Θ) =

{{
c(input)
k (θ)

}C

k=1
,
{
c(feat)
k (θ,Θ)

}C

k=1

}
as

the class centroids of the input features and the learned
features on the synthetic training set, where θ denotes
the parameters of the sample re-weighting network. The
formulas for the computation of C(θ,Θ) can be found
in Equation (2). We abbreviate Ẑ(Θ) as Ẑ, c(input)

k (θ)

as c(input)
k , and c(feat)

k (θ,Θ) as c(feat)
k for simplicity of the

notations. Then we define the probability that ẑj be-

longs to class a as Pr
[
Ẑ ∈ a

]
= 1

M

M∑
j=1

ϕ(ẑj , c
(feat)
a )

with ϕ(ẑj , c
(feat)
a ) =

exp
(
−∥ẑj−c(feat)

a ∥2

2

)
∑C

a=1 exp
(
−∥ẑj−c(feat)

a ∥2

2

) . Similarly,

we define the probability that x̂j belongs to class

b as Pr
[
X̂ ∈ b

]
= 1

n

M∑
j=1

ϕ(xj , c
(input)
b ). Moreover,

we have the joint probabilities Pr
[
Ẑ ∈ a, X̂ ∈ b

]
=

1
M

M∑
j=1

ϕ(ẑj , c
(feat)
a )ϕ(x̂j , c

(input)
b ) and Pr

[
Ẑ ∈ a, Ŷ = y

]
=

1
M

M∑
j=1

ϕ(ẑj , c
(feat)
a )1I{ŷi=y} where 1I{} is an indicator func-

tion. As a result, we can compute the mutual information

I(Ẑ, X̂) =
C∑

a=1

C∑
b=1

Pr
[
Ẑ ∈ a, X̂ ∈ b

]
log

Pr[Ẑ∈a,X∈b]
Pr[Ẑ∈a]Pr[X̂∈b]

,

I(Ẑ, Ŷ ) =
C∑

a=1

C∑
y=1

Pr
[
Ẑ ∈ a, Ŷ = y

]
log

Pr[Ẑ∈a,Ŷ=y]
Pr[Ẑ∈a]Pr[Ŷ=y]

,

and then compute the IB loss IB(C(θ,Θ),Θ,Dsyn). Given
a variational distribution Q(Ẑ ∈ a|Y = y) for y ∈
{1, . . . , C} and a ∈ {1, . . . , C}, the following theorem
gives a variational upper bound, VIB(C(θ,Θ),Θ,Dsyn), for
the IB loss IB(C(θ,Θ),Θ,Dsyn).

Theorem 3.1.

IB(C(θ,Θ),Θ,Dsyn) ≤ VIB(C(θ,Θ),Θ,Dsyn), (1)



where

VIB(C(θ,Θ),Θ,Dsyn) :=
1

M

M∑
j=1

VIB(C(θ,Θ),Θ, x̂j),

VIB(C(θ,Θ),Θ, x̂j)

:=

C∑
a=1

C∑
b=1

ϕ(ẑj , c
(feat)
a )ϕ(x̂j , c

(input)
b ) log ϕ(x̂j , c

(input)
b )

−
C∑

a=1

C∑
y=1

ϕ(ẑj , c
(feat)
a )1I{ŷj=y} logQ(Ẑ ∈ a|Y = y).

VIB(C(θ,Θ),Θ, x̂j) can be interpreted as the information
bottleneck upper bound for the j-th synthetic image. The
proof of this theorem follows by applying Lemma A.1 and
Lemma A.2 in Section A of the supplementary. We remark
that VIB(Θ) is ready to be optimized by standard SGD
algorithms because it is separable and expressed as the sum-
mation of losses on individual training points. In order to
compute VIB(Θ) before a new epoch starts, we need to
update the variational distribution Q(t) at the end of the
previous epoch.

3.3 FORMULATION OF INFORMATIVE DATA
SELECTION (IDS)

Given the original training set Dreal = {xi, yi}Ni=1 and the
synthetic training set Dsyn = {x̂j , ŷj}Mj=1 generated by the
diffusion model, our goal is to train an image classifier fΘ(·)
on the augmented dataset Daug = Dreal ∪ Dsyn, where fΘ(·)
denotes a deep neural network (DNN) with parameters Θ.
However, naively training the classifier on Daug may de-
grade performance due to the substantial noise potentially
present in synthetic samples from Dsyn. To mitigate this, we
introduce a sample re-weighting network gθ(·) that learns
importance weights {gθ(x̂j) ∈ [0, 1]}Mj=1 for the synthetic
training instances. Here, gθ(·) is also a DNN, with param-
eters θ. The re-weighting network serves a role analogous
to that of the meta-networks employed in prior work [Shu
et al., 2019, Jain et al., 2024], which aim to assign training
weights based on sample informativeness.

To ensure that gθ(·) assigns higher weights to more infor-
mative synthetic examples in Dsyn, we optimize it via the
variational upper bound of the Information Bottleneck (IB)
loss, denoted as VIB, computed over Dsyn. A critical step in
evaluating the VIB involves estimating class centroids in
both the input feature space and the latent representation
space, using all samples in the augmented training set
Daug. Let f ′

Θ(·) denote the representation backbone of the
classifier fΘ(·), i.e., the network excluding its final linear
layer. These centroids serving as anchors to measure the rel-
evance and compression terms in the IB objective, essential
for computing the VIB loss effectively, are computed by

c(input)
k (θ) =

∑N
i=1 xi1I{yi=k} +

∑M
j=1 gθ(x̂j)x̂j1I{ŷj=k}∑N

i=1 1I{yi=k} +
∑M

j=1 gθ(x̂j)1I{ŷj=k}
,

c(feat)
k (θ,Θ) =

∑N
i=1 xi1I{yi=k} +

∑M
j=1 gθ(x̂j)f

′
Θ(x̂j)1I{ŷj=k}∑N

i=1 1I{yi=k} +
∑M

j=1 gθ(x̂j)1I{ŷj=k}
,

(2)
where k ∈ [C] is the class index and C is the number
of classes. 1I{} is an indicator function. Next, the VIB
on the synthetic training set Dsyn can be computed using
Equation (2). With the sample re-weighting network
gθ(·), the overall training loss for the classifier fΘ(·) on
the augmented training set Daug is Ltrain(θ,Θ,Daug) =

1
N

N∑
i=1

CE (fΘ(xi), yi) + 1
M

M∑
j=1

gθ(x̂j)CE (fΘ(x̂j), ŷj),

where CE(, ) is the cross-entropy function. To train the
classifier fΘ(·) by minimizing Ltrain(θ,Θ,Daug) while
training the sample re-weighting network gθ by minimizing
VIB(θ,Θ,Dsyn), we formulate a bi-level optimization
objective for IDS as

Θ∗ = argmin
Θ

Ltrain(θ
∗,Θ,Daug),

s.t. θ∗ = argmin
θ

VIB(C(θ,Θ∗),Θ∗,Dsyn), (3)

where Θ∗ and θ∗ are the optimal parameters for the clas-
sifier fΘ(·) and the sample re-weighting network gθ(·). It
is worthwhile to emphasize that the re-weighting is per-
formed only on the synthetic data in (2). As mentioned in
Section 4.1, the re-weighting can be applied to both real
data Dreal and the synthetic data for even better performance
shown in Section 4.

Optimization of IDS. To train the classifier fΘ(·) and the
sample re-weighting network gθ(·) under the bi-level ob-
jective in Equation (3), we employ an alternating stochas-
tic gradient descent strategy commonly used in bi-level
optimization problems [Shu et al., 2019, Algan and Ulu-
soy, 2021, Jain et al., 2024]. This approach alternates be-
tween updating the parameters of the sample re-weighting
network and those of the classifier, enabling efficient han-
dling of the dependency between the two learning pro-
cesses. In this framework, the lower-level optimization
aims to learn a sample re-weighting network that assigns
importance weights to training samples, which are then
used to guide the upper-level optimization of the classi-
fier toward better generalization performance. At the t-th
epoch, we first update the re-weighting network parameters
by θ(t) = θ(t−1) − ηθ∇θVIB(C(θ,Θ(t−1)),Θ(t−1),Dsyn),
where ηθ is the learning rate for the sample re-weighting
network. Subsequently, the classifier parameters are updated
using Θ(t) = Θ(t−1)−ηΘ∇ΘLtrain(θ

(t−1),Θ,Daug), where
ηΘ is the learning rate for the classifier. Both VIB and Ltrain
are separable and conducive to mini-batch SGD, allowing
the entire training procedure to scale efficiently. The full
training algorithm for IDS is summarized in Algorithm 3 in
Section C of the supplementary.



We further remark that IDS naturally extends to multi-
label classification tasks. Let L denote the number of la-
bels. For each synthetic training sample x̂j ∈ Dsyn, the
sample re-weighting network outputs a vector of impor-
tance weights gθ(x̂j) ∈ [0, 1]L, where the l-th entry cor-
responds to the importance of x̂j with respect to label
l. Both the training loss Ltrain(θ,Θ,Daug) and the varia-
tional information bottleneck VIB(C(θ,Θ),Θ, x̂j) are com-
puted separately for each label, and they are denoted
as Ltrain(θ,Θ,Daug, l) and VIB(C(θ,Θ),Θ,Dsyn, l) for the
l-th label. The bi-level optimization in Equation (3) is
then modified by replacing the training loss and VIB
with their averaged forms, 1

L

∑L
l=1 Ltrain(θ,Θ,Daug, l) and

1
L

∑L
l=1 VIB(C(θ,Θ),Θ,Dsyn, l). Such formulation allows

IDS to scale to complex multi-label scenarios common in
medical imaging while maintaining its theoretical grounding
and practical efficiency.

4 EXPERIMENTS

In this section, we present a comprehensive evaluation of our
proposed Informative Data Selection (IDS) method across
several medical imaging datasets. First, in Section 4.1, we
describe the implementation details of our experiments. We
compare IDS against other data selection and sample re-
weighting techniques on CheXpert, COVIDx, and NIH-
ChestXray-14 in Section 4.2. An ablation study analyzing
the correlation between disease localization performance
and importance weights for IDS and baseline methods is
provided in Section 4.3. Details regarding the generation
of synthetic images using diffusion models are deferred to
Section B.2 of the supplementary. Additional experimental
results are available in Section D of the supplementary, with
further implementation details and experimental setups de-
scribed in Section D.1. Additional results from the ablation
study are presented in Section D.2 of the supplementary.
The statistical significance of IDS’s performance improve-
ment over competing baselines is assessed in Section D.3 of
the supplementary. Section D.4 of the supplementary also
includes an ablation of IDS components and an analysis of
training time. In Section D.5, we evaluate the impact of the
diffusion model employed for data generation in IDS and an-
alyze the efficiency of the generation process. Section D.6
of the supplementary compares IDS with active learning
methods for identifying informative synthetic data. Finally,
in Section D.7, we provide additional comparisons with
baseline methods for thorax disease classification across the
three benchmarks, and in Section D.8, we show Grad-CAM
visualization results on the NIH ChestXray-14 dataset.

4.1 IMPLEMENTATION DETAILS

We evaluate the effectiveness of the proposed IDS method
for thorax disease classification using two base classifica-

tion networks, ViT-S and ViT-B [Dosovitskiy et al., 2020],
which are pre-trained on 266,340 and 489,090 chest X-
rays, respectively, using Masked Autoencoders (MAE) fol-
lowing the setup in [Xiao et al., 2023]. After pre-training,
we fine-tune the IDS-augmented networks on three tho-
rax disease classification datasets: CheXpert [Irvin et al.,
2019], COVIDx [Pavlova et al., 2022], and NIH ChestX-
ray14 [Wang et al., 2017]. Beyond applying IDS for data
re-weighting on synthetic data, we further examine its utility
for re-weighting both real and synthetic data. Additional im-
plementation details and experimental configurations are de-
ferred to Section D.1 in the supplementary material. For eval-
uation, we adopt the mean Area Under the Curve (mAUC)
as the metric for the multi-label datasets CheXpert and NIH
ChestX-ray14, computing mAUC by averaging per-label
AUC scores. For the single-label dataset COVIDx, classifi-
cation accuracy is used as the evaluation metric.

4.2 EXPERIMENTAL RESULTS

CheXpert. Table 1 presents a comparative analysis of IDS
with other data selection and data re-weighting methods
for GDA on the CheXpert dataset. The baseline ViT-B
model achieves an mAUC of 89.3% when fine-tuned di-
rectly on CheXpert. When IDS is employed for GDA, the
resulting IDS-ViT-B model achieves an improved mAUC
of 90.1%, representing a 0.8% gain over the base ViT-B
and a 1.1% improvement relative to ViT-B trained with
synthetic data. IDS-based models substantially outperform
alternative data selection and re-weighting strategies. For
instance, IDS-ViT-B surpasses REVAR by 0.8% in mAUC.
Furthermore, incorporating IDS to re-weight both real and
synthetic data yields additional gains: IDS-ViT-B applied
to both data types exceeds the performance of IDS-ViT-
B applied only to synthetic data by 0.6% mAUC. These
results underscore the strength of IDS in identifying infor-
mative samples across both real and synthetic sources. More
extensive baseline comparisons are included in Table 8 in
Section D.7 of the supplementary. Table 1 compares the per-
formance of competing data selection and data re-weighting
methods with our IDS for GDA on CheXpert. The base
model ViT-B achieves a mAUC of 89.3% when fine-tuned
on the CheXpert dataset. By incorporating IDS for GDA, the
IDS-ViT-B model attains a state-of-the-art mAUC of 90.1%,
reflecting a 0.8% improvement over the ViT-B and a 1.1%
improvement over the ViT-B trained with synthetic data.
Notably, IDS models significantly outperform other data
selection and data re-weighting methods for GDA. For in-
stance, IDS-ViT-B outperforms REVAR by 0.8% in mAUC.
Moreover, applying IDS to re-weight both the real data and
the synthetic data further boosts the performance of IDS.
For example, IDS-ViT-B re-weighting both the synthetic
data and the real data outperforms IDS-ViT-B re-weighting
only the synthetic data by 0.6% in mAUC, demonstrating
the merits of IDS in selecting informative samples in both



real data and synthetic data. Comparisons with additional
baseline methods are provided in Table 8 in Section D.7 of
the supplementary.

Table 1: The performance of various state-of-the-art (SOTA)
baseline methods on CheXpert. The best results are in bold,
and the second-best results are underlined, for each Back-
bone. Comparisons with more baselines are deferred to
Table 8 in Section D.7 of the supplementary. P-values of the
t-test between IDS and the best baseline along with their
standard deviations for this table, Table 2 and Table 3 are
deferred to Table 4 of the supplementary.

Method Backbone Atelectasis Cardiomegaly Edema mAUC (%)
MAE [Xiao et al., 2023]

ViT-S/16

83.5 81.8 94.0 89.2
MAE with Synthetic Data 83.0 81.5 94.0 88.6
MW-Net [Shu et al., 2019] 81.7 82.7 94.1 88.9

OTR [Guo et al., 2022] 84.6 81.2 94.2 89.0
IE [Chhabra et al., 2024] 81.7 82.0 94.2 88.9
CBF [He et al., 2023a] 81.4 82.7 94.2 88.8

REVAR [Jain et al., 2024] 83.0 82.7 94.0 89.0
IDS (Ours) 87.5 83.0 94.4 89.6

IDS (Ours, Re-weighting Real Data) 87.9 83.4 94.9 90.1
MAE [Xiao et al., 2023]

ViT-B/16

82.7 83.5 93.8 89.3
MAE with Synthetic Data 83.5 82.7 94.0 89.0
MW-Net [Shu et al., 2019] 83.9 82.7 93.8 89.3

OTR [Guo et al., 2022] 85.5 81.6 93.2 89.3
IE [Chhabra et al., 2024] 83.5 82.7 93.8 89.1
CBF [He et al., 2023a] 84.6 81.8 93.8 89.2

REVAR [Jain et al., 2024] 84.0 82.7 93.8 89.3
IDS (Ours) 86.3 84.1 94.7 90.1

IDS (Ours, Re-weighting Real Data) 86.8 84.8 95.5 90.7

COVIDx. Table 2 compares IDS with competing methods
for GDA on the COVIDx dataset. The baseline ViT-S and
ViT-B models, fine-tuned using synthetic data, achieve ac-
curacies of 95.4% and 95.5%, respectively. Applying IDS
yields improvements in both models: IDS-ViT-S and IDS-
ViT-B achieve accuracy gains of 1.7% and 1.8%, respec-
tively, over their corresponding baselines. IDS-ViT-B sets
a new state-of-the-art with an accuracy of 97.3%, which
is 1.0% higher than the best-performing prior method, RE-
VAR. Furthermore, re-weighting both real and synthetic data
with IDS leads to additional gains: IDS-ViT-B trained with
re-weighted real and synthetic data outperforms its coun-
terpart using only re-weighted synthetic data by 0.4% in
mAUC. This highlights the value of IDS in extracting signal
from both real and synthetic data distributions. Additional
baseline comparisons are reported in Table 9 in Section D.7
of the supplementary.

NIH ChestX-ray14. Table 3 presents a comparison between
our proposed IDS approach for Group Distributional Align-
ment (GDA) and several existing data selection and data
re-weighting methods on the NIH ChestX-ray14 dataset.
This dataset poses a significant challenge for GDA due to
its nature as a multi-label classification task with 14 dis-
tinct labels. Notably, all competing data selection and re-
weighting approaches yield performance that is even worse
than the baseline models trained without any synthetic data
augmentation. In stark contrast, IDS consistently improves
upon the performance of baseline models and achieves sig-
nificantly better results than alternative data selection and
re-weighting strategies. For example, while the base ViT-B
model achieves a mean Area Under the Curve (mAUC) of

Table 2: Performance comparisons between IDS models and
SOTA baselines on COVIDx (in accuracy). Comparisons
with more baselines are deferred to Table 9 in Section D.7
of the supplementary.

Method Backbone
Covid-19
Sensitivity Accuracy

MAE [Xiao et al., 2023]

ViT-S/16

94.5 95.2
MAE with Synthetic Data 98.0 95.4
MW-Net [Shu et al., 2019] 98.1 96.0

OTR [Guo et al., 2022] 98.0 96.2
IE [Chhabra et al., 2024] 98.0 96.0
CBF [He et al., 2023a] 98.4 96.1

REVAR [Jain et al., 2024] 98.2 96.2
IDS (Ours) 98.8 97.1

IDS (Ours, Re-weighting Real Data) 99.1 97.5
MAE [Xiao et al., 2023]

ViT-B/16

95.5 95.3
MAE with Synthetic Data 98.0 95.5
MW-Net [Shu et al., 2019] 98.5 96.1

OTR [Guo et al., 2022] 98.0 96.1
IE [Chhabra et al., 2024] 98.0 96.0
CBF [He et al., 2023a] 98.1 96.2

REVAR [Jain et al., 2024] 98.2 96.3
IDS (Ours) 99.0 97.3

IDS (Ours, Re-weighting Real Data) 99.3 97.7

83.0%, incorporating synthetic data during training with-
out careful selection degrades the performance to 82.1%.
Although the application of existing data selection or re-
weighting techniques to the synthetic data yields some im-
provements over this degraded model, their performance
still remains inferior to that of the base model trained with-
out synthetic data. On the other hand, IDS-ViT-B not only
recovers but exceeds the baseline performance, achieving an
mAUC of 83.4%, surpassing the base ViT-B by 0.4%. Fur-
thermore, IDS-ViT-B outperforms REVAR—the strongest
among the competing re-weighting baselines—by a mar-
gin of 0.9% in mAUC. Applying IDS to re-weight both
real and synthetic data results in an additional performance
boost; specifically, this dual re-weighting strategy improves
the mAUC by 0.5% over using IDS to re-weight only the
synthetic data.

Table 3: Performance comparison between IDS models and
SOTA baselines on NIH ChestX-ray14. More baselines are
deferred to Table 10 in Section D.7 of the supplementary.

Method Backbone mAUC
MAE [Xiao et al., 2023]

ViT-S/16

82.3
MAE with Synthetic Data 81.8
MW-Net [Shu et al., 2019] 82.0

OTR [Guo et al., 2022] 82.0
IE [Chhabra et al., 2024] 82.1
CBF [He et al., 2023a] 82.1

REVAR [Jain et al., 2024] 82.1
IDS (Ours) 82.7

IDS (Ours, Re-weighting Real Data) 83.2
MAE [Xiao et al., 2023]

ViT-B/16

83.0
MAE with Synthetic Data 82.1
MW-Net [Shu et al., 2019] 82.3

OTR [Guo et al., 2022] 82.3
IE [Chhabra et al., 2024] 82.5
CBF [He et al., 2023a] 82.5

REVAR [Jain et al., 2024] 82.5
IDS (Ours) 83.4

IDS (Ours, Re-weighting Real Data) 83.9

Improvement Significance Analysis. To determine



whether the improvements attained by our IDS method
over existing approaches are statistically significant and
not attributable to random variation, we conduct controlled
experiments using different datasets from Table 1, Table 2,
and Table 3. For each method, including IDS and the leading
baselines, we perform 10 independent training runs using
different random seeds, which govern both the initialization
of the neural networks and the splitting of data into training,
validation, and test subsets. We then perform a two-sample t-
test comparing the distributions of IDS results against those
of the best-performing baseline for each dataset. The re-
sulting mean values, standard deviations, and p-values are
summarized in Table 4 in Section D.3 of the supplementary
material. These statistical tests confirm that the performance
gains achieved by IDS are significant, with all p-values satis-
fying p ≪ 0.05, indicating that the improvements are highly
unlikely to be due to random chance.

4.3 ABLATION STUDY

Study on the Correlation between Disease Localization
and Importance Weights. In this section, we predict dis-
ease localization areas using Grad-CAM heatmaps [Sel-
varaju et al., 2017] and evaluate the quality of synthetic
images by computing Intersection-over-Union (IoU) scores
between the predicted localization areas and the ground-
truth disease bounding boxes. Following the methodology
of Xiao et al. [2023], the disease localization area for a
synthetic image is obtained by thresholding the Grad-CAM
heatmap at a fixed value of 0.3 across all experiments. As
shown in the illustrative examples in Figure 2, disease local-
ization areas generated by IDS exhibit larger overlaps with
ground-truth bounding boxes and yield higher IoU scores
compared to competing baselines. To investigate whether
more informative synthetic images receive higher impor-
tance weights from IDS and competing re-weighting meth-
ods, we analyze the correlation between IoU scores and
predicted importance weights. Since ground-truth disease
bounding boxes are not available for synthetic images, we
restrict this study to the Cardiomegaly class, which typi-
cally manifests in a consistent anatomical region around the
heart in chest X-rays [Amin and Siddiqui, 2019]. We utilize
ground-truth bounding boxes for Cardiomegaly from the
NIH ChestX-ray14 test set [Wang et al., 2017] as reference
bounding boxes in our correlation analysis.

The correlation between individual IoU scores and corre-
sponding importance weights is depicted in the second row
of Figure 1, with additional results on the NIH ChestX-
ray14 dataset presented in Figure 5 in Section D.2 of the
supplementary material. To visualize the trend, we perform
linear regression between the IoU scores and the importance
weights. The analysis reveals that synthetic images assigned
higher importance weights by IDS also tend to have higher
IoU scores, suggesting that IDS prioritizes more informative
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Figure 2: Grad-CAM visualization results on synthetic
images for the disease Cardiomegaly from the CheXpert
dataset. The Grad-CAM visualizations are shown for (a)
OTR, (b) REVAR, and (c) IDS in the first, second, and third
rows, respectively. The green boxes represent the ground-
truth bounding boxes. These visualizations illustrate that
IDS consistently exhibits better disease localization ability
compared to OTR [Guo et al., 2022] and REVAR [Jain et al.,
2024], as reflected by the higher IoU scores. Grad-CAM
visualization results on synthetic images for the disease Car-
diomegaly from the NIH ChestX-ray14 dataset are deferred
to Figure 4 in Section D.2 of the supplementary.

synthetic samples. In contrast, competing methods such as
OTR [Guo et al., 2022] exhibit no positive correlation, while
REVAR [Jain et al., 2024] shows only a marginal positive
trend. Additionally, we compute the Spearman’s rank cor-
relation coefficient (SCC) between individual IoU scores
and importance weights. IDS achieves an SCC of 0.184,
which substantially exceeds the SCC of 0.006 obtained by
REVAR, indicating that IDS more effectively aligns impor-
tance weights with the informativeness of synthetic samples.

We further conduct an ablation study to examine the con-
tributions of different components of IDS and report the
computational efficiency in Section D.4 of the supplemen-
tary material. The results demonstrate the complementary
benefits of the variational information bottleneck (VIB) and
the re-weighting network for data selection, while maintain-
ing computational feasibility. In addition, the robustness of
IDS to different diffusion models is verified in the ablation
study presented in Section D.5, indicating that the perfor-
mance of IDS is not sensitive to the choice of generative
backbone. Finally, in Section D.6, we show that IDS signifi-
cantly outperforms state-of-the-art active learning baselines
in identifying informative synthetic data.

5 CONCLUSION

In this paper, we propose Informative Data Selection (IDS),
a novel approach for re-weighting synthetic images in
Generative Data Augmentation (GDA) by leveraging an



information-theoretic criterion, the Information Bottleneck
(IB). IDS optimizes a sample re-weighting network to mini-
mize the IB loss over the synthetic dataset, thereby enforcing
the IB principle: learning representations that are more pre-
dictive of the output while being minimally dependent on
the input. Through comprehensive experiments and ablation
analyses, we show that IDS effectively prioritizes more in-
formative synthetic samples in the context of thorax disease
classification, and substantially surpasses existing methods
in both data selection and re-weighting for GDA.
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A PROOF OF THEOREM 3.1

Lemma A.1.
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Lemma A.2.
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Proof. Let Q(Ẑ|Y ) be a variational distribution. We have
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Ẑ ∈ a

]
= KL

(
P (Ẑ|Y )
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B INFORMATION ON DIFFUSION MODELS

B.1 FORMULATIONS OF DIFFUSION MODELS

Diffusion models (DMs) are latent variable models that conceptualize data x0 as a Markov chain progressing from xT to x0,
with all intermediate variables maintaining consistent dimensions. These models involve two primary Markovian processes:
a forward diffusion process defined as q(x(1:T ) | x0) =

∏T
t=1 q(x

(t) | x(t−1)) and a reverse denoising process described by
pω(x0:T ) = p(xT )

∏T
t=1 pω(x

(t−1) | x(t)). The forward process methodically incorporates Gaussian noise into data x(t):

q(x(t) | x(t−1)) = N (x(t);
√
1− β(t)x(t−1), β(t)I), (8)



where the hyperparameter series β(1:T ) dictates the noise level added at each step t. The chosen β(1:T ) ensures that samples
xT approximate standard Gaussian distributions, i.e., q(xT ) ≈ N (0, I). Typically, this forward process q is not adjustable
post-definition.

The generation method for DMs involves learning a parameter-driven reverse denoising process to systematically purify the
noisy variables xT :1 back to the pristine data x0:

pω(x
(t−1) | x(t)) = N (x(t−1);µω(x

(t), t), (ρ(t))2I), (9)

with the initial distribution p(xT ) set as N (0, I). The model utilizes neural networks like U-Nets or Transformers for
calculating means µω , with variances ρ(t) usually predefined.

In terms of optimization, the forward process q(x(1:T )|x0) is treated as a fixed posterior, against which the reverse process
pω(x0:T ) is trained to enhance the variational lower bound of the data likelihood. Direct likelihood optimization can lead to
significant training instability. An alternative simple surrogate objective suggested is:

LDM = Ex0,ε∼N (0,I),t

∥∥∥ε− εω(x
(t), t)

∥∥∥2
2
, (10)

where the model εω predicts the noise vector ε to clarify diffused samples x(t) at every stage t back to x(t−1). Post-training,
samples are generated through iterative ancestral sampling:

x(t−1) =
1√

1− β(t)
(x(t) − β(t)√

1− (α(t))2
εω(x

(t), t)) + ρ(t)ε, (11)

starting from a Gaussian prior xT ∼ p(xT ) = N (xT ; 0, I).

Latent Diffusion Models (LDMs) enhance standard Diffusion Models by introducing a latent space that reduces the
dimensionality of the data involved in the diffusion process. Initially, data x0 is encoded to a lower-dimensional latent form
h0. The forward process in LDMs involves:

q(h(t) | h(t−1)) = N (h(t);
√
1− β(t)h(t−1), β(t)I), (12)

and the reverse process reconstructs the original clean latent state h0 from hT by:

pω(h
(t−1) | h(t)) = N (h(t−1);µω(h

(t), t), (ρ(t))2I), (13)

followed by transforming the reconstructed latent data h0 back to the original data space. The training loss for LDM is

LLDM = Ehe(x),ϵ∼N (0,I),t

∥∥∥ϵ− ϵω(h
(t), t, y)

∥∥∥2
2
, (14)

Classifier-Free Guidance (CFG) merges a conditional and an unconditional noise predictor in the sampling process to
elevate sample quality and provide class guidance. This technique can be seamlessly integrated into LDMs, formulated as:

h(t−1) =
1√

1− β(t)
(h(t) − β(t)√

1− (α(t))2
ε̃(t)) + ρ(t)ε, (15)

where ε̃(t) = (1+ω)εω(h
(t), y, t)− γεω(h

(t), t), and γ is the guidance factor, optimizing the sampling process for specific
outcomes.

Algorithm 1 describes the training algorithm of the LDM. Algorithm 2 describes the generation process of the synthetic
training set.

B.2 DATA GENERATION WITH THE DIFFUSION MODELS

We train the Diffusion Transformer (DiT) on 256× 256 images, following the protocol outlined in [Peebles and Xie, 2023].
The training process spans 2,800 epochs with a global batch size of 512, distributed across four NVIDIA A100 GPUs. A
constant learning rate of 1× 10−4 is maintained throughout the training. After training, we generate synthetic images using
a classifier-free guidance (CFG) scale of 4.0 with 128 sampling steps. The synthetic dataset is constructed to mirror the



Algorithm 1 Training Algorithm of LDM

Input: The original training set Dreal = {xi, yi}Ni=1, the en-
coder ve of the fixed pre-trained VAE, and the training
epochs of the LDM tLDM.

Output: The parameters of the LDM ω.
1: Initialize the parameter ω of the LDM.
2: Encode input features {xi}Ni=1 to the latent features

{hi}Ni=1 using the encoder ve such that hi = ve(xi).
3: for t = 1, 2, . . . , tLDM do
4: Update ω by mini-batch SGD on {hi}Ni=1 using the

loss LLDM in Equation (14).
5: end for
6: return The parameters of the LDM ω.

Algorithm 2 Generation of Synthetic Training Set

Input: The labels of the synthetic training set {ŷj}Mj=1, the parame-
ters of the LDM ω, and the decoder vd of the fixed pre-trained
VAE.

Output: The synthetic training set Dsyn = {x̂i, ŷi}Mj=1.
1: for j = 1, 2, . . . ,M do
2: Sample a Gaussian noise ϵ ∼ N (0, I)

3: Generate synthetic latent feature ĥj from ϵ with the LDM
using Equation (13) in Section B of the supplementary.

4: Decode latent feature ĥj to the synthetic input feature x̂j by
x̂j = vd(ĥj).

5: end for
6: return The synthetic training set Dsyn = {x̂i, ŷi}Mj=1.

(i) Consolidation, Edema and Pleural Effusion (ii) Cardiomegaly and Atelectasis
(a) CheXpert

(i) COVID-19 (ii) Pneumonia
(b) COVIDx

(iii) Normal

(iii) Cardiomegaly, Edema and Pleural Effusion

Figure 3: Examples of synthetic images generated using a diffusion model trained on the (a) CheXpert and (b) COVIDx
datasets, displayed in the first and second rows, respectively. In the first row (CheXpert), the images depict the following
medical conditions: (i) Consolidation, Edema, and Pleural Effusion; (ii) Cardiomegaly and Atelectasis; (iii) Cardiomegaly
and Pleural Effusion. In the second row (COVIDx), the images correspond to: (i) COVID-19; (ii) Pneumonia; and (iii)
Normal (no disease).

label distribution of the real data, ensuring that disease co-occurrence patterns are preserved. Figure 3 presents examples of
synthetic images generated by the diffusion model for various thorax diseases. We then integrate these synthetic images into
the training sets for COVIDx, CheXpert and NIH-ChestX-ray14. Specifically, we augment the CheXpert, COVIDx and
NIH-ChestX-ray14 training sets with 1.0n synthetic images, where ‘n’ denotes the number of images in the official training
split of each respective dataset. To ensure fair comparison, all the other baselines are augmented with a similar number of
synthetic images.



B.3 COMPUTATION OF Q(t)(x̃|Y )

The variational distribution Q(t)(x̃|Y ) can be computed by

Q(t)(Ẑ ∈ a|Y = y) = Pr
[
Ẑ ∈ a|Y = y

]

=

n∑
i=1

ϕ(ẑj , a)1I{yi=y}

n∑
i=1

1I{yi=y}

. (16)

C ALGORITHM OF IDS

The algorithm for the training process of IDS is described in Algorithm 3.

Algorithm 3 Algorithm of IDS

Input: The augmented training set Daug, the synthetic training set Dsyn, the original training set Dreal, epoch number tmax.
1: Initialize the classifier network parameters Θ(0) and the sample re-weighting network parameters θ(0).
2: for t = 1, 2, . . . , tmax do
3: Compute the class centroids of the input features and image representations C(θ,Θ(t−1)).
4: Update θ(t) by applying mini-batch gradient descent on Dsyn using θ(t) = θ(t−1) − ηθ∇θVIB(C(θ,Θ(t−1)),Θ(t−1),Dsyn).
5: Update Θ(t) byapplying mini-batch gradient descent on Daug using Θ(t) = Θ(t−1) − ηΘ∇ΘLtrain(θ

(t−1),Θ,Daug).
6: Compute Q(t)(Ẑ ∈ a|Ŷ = y) by Eq. (16) in the supplementary.
7: end for
8: return The trained weights Θ of the classifier network fΘ(·) and the trained weights θ of the sample re-weighting network gθ(·).

D ADDITIONAL EXPERIMENTS

D.1 ADDITIONAL IMPLEMENTATION DETAILS AND EXPERIMENTAL SETUPS

The fine-tuning process is performed for 75 epochs with the ADAM optimizer and a batch size of 1024. A cosine decay
schedule is used. The initial learning rate µ is determined through cross-validation for each model and dataset. The weight
decay is set to 0.05, and the momentum parameters β1 and β2 are set to 0.9 and 0.999 for all the experiments. We compare
our IDS models with several data selection and sample reweighting methods, including Influence Estimation [Chhabra et al.,
2024], Classifier-based Filtering (CBF) [He et al., 2023a], MW-Net [Shu et al., 2019], OTR [Guo et al., 2022], and REVAR
[Jain et al., 2024]. To ensure a fair comparison, all baseline models undergo an additional 75 epochs of fine-tuning. The
mean Area Under the Curve (mAUC) is used as the metric for the multi-label disease classification datasets CheXpert and
NIH ChestX-ray14. Accuracy is used as the metric for the single-label disease classification dataset COVIDx.

CheXpert. The CheXpert dataset [Irvin et al., 2019] consists of 224, 316 chest X-ray images from 65, 240 patients, with
191, 028 images used for training. Each X-ray is labeled with radiology reports indicating the presence of 14 thoracic
diseases. To measure the effectiveness of our approach, we compute the mean Area Under the Curve (AUC) across five
selected disease categories and compare our results against state-of-the-art baseline models.

COVIDx. The COVIDx dataset (Version 9A) [Pavlova et al., 2022] comprises 30,386 chest X-ray images from 17, 026
unique patients. Following the partitioning strategy used in previous studies [Pavlova et al., 2022, Xiao et al., 2023], the
dataset is divided into 29, 986 images for training across four classes, and 400 images for testing, categorized into three
classes. For objective evaluation and consistency with prior methodologies, we report the Top-1 accuracy on the test set,
which contains three classes.

NIH ChestX-ray14. NIH ChestX-ray14 [Wang et al., 2017] is a large-scale dataset comprising 112, 120 chest X-ray images
collected from 30, 805 unique patients. Each image may have multiple labels from 14 disease categories, allowing for
multi-label classification tasks. Following the official data split provided by Wang et al. [2017], we use 75, 312 images
for training and 25, 596 images for testing. The raw images have a resolution of 1024× 1024 pixels. In our experiments,
we resize the images to 224× 224 pixels to match the input requirements of our models. We report the mean Area Under
the Curve (AUC) across all 14 disease classes and conduct a comprehensive comparison with 18 widely recognized and
influential baseline methods.



D.2 ADDITIONAL STUDY ON THE CORRELATION BETWEEN DISEASE LOCALIZATION AND
IMPORTANCE WEIGHTS

Figure 5 illustrates the correlation analysis between IoU scores for disease localization and importance weights on Car-
diomegaly for OTR [Guo et al., 2022], REVAR [Jain et al., 2024] and IDS in the NIH-ChestX-ray14 dataset.

As illustrated in Figure 2, the disease localization areas predicted by IDS tend to overlap more with the ground-truth
bounding boxes than those predicted by competing baselines, yielding higher IoU scores. To investigate whether IDS
assigns higher importance weights to more informative synthetic images, we analyze the correlation between IoU scores and
importance weights predicted by IDS and other baseline data re-weighting methods. The second row of Figure 5 illustrates
the correlation between individual IoU scores and importance weights. Linear regression is performed to visualize this
relationship. The results show that synthetic images assigned higher importance weights by IDS generally have higher IoU
scores, indicating that IDS effectively identifies and prioritizes more informative synthetic images. In contrast, there is only
a weak positive correlation between importance weights and IoU scores for OTR [Guo et al., 2022] and REVAR [Jain et al.,
2024]. To further quantify this correlation, we apply the Spearman Correlation Coefficient (SCC) [Spearman, 1961]. The
SCC for IDS is 0.065, significantly higher than the SCC of 0.004 for REVAR, demonstrating that IDS assigns importance
weights that are more strongly correlated with IoU scores compared to baseline methods.
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Figure 4: Grad-CAM visualization results on synthetic images for the disease Cardiomegaly from the NiH ChestX-ray14
dataset. The Grad-CAM visualizations are shown for (a) OTR, (b) REVAR, and (c) IDS in the first, second, and third
rows, respectively. The green boxes represent the ground-truth bounding boxes. These visualizations illustrate that IDS
consistently exhibits better disease localization ability compared to OTR [Guo et al., 2022] and REVAR [Jain et al., 2024],
as reflected by the higher IoU scores.

D.3 IMPROVEMENT SIGNIFICANCE ANALYSIS

To verify that the improvement of our proposed IDS on existing methods is statistically significant and out of the range of
error, we train both IDS and the best baseline methods on different datasets from Table 1, Table 2, and Table 3 for 10 times
with different seeds for random initialization of the networks and train/val/test splits. Next, we perform the t-test between
the results of IDS and the results of the best baseline methods on different datasets to assess if the improvement of IDS is
statistically significant. The mean and standard deviation of the results and the p-values of the t-test are shown in Table 4. It
is observed that the largest p-value is 1.44× 10−10, which is less than 0.05. The t-test results suggest that the improvement
of IDS over the baseline methods is statistically significant with p ≪ 0.05, and it is not caused by random error.



1

0

Bounding
Box

IoU = 0.47 IoU = 0.01 IoU = 0.77

(a) OTR (Cardiomegaly, 
         SCC = 0.006)

(b) REVAR (Cardiomegaly, 
         SCC = 0.004)

(c) IDS (Cardiomegaly, 
        SCC = 0.065)

Figure 5: Figures in the first row are examples of thresholded Grad-CAM visualization for OTR, REVAR, and IDS. For
each of the examples, we also present the ground-truth bounding box for the disease Cardiomegaly. The thresholded
heatmap areas are considered as the disease localization areas. IoU score between the disease localization area and the
ground-truth bounding box is shown below each example. A synthetic image with a higher IoU score is considered a
more informative sample for this disease as a larger portion of the predicted disease localization area overlaps with the
ground-truth bounding box of the disease. Figures in the second row illustrate the correlation between IoU scores for disease
localization and importance weights on Cardiomegaly for OTR [Guo et al., 2022], REVAR [Jain et al., 2024] and IDS in the
NIH-ChestX-ray14 dataset. The disease name and Spearman Correlation Coefficients (SCC) [Spearman, 1961] are attached
in the parenthesis. A larger absolute value of a positive SCC between two variables indicates a stronger positive correlation,
which refers to a correlation between two variables where as one variable increases, the other variable tends to increase as
well. The range of IoU and the range of the importance weight, which is [0, 1]× [0, 1], is divided into 30× 30 cells evenly,
and the color of each cell is proportional to the number of synthetic images whose IoU sores and importance weights fall in
that cell. As a result, a cell with more blue indicates more synthetic images falling in that cell. The red lines in the figures are
the linear regression results between the IoU scores and the importance weights, which visualizes the correlation. It can be
observed that the linear regressors in red suggest a stronger positive correlation between the IoU scores and the importance
weights by our IDS than that for competing baselines, which is further quantitatively evidenced by the higher SCC for IDS
than the competing baselines.

Table 4: P-values of t-test between IDS and the best baseline along with their standard deviations on CheXpert, COVIDx,
and NIH ChestX-ray14.

Dataset Backbone CheXpert (mAUC) COVIDx (Accuracy) NIH ChestX-ray14 (mAUC)
Best Baseline ViT-S/16 89.2 ± 0.067 96.2 ± 0.122 82.3 ± 0.045

IDS 89.6 ± 0.112 97.1 ± 0.125 82.7 ± 0.052
p-value - 1.44× 10−10 3.20× 10−12 4.07× 10−13

Best Baseline ViT-B/16 89.3 ± 0.045 96.3 ± 0.158 83.0 ± 0.051
IDS 90.1 ± 0.096 97.3 ± 0.136 83.4 ± 0.065

p-value - 1.24× 10−15 1.40× 10−11 1.48× 10−12

D.4 ABLATION STUDY AND TRAINING TIME ANALYSIS OF THE IDS

To evaluate the effectiveness and efficiency of different components in the IDS, we compare the disease classification
performance and the training time of the baseline model ViT-B, the IDS model IDS-ViT-B, and two ablation models, which
are IDS-ViT-B without VIB and IDS-ViT-B without the re-weighting network. The comparison is performed on the COVIDx
dataset. The training time is evaluated on four NVIDIA A100 GPUs. The results are shown in Table 5. With only a 30%
increase in the training time, IDS-ViT-B improves the classification accuracy on COVIDx by 2.0%, demonstrating the
effectiveness of integrating these components into the baseline model. The ablation studies further confirm the individual
contributions of the VIB and the re-weighting network, underlining the importance of both components in enhancing model



performance while maintaining a manageable increase in computational demand.

Table 5: Ablation study of IDS with training time analysis. The training time is evaluated on four NVIDIA A100 GPUs.

Methods COVIDx (Accuracy) Training Time (minutes/epoch)
ViT-B 95.3 2.6

IDS-ViT-B w/o VIB 96.4 3.2
IDS-ViT-B w/o Re-weighting Network 96.7 2.8

IDS-ViT-B 97.3 3.4

D.5 STUDY ON THE DIFFUSION MODELS FOR THE DATA GENERATION IN THE IDS

To evaluate the impact of the diffusion model used for the data generation in the IDS, we compare the performance of
IDS-ViT-B using three different diffusion models for data generation, which are DiT-B, DiT-L, and DiT-XL [Peebles and
Xie, 2023]. The data generation time and the classification accuracy on the COVIDx dataset are shown in Table 6. It is
observed that the performance of the IDS model is not sensitive to the selection of the diffusion models used for data
generation. The IDS-ViT-B based on the largest DiT model DiT-XL only outperforms the IDS-ViT-B based on the smallest
DiT model DiT-B by 0.2% in classification accuracy on COVIDx, demonstrating the merit of IDS in mitigating the noise in
the synthetic data generated by diffusion models. In addition, the results in Table 6 show that the synthetic data generation
process with the diffusion models in IDS is efficient, with less than 0.01 seconds/image.

Table 6: Performance comparison between IDS-ViT-B models utilizing different diffusion models for data generation. The
data generation time is evaluated on four NVIDIA A100 GPUs.

Methods COVIDx (Accuracy) Generation Time (seconds/image)
ViT-B 95.3 -

IDS-ViT-B (DiT-B) 97.1 0.095
IDS-ViT-B (DiT-L) 97.3 0.151

IDS-ViT-B (DiT-XL) 97.3 0.176

D.6 COMPARISON BETWEEN IDS AND ACTIVE LEARNING METHODS

Active learning (AL) methods aim to minimize the effort required for labeling training data by strategically choosing the
most informative instances for annotation [Sinha et al., 2019, Yoo and Kweon, 2019, Gao et al., 2020, Kushnir and Venturi,
2023, Yang et al., 2023, Chhabra et al., 2024]. The selection of the data for annotation by active learning methods is usually
achieved by identifying the most informative data points. Such a process works similarly to the data r-weighting process
in IDS for identifying the most informative synthetic data. To show the advantage of IDS over active learning methods in
selecting the most informative synthetic data, we compare IDS with two state-of-the-art active learning methods, which are
CAMPAL [Yang et al., 2023] and SAAL [Chhabra et al., 2024]. Both CAMPAL and SAAL are adopted to select data from
the synthetic dataset generated by the diffusion models. The results are shown in Table 7. It is observed that IDS outperforms
the competing active learning methods on all the datasets, demonstrating the superiority of IDS in selecting informative
training samples compared to active learning methods.

Table 7: Comparison between IDS and active learning methods.

Methods COVIDx (mAUC) Covid-19 (Accuracy) NIH ChestX-ray14 (mAUC)
ViT-B 89.3 95.3 83.0

CAMPAL-ViT-B 89.4 96.2 83.0
SAAL-ViT-B 89.3 95.9 83.1
IDS-ViT-B 89.6 97.3 83.4

D.7 COMPARISON WITH MORE EXISTING WORKS ON THORAX DISEASE CLASSIFICATION

We compare our IDS models with more baselines for thorax disease classification on CheXpert, COVIDx, and NIH-
ChestXray-14 in Table 8, Table 9, and Table 10, respectively.



CheXpert. Table 8 presents a performance comparison between additional baseline models and those enhanced by our
Informative Data Selection (IDS) technique. For instance, IDS-ViT-B achieves significant improvements, with gains of
up to 7.3% in mAUC over the baseline models. In addition to the overall mAUC, Table 8 also provides AUC scores for
key thoracic diseases, including Atelectasis, Cardiomegaly, and Edema. These individual disease-specific results further
emphasize the effectiveness of IDS, as it consistently boosts performance across various conditions. These findings highlight
the superior capabilities of IDS-enhanced models compared to standard baselines on the CheXpert dataset.

COVIDx. Table 9 presents performance comparisons between additional baseline models and our IDS-enhanced models on
the COVIDx dataset. For instance, IDS-ViT-B significantly outperforms the baseline models, with accuracy gains of up to
4.7%. Moreover, IDS-ViT-S and IDS-ViT-B achieve a state-of-the-art COVID-19 sensitivity of 99.0%, surpassing previous
baselines by up to 11.9%. These results demonstrate the effectiveness of integrating IDS into transformer-based models for
medical image analysis on the COVIDx dataset.

NIH-ChestX-ray14. Table 10 compares the performance of various state-of-the-art (SOTA) CNN-based and transformer-
based models, including those enhanced by our Informative Data Selection (IDS) technique, on the NIH ChestX-ray14 dataset.
The table includes models pre-trained on both ImageNet and X-rays. IDS-ViT-B shows significant improvements, achieving
gains of up to 8.9% in mAUC and 8.2% for IDS-ViT-S over baseline models. These gains highlight the effectiveness of
IDS in improving performance for thoracic disease classification. Furthermore, Table 10 presents mAUC scores for all
methods, demonstrating that IDS-enhanced models consistently outperform other baseline methods, including both CNN
and transformer-based Backbones, on the NIH ChestX-ray14 dataset. These findings underscore the superior capabilities of
IDS-enhanced models in addressing the challenges of thoracic disease classification.

Table 8: The performance of various state-of-the-art (SOTA) baseline methods on CheXpert. DN represents DenseNet,
where the second best performance is underlined.

Method Backbone Atelectasis Cardiomegaly Edema mAUC (%)
Allaouzi et al.[Allaouzi and Ahmed, 2019]

DN121

72.0 88.0 87.0 82.8
Irvin et al.[Irvin et al., 2019] 81.8 82.8 93.4 88.9

Chexclusion [Seyyed-Kalantari et al., 2020] 81.2 83.0 88.3 87.3
Pham et al.[Pham et al., 2021] 82.5 85.5 93.0 89.4

BMTL [Hosseinzadeh Taher et al., 2021] - - - 87.1
DiRA [Haghighi et al., 2022] - - - 87.6

Label-assemble [Kang et al., 2021] 82.1 85.9 89.2 89.0
MoCo v2 [Xiao et al., 2023] 78.5 77.9 92.8 88.7

MAE [Xiao et al., 2023] 81.5 77.6 92.3 88.7
MAE [Xiao et al., 2023]

ViT-S/16

83.5 81.8 94.0 89.2
MAE with Synthetic Data 83.0 81.5 94.0 88.6
MW-Net [Shu et al., 2019] 81.7 82.7 94.1 88.9

OTR [Guo et al., 2022] 84.6 81.2 94.2 89.0
IE [Chhabra et al., 2024] 81.7 82.0 94.2 88.9
CBF [He et al., 2023a] 81.4 82.7 94.2 88.8

REVAR [Jain et al., 2024] 83.0 82.7 94.0 89.0
IDS (Ours) 87.5 83.0 94.4 89.6

MAE [Xiao et al., 2023]

ViT-B/16

82.7 83.5 93.8 89.3
MAE with Synthetic Data 83.5 82.7 94.0 89.0
MW-Net [Shu et al., 2019] 83.9 82.7 93.8 89.3

OTR [Guo et al., 2022] 85.5 81.6 93.2 89.3
IE [Chhabra et al., 2024] 83.5 82.7 93.8 89.1
CBF [He et al., 2023a] 84.6 81.8 93.8 89.2

REVAR [Jain et al., 2024] 84.0 82.7 93.8 89.3
IDS (Ours) 86.3 84.1 94.7 90.1

D.8 GRAD-CAM VISUALIZATION RESULTS ON NIH-CHESTX-RAY14

In this section, we present Grad-CAM visualization results on the NIH ChestX-ray14 dataset, which includes various disease
labels such as Pneumothorax, Atelectasis, Mass, Cardiomegaly, Pneumonia, and Effusion. The dataset provides bounding
box annotations for certain disease labels, which we use in our evaluations to assess the accuracy of localization. We
visualize the regions in the input images that are responsible for the model’s predictions on the ground-truth disease labels,
comparing the performance of IDS against several baseline models, including MAE [Xiao et al., 2023], OTR [Guo et al.,
2022], and REVAR [Jain et al., 2024]. The visualizations in Figure 6 demonstrate that IDS tends to focus more accurately



Table 9: Performance comparisons between IDS models and SOTA baselines on COVIDx (in accuracy). DN represents
DenseNet.

Method Backbone Covid-19 Sensitivity Accuracy
COVIDNet-CXR Small [Wang et al., 2020] - 87.1 92.6
COVIDNet-CXR Large [Wang et al., 2020] - 96.8 94.4

MoCo v2 [Xiao et al., 2023] DN121 94.5 94.0
MAE [Xiao et al., 2023] DN121 97.0 93.5
MAE [Xiao et al., 2023]

ViT-S/16

94.5 95.2
MAE with Synthetic Data 98.0 95.4
MW-Net [Shu et al., 2019] 98.1 96.0

OTR [Guo et al., 2022] 98.0 96.2
IE [Chhabra et al., 2024] 98.0 96.0
CBF [He et al., 2023a] 98.4 96.1

REVAR [Jain et al., 2024] 98.2 96.2
IDS (Ours) 98.8 97.1

MAE [Xiao et al., 2023]

ViT-B/16

95.5 95.3
MAE with Synthetic Data 98.0 95.5
MW-Net [Shu et al., 2019] 98.5 96.1

OTR [Guo et al., 2022] 98.0 96.1
IE [Chhabra et al., 2024] 98.0 96.0
CBF [He et al., 2023a] 98.1 96.2

REVAR [Jain et al., 2024] 98.2 96.3
IDS (Ours) 99.0 97.3

on areas inside the bounding boxes provided by the NIH ChestX-ray14 dataset, which correspond to the labeled disease
regions. In contrast, the baseline models often activate regions outside the bounding boxes or irrelevant background areas,
indicating less precise localization.



Table 10: Performance comparison of various state-of-the-art (SOTA) CNN-based and Transformer-based methods on NIH
ChestX-ray14. RN, DN, and SwinT represent ResNet, DenseNet, and Swin Transformer.

Method Backbone Pre-training mAUC
Wang et al.[Wang et al., 2017] RN50

ImageNet-1K

74.5
Li et al.[Li et al., 2018] RN50 75.5

LSE-LBA[Yao et al., 2018] RN&DN 76.1
Thorax-Net[Wang et al., 2019] R152 78.8

MA[Ma et al., 2019] R101 79.4
AGCL[Tang et al., 2018] RN50 80.3

Baltruschat et al.[Baltruschat et al., 2019] RN50 80.6
DNetLoc [Guendel et al., 2018] DN121 80.7
CRAL[Guan and Huang, 2018] DN121 81.6

Seyyed et al.[Seyyed-Kalantari et al., 2020] DN121 81.2
CAN[Ma et al., 2020] DN121(×2) 81.7

Hermoza et al.[Hermoza et al., 2020] DN121 82.1
XProtoNet[Kim et al., 2021] DN121 82.2
DiRA[Haghighi et al., 2022] DN121 81.7

ACPL [Liu et al., 2022] DN121 81.8
SwinCheX [Taslimi et al., 2022] SwinT 81.0
Categorization [Xiao et al., 2023] RN50 81.8
Categorization [Xiao et al., 2023] DN121 82.0

MoCo v2 [Xiao et al., 2023] DN121
X-rays (0.3M)

80.6
MAE [Xiao et al., 2023] DN121 81.2
MAE [Xiao et al., 2023]

ViT-S/16 X-rays (0.3M)

82.3
MAE with Synthetic Data 81.8
MW-Net [Shu et al., 2019] 82.0

OTR [Guo et al., 2022] 82.0
IE [Chhabra et al., 2024] 82.1
CBF [He et al., 2023a] 82.1

REVAR [Jain et al., 2024] 82.1
IDS (Ours) 82.7

MAE [Xiao et al., 2023]

ViT-B/16 X-rays (0.5M)

83.0
MAE with Synthetic Data 82.1
MW-Net [Shu et al., 2019] 82.3

OTR [Guo et al., 2022] 82.3
IE [Chhabra et al., 2024] 82.5
CBF [He et al., 2023a] 82.5

REVAR [Jain et al., 2024] 82.5
IDS (Ours) 83.4
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Figure 6: Grad-CAM visualization results on NIH-ChestX-ray14 dataset for various disease labels including Pneumothorax,
Atelectasis, Mass, Cardiomegaly, Pneumonia, and Effusion. The visualizations from MAE [Xiao et al., 2023], OTR [Guo
et al., 2022], REVAR [Jain et al., 2024], and IDS are shown in the first, second, third, and fourth columns, respectively. The
green bounding boxes represent the ground truth regions of interest for each label, and the corresponding IoU score is shown
below each image, which quantifies the overlap between the Grad-CAM heatmap and the ground truth bounding box. For
each Grad-CAM visualization, higher IoU scores indicate a better localization of the activated regions in relation to the
ground truth.
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