
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TRANSFORMERS AS MULTI-TASK LEARNERS:
DECOUPLING FEATURES IN HIDDEN MARKOV MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Transformer-based models have shown remarkable capabilities in sequence learning
across a wide range of tasks, often performing well on specific task by leveraging
input-output examples. Understanding the mechanisms by which these models
capture and transfer information is important for driving model understanding
progress, as well as guiding the design of more effective and efficient algorithms.
However, despite their empirical success, a comprehensive theoretical understand-
ing on it remains limited. In this work, we investigate the layerwise behavior of
Transformers to uncover the mechanisms underlying their multi-task generalization
ability. Taking explorations on a typical sequence model—Hidden Markov Models
(HMMs), which are fundamental to many language tasks, we observe that: (i)
lower layers of Transformers focus on extracting feature representations, primar-
ily influenced by neighboring tokens; (ii) on the upper layers, features become
decoupled, exhibiting a high degree of time disentanglement. Building on these
empirical insights, we provide theoretical analysis for the expressiveness power of
Transformers. Our explicit constructions align closely with empirical observations,
providing theoretical support for the Transformer’s effectiveness and efficiency on
sequence learning across diverse tasks.

1 INTRODUCTION

Transformer-based models have achieved state-of-the-art performance across a broad range of
sequence learning tasks, from language modeling and translation (Touvron et al., 2023; Dubey
et al., 2024; Achiam et al., 2023; Team et al., 2023) to algorithmic reasoning (Liu et al., 2024; Ye
et al., 2024). Remarkably, a single Transformer can often generalize across diverse tasks with minimal
supervision, leveraging only a few input-output examples—a capability that underpins its success in
few-shot and in-context learning (Brown et al., 2020; Wei et al., 2022; Dong et al., 2023; Min et al.,
2022).

While the empirical success is well-documented, a key question remains elusive:

How do Transformers capture and transfer information across layers?

Understanding these internal mechanisms is crucial for advancing algorithmic design and developing
more efficient model architectures. In particular, the internal mechanisms by which Transformers
represent and process sequential information across layers are not yet fully understood. This gap is
especially pressing given the growing interest in deploying large-scale Transformers in multi-task
and general-purpose settings.

In this work, we aim to bridge this understanding gap by investigating the layerwise behavior of
Transformers. We take explorations on Hidden Markov Model (HMMs)(Rabiner, 1989; Baum &
Eagon, 1967), a classical class of sequence models where observations depend on unobserved hidden
states evolving underlying Markov dynamics. Through empirical analysis, we uncover that while
achieving good performance, Transformer learns feature representations on the lower layers, which
are heavily influenced by nearby tokens, as well as developing decoupled features on upper layers,
behaving like time disentangled representations (see Section 2 for details). Motivated by these
observations, we provide a theoretical analysis of Transformer expressiveness. By constructing
explicit Transformer architectures that model HMMs efficiently, we demonstrate how the observed

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

empirical patterns naturally emerge from our constructions. These results offer principled insights
into how Transformers capture and generalize sequence information across tasks, shedding light on
their success in multi-task and few-shot learning. Such feature decoupling phenomenon also has
practical implications, such as assigning different tasks to different layers in multi-task learning,
or masking position-related features in higher layers to improve inference efficiency. Our main
contributions are summarized as follows:

1. Expressiveness. On the theoretical side, we model language tasks in Transformers through
Hidden Markov Models. Given the large hidden state space often encountered in practice, we
adopt a low-rank structure for latent transitions, which has received tremendous attention recently
for its efficiency in computation and inference (Siddiqi et al., 2010; Chiu et al., 2021). We
show that under mild observability assumptions, Transformers can approximate low-rank HMMs
using a fixed-length memory structure, enabling effective in-context learning. On the empirical
side, we present that well-trained Transformers achieve high accuracy under in-context learning,
with performance improving as more input-output examples are provided or as sequence length
increases, which aligns with Theorem 1.

2. Feature Decoupling Phenomenon. On the empirical side, we observe that lower layers focus on
learning local representations, primarily influenced by neighboring tokens. Upper layers develop
decoupled, temporally disentangled representations that are less tied to specific input positions and
encode higher-level abstractions. Our theoretical constructions provide corresponding explana-
tions: lower layers extract local features, which are then transformed into decoupled, task-relevant
representations in upper layers.

3. Generalization to ambiguous settings. We extend our theoretical results to more challenging sce-
narios where the hidden state space exceeds the observation space, which are natural assumptions
in NLP. And we show that Transformers can still learn expressive representations by composing
features from multiple future observations.

4. Technical contribution. From the technical level, we first provide a theoretical analysis of sample
complexity on causal tasks, establishing a quantitative relationship between sample size, model
capacity and prediction performance.

1.1 RELATED WORKS

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

0.1

0.2

0.3

0.4

0.5

0.6

Figure 1: Accuracy of the Trans-
former under in-context learning
setting. The y-axis denotes the
number of demonstrative examples
in-context, and the x-axis denotes
the length of the test input otest.
All demonstrative examples have
a length of 8 in this setting.

The expressiveness of Transformers on sequence modeling has
been explored from several perspectives. Liu et al. (2022a)
demonstrate that Transformers can emulate automata by learn-
ing deterministic transition patterns. Nichani et al. (2024) ana-
lyze a simplified setting where the data follows a Markov chain
governed by a transition matrix. Other works, such as Sander
et al. (2024) and Wu et al. (2025), study the expressiveness
of Transformers in autoregressive modeling, focusing on non-
causal tasks. In contrast, our work takes a first step toward
understanding the expressive power of Transformers on Hidden
Markov Models, which are arguably among the simplest yet
fundamental tools for modeling natural language tasks.

2 STARTING FROM THE EMPIRICAL FINDINGS

2.1 EXPERIMENT SETTINGS

To empirically investigate how Transformers learn multiple
tasks on sequential data, we construct a dataset generated by
a mixture of Hidden Markov Models. Each HMM is used to
model a tasks-specific distribution, and by mixing them we
get a dataset similar to a pre-training corpus to learn language
modeling. We sample 131k data, which allows training for 64 epochs, with 64 steps in each epoch on
a batch size of 32. We build a transformer of 16 layers and 16 heads in each layer, and a hidden state
dimension of 1024. (Verifications on other models are in Appendix B.) The transformer adopts the

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

design of Roformer Su et al. (2024) which uses rotary positional encoding technique, and determines
the attention logit between two tokens based on their relative position.

2.2 RESULTS

Expressiveness power on HMMs. The high accuracy observed in Figure 1 highlights the expres-
siveness of well-trained Transformers. Moreover, we find that (1) accuracy improves as the number
of input-output examples increases, and (2) task outputs become more predictable with longer test
sequences.

0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

14

Attention Independence = 1 - std / mean

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 2: After randomly shuffling
the positions of demonstrative in-
puts, we examine how the logits re-
ceive changes over layers (y-axis)
and attention heads (x-axis). The
measure is 1− std(logits)

mean(logits) .

Decoupled features on upper layers. We randomly shuffle
the positions of demonstrative inputs and measure how the logit
changes. As shown in Figure 2, the upper layers (layers 9–15)
exhibit attention logits that are less dependent on the positions
of input tokens. This suggests that feature representations in
these layers become increasingly decoupled, reflecting a high
degree of time disentanglement.

Layerwise investigations on Transformer recognitions.
Figure 3a shows that Transformers gradually recognize the
task identity across layers. Within a single task, the hidden
state is identified earlier than the task itself, indicating that
Transformers first learn the relationship between observations
and hidden states in the lower layers, and then capture task-
level structural information in the upper layers. This reflects
a layerwise processing hierarchy in how Transformers handle
sequential information. In Figure 3b, we observe three key
patterns: (1) The Transformer identifies previous tokens (i−1,
i−2, i−3, i−5, i−10) with decreasing accuracy as the distance
increases, suggesting that feature learning in lower layers relies
primarily on nearby tokens. (2) The accuracy curves for all distances follow a rising-then-falling
trend across layers, implying that Transformers initially aggregate information from local contexts,
and the resulting features then act as decoupled representations in upper layers. (3) The peak of each
curve shifts to upper layers as the distance to the previous token increases, showing that Transformers
first integrate information from close neighbors and then progressively attend to more distant tokens.

0 2 4 6 8 10 12 14
Layer

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

Probing Hidden Variables

task_ids_accuracy
state_ids_accuracy

(a) Task/ State recognition performance.

0 2 4 6 8 10 12 14
Layer

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Ac
cu

ra
cy

Probing Previous Tokens
token i-1
token i-2
token i-3
token i-5
token i-10

(b) Token recognition performance.

Figure 3: Investigation on Transformer recognitions.

3 PROBLEM SETUP

3.1 TRANSFORMER ARCHITECTURE

We begin by describing the framework of Transformers as follows:

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 4: Illustration of Hidden Markov Model.

Attention head. We first recall the definition of the (self-)Attention head Attn(·, Q,K, V). With
any input matrix M ,

Attn (M,Q,K, V) = σ
(
MQKTMT

)
MV,

where {Q,K, V } refer to the Query, Key and Value matrix respectively. The activation function σ(·)
can be row-wise softmax function1 or element-wise ReLU function2.

Transformer. Based on the architecture of Attention head, with the input matrix M , the definition
of multi-head multi-layer Transformer TF(·) is give by

H(0) =M, H(l) = H(l−1) +

Ml∑
m=1

Attn
(
H(l−1), Qm,Km, Vm

)
,

for any l ∈ [N], where N refers to the number of Transformer layers, and Ml is the number of
Attention heads on the l-th layer.

One-hot encoding. Considering a vector set with finite elements S := {v1, v2, . . . , vm}, the One-
hot encoding refers to mapping these vectors into Rm, i.e, Vec(·) : S → Rm. Each vector is mapped
to an one-hot vector within {e1, e2, . . . , em}, and for any two different vectors vs, vs′ ∈ S , there will
be Vec(vs) ̸= Vec(vs′).

3.2 IN-CONTEXT LEARNING FOR HIDDEN MARKOV MODEL

To show the expressive power of Transformers on sequence tasks, we consider a finite state case
in this work, hidden Markov models (HMMs). To perform in-context learning, we collect n i.i.d.
demonstrate short observation sequences, i.e, {oi,1, . . . , oi,L}ni=1, each sequence consists of L− 1
observations. Denote the hidden state for each observation as hi,s for any i ∈ [n], s ∈ [L], the HMM
is defined as (more intuitive description is shown in Figure 4):

P(oi,s|oi,1, . . . , oi,s−1, hi,1, . . . , hi,s−1, hi,s) = P(oi,s|hi,s), ∀i ∈ [n], s ∈ [L],

P(hi,s|oi,1, . . . , oi,s−1, hi,1, . . . , hi,s−1) = P(hi,s|hi,s−1), ∀i ∈ [n], s ∈ [L].

During testing, to predict otest,k given a long sequence history {otest,s}k−1
s=1 , where k > L, we

construct the input matrix M0 for Transformers in the following format:

M0 := [M0,1 M0,2 · · · M0,n M0,test]
T ∈ R(n(L+1)+k)×D,

in which the column number D will be specified later, and

M0,i :=

 oi,1 oi,2 · · · oi,L odelim
s(i−1)(L+1)+1 s(i−1)(L+1)+2 · · · si(L+1)−1 si(L+1)

v(i−1)(L+1)+1 v(i−1)(L+1)+2 · · · vi(L+1)−1 vi(L+1)

 ∈ RD×(L+1), ∀i ∈ [n],

M0,test :=

 otest,1 otest,2 · · · otest,k−1 0
sn(L+1)+1 sn(L+1)+2 · · · sn(L+1)+k−1 sn(L+1)+k

vn(L+1)+1 vn(L+1)+2 · · · vn(L+1)+k−1 vn(L+1)+k

 ∈ RD×k,

where each column of M0, i.e, [oT , sT , vT] represents the embedding for one observation, and odelim
is the delimiter embedding, which represents the end of one sequence. The first p+ 1 dimension, i.e,

1Given a vector input v, the i-th element of Softmax(v) is given by exp(vi)/
∑

j exp(vj).
2ReLU(x) = max{x, 0}

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

o, refers to the token embedding, which is a one-hot vector within {e1, . . . , ep+1}. Specifically, we
have

o ∈ {e1, . . . , ep} for o ̸= odelim, odelim = ep+1.

The following two-dimensional vector s is position embedding, which is referred to as

[spos]1 = sin
(pos

1000nk

)
, [spos]2 = cos

(pos

1000nk

)
, ∀1 ≤ pos ≤ n(L+ 1) + k.

And the last (D − p − 3)-dim vector v is the fixed embedding, with elements of ones, zeros and
indicators for being the test sequence:

vpos :=
[
0⊤D−p−5, 1, 1(pos > n(L+ 1))⊤

]⊤
, ∀1 ≤ pos ≤ n(L+ 1) + k.

We will choose D ≥ 2p2L to allocate sufficient capacity for storing the learned features. After
feeding M0 into the Transformer, we will obtain the output TF(M0) ∈ R(n(L+1)+k)×D with
the same shape as the input, and read out the conditional probability P(otest,k|otest,1:k−1) from
[TF(M0)](n(L+1)+k,1:p) :

P̂(otest,k|otest,1:k−1) = read(TF(M0)) := [TF(M0)](n(L+1)+k,1:p).

The goal is to predict the conditional probability that is close to the true model.

4 THEORETICAL ANALYSIS

Notation. For a set H, we use ∆(H) to denote the set of all probability distributions on H.
Let the emission operator T∗ : O(H) → ∆(O). For any b ∈ ∆(H), we use T∗b ∈ ∆(O) to
denote

∫
H T∗(x|h)b(h)dh. For a vector a, we use [a]i to denote the i-th element of a. For a

sequence {xi}∞i=1, we define the concatenated vector x1:n = [x1, . . . , xn]
⊤. For a matrix A ∈

Rd1×d2 , we use [A](i,·) ∈ Rd2 and [A](·,j) ∈ Rd1 to denote the i-th row vector and the j-th
column vector of A respectively, use [A](i1:i2,·) and [A](·,j1:j2) to denote the submatrix consisting
of rows i1 through i2, and the submatrix consisting columns j1 through j2 respectively. For a
distribution P : {e1, . . . , ep} → [0, 1] supported on the tabular space, we define the vector P (·) =
[P (e1), . . . , P (ep)]

⊤3.

4.1 LOW-RANK HMM

Our analysis is mainly based on the low-rank structure for HMM.
Assumption 1 (Low rank structure). We suppose that the hidden state transition P : H → ∆(H)
admits a low-rank structure: there exist two mappings w∗, ψ∗ : H → Rd such that P(h′|h) =
w∗(h′)⊤ψ∗(h).

This condition requires that the latent transition has a low-rank structure, and the underlying rep-
resentation maps w∗, ψ∗ are unknown. This structure is commonly used in representation learning
(Agarwal et al., 2020; Uehara et al., 2021; 2022; Guo et al., 2023a).
Assumption 2 (Over-complete γ-Observability). There exists γ > 0 such that for any distributions
d, d′ ∈ ∆(H), we have ∥Td− Td′∥1 ≥ γ∥d− d′∥1.

This condition requires that the observation space is large enough to distinguish the hidden states
by observations, i.e., the condition makes the reverse mapping from observation to hidden states
a contraction. Observability is necessary and commonly assumed in HMM and partially observed
systems (Uehara et al., 2022; Guo et al., 2023a), and it is essentially equivalent to assuming that
the emission matrix has full-column rank (Hsu et al., 2012). Further, Assumption 2 implies that we
can reverse the inequality to obtain the contraction from observation to hidden state distributions
∥d− d′∥1 ≤ γ−1∥Td− Td′∥1.
Therefore, we can approximate the posterior hidden state distribution by a posterior sharing the same
(L− 1)-memory (refer to Lemma 4). Together with the low-rank condition that renders the transition

3A more detailed notation table is provided in Table 1.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

P(ok|o1:k−1) := µ⊤(ok)ξ(o1:k−1), we can approximate P by a (L − 1)-memory transition in the
following lemma

P̂L(ok|ok−1:k−L−1) := µ(ok)
⊤ϕ(ok−L+1:k−1),

where µ(·), ϕ(·) ∈ Rd denote the representations. The representation ϕ is a low-rank embedding of
the belief distribution of hidden states. For simplicity, here we assume ϕ can be represented by a
linear mapping.

Lemma 1 (Model Approximation). Under Assumptions 1 and 2, there exists a (L − 1)-memory
transition probability P̂L with L = Θ(γ−4 log(d/ϵ) such that

Eo1:k−1

∥∥P(· | o1:k−1)− P̂L(· | ok−L+1:k−1)
∥∥
1
≤ ϵ.

This lemma shows that for a finite observability coefficient γ, the model approximation error can be
controlled when the memory length L− 1 is large enough. To prove this result, we bring the analysis
techniques from POMDP literature Guo et al. (2023b); Uehara et al. (2022). The detailed proof can
be referred to Appendix F.

4.2 MAIN RESULTS

Assumption 3. Given the data observation history Z := [o1,1:L−1, . . . , on,1:L−1] ∈ Rp(L−1)×n,
we suppose that the mean sample covariance n−1ZZ⊤ has lower-bounded eigenvalue:
λmin(n

−1ZZ⊤) ≥ α.

This assumption requires that the eigenvalues of the mean sample covariance are lower-bounded, im-
plying that the data are distributed relatively evenly. This condition is commonly used in concentration
analysis to bound the generalization error. Our main result can be formally stated as:

Theorem 1. Assume Assumption 1, 2 and 3 hold, there exists a O(lnL+ T)-layer Transformer TFθ,
such that for any input matrix M0, with probability at least 1− n−1 over {oi,1, . . . , oi,L}ni=1:

Eotest,1:k−1
∥P(·|otest,1:k−1)− read (TFθ(M0))

]
∥1

≤ O(de−γ4L)︸ ︷︷ ︸
model approximation

+O(pL1/2e−αT/(2L))︸ ︷︷ ︸
optimization

+O(pL
√
ln(nLp)/(

√
nα) + Ld/α · e−Lγ4

)︸ ︷︷ ︸
generalization

.

The proof is in Appendix D. Theorem 1 demonstrates that a sufficiently large Transformer can
accurately approximate the HMM, revealing its strong expressive power in modeling sequential data.

Sources of errors. As shown in Lemma 1, a fixed-length memory model is sufficient to approximate
the full-memory transition probabilities, introducing only a small “model approximation” error. Our
Transformer construction is based primarily on this approximation, denoted as PL. The “general-
ization” error arises due to the use of a finite sample size n: we learn PL from n i.i.d. samples, and
the optimal learned model we can obtain, P̂L, remains close to PL as long as n is sufficiently large.
The final source of error, the “optimization” error, stems from the finite capacity of the Transformer.
Since we approximate P̂L using a Transformer with a limited number of layers, a gap between the
two remains. However, this gap can be made arbitrarily small by increasing the model size (e.g.,
number of layers), thereby improving the approximation accuracy.

Remark 1 (The connection between theory and empirical results). Consider the layerwose modeling,
our explicit construction aligns closely with the empirical observations presented in Section 2. The
construction proceeds in several stages. First, in the lower layers, the Transformer learns information
from the neighborhood L tokens, gradually incorporating information from nearby to more distant
tokens, which is consistent with the patterns shown in Figure 3b. In the upper layers, to take the
final prediction, the learned features become decoupled and are used to infer a causal structure
aligned with the underlying HMM task, which corresponds to Figure 2 and the rising-then-falling
trend observed in Figure 3b. Finally, the overall progression—from token-level feature learning to
task-level abstraction—matches the trends in Figure 3a, reflecting a clear layerwise hierarchy in how
Transformers process sequential information.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

a a a a b c d e
a a a b c d e f
a a b c d e f g
a b c d e f g h

a a b c d e f g

a b c d e f g h

a b c d e f g h g
h

e
f
g
h

a
b
c
d
e
f
g
h

1st layer

2nd layer

3rd layer

Length: 2 = 2^1

Length: 4 = 2^2

Length: 8 = 2^3

Figure 5: Illustration of Feature learning process.

4.3 EXTENSION TO INDISTINGUISHABLE SITUATION

In NLP tasks, a natural assumption is that the cardinality of hidden state space may be larger that the
observation space evidence, or the true number of observations that can reveal the hidden states is
small, called “weak revealing" cases. In this section, we show that Transformer can still perform well
under such ambiguous setting. Inspired by the overcomplete POMDPs (Liu et al., 2022b), we start by
expanding the output space of emission operators.
Assumption 4 (Under-complete γ-Observability). Let operator M : ∆(H) → ∆m(O × · · · × O)
such that MdH : O× · · · ×O → R denotes

∫
O×···×O M(ot:t+m|ht)dH(ht)dht, where m is a small

constant such that m < L. There exists γ̃ > 0 such that for any distributions d, d′ ∈ ∆(H), we have
∥Mb−Mb′∥1 ≥ γ̃∥b− b′∥1.

Then the corresponding theorem should be:4

Theorem 2. Denote the data observation Z ′ := [o1,1:L−m, . . . , on,1:L−m] ∈ Rp(L−m)×n. Assume
Assumption 1, 4 hold, and λmin(n

−1Z ′Z
′T) ≥ α, there exists a O(lnL + T)-layer Transformer

TFθ, such that for any input matrix M0, with probability at least 1− n−1 over {oi,1, . . . , oi,L}ni=1:
Eotest,1:k−1

∥P(·|otest,1:k−1)− read (TFθ(M0)) ∥1
≤ O(de−γ̃4L)︸ ︷︷ ︸

model approximation

+O(pmL1/2e−αT/(2L))︸ ︷︷ ︸
optimization

+O(pmL
√
ln(nLp)/(

√
nα) + Ld/α · e−Lγ̃4

)︸ ︷︷ ︸
generalization

.

The proof is in Appendix E. From Theorem 2, we show that Transformers can still learn HMMs
efficiently under such “weak revealing” case, by concatenating several steps of future observations.

5 TRANSFORMER CONSTRUCTION AND PROOF SKETCHES

5.1 PROOF SKETCHES FOR THEOREM 1

Recalling Lemma 1, our Transformer construction is mainly based on approximating
PL(·|otest,k−L+1:k−1) with expression: PL(ok|ok−L+1:k−1) = µ⊤(ok)ϕ(ok−L+1:k−1).

To approximate the error in prediction, we can take the following decomposition:
Eotest,1:k−1∥P(·|otest,1:k−1)− read(TFθ(M0))∥1

≤ Eotest,1:k−1∥P(·|otest,1:k−1)− PL(·|otest,k−L+1:k−1)∥1︸ ︷︷ ︸
ϵ1:model approximation

+ Eotest,1:k−1∥PL(·|otest,k−L+1:k−1)− P̂L(·|otest,k−L+1:k−1)∥1︸ ︷︷ ︸
ϵ2:generalization

+ Eotest,1:k−1∥P̂L(·|otest,k−L+1:k−1)− read(TFθ(M0))∥1︸ ︷︷ ︸
ϵ3:optimization

,

(1)

4The conditional probability in Theorem 2 is related to a m-step prediction, which induces that the car-
dinality of observation is pm. So we enlarge D such that D ≥ 2pmL, and the read out function should be
P̂(otest,k|otest,1:k−1) = read(TF(M0)) := [TF(M0)](n(L+1)+k,(L+1)(p+3)+1:(L+1)(p+3)+pm).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

where P̂L(·|otest,k−L+1:k−1) ∈ Rp refers to the optimal approximation for PL based on n i.i.d.
samples we collected. Considering the one-hot format of ok and the linear assumption on ϕ(·), we
can express both µ(·) and ϕ(·) as linear function, which implies that

PL(·|ok−L+1:k−1) :=W∗ok−L+1:k−1,

for some W∗ ∈ Rp×p(L−1)5. Accordingly, we have P̂L(·|otest,k−L+1:k−1) := Ŵotest,k−L+1:k−1, in
which

Ŵ := argmin
W

L(W) := argmin
W

∑
i

∥oi,L −Wzi∥22. (2)

Here we use the short-hand notation zi := oi,1:L−1 ∈ Rp(L−1). From Lemma 1, we obtain
ϵ1 = O(de−γ4L). And in the following analysis, we focus on bounding ϵ2 and ϵ3, respectively.

5.1.1 TRANSFORMER CONSTRUCTION

To predict the conditional probability vector P̂L(·|otest,k−L+1:k−1), the transformer proceeds in
three main steps: (i) it first learns the (L − 1)-step history feature oi,1:L−1 associated with oi,L,
as well as otest,k−L+1:k−1 associated with otest,k, (ii)it then performs linear regression based on
Eq. (6), (iii)finally, it approximates P̂L(·|otest,k−L+1:k−1) using Ŵ and otest,k−L+1:k−1. The explicit
construction of the Transformer is detailed below:

Decoupled feature learning. Before formally construction, for any step index 1 ≤ r < L, we
define history and future matrix Zr, Fr ∈ R(n(L+1)+k)×(p+3) for further analysis:

[Zr](t,·) :=

{
[M0](t−r,1:p+3), r < t ≤ n(L+ 1) + k,

[M0](1,1:p+3), 1 ≤ t ≤ r,

[Fr](t,·) :=

{
[M0](t+r,1:p+3), 1 ≤ t ≤ n(L+ 1) + k − r,

[M0](n(L+1)+k,1:p+3), n(L+ 1) + k − r < t ≤ n(L+ 1) + k.

To be specific, for each oi,s, Zr and Fr are corresponding to oi,s−r (history observation) and oi,s+r

(future observation) respectively. To learn these two types of features, we use two special matrices on
the position embedding vector of each observation:

A := β1

[
cos(1

1000nk) sin(1
1000nk)

− sin(1
1000nk) cos(1

1000nk)

]
, B := β1

[
cos(1

1000nk) − sin(1
1000nk)

sin(1
1000nk) cos(1

1000nk)

]
.

For t1, t2 ∈ [1 : n(L+ 1) + k] with position embedding vectors st1 , st2 , we have

sTt1Ast2 = β1 · cos
(
t1 − t2 − 1

1000nk

)
, sTt1Bst2 = β1 · cos

(
t1 − t2 + 1

1000nk

)
.

By using A in Query-Key matrix with enough large β1, and applying the softmax activation along
with a carefully designed Value matrix, we can learn Z1 after the first Attention layer. On the second
layer, we again use A to design Query-Key matrix, which enables the learning of Z2, Z3 (see Figure 5
as a detailed illustration). Repeating such process for O(lnL) layers, we will obtain {Z1, . . . , ZL−1}
using O(lnL)-layer single-head Attention. Also, use matrix B, we can obtain F1 on the following
layer. The output matrix after these decoupled-feature layers should be

Mdec = [[M0](·,p+3), Z1, Z2, Z3, . . . , ZL−1, F1, [M0](·,(L+1)(p+3)+1:D)].

Gradient descent performing and final prediction. The following O(T)-layer architecture is
designed to learn P̂L(·|zk) based on history information {Z1, . . . , ZL−1}. To be specific, from Eq. (2),
we need to take linear regression to estimate a matrix Ŵ ∈ Rp×p(L−1). To perform such estimation
process for W , we construct a 2p-head O(T)-layer Attention. Each layer can perform single gradient
descent step on L(W), starting from an initial value 0. Each row of W is assigned to two independent
attention heads for parallel learning (see Figure 6 for detailed illustration). The construction closely
follows the method proposed in Bai et al. (2024), with the key difference being that we use F1 to pick
up n samples for the gradient descent updating. After O(T)-step gradient descent, we use the learned
{[Ŵ](1,·), . . . , [Ŵ](p,·)} and otest,k−L+1:k−1 to predict P̂L(·|otest,k−L+1:k−1). The corresponding
error ϵ3 = O(pL1/2e−αT/(2L)) can be estimated using Lemma 7.

5As the (p+ 1)-th dimension is designed only for odelim, we consider the observation as a p-dim vector for
simplicity.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

head 1 head 2 head 3 head 4 head
2p-1

head
2p. . .

. . . + + +
0

…

…

0

0

0

0

0

+

… …

0

0 0

0 0

… …

=

Attention

Gradient descent

Input Output

Learned from Attention heads
… …

0

…

gt(1)

gt(2)

gt(p) where gt(j) =

for j = 1, … p

Figure 6: Illustration of gradient descent performance.

5.1.2 GENERALIZATION ERROR APPROXIMATION

Using the notations for labels and covariates O := [o1,L, . . . , on,L] ∈ Rp×n, Z =

[o1,1:L−1, . . . , on,1:L−1] ∈ Rp(L−1)×n, the least square estimator has the following closed-form
solution: Ŵ := OZT (ZZT)−1.

Then, denoting ztest := otest,k−L+1:k−1 and error ∆ := O −W∗Z, we can take the estimator into
ϵ2 and upper bound it by

ϵ2 ≤
p∑

j=1

√
L∥[W∗](j,·) − [O](j,·)Z

T (ZZT)−1∥2 ≤
√
L

nα

p∑
j=1

∥[∆](j,·)Z
T ∥2

≤
√
L

nα

p∑
j=1

∥
(
[∆](j,·) − E[[∆](j,·)]

)
ZT ∥2 +

√
L

nα

p∑
j=1

∥E[[∆](j,·)]
)
ZT ∥2

(3)

where the second inequality uses the definition O = ∆+W∗Z and λmin(ZZ
⊤) ≥ α in Assumption

3, and invokes the Cauchy-Schwartz inequality. For the first term on the last row of (3), we use the
matrix concentration in Lemma 6 to obtain that with a high probability,

∥
(
[∆](j,·) − E[[∆](j,·)]

)
ZT ∥2 ≤ O

(√
nL ln(nLp2)

)
.

For the second term on the last row of (3), based on the observation that E[[∆](j,i)] = Eoi,1:k−1
[P(ej |

o1:k−1)− PL(ej | ok−L+1:k−1)], we can bound it by O(Ld/α · e−Lγ4

) via Lemma 1.

5.2 PROOF SKETCHES FOR THEOREM 2

The error analysis and the corresponding Transformer construction follow a similar approach to
Theorem 2, with one key modification. After the decoupled feature extraction stage, the resulting
output matrix takes the following form:

Mdec = [[M0](·,1:p+3), Z1, Z2, . . . , ZL−m, F1, F2, . . . , Fm, [M0](·,(L+1)(p+3)+1:D)].

Before feeding it into subsequent Attention layers, we apply an one-hot encoding function Vec(·) to
each row of {[M0](·,1:p), [F1](·,1:p), . . . , [Fm−1](·,1:p)}, which correspond to the current and future
observations at each time step.

6 CONCLUSION

This work advances our theoretical and empirical understanding of how Transformers achieve
strong generalization across diverse sequence learning tasks. By analyzing their layerwise behavior
and constructing explicit architectures for modeling HMMs, we demonstrate that Transformers
gradually transition from learning local, token-level features in lower layers to forming decoupled
representations in upper layers. These findings align with empirical observations, as well as providing
a principled explanation for the Transformer’s expressiveness and efficiency in multi-task and in-
context learning settings.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Alekh Agarwal, Sham Kakade, Akshay Krishnamurthy, and Wen Sun. Flambe: Structural complexity
and representation learning of low rank mdps. Advances in neural information processing systems,
33:20095–20107, 2020.

Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning algo-
rithm is in-context learning? investigations with linear models. arXiv preprint arXiv:2211.15661,
2022.

Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statisticians:
Provable in-context learning with in-context algorithm selection. Advances in neural information
processing systems, 36:57125–57211, 2023.

Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statisticians:
Provable in-context learning with in-context algorithm selection. Advances in neural information
processing systems, 36, 2024.

Leonard E Baum and John Alonzo Eagon. An inequality with applications to statistical estimation
for probabilistic functions of markov processes and to a model for ecology. 1967.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Justin Chiu, Yuntian Deng, and Alexander Rush. Low-rank constraints for fast inference in structured
models. Advances in Neural Information Processing Systems, 34:2887–2898, 2021.

Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Shuming Ma, Zhifang Sui, and Furu Wei. Why can gpt
learn in-context? language models implicitly perform gradient descent as meta-optimizers. arXiv
preprint arXiv:2212.10559, 2022.

Antoine Dedieu, Nishad Gothoskar, Scott Swingle, Wolfgang Lehrach, Miguel Lázaro-Gredilla, and
Dileep George. Learning higher-order sequential structure with cloned hmms. arXiv preprint
arXiv:1905.00507, 2019.

Yuxian Dong et al. A survey of in-context learning: Recent progress and future directions. arXiv
preprint arXiv:2301.00234, 2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
ArXiv preprint, abs/2407.21783, 2024. URL https://arxiv.org/abs/2407.21783.

Jianqing Fan, Zhaoran Wang, Zhuoran Yang, and Chenlu Ye. Provably efficient high-dimensional
bandit learning with batched feedbacks. arXiv preprint arXiv:2311.13180, 2023.

Pedro Felzenszwalb, Daniel Huttenlocher, and Jon Kleinberg. Fast algorithms for large-state-space
hmms with applications to web usage analysis. Advances in neural information processing systems,
16, 2003.

Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn
in-context? a case study of simple function classes. Advances in Neural Information Processing
Systems, 35:30583–30598, 2022.

Jiacheng Guo, Zihao Li, Huazheng Wang, Mengdi Wang, Zhuoran Yang, and Xuezhou Zhang. Prov-
ably efficient representation learning with tractable planning in low-rank pomdp. In International
Conference on Machine Learning, pp. 11967–11997. PMLR, 2023a.

Tianyu Guo, Wei Hu, Song Mei, Huan Wang, Caiming Xiong, Silvio Savarese, and Yu Bai. How do
transformers learn in-context beyond simple functions? a case study on learning with representa-
tions. arXiv preprint arXiv:2310.10616, 2023b.

10

https://arxiv.org/abs/2407.21783

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

William L Hamilton, Mahdi Milani Fard, and Joelle Pineau. Modelling sparse dynamical systems with
compressed predictive state representations. In International Conference on Machine Learning, pp.
178–186. PMLR, 2013.

Daniel Hsu, Sham M Kakade, and Tong Zhang. A spectral algorithm for learning hidden markov
models. Journal of Computer and System Sciences, 78(5):1460–1480, 2012.

Hui Jiang. A latent space theory for emergent abilities in large language models. arXiv preprint
arXiv:2304.09960, 2023.

Alex Kulesza, Nan Jiang, and Satinder Singh. Spectral learning of predictive state representations
with insufficient statistics. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 29, 2015.

Licong Lin, Yu Bai, and Song Mei. Transformers as decision makers: Provable in-context reinforce-
ment learning via supervised pretraining. arXiv preprint arXiv:2310.08566, 2023.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

Bingbin Liu, Jordan T Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Transformers
learn shortcuts to automata. arXiv preprint arXiv:2210.10749, 2022a.

Qinghua Liu, Alan Chung, Csaba Szepesvári, and Chi Jin. When is partially observable reinforcement
learning not scary? In Conference on Learning Theory, pp. 5175–5220. PMLR, 2022b.

Arvind Mahankali, Tatsunori B Hashimoto, and Tengyu Ma. One step of gradient descent is
provably the optimal in-context learner with one layer of linear self-attention. arXiv preprint
arXiv:2307.03576, 2023.

Sewon Min et al. Rethinking the role of demonstrations: What makes in-context learning work? In
EMNLP, 2022.

Eshaan Nichani, Alex Damian, and Jason D Lee. How transformers learn causal structure with
gradient descent. arXiv preprint arXiv:2402.14735, 2024.

Lawrence R Rabiner. A tutorial on hidden markov models and selected applications in speech
recognition. Proceedings of the IEEE, 77(2):257–286, 1989.

Michael E Sander, Raja Giryes, Taiji Suzuki, Mathieu Blondel, and Gabriel Peyré. How do trans-
formers perform in-context autoregressive learning? arXiv preprint arXiv:2402.05787, 2024.

Sajid Siddiqi, Byron Boots, and Geoffrey Gordon. Reduced-rank hidden markov models. In
Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp.
741–748. JMLR Workshop and Conference Proceedings, 2010.

Sajid M Siddiqi and Andrew W Moore. Fast inference and learning in large-state-space hmms. In
Proceedings of the 22nd international conference on Machine learning, pp. 800–807, 2005.

Le Song, Byron Boots, Sajid M Siddiqi, Geoffrey J Gordon, and Alex Smola. Hilbert space
embeddings of hidden markov models. 2010.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu
Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable
multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language
models. arXiv Preprint, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Masatoshi Uehara, Xuezhou Zhang, and Wen Sun. Representation learning for online and offline rl
in low-rank mdps. arXiv preprint arXiv:2110.04652, 2021.

Masatoshi Uehara, Ayush Sekhari, Jason D Lee, Nathan Kallus, and Wen Sun. Provably efficient
reinforcement learning in partially observable dynamical systems. Advances in Neural Information
Processing Systems, 35:578–592, 2022.

Peter Van Overschee and Bart De Moor. A unifying theorem for three subspace system identification
algorithms. Automatica, 31(12):1853–1864, 1995.

Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordvintsev,
Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient descent. In
International Conference on Machine Learning, pp. 35151–35174. PMLR, 2023.

Lingxiao Wang, Qi Cai, Zhuoran Yang, and Zhaoran Wang. Embed to control partially observed sys-
tems: Representation learning with provable sample efficiency. arXiv preprint arXiv:2205.13476,
2022.

Xinyi Wang, Wanrong Zhu, and William Yang Wang. Large language models are implicitly topic
models: Explaining and finding good demonstrations for in-context learning. arXiv preprint
arXiv:2301.11916, pp. 3, 2023.

Jason Wei et al. Emergent abilities of large language models. arXiv preprint arXiv:2206.07682, 2022.

Dennis Wu, Yihan He, Yuan Cao, Jianqing Fan, and Han Liu. Transformers and their roles as time
series foundation models. arXiv preprint arXiv:2502.03383, 2025.

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context
learning as implicit bayesian inference. arXiv preprint arXiv:2111.02080, 2021.

Chenlu Ye, Wei Xiong, Quanquan Gu, and Tong Zhang. Corruption-robust algorithms with uncertainty
weighting for nonlinear contextual bandits and markov decision processes. In International
Conference on Machine Learning, pp. 39834–39863. PMLR, 2023.

Tian Ye, Zicheng Xu, Yuanzhi Li, and Zeyuan Allen-Zhu. Physics of language models: Part 2.1,
grade-school math and the hidden reasoning process. In The Thirteenth International Conference
on Learning Representations, 2024.

Wenhao Zhan, Masatoshi Uehara, Wen Sun, and Jason D Lee. Pac reinforcement learning for
predictive state representations. arXiv preprint arXiv:2207.05738, 2022.

Tong Zhang. Mathematical Analysis of Machine Learning Algorithms. Cambridge University Press,
2023. doi: 10.1017/9781009093057.

Han Zhong, Wei Xiong, Sirui Zheng, Liwei Wang, Zhaoran Wang, Zhuoran Yang, and Tong Zhang.
Gec: A unified framework for interactive decision making in mdp, pomdp, and beyond. arXiv
preprint arXiv:2211.01962, 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A RELATED WORKS

Expressiveness of Transformer. The expressive power of Transformers has been studied exten-
sively from various perspectives. For example, Akyürek et al. (2022); Von Oswald et al. (2023);
Mahankali et al. (2023); Dai et al. (2022) demonstrate that a single attention layer is sufficient to
compute a single gradient descent step. Garg et al. (2022); Bai et al. (2024); Guo et al. (2023b) show
that Transformers can implement a wide range of machine learning algorithms in context. Similarly,
Xie et al. (2021); Wang et al. (2023); Jiang (2023) establish that Transformers can approximate
Bayesian optimal inference. Other works have explored different capabilities of Transformers: Liu
et al. (2022a) show they can learn shortcuts to automata, Lin et al. (2023) demonstrate their ability to
implement reinforcement learning algorithms, and Nichani et al. (2024) reveal their capacity to learn
Markov causal structures under a fixed transition matrix, Sander et al. (2024); Wu et al. (2025) show
the expressiveness power on learning autoregressive models.

Hidden Markov Model. Identification for uncontrolled partially observable systems has been
broadly studied, especially for the spectral learning based models (Hsu et al., 2012; Van Overschee
& De Moor, 1995; Song et al., 2010; Hamilton et al., 2013; Kulesza et al., 2015). Intuitively,
all the frameworks require some observability conditions to reveal the hidden states via sufficient
observations. For complex sequential spaces with a large hidden state space, there is another line of
work considering structured latent transitions, allowing for more efficient inference and computation
complexity (Siddiqi & Moore, 2005; Felzenszwalb et al., 2003; Dedieu et al., 2019; Siddiqi et al.,
2010; Chiu et al., 2021). Especially, Chiu et al. (2021) consider a low-rank structure for hidden
state transitions. Such a low-rank structure is also widely studied in partially observable Markov
Decision processes (Uehara et al., 2022; Guo et al., 2023a; Zhong et al., 2022; Wang et al., 2022;
Zhan et al., 2022). The most related ones to our work are Uehara et al. (2022); Guo et al. (2023a),
which utilize the low-rank latent transition and observability to avoid a long-memory learning and
inference. Instead, they can approximate the posterior distribution of the hidden states given whole
observations by a distribution conditioned on a fixed-size history.

B ADDITIONAL EXPERIMENT DETAILS AND RESULTS

B.1 EXPERIMENT SETTINGS

Here we construct a dataset generated by a mixture of Hidden Markov Models (HMMs). Each
HMM is used to model a tasks-specific distribution, and by mixing them we get a dataset similar to a
pre-training corpus to learn language modeling on. In specific, we randomly simulate 8192 HMMs.
The generation process is as follows. There is an initial task distribution on which we sample the
HMM id. Each HMM composes of 128 hidden states randomly transiting between each other. Each
next state depends purely on the previous state, making the sequence of hidden states Markovian. All
HMMs share a 16-token vocabulary. Each hidden state is associated with an emission distribution
to randomly output a token. We sample 131k data, which allows training for 64 epochs, with 64
steps in each epoch on a batch size of 32. We build a transformer of 16 layers and 16 heads in each
layer, and a hidden state dimension of 1024. The experiments run on a single V100 GPU with 16
GB of memory for 10 hours. The mixture-of-HMMs simulation runs with default multiprocessing of
Python.

See Figure 7 for the attention heatmap.

B.2 ADDITIONAL RESULTS ON OTHER MODELS

Verification on smaller models. We conducted additional experiments on smaller models. We
use the same experimental setting and investigate Transformers of smaller sizes (number of layers 8,
number of heads 8) and (number of layers 4, number of heads 4). The 8-layer model is capable of
learning the HMMs with the final-example accuracy of 0.707 (a similar level to the 16-layer model,
indicating a saturated accuracy). In contrast, the 4-layer model has a degraded accuracy of 0.213,
meaning that the learning ability gradually emerges between a layer depth of 4 and 8. Moreover,
interestingly, we observed a similar feature decoupling phenomenon. The results of 8-layer 8-head

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Figure 7: Attention of the Transformer on in-context learning inputs. The y-axis denotes layers
and attention heads within each layers, and the x-axis denotes the attention of the last token on all
previous tokens in the ICL input (including both demonstrative examples and the test input).

Transformer can be seen in Figure 8, 9, 10 and 11. The results of 4-layer 4-head Transformer can be
seen in Figure 12, 13, 14 and 15.

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7
0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 8: Accuracy of the Transformer under in-context learning setting.

Verification on larger model. We analyze the LLaMA-3-8B model on the SST-2 dataset using
64 (demonstration set, test sample) pais, each with 16 samples of length 16. We apply 16 random
permutations per group and measure attention consistency across permutations using the metric 1

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

Attention Independence = 1 - std / mean

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 9: After randomly shuffling the positions of demonstrative inputs, we examine how the logits
receive changes over layers (y-axis) and attention heads (x-axis). The measure is 1− std(logits)

mean(logits) .

0 1 2 3 4 5 6 7
Layer

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Task and State IDs Accuracy

task_ids_accuracy
state_ids_accuracy

0 1 2 3 4 5 6 7
Layer

0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28

Ac
cu

ra
cy

Last Token Accuracy
token i-1
token i-2
token i-3
token i-4
token i-5
token i-6
token i-7
token i-8
token i-9
token i-10
token i-11
token i-12
token i-13
token i-14
token i-15
token i-16

Figure 10: Investigation on Transformer recognitions.

- std/mean of attention logits to the final token. The results (unfortunately we are prohibited from
uploading images) reveal a clear trend: higher layers contain a larger proportion of position-invariant
heads, suggesting these layers rely less on the absolute positions of ICL examples. More specifically,
the initial 8 layers have an average ratio of std / mean = 1.59, while the last 8 layers have the average
ratio of 0.79. See reults in Figure 16.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 11: Attention of the Transformer on in-context learning inputs.

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7
0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

Figure 12: Accuracy of the Transformer under in-context learning setting.

0 1 2 3

0

1

2

3

Attention Independence = 1 - std / mean

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 13: After randomly shuffling the positions of demonstrative inputs, we examine how the logits
receive changes over layers (y-axis) and attention heads (x-axis). The measure is 1− std(logits)

mean(logits) .

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Layer

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Task and State IDs Accuracy

task_ids_accuracy
state_ids_accuracy

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Layer

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30

Ac
cu

ra
cy

Last Token Accuracy
token i-1
token i-2
token i-3
token i-4
token i-5
token i-6
token i-7
token i-8
token i-9
token i-10
token i-11
token i-12
token i-13
token i-14
token i-15
token i-16

Figure 14: Investigation on Transformer recognitions.

Figure 15: Attention of the Transformer on in-context learning inputs.

0 5 10 15 20 25 30

Head

0

5

10

15

20

25

30

La
ye

r

Attention Independence Ratio

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 16: After randomly shuffling the positions of demonstrative inputs, we examine how the logits
receive changes over layers (y-axis) and attention heads (x-axis). The measure is 1− std(logits)

mean(logits) .

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

C NOTATION TABLE

Table 1: The table of notations used in this paper.

Notation Description
∆(H) the set of all probability distributions on H
T∗ the emission operator
T∗b

∫
H T∗(x|h)b(h)dh

ej one-hot vector
[a]j the i-th element of vector a
x1:n concatenated vector [x1, . . . , xn]⊤
[A](i,·) the i-th row vector of A
[A](·,j) the j-th column vector of A

[A](i1:i2,·) the submatrix consisting of rows i1 through i2 of A
[A](·,j1:j2) the submatrix consisting columns j1 through j2 of A
P (·) the vector [P (e1), . . . , P (ep)]⊤ for a distribution P : {e1, . . . , ep} → [0, 1]
L sequence length on training samples
γ observability coefficient
p observation state number
d feature dimension in transition matrix low-rank structure
n sequence sample number
k sequence length on test sample
T the number of gradient descent steps after feature obtaining

D PROOFS FOR THEOREM 1

Recalling Lemma 1, our Transformer construction is mainly based on approximating
PL(·|otest,k−L+1:k−1) with expression:

PL(ok|ok−L+1:k−1) = µ(ok)
Tϕ(ok−L+1:k−1).

To approximate the error in prediction, we can take the following decomposition:

Eotest,1:k−1
∥P(·|otest,1:k−1)− read(TFθ(M0))∥1

≤ Eotest,1:k−1
∥P(·|otest,1:k−1)− PL(·|otest,k−L+1:k−1)∥1︸ ︷︷ ︸

ϵ1:model approximation

+ Eotest,1:k−1
∥PL(·|otest,k−L+1:k−1)− P̂L(·|otest,k−L+1:k−1)∥1︸ ︷︷ ︸

ϵ2:generalization

+ Eotest,1:k−1
∥P̂L(·|otest,k−L+1:k−1)− read(TFθ(M0))∥1︸ ︷︷ ︸

ϵ3:optimization

,

(4)

where P̂L(·|otest,k−L+1:k−1) ∈ Rp refers to the optimal approximation for PL based on n i.i.d.
samples we collected.

Considering the one-hot vector ok ∈ Rp, which representing the observation state6, we can express
µ(·) as

µ(ok) = Uok,

for some U ∈ Rd×p. Also, recalling the linear mapping assumption for ϕ(·), we can also obtain

ϕ(ok−L+1:k−1) = V ok−L+1:k−1,

for some V ∈ Rd×p(L−1), which further implies that

PL(ok|ok−L+1:k−1) = oTk U
TV ok−L+1:k−1.

6As the (p+ 1)-th dimension is designed only for odelim, we consider the observation as a p-dim vector in
proofs for simplicity.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

As the feature embeddings are within {e1, . . . , ep}, the vector PL(·|ok−L+1:k−1) ∈ Rp equals to

PL(·|ok−L+1:k−1) = UTV ok−L+1:k−1 :=W∗ok−L+1:k−1, (5)

where W∗ ∈ Rp×p(L−1). So for P̂L(·|otest,k−L+1:k−1) := Ŵotest,k−L+1:k−1, the solution is

Ŵ := argmin
W

L(W) := argmin
W

∑
i

∥oi,L −Wzi∥22, (6)

where we use the short-hand notation zi := oi,1:L−1 ∈ Rp(L−1). From Lemma 1, we have that
ϵ1 = O(de−γ4L). In the following two subsections, we focus on bounding ϵ2 and ϵ3, respectively.

D.1 TRANSFORMER CONSTRUCTION

To approximate the conditional probability vector P̂L(·|otest,k−L+1:k−1), the transformer mainly
takes three steps: (1) firstly learning the (L − 1)-step history features oi,1:L−1 for oi,L, as well
as otest,k−L+1:k−1 for otest,k, (2) then performing linear regression based on Eq. (6), (3) finally
approximating P̂L(·|otest,k−L+1:k−1) using Ŵ and otest,k−L+1:k−1. The explicit construction of the
Transformer is as follows:

Decoupled feature learning. Here we first construct an O(lnL)-layer single head Attention, to
learn oi,1:L−1 for oi,L, as well as otest,k−L+1:k−1 for otest,k. Before formally construction, for any
step index 1 ≤ r < L, we define history and future matrix Zr, Fr ∈ R(n(L+1)+k)×(p+3) for further
analysis:

[Zr](t,·) :=

{
[M0](t−r,1:p+3), r < t ≤ n(L+ 1) + k,

[M0](1,1:p+3), 1 ≤ t ≤ r,

[Fr](t,·) :=

{
[M0](t+r,1:p+3), 1 ≤ t ≤ n(L+ 1) + k − r,

[M0](n(L+1)+k,1:p+3), n(L+ 1) + k − r < t ≤ n(L+ 1) + k,
.

Here we also define a special matrix

A := β1

[
cos(1

1000nk) sin(1
1000nk)

− sin(1
1000nk) cos(1

1000nk)

]
,

where β1 > 0 is a fixed constant. Then on the first layer, the Query-Key matrix is designed as

QK(1) :=

[
0(p+1)×(p+1) 0 0

0 A 0
0 0 0

]
∈ RD×D,

which induces that with input matrix M0, we have

[M0]
T
(t1,·)QK

(1)[M0](t2,·) = β1 · cos
(
t1 − t2 − 1

1000nk

)
,

for any 1 ≤ t1, t2 ≤ n(L + 1) + k. Then with softmax function on M0QK
(1)MT

0 , as well as the
Value matrix

V (1) :=

[
0(p+3)×(p+3) I(p+3)×(p+3) 0(p+3)×(D−2p−6)

0 0 0
0 0 0

]
∈ RD×D,

sending β1 → ∞, we obtain the output on each row as[
Softmax

(
[M0](t,·)QK

(1)MT
0

)
M0V

(1)
]
(t,·)

= [0, [M0](t−1,1:p+3), 0]
T , ∀1 < t ≤ n(L+1)+k,

which refers that after the first Attention layer, the output matrix should be

M1 =M0 +Attn(M0, QK
(1), V (1)) = [[M0](·,1:p+3), Z1, [M0](·,2(p+3)+1:D)].

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

It implies that the first layer Attention head learn the first history feature oi,L−1 for each observation
oi,L. Then on the second layer, we design the Query-Key matrix as

QK(2) :=

 0(2p+4)×(p+1) 0(2p+4)×2 0(2p+4)×(D−p−3)

02×(p+1) A 02×(D−p−3)

0(D−2p−6)×(p+1) 0(D−2p−6)×2 0(D−2p−6)×(D−p−3)

 ,
as well as the Value matrix as

V (2) :=

[
02(p+3)×2(p+3) I2(p+3)×2(p+3) 02(p+3)×(D−4p−12)

0 0 0
0 0 0

]
∈ RD×D,

which will induce the output on this layer as

M2 =M1 +Attn(M1, QK
(2), V (2)) = [[M0](·,p+3), Z1, Z2, Z3, [M0](·,4(p+3)+1:D)].

Repeating such construction O(lnL) times, we can obtain the (L− 1)-step history (see Figure 5 for
a detailed illustration). Now the output matrix should be

Mh = [[M0](·,1:p+3), Z1, Z2, Z3, . . . , ZL−1, [M0](·,L(p+3)+1:D)] ∈ R(n(L+1)+k)×D.

On the following layer, we consider the Query-Key matrix as

QK(f) :=

[
0(p+1)×(p+1) 0 0

0 B 0
0 0 0

]
, B := β1

[
cos(1

1000nk) − sin(1
1000nk)

sin(1
1000nk) cos(1

1000nk)

]
,

and the value matrix is constructed as

V (f) :=

[
0(p+3)×L(p+3) I(p+3)×(p+3) 0(p+3)×(D−(L+1)(p+3))

0 0 0
0 0 0

]
∈ RD×D,

which implies that sending β1 → ∞, the output on each row should be[
Softmax

(
[M0](t,·)QK

(1)MT
0

)
M0V

(1)
]
(t,·)

= [0, [M0](t+1,1:p+3), 0]
T , ∀1 ≤ t < n(L+1)+k,

So the output decouple matrix after this layer should be

Mdec = [[M0](·,p+3), Z1, Z2, Z3, . . . , ZL−1, F1, [M0](·,(L+1)(p+3)+1:D)].

Then the decoupled feature learning process has been finished, which needs O(lnL) layers (see
details in Figure 5).

Gradient descent performing. The following O(T)-layer 2p-head architecture is designed to
learn P̂L(·|zk) based on history information {Z1, . . . , ZL−1}. The construction follows immediately
from Lemma 7. To be specific, from Eq. (6), we need to take linear regression to estimate a matrix
Ŵ ∈ Rp×p(L−1). Based on the n samples collected, the estimation process is based on MSE loss, i.e,

argmin
W

L(W) := argmin
W

∑
i

∥oi,L −Wzi∥22,

where zi refers to the (L − 1)-step history of oi,L, which has been learned in previous layers. To
perform such estimation process for W , we construct an 2p-head O(T)-layer Attention. Each layer
can perform one step gradient descent on L(W) with initial value 0, and each row of W is assigned
to be learned by two heads independently (see Figure 6 for detailed illustration). Here we take the
updating for [W](1,·) as an example, and denote the initial point as 0p(L−1), which has been stored in
[Mdec](t,(L+1)(p+3)+1:(L+1)(p+3)+p(L−1)) on each 1 ≤ t ≤ n(L+ 1) + k. The gradient vector is

∂L/∂W(1,·) = 2
∑
i

(WT
(1,·)zi − [oi,L]1) · zi

= 2
∑
i

(
ReLU(WT

(1,·)zi − [oi,L]1)− ReLU(−WT
(1,·)zi + [oi,L]1)

)
· zi.

(7)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

The construction will show that each attention layer is related to one-step gradient descent with
learning rate (L− 1)−1, and the construction for each layer is the same. As the first two heads on
each layer is related to the updating for [W](1,·), we design the first Attention head on each layer with
Query-Key matrix as

(
[Mdec](t1,·)Q

(g,1)
)T

=


[W](1,·)
−1

−β21p
0

−β2

 , K(g,1)[Mdec](t2,·) =



[Z1](t2,1:p)
· · ·

[ZL−1](t2,1:p)
[M0](t2,1)
[F1](t2,1:p)

0
1(t2 > n(L+ 1))


,

for any 1 ≤ t1, t2 ≤ n(L + 1) + k. Choosing β2 > 1000nk, with ReLU activation function, we
obtain

ReLU
(
[Mdec]

T
(t1,·)Q

(g,1)K(g,1)[Mdec](t2,·)

)
=

{
ReLU

(
[W]⊤(1,·)z

′
t2 − [M0](t2,1)

)
, [F1](t2,1:p+1) = odelim,

0, otherwise,

where we denote z′t := [[Z1]
T
(t2,1:p)

, . . . , [ZL−1]
T
(t2,1:p)

]T ∈ Rp(L−1). Then with the Value matrix
satisfying that

V (g,1)[Mdec]
T
(t2,·) =

1

L− 1


0

[Z1](t2,1:p)
· · ·

[ZL−1](t2,1:p)
0

 ,
we can obtain the value on each row of the output matrix:[

Attn
(
Mdec, Q

(g,1),K(g,1), V (g,1)
)]

(t,·)
=

[
0,

1

L− 1

∑
i

ReLU
(
[W]⊤(1,·)zi − [oi,L]1

)
, 0

]
,

for any 1 ≤ t ≤ n(L + 1) + k. Also, we consider another Attention head for W1,· with
{−Q(q,1),K(g,1), V(g,1)}, the output on each row should be[
Attn

(
Mdec,−Q(g,1),K(g,1),−V (g,1)

)]
t,·

=

[
0,− 1

L− 1

∑
i

ReLU
(
−[W]⊤(1,·)zi + [oi,L]1

)
, 0

]
.

Taking summation on both of the two heads, we can finish the update on [W](1,·) as in Eq. (7). The
updates on other rows of W are similar, so with such 2p Attention heads on each layer, we can finish
one-step gradient descent on MSE loss by

Mdec +

p∑
j=1

Attn
(
Mdec, Q

(g,j),K(g,j), V (g,j)
)
+Attn

(
Mdec,−Q(g,j),K(g,j),−V (g,j)

)
.

Considering O(T) layers with the same structure, we can obtain Ŵ with a small error. Now the
output matrix should be

Mgd = [[M0](·,p+3), Z1, Z2, Z3, . . . , ZL−1, F1, [W](1,·), . . . , [W](p,·), [M0](·,(L+1)(p+3)+p2(L−1)+1:D)].

Prediction with decoupled features. Finally, on the last layer, we construct a 2p-head Attention to
make prediction on P̂L(·|otest,k−1, . . . , otest,k−L+1), and each dimension is corresponding to two
Attention heads. To be specific, for the first dimension of P̂L(·|otest,k−1, . . . , otest,k−L), Attention
head is designed with

(
[Mgd](t1,·)Q

(pre,1)
)T

=

 [Z1](t2,1:p)
· · ·

[ZL−1](t2,1:p)
0

 , K(pre,1)[Mgd]
T
(t2,·) =

[
[W](1,·)

0

]
,

V (pre,1)[Mgd]
T
(t2,·) =

[
1

n(L+1)+k

0

]
.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Then we will obtain[
Attn

(
Mgd, Q

(pre,1),K(pre,1), V (pre,1)
)]

(n(L+1)+k,·)
=

[
ReLU

(
[W]⊤(1,·)otest,k−L+1:k−1

)
, 0
]
,

and[
Attn

(
Mgd, Q

(pre,1),K(pre,1), V (pre,1)
)
+Attn

(
Mgd,−Q(pre,1),K(pre,1),−V (pre,1)

)]
(n(L+1)+k,·)

=
[
[W]⊤(1,·)otest,k−L+1:k−1, 0

]
,

which finish the prediction on P̂L(otest,k = e1|otest,k−1, . . . , otest,k−L). The constructions on other
2p− 2 heads are similar.

Optimization error. Then we turn to the approximation for ϵ3, which is induced by the finite
gradient steps (O(T) steps) the transformer performs. The error could be estimated directly from
Lemma 7. Denoting

Z = [o1,1:L−1, . . . , on,1:L−1] ∈ Rp(L−1)×n,

from Assumption 3, we have

α ≤ λmin

(
1

n
ZZT

)
≤ λmax

(
1

n
ZZT

)
≤ L, ∥otest,k−L+1:k−1∥2 =

√
L− 1, ∥[W∗](j,·)∥2 = O(1),

so

ϵ3 = O
(
e−αT/(2L)pL1/2 max

j∈[p]
∥[W∗](j,·)∥2

)
= O(pL1/2e−αT/(2L)).

D.2 GENERALIZATION ERROR

For ϵ2, we can express the solution Ŵ for Eq. (6) as

Ŵ := OZT (ZZT)−1,

where we use the notation

O := [o1,L o2,L · · · on,L] ∈ Rp×n, Z = [o1,1:L−1, . . . , on,1:L−1] ∈ Rp(L−1)×n.

Denoting ztest := otest,k−L+1:k−1 and ∆ := O −W∗Z, we have

ϵ2 = Eotest,1:k−1
∥PL(·|otest,k−L+1:k−1)− P̂L(·|otest,k−L+1:k−1)∥1

=

p∑
j=1

Eztest

∣∣∣([W∗]
T
(j,·) − [O]T(j,·)Z

T (ZZT)−1
)
ztest

∣∣∣
≤

p∑
j=1

√
L∥[W∗](j,·) − [O](j,·)Z

T (ZZT)−1∥2

=

p∑
j=1

√
L∥[W∗](j,·) −

(
[W∗](j,·)Z + [∆](j,·)

)
ZT (ZZT)−1∥2

=
√
L

p∑
j=1

∥[∆](j,·)Z
T (ZZT)−1∥2

≤
√
L

nα

p∑
j=1

∥
(
[∆](j,·) − Ei[[∆](j,·)] + Ei[[∆](j,·)]

)
ZT ∥2

≤
√
L

nα

p∑
j=1

∥
(
[∆](j,·) − E[[∆](j,·)]

)
ZT ∥2 +

√
L

nα

p∑
j=1

∥E[[∆](j,·)]
)
ZT ∥2 (8)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

where the first inequality uses the Cauchy-Schwartz inequality, and the second inequality is from
Assumption 3, where the expectation E[[∆](j,i)] = Eoi,1:k−1

[P(ej | o1:k−1)− PL(ej | ok−L+1:k−1)]
due to the decomposition:

[∆](j,i) =[O](j,i) − [W∗](j,·)oi,1:L−1

=1(oi,L = ej)− P(ej |oi,1:L−1) + P(ej |oi,1:L−1)− PL(ej |oi,1:L−1).

Hence, we can deal with the second term above:
√
L

nα

p∑
j=1

∥E[[∆](j,·)]
)
ZT ∥2 ≤ L

nα

p∑
j=1

n∑
i=1

Eoi,1:k−1
|P(ej | o1:k−1)− PL(ej | ok−L+1:k−1)|

=
L

nα

n∑
i=1

Eoi,1:k−1

∥∥P(· | oi,1:k−1)− PL(· | oi,k−L+1:k−1)
∥∥
1

≤O(
Ld

α
· e−Lγ4

),

where the first inequality uses the formulation that ∥[Z]
(i,)̇

∥2 ≤
√
L, and the second inequality uses

Lemma 1.

Next, for the first term in (8), we can define the error δj,i := [∆](j,i) − E[[∆](j,i)]. For each i, j, δj,i
is a zero-mean 1-sub-Gaussian variable. We also have for each i, max{∥ziz⊤i ∥2, ∥z⊤i zi∥2} ≤ L.
Thus, we can invoke Lemma 8 to obtain that with probability at least 1− 1

n , for any j = 1, . . . , p,

∥
(
[∆](j,·) − E[[∆](j,·)]

)
ZT ∥2 = ∥

n∑
i=1

δi,jzi∥2 ≤ 4
√
nL ln(2nLp2).

Therefore, by taking the results above back into (8), we can obtain that

ϵ2 ≤ O
(pL√ln(nLp)√

nα
+
Ld

α
· e−Lγ4

)
.

E PROOF SKETCHES FOR THEOREM 2

We also decompose the prediction error into three parts as in (4) and analyze them correspondingly.

E.1 MODEL APPROXIMATION

For the model approximation error ϵ1, under Assumption 4, we can also approximate the m-step tran-
sition probability P(ok:k+m | o1:k−1) by a (L− 1)-memory probability P̂L(ok:k+m | ok−L+1:k−1).
Since we can take ok:k+m as a whole vector, with similar techniques in Section 4.1, we can show that

Lemma 2. For any ϵ > 0, there exists a O(L)-memory transition probability P̂L with L =
Θ(γ−4 log(d/ϵ) such that

Eo1:k

∥∥P(ok:k+m | o1:k)− PL(ok:k+m | ot−L:t)
∥∥
1
≤ O

(
de−Lγ4

)
.

This model approximation bound is the same to Lemma 1, and the PL also enjoys the low-rank
structure

PL(ok:k+m | ok−L+m:k−1) :=µ(ok:k+m)⊤ϕ(ok−L+m:k−1),

where µ(ok:k+m), ϕ(ok−L+m:k−1) ∈ Rd are representation vectors. For conciseness, we defer the
details to Appendix G.

After embedding the m-step observation ok:k+m as one-hot vector Vec(ok:k+m) ∈ Rpm

, we can
express the mapping function µ(·) as

µ(ok:k+m) = U ′Vec(ok:k+m),

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

where U ′ ∈ Rd×pm

. Considering the linear assumption on ϕ, similar to Eq. (5), we can also obtain

PL(·|ok−L+m:k−1) :=W ′
∗ok−L+m:k−1,

for some W ′
∗ ∈ Rpm×p(L−m). Taking decomposition for the approximation error, we have

Eotest,1:k−1
∥P(otest,k:k+m−1|otest,1:k−1)− read(TFθ(M0))∥1

≤ Eotest,1:k−1
∥P(otest,k:k+m−1|otest,1:k−1)− PL(otest,k:k+m−1|otest,k−L+m:k−1)∥1︸ ︷︷ ︸

ϵ1:model approximation

+ Eotest,1:k−1
∥PL(otest,k:k+m−1|otest,k−L+m:k−1)− P̂L(otest,k:k+m−1|otest,k−L+m:k−1)∥1︸ ︷︷ ︸

ϵ2:generalization

+ Eotest,1:k−1
∥P̂L(otest,k:k+m−1|otest,k−L+m:k−1)− read(TFθ(M0))∥1︸ ︷︷ ︸

ϵ3:optimization

,

where P̂L(·|otest,k−L+1:k−1) refers to the solution based on n samples we collected:

P̂L(·|otest,k−L+m:k−1) = Ŵ ′[otest,k−L+m, . . . , otest,k−1]
T ,

Ŵ ′ := argmin
W

∑
i

∥Vec(oi,L−m+1:L)−Woi,1:L−m∥22.

In the error decomposition, ϵ1 = O(de−γ4L) can be obtained from Lemma 2 immediately. And in
further analysis, we will estimate ϵ2 and ϵ3 respectively.

E.2 TRANSFORMER CONSTRUCTION

Then the construction is similar to the construction for Theorem 1. So here we just provide a sketch
for it.

Decoupled feature learning. Recalling the matrix:

A := β1

[
cos(1

1000nk) sin(1
1000nk)

− sin(1
1000nk) cos(1

1000nk)

]
, B := β1

[
cos(1

1000nk) − sin(1
1000nk)

sin(1
1000nk) cos(1

1000nk)

]
,

on each time index t, we can use A to capture the history information Zr, and use B to capture the
future information Fr. So with O(ln(L−m) + lnm) = O(lnL) layers, we can obtain the output
matrix as

Mdec = [[M0](·,1:p+3), Z1, Z2, . . . , ZL−m, F1, F2, . . . , Fm, [M0](·,(L+1)(p+3)+1:D)].

Then before taking gradient descent, we use the one-hot mapping function Vec on each row of
{[M0](·,1:p), [F1](·,1:p), . . . , [Fm−1](·,1:p)}, which refers to the current and future observations on
each time index. After that, we will obtain

Mv := [[M0]·,1:p+3, Z1, Z2, . . . , ZL−m, F1, F2, . . . , Fm, H, [M0](·,(L+1)(p+3)+pm+1:D)],

where
[H](t,·) = Vec

[
[M0](t,1:p), [F1](t,1:p), . . . , [Fm−1](t,1:p)

]T
for each 1 ≤ t ≤ nL+ n+ k.

Gradient descent and final prediction. After obtaining these features, we shall perform gradient
descent on MSE loss

argmin
W ′

∑
i

∥Vec(oi,L−m+1:L)−W ′oi,1:L−m∥22.

Then we could use 2pm-head O(T)-layer Attention to perform the gradient descent on W , in which
the feature H and {Z1, . . . , ZL−m} will be taken into consideration. The construction is similar to
Theorem 1.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Optimization error. For ϵ3, under Assumption 3, we can also use Lemma 5 to obtain that

ϵ3 = O
(
pmL1/2e−αT/(2L)

)
.

E.3 GENERALIZATION ERROR

We can rewrite P̂L(·|otest,k−L+1:k−m) as

P̂L(·|otest,k−L+m:k−1) = Ŵ ′otest,k−L+m:k−1, Ŵ ′ = OmZ
T
m(ZmZ

T
m)−1,

where we denote

Om := [Vec(o1,L−m+1:L) Vec(o2,L−m+1:L) · · · Vec(on,L−m+1:L)] ∈ Rpm×n,

Zm := [o1,1:L−m o2,1:L−m · · · on,1:L−m] ∈ R(L−m)×n.

Denoting ztest := otest,k−L+m:k−1 and ∆ := Om −W ′
∗Zm, we have

ϵ2 = Eotest,1:k−1
∥PL(·|otest,k−L+m:k−1)− P̂L(·|otest,k−L+m:k−1)∥1

=

pm∑
j=1

Eztest

∣∣∣([W ′
∗]

T
(j,·) − [Om]T(j,·)Z

T
m(ZmZ

T
m)−1

)
ztest

∣∣∣
≤

pm∑
j=1

√
L∥[W ′

∗](j,·) − [Om](j,·)Z
T
m(ZmZ

T
m)−1∥2

=

pm∑
j=1

√
L∥[W ′

∗](j,·) −
(
[W ′

∗](j,·)Zm + [∆](j,·)
)
ZT
m(ZmZ

T
m)−1∥2

=
√
L

pm∑
j=1

∥[∆](j,·)Z
T
m(ZmZ

T
m)−1∥2

≤
√
L

nα

pm∑
j=1

∥
(
[∆](j,·) − Ei[[∆](j,·)] + Ei[[∆](j,·)]

)
ZT
m∥2

≤
√
L

nα

pm∑
j=1

∥
(
[∆](j,·) − E[[∆](j,·)]

)
ZT
m∥2 +

√
L

nα

pm∑
j=1

∥E[[∆](j,·)]
)
ZT
m∥2, (9)

where the first inequality uses the Cauchy-Schwartz inequality, and the second inequality is from
Assumption 3, where the expectation E[[∆](j,i)] = Eoi,1:k−1

[P(ej | o1:k−1)−PL(ej | ok−L+m:k−1)]
due to the decomposition:

[∆](j,i) =[O](j,i) − [W ′
∗](j,·)oi,1:L−m

=1(oi,L−m+1:L = ej)− P(ej |oi,1:L−m) + P(ej |oi,1:L−m)− PL(ej |oi,1:L−m).

Hence, we can deal with the second term above:
√
L

nα

pm∑
j=1

∥E[[∆](j,·)]
)
ZT
m∥2 ≤ L

nα

pm∑
j=1

n∑
i=1

Eoi,1:k−1
|P(ej | o1:k−1)− PL(ej | ok−L+m:k−1)|

=
L

nα

n∑
i=1

Eoi,1:k−1

∥∥P(· | oi,1:k−1)− PL(· | oi,k−L+m:k−1)
∥∥
1

≤O(
Ld

α
· e−Lγ4

),

where the first inequality uses the formulation that ∥[Zm]
(i,)̇

∥2 ≤
√
L, and the second inequality uses

Lemma 2.

Next, for the first term in (9), we can define the error δj,i := [∆](j,i) − E[[∆](j,i)].
For each i, j, δj,i is a zero-mean 1-sub-Gaussian variable. We also have for each i,

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

max{∥[Zm](·,i)[Zm]⊤(·,i)∥2, ∥[Zm]⊤(·,i)[Zm](·,i)∥2} ≤ L. Thus, we can invoke Lemma 8 to obtain
that with probability at least 1− 1

n , for any j = 1, . . . , pm,

∥
(
[∆](j,·) − E[[∆](j,·)]

)
ZT ∥2 = ∥

n∑
i=1

δi,j [Zm](·,i)∥2 ≤ 4
√
nL ln(2nLpm+1).

Therefore, by taking the results above back into (9), we can obtain that

ϵ2 ≤ O
(pmL√ln(nLp)√

nα
+
Ld

α
· e−Lγ4

)
.

F PROOF FOR LEMMA 1

To facilitate analysis, we define the belief state bk(o1:k−1) ∈ ∆(H) as the posterior given observa-
tions: bk(o1:k)(h) = P(hk | o1:k). Combining this notation and the low-rank hidden-state transition,
we can write

P(ok | o1:k−1) =
∑

hk,hk−1

P(ok | hk)P(hk | hk−1)P(hk−1 | o1:k−1)

=
(∑

hk

T(ok | hk)w∗(hk)
)⊤

·
(∑

hk−1

ψ∗(hk−1)b(o1:k−1)(hk−1)
)
.

The transition is the inner product of d-dimensional representations of history o1:k−1 and next token
ok. Especially, the historical information is embedded into the belief state. Thus, to approximate
P by PL, we need to approximate b(o1:k−1) by a (L − 1)-memory belief state bL(ok−L+1:k−1).
Assumption 4 implies that we can reverse the inequality to obtain the contraction from observation to
hidden state distributions

∥d− d′∥1 ≤ γ−1∥Td− Td′∥1.

Hence, by constructing a history-independent belief state b̃0 within a KL-ball of b: KL(b, b̃0) ≤ d3

(which can be realized by G-optimal design), the belief state bL(ok−L+1:k−1) induced from b̃0 can
gradually approximate b(o1:k−1) that has the same (L − 1)-length observations. Theorem 14 of
Uehara et al. (2022) demonstrated that

Lemma 3 (Theorem 14 of Uehara et al. (2022)). Under Assumption 4, for K ≥ L + 1, L ≥
Cγ−4 log(d/ϵ), where C > 0 is a constant, we have

Eo1:k−1

∥∥b(o1:k−1)− bL(ok−L+1:k−1)
∥∥
1
≤ ϵ. (10)

Proof of Lemma 1. The proof is the same to Proposition 7 of Guo et al. (2023a). The only difference
is there is no actions in HMM. For any k ≥ L+1, given the bL satisfying (10), now, we can construct
the probability as

PL(ok | ok−L+1:k−1) =
(∑

hk

T(ok | hk)w∗(hk)
)⊤

·
(∑

hk−1

ψ∗(hk−1)bL(ok−L+1:k−1)(hk−1)
)

:=µ(ok)
⊤ϕ(ok−L+1:k−1),

where we use the notation

µ(ok) =
∑
hk

T(ok | hk)w∗(hk), ϕ(ok−L+1:k−1) =
∑
hk−1

ψ∗(hk−1)bL(ok−L+1:k−1)(hk−1).

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Hence, we deduce that

Eo1:k−1
P(ok | o1:k−1) =Eo1:k−1

∑
hk

T(ok | hk)w∗(hk)
⊤ ·

∑
hk−1

ψ∗(hk−1)b(o1:k−1)(hk−1)

≤Eo1:k−1

∑
hk

T(ok | hk)w∗(hk)
⊤

·
∑
hk−1

ψ∗(hk−1)
(∣∣b(o1:k−1)(hk−1)− bL(ok−L+1:k−1)(hk−1)

∣∣+ bL(ok−L+1:k−1)(hk−1)
)

=Eo1:k−1

∑
hk

T(ok | hk)w∗(hk)
⊤ ·

∑
hk−1

ψ∗(hk−1)bL(ok−L+1:k−1)(hk−1)

+ Eo1:k−1

∑
hk

T(ok | hk)w∗(hk)
⊤ ·

∑
hk−1

ψ∗(hk−1)
∣∣b(o1:k−1)(hk−1)− bL(ok−L+1:k−1)(hk−1)

∣∣.
(11)

Since we have for any hk−1∑
hk

T(ok | hk)w∗(hk)
⊤ψ∗(hk−1) =

∑
hk

P(ok | hk)P(hk | hk−1) ≤ 1,

term (11) can be bounded as

Eo1:k−1

∑
hk−1

(∑
hk

T(ok | hk)w∗(hk)
⊤ · ψ∗(hk−1)

)
·
∣∣b(o1:k−1)(hk−1)− bL(ok−L+1:k−1)(hk−1)

∣∣
≤Eo1:k−1

∣∣b(o1:k−1)(hk−1)− bL(ok−L+1:k−1)(hk−1)
∣∣

≤ϵ,

where the first inequality is by the Cauchy-Schwarz inequality, and the second inequality uses Lemma
4. Therefore, we obtain

Eo1:k−1
P(ok | o1:k−1) ≤ Eo1:k−1

PL(ok | ok−L+1:k−1) + ϵ,

which concludes the proof.

Then, we can construct the (L− 1)-memory probability by replacing the belief state

PL(ok | ok−L+1:k−1) =
(∑

hk

T(ok | hk)w∗(hk)
)⊤

·
(∑

hk−1

ψ∗(hk−1)bL(ok−L+1:k−1)(hk−1)
)

:=µ(ok)
⊤ϕ(ok−L+1:k−1),

G PROOF FOR LEMMA 2

Proof of Lemma 2. Under the operator M, we can write

P(ok:k+m | ht) =
∫
H
M(ok:k+m | ht+1)w

∗(ht+1)
⊤ψ∗(ht)dht.

We wish to approximate

P(ok:k+m | o1:h) by PL(ok:k+m | ot−L+1:t).

Given a history observation o1:k, we define the belief state bt(o1:k) ∈ ∆(S) as the distribution

bt(o1:k)(h) = P(hk = h | o1:k).

Additionally, for any distribution b ∈ ∆(S), we define the belief update operator Bk−1(b, ok:k+m) as

Bk−1(b, ok:k+m)(h) =
M(ok:k+m | h)

∑
h′ b(h′)P(h|h′)∑

h′′ M(ok:k+m | h′′)
∑

h′ b(h′)P(h′′|h′)
.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

then, the update for belief state is
b(o1:k−1) = B(bk−1(o1:k−1), ok:k+m).

Given this notation, we can write P as

P(ok:k+m | o1:k−1) =
(∫

H
M(ok:k+m | ht+1)w

∗(ht+1)dht+1

)⊤
·
∫
H
ψ∗(hk−1)b(o1:k−1)(hk−1)dhk−1.

(12)
Thus, to approximate P by PL, it suffices to approximate b(o1:k) by some belief state bL(ot−L:t).

To construct a good approximation, we can first construct a history-independent belief distribution
b̃0 ∈ ∆(S) by G-optimal design (Uehara et al., 2022) such that for any belief state

KL(b, b̃0) ≤ d3. (13)
Lemma 4 (Exponential Stability for Low-rank Transition). Under Assumption 4, for L ≥
Cγ−4 log(d/ϵ), we have

E
∥∥b(o1:k−1)− bL(ot:t+L)

∥∥
1
≤ ϵ.

Then, by following the same analysis as the proof of Lemma 1, we can prove the desired result.

H TECHNICAL LEMMAS

Lemma 5 (Convergence rate in gradient descent). Suppose L is α-strongly convex and β-smooth
for some 0 < α < β. Then the gradient descent iterates wt+1

GD := wt
GD − η∇L(wt

GD) with learning
rate η = β−1 and initialization w0

GD satisfies

∥wt
GD − w∗∥22 ≤ e−t/κ · ∥w0

GD − w∗∥22,

L(wt
GD)− L(w∗) ≤ β

2
e−t/κ · ∥w0

GD − w∗∥22,

where κ = β/α is the condition number, and w∗ = argminL(w) is the optimizer of function L− 1.
Lemma 6 (Lemma G.2 in Ye et al. (2023), Theorem 2.29 in Zhang (2023)). Let {ϵt} be a sequence
of zero-mean conditional σ-subGaussian random variable, i.e, lnE[eλϵi |Si−1] ≤ λ2σ2/2, where
Si−1 represents the history data. With probability at least 1− δ, for any t ≥ 1, we have

t∑
i=1

ϵ2i ≤ 2tσ2 + 3σ2 ln(1/δ).

Lemma 7 (Theorem 4 in Bai et al. (2023)). For any λ ≥ 0, 0 ≤ α ≤ β with

κ :=
β + λ

α+ λ
,

Bw > 0, and ε < BxBw

2 , there exists an L-layer attention-only transformer TF 0
θ with

M = ⌈2κ log(BxBw/(2ε))⌉+ 1

(With R := max{BxBw, By, 1}) such that the following holds. On any input data (D,xN+1) such
that the regression problem is well-conditioned and has a bounded solution:

α ≤ λmin(X
⊤X/N) ≤ λmax(X

⊤X/N) ≤ β,

∥wλ
ridge∥2 ≤ Bw/2,

TF 0
θ approximates the prediction ŷN+1 as∣∣ŷN+1 − ⟨wλ

ridge, xN+1⟩
∣∣ ≤ ε.

Lemma 8 (Lemma F.3 of Fan et al. (2023)). Consider a sequence of matrix {At}∞t=1 with dimension
d1 × d2 and an i.i.d. sequence {ϵt}∞t=1, where ϵt is conditional σ-subgaussian (i.e., E(eαϵt |At) ≤
eα

2σ2/2 almost surely for all α ∈ R). Define the matrix sub-Gaussian series S =
∑n

t=1 ϵtAt with
bounded matrix variance statistic:

max
{∥∥AtA

⊤
t

∥∥
op
,
∥∥A⊤

t At

∥∥
op

}
≤ vt.

Then, for all u > 0, we have

P (∥S∥op ≥ u) ≤ (d1 + d2) exp
(
− u2

16σ2
∑n

t=1 vt

)
.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

I LLM USAGE STATEMENT

We used LLMs to aid in polishing the writing of this paper. Specifically, LLMs were employed as a
general-purpose assistant to improve clarity, grammar, and style, and to suggest alternative phrasings
for technical explanations. They were not used to generate novel research ideas, design experiments,
or produce results. The authors take full responsibility for all content, including text refined with the
assistance of LLMs.

29

	Introduction
	Related works

	Starting from the empirical findings
	Experiment settings
	Results

	Problem setup
	Transformer Architecture
	In-context Learning for Hidden Markov Model

	Theoretical analysis
	Low-rank HMM
	Main results
	Extension to indistinguishable situation

	Transformer Construction and Proof Sketches
	Proof Sketches for Theorem 1
	Transformer Construction
	Generalization Error Approximation

	Proof Sketches for Theorem 2

	Conclusion
	Related works
	Additional experiment details and results
	Experiment settings
	Additional results on other models

	Notation Table
	Proofs for Theorem 1
	Transformer Construction
	Generalization Error

	Proof sketches for Theorem 2
	Model Approximation
	Transformer Construction
	Generalization Error

	Proof for Lemma 1
	Proof for Lemma 2
	Technical Lemmas
	LLM Usage Statement

