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ABSTRACT

Transformer-based models have shown remarkable capabilities in sequence learning
across a wide range of tasks, often performing well on specific task by leveraging
input-output examples. Understanding the mechanisms by which these models
capture and transfer information is important for driving model understanding
progress, as well as guiding the design of more effective and efficient algorithms.
However, despite their empirical success, a comprehensive theoretical understand-
ing on it remains limited. In this work, we investigate the layerwise behavior of
Transformers to uncover the mechanisms underlying their multi-task generalization
ability. Taking explorations on a typical sequence model—Hidden Markov Models
(HMMs), which are fundamental to many language tasks, we observe that: (i)
lower layers of Transformers focus on extracting feature representations, primar-
ily influenced by neighboring tokens; (ii) on the upper layers, features become
decoupled, exhibiting a high degree of time disentanglement. Building on these
empirical insights, we provide theoretical analysis for the expressiveness power of
Transformers. Our explicit constructions align closely with empirical observations,
providing theoretical support for the Transformer’s effectiveness and efficiency on
sequence learning across diverse tasks.

1 INTRODUCTION

Transformer-based models have achieved state-of-the-art performance across a broad range of
sequence learning tasks, from language modeling and translation (Touvron et al., 2023} |Dubey
et al.} 2024} |Achiam et al.| 2023} [Team et al.| 2023)) to algorithmic reasoning (Liu et al., |2024; |Ye
et al}[2024). Remarkably, a single Transformer can often generalize across diverse tasks with minimal
supervision, leveraging only a few input-output examples—a capability that underpins its success in
few-shot and in-context learning (Brown et al.| |2020; Wei et al., [2022; Dong et al.} 2023} |[Min et al.,
2022).

While the empirical success is well-documented, a key question remains elusive:
How do Transformers capture and transfer information across layers?

Understanding these internal mechanisms is crucial for advancing algorithmic design and developing
more efficient model architectures. In particular, the internal mechanisms by which Transformers
represent and process sequential information across layers are not yet fully understood. This gap is
especially pressing given the growing interest in deploying large-scale Transformers in multi-task
and general-purpose settings.

In this work, we aim to bridge this understanding gap by investigating the layerwise behavior of
Transformers. We take explorations on Hidden Markov Model (HMMs)(Rabiner, [1989; Baum &
Eagon| |1967), a classical class of sequence models where observations depend on unobserved hidden
states evolving underlying Markov dynamics. Through empirical analysis, we uncover that while
achieving good performance, Transformer learns feature representations on the lower layers, which
are heavily influenced by nearby tokens, as well as developing decoupled features on upper layers,
behaving like time disentangled representations (see Section [2] for details). Motivated by these
observations, we provide a theoretical analysis of Transformer expressiveness. By constructing
explicit Transformer architectures that model HMMs efficiently, we demonstrate how the observed
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empirical patterns naturally emerge from our constructions. These results offer principled insights
into how Transformers capture and generalize sequence information across tasks, shedding light on
their success in multi-task and few-shot learning. Such feature decoupling phenomenon also has
practical implications, such as assigning different tasks to different layers in multi-task learning,
or masking position-related features in higher layers to improve inference efficiency. Our main

contributions are summarized as follows:

. Expressiveness. On the theoretical side, we model language tasks in Transformers through
Hidden Markov Models. Given the large hidden state space often encountered in practice, we
adopt a low-rank structure for latent transitions, which has received tremendous attention recently
for its efficiency in computation and inference (Siddiqi et al., [2010; |Chiu et al.l 2021). We
show that under mild observability assumptions, Transformers can approximate low-rank HMMs
using a fixed-length memory structure, enabling effective in-context learning. On the empirical
side, we present that well-trained Transformers achieve high accuracy under in-context learning,
with performance improving as more input-output examples are provided or as sequence length
increases, which aligns with Theorem T}

. Feature Decoupling Phenomenon. On the empirical side, we observe that lower layers focus on
learning local representations, primarily influenced by neighboring tokens. Upper layers develop
decoupled, temporally disentangled representations that are less tied to specific input positions and
encode higher-level abstractions. Our theoretical constructions provide corresponding explana-
tions: lower layers extract local features, which are then transformed into decoupled, task-relevant
representations in upper layers.

. Generalization to ambiguous settings. We extend our theoretical results to more challenging sce-
narios where the hidden state space exceeds the observation space, which are natural assumptions
in NLP. And we show that Transformers can still learn expressive representations by composing
features from multiple future observations.

. Technical contribution. From the technical level, we first provide a theoretical analysis of sample
complexity on causal tasks, establishing a quantitative relationship between sample size, model

capacity and prediction performance.

1.1 RELATED WORKS

The expressiveness of Transformers on sequence modeling has
been explored from several perspectives. |Liu et al.| (2022a)
demonstrate that Transformers can emulate automata by learn-
ing deterministic transition patterns. Nichani et al.|(2024) ana-
lyze a simplified setting where the data follows a Markov chain
governed by a transition matrix. Other works, such as|Sander
et al.| (2024) and [Wu et al, (2025), study the expressiveness
of Transformers in autoregressive modeling, focusing on non-
causal tasks. In contrast, our work takes a first step toward
understanding the expressive power of Transformers on Hidden
Markov Models, which are arguably among the simplest yet
fundamental tools for modeling natural language tasks.

2 STARTING FROM THE EMPIRICAL FINDINGS

2.1 EXPERIMENT SETTINGS

To empirically investigate how Transformers learn multiple
tasks on sequential data, we construct a dataset generated by
a mixture of Hidden Markov Models. Each HMM is used to
model a tasks-specific distribution, and by mixing them we
get a dataset similar to a pre-training corpus to learn language
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Figure 1: Accuracy of the Trans-
former under in-context learning
setting. The y-axis denotes the
number of demonstrative examples
in-context, and the x-axis denotes
the length of the test input oyes;.
All demonstrative examples have
a length of 8 in this setting.

modeling. We sample 131k data, which allows training for 64 epochs, with 64 steps in each epoch on
a batch size of 32. We build a transformer of 16 layers and 16 heads in each layer, and a hidden state
dimension of 1024. (Verifications on other models are in Appendix[B]) The transformer adopts the
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design of Roformer [Su et al.|(2024)) which uses rotary positional encoding technique, and determines
the attention logit between two tokens based on their relative position.

2.2 RESULTS

Expressiveness power on HMMs. The high accuracy observed in Figure [ highlights the expres-
siveness of well-trained Transformers. Moreover, we find that (1) accuracy improves as the number
of input-output examples increases, and (2) task outputs become more predictable with longer test

sequences.

Decoupled features on upper layers. We randomly shuffle
the positions of demonstrative inputs and measure how the logit
changes. As shown in Figure 2] the upper layers (layers 9-15)
exhibit attention logits that are less dependent on the positions
of input tokens. This suggests that feature representations in
these layers become increasingly decoupled, reflecting a high
degree of time disentanglement.

Layerwise investigations on Transformer recognitions.
Figure 3a shows that Transformers gradually recognize the
task identity across layers. Within a single task, the hidden
state is identified earlier than the task itself, indicating that
Transformers first learn the relationship between observations
and hidden states in the lower layers, and then capture task-
level structural information in the upper layers. This reflects
a layerwise processing hierarchy in how Transformers handle
sequential information. In Figure [3b] we observe three key
patterns: (1) The Transformer identifies previous tokens (i—1,
1—2, 1—3, 1—b, i—10) with decreasing accuracy as the distance
increases, suggesting that feature learning in lower layers relies
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Figure 2: After randomly shuffling
the positions of demonstrative in-
puts, we examine how the logits re-
ceive changes over layers (y-axis)

and attention heads (x-axis). The
std(logits)

measure is 1 — ———=—2-,
mean (logits)

primarily on nearby tokens. (2) The accuracy curves for all distances follow a rising-then-falling
trend across layers, implying that Transformers initially aggregate information from local contexts,
and the resulting features then act as decoupled representations in upper layers. (3) The peak of each
curve shifts to upper layers as the distance to the previous token increases, showing that Transformers
first integrate information from close neighbors and then progressively attend to more distant tokens.
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Figure 3: Investigation on Transformer recognitions.

3 PROBLEM SETUP

3.1 TRANSFORMER ARCHITECTURE

We begin by describing the framework of Transformers as follows:



Under review as a conference paper at ICLR 2026

hidden state (hit)—>(hiz —>(his—> . . . —>(hi—>(hu
observation (Ois Oi2 Ois Ois1 Oil

Figure 4: Illustration of Hidden Markov Model.

Attention head. We first recall the definition of the (self-)Attention head Attn(-, Q, K, V). With
any input matrix M,

Attn (M, Q, K, V) = o (MQK"M") MV,
where {Q, K, V'} refer to the Query, Key and Value matrix respectively. The activation function o (-)
can be row-wise softmax functior{ﬁ/ or element-wise ReLU function?}

Transformer. Based on the architecture of Attention head, with the input matrix M, the definition
of multi-head multi-layer Transformer TF(-) is give by

H(O) — M, H(l) — H(lfl) —+ Z Attn (H(lil),Qm,Kman> )

m=1

for any | € [N], where N refers to the number of Transformer layers, and M; is the number of
Attention heads on the [-th layer.

One-hot encoding. Considering a vector set with finite elements S := {vy, v, ..., Uy, }, the One-
hot encoding refers to mapping these vectors into R™, i.e, Vec(+) : S — R™. Each vector is mapped
to an one-hot vector within {e1, e, . .., €, }, and for any two different vectors v,, vy € S, there will

be Vec(vs) # Vec(vyr).

3.2 IN-CONTEXT LEARNING FOR HIDDEN MARKOV MODEL

To show the expressive power of Transformers on sequence tasks, we consider a finite state case
in this work, hidden Markov models (HMMs). To perform in-context learning, we collect n i.i.d.
demonstrate short observation sequences, i.e, {07;71, ..., 0; .}, each sequence consists of L — 1
observations. Denote the hidden state for each observation as h; ; for any ¢ € [n], s € [L], the HMM
is defined as (more intuitive description is shown in Figure )

P(0i,s|0i15 - 0is—1,hits oo his—1,his) = P(ojslhis), Vi€ [n],s e [L],
P(hisloit,--0is—1,Ri1,.. ., his—1) =P(hislhis—1), Vi€ [n],se L]

During testing, to predict o.s, 1 given a long sequence history {Otest,s}f;ll, where k£ > L, we
construct the input matrix M, for Transformers in the following format:

My :=[Mo1 Moz -+ Moy, Mo,test]TeR(n(L—o—l)—O—k)xD’

in which the column number D will be specified later, and

05,1 05,2 05, L Odelim DLl
Mo == |SG-1)(L+1)+1  S@—1)(L+1)+2 *°° SiL+1)—1 Sir+1)| €R (L) e [n],
Vi—1)(L+1)+1  V@Ga—1)(L+1)+2 ° Vi(L+1)—1  Vi(L+1)
Otest, 1 Otest,2 ce Otest,k—1 0 Dk
Mo test = |Sn(L+1)41  Sn(L+1)42 “°° Sn(L+1)+k—1 Sn(L+1)+k| € RZ*F,
Un(L+1)+1  Un(L+1)+2 °° Un(L+1)+k—1 Un(L+1)+k
where each column of Mo, i.e, [oT, 7', vT] represents the embedding for one observation, and 0gelim

is the delimiter embedding, which represents the end of one sequence. The first p 4+ 1 dimension, i.e,

!Given a vector input v, the i-th element of Softmax(v) is given by exp(v;)/ > ; exp(vj).
’ReLU(z) = max{z,0}
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o, refers to the token embedding, which is a one-hot vector within {es, ..., ep41}. Specifically, we
have

o€ {er,...,ep} foro# odgelim, Odelim = €pt1-
The following two-dimensional vector s is position embedding, which is referred to as

05 pos

. p
[Spos]1 = sin (1000nk:) , [Spos]2 = cos (1000nk) , V1<pos<n(L+1)+k.

And the last (D — p — 3)-dim vector v is the fixed embedding, with elements of ones, zeros and
indicators for being the test sequence:

Upos I= [Og_p_5, 1,1(pos > n(L + 1))T}T, V1 < pos <n(L+1)+k.

We will choose D > 2p?L to allocate sufficient capacity for storing the learned features. After
feeding My into the Transformer, we will obtain the output TF (M) € RMLADHRIXD ith
the same shape as the input, and read out the conditional probability P(0test i|Otest,1:5—1) from
[TF(MO)](n(L+1)+k,1:p) :

IP)(Otes‘c,k:|0‘cest,1:kfl) = read(TF(MO)) = [TF(MO)](n(L+1)+k,1:p)~

The goal is to predict the conditional probability that is close to the true model.

4 THEORETICAL ANALYSIS

Notation. For a set H, we use A(H) to denote the set of all probability distributions on .
Let the emission operator T* : O(H) — A(O). For any b € A(H), we use T*b € A(O) to
denote [,, T*(x|h)b(h)dh. For a vector a, we use [a]; to denote the i-th element of a. For a
sequence {x;}3°,, we define the concatenated vector x1.,, = [71,...,%,] . For a matrix A €
R¥*d2 “we use [A];.) € R%™ and [A](. ;) € R to denote the i-th row vector and the j-th
column vector of A respectively, use [A](;, .,,.) and [A](. ;,.;,) to denote the submatrix consisting
of rows 47 through 75, and the submatrix consisting columns j; through jo respectively. For a
distribution P : {e1,...,e,} — [0, 1] supported on the tabular space, we define the vector P(-) =

[P(e1),...,P(ep)] Pl
4.1 LOW-RANK HMM

Our analysis is mainly based on the low-rank structure for HMM.

Assumption 1 (Low rank structure). We suppose that the hidden state transition P : H — A(H)
admits a low-rank structure: there exist two mappings w*,v* : H — R such that P(h'|h) =

w*(h') Tp* (h).

This condition requires that the latent transition has a low-rank structure, and the underlying rep-
resentation maps w*, 1* are unknown. This structure is commonly used in representation learning
(Agarwal et al., [2020; |Uehara et al., 20215 20225 Guo et al.,[2023a).

Assumption 2 (Over-complete y-Observability). There exists v > 0 such that for any distributions
d,d € A(H), we have ||Td — Td'||1 > v||d — d'||1.

This condition requires that the observation space is large enough to distinguish the hidden states
by observations, i.e., the condition makes the reverse mapping from observation to hidden states
a contraction. Observability is necessary and commonly assumed in HMM and partially observed
systems (Uehara et al., 2022} |Guo et al.| [2023a), and it is essentially equivalent to assuming that
the emission matrix has full-column rank (Hsu et al.,[2012). Further, Assumption 2]implies that we
can reverse the inequality to obtain the contraction from observation to hidden state distributions
ld=d'lly <7 Td - Td'|.

Therefore, we can approximate the posterior hidden state distribution by a posterior sharing the same
(L — 1)-memory (refer to Lemma E]) Together with the low-rank condition that renders the transition

3 A more detailed notation table is provided in Table
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P(oglo1.x—1) := " (0p)&(01.6—1), we can approximate P by a (L — 1)-memory transition in the
following lemma
Pr(o|og—1:k-1-1) = pa(or) " ¢(0k—141:6-1),

where 1(-), ¢(-) € R denote the representations. The representation ¢ is a low-rank embedding of
the belief distribution of hidden states. For simplicity, here we assume ¢ can be represented by a
linear mapping.

Lemma 1 (Model Approximation). Under Assumptions[I|and 2} there exists a (L — 1)-memory
transition probability Py, with L = ©(y~*log(d/e) such that

Eoyy IPC | 01k-1) = PL( | 0k—ry1—1) ||, < €.

This lemma shows that for a finite observability coefficient v, the model approximation error can be
controlled when the memory length L — 1 is large enough. To prove this result, we bring the analysis
techniques from POMDP literature \Guo et al.|(2023b); Uehara et al.|(2022). The detailed proof can
be referred to Appendix [F}

4.2 MAIN RESULTS

Assumption 3. Given the data observation history Z = [011.1,-1,---,0n1:L—1] € RP(L=1)xn

we suppose that the mean sample covariance n~"ZZ" has lower-bounded eigenvalue:
)\min(n‘lZZT) > Q.

This assumption requires that the eigenvalues of the mean sample covariance are lower-bounded, im-
plying that the data are distributed relatively evenly. This condition is commonly used in concentration
analysis to bound the generalization error. Our main result can be formally stated as:

Theorem 1. Assume Assumption [Z]and hold, there exists a O(In L + T')-layer Transformer TFy,
such that for any input matrix Mo, with probability at least 1 — n=" over {0;1,...,0; 1} -

Eotest,lzk—l ”P('|Otest,1:k—1) —read (TFy(Mp)) ] Il
< O(de™'F) +O(pLY2eoT/@D) + O(pLy/n(nLp)/(vna) + Ldja - e2") .

model approximation optimization generalization

The proof is in Appendix [D] Theorem [I| demonstrates that a sufficiently large Transformer can
accurately approximate the HMM, revealing its strong expressive power in modeling sequential data.

Sources of errors. As shown in Lemmall] a fixed-length memory model is sufficient to approximate
the full-memory transition probabilities, introducing only a small “model approximation” error. Our
Transformer construction is based primarily on this approximation, denoted as IP;. The “general-
ization” error arises due to the use of a finite sample size n: we learn Py, from n i.i.d. samples, and
the optimal learned model we can obtain, [P, remains close to Py, as long as n is sufficiently large.
The final source of error, the “optimization” error, stems from the finite capacity of the Transformer.
Since we approximate Py using a Transformer with a limited number of layers, a gap between the
two remains. However, this gap can be made arbitrarily small by increasing the model size (e.g.,
number of layers), thereby improving the approximation accuracy.

Remark 1 (The connection between theory and empirical results). Consider the layerwose modeling,
our explicit construction aligns closely with the empirical observations presented in Section|2| The
construction proceeds in several stages. First, in the lower layers, the Transformer learns information
from the neighborhood L tokens, gradually incorporating information from nearby to more distant
tokens, which is consistent with the patterns shown in Figure[3b] In the upper layers, to take the
final prediction, the learned features become decoupled and are used to infer a causal structure
aligned with the underlying HMM task, which corresponds to Figure[2|and the rising-then-falling
trend observed in Figure[3b} Finally, the overall progression—from token-level feature learning to
task-level abstraction—matches the trends in Figure[3a} reflecting a clear layerwise hierarchy in how
Transformers process sequential information.
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Figure 5: Illustration of Feature learning process.

4.3 EXTENSION TO INDISTINGUISHABLE SITUATION

In NLP tasks, a natural assumption is that the cardinality of hidden state space may be larger that the
observation space evidence, or the true number of observations that can reveal the hidden states is
small, called “weak revealing" cases. In this section, we show that Transformer can still perform well
under such ambiguous setting. Inspired by the overcomplete POMDPs (Liu et al., 2022b), we start by
expanding the output space of emission operators.

Assumption 4 (Under-complete y-Observability). Let operator M : A(H) — A (O X -+ x O)
such that Midy; : O x --- x O — Rdenotes [, o M(0s¢4m|hi)dy (hy)dhy, where m is a small

constant such that m < L. There exists ¥ > 0 such that for any distributions d,d’ € A(H), we have
[Mb — Mb'[[1 > 4([b = [
Then the corresponding theorem should be

Theorem 2. Denote the data observation Z' := [011:L—my - -, On.1:L—m] € RP(L=m)Xn Agqume

Assumption hold, and /\min(nle'Z/T) > «, there exists a O(In L + T')-layer Transformer
TFy, such that for any input matrix My, with probability at least 1 — n=1 over {oi,l, e Oi,L}Ll-‘

Eotest,lzk—l ||P('|0test,1:kfl) — read (TFO(MO)) Hl
< O(de™'Ey +O@pTLY2eoT/CL) 4 O(p™ Ly/In(nLp)/(v/ne) + Ld/o- e 57"

model approximation optimization generalization

The proof is in Appendix |[El From Theorem [2, we show that Transformers can still learn HMMs
efficiently under such “weak revealing” case, by concatenating several steps of future observations.

5 TRANSFORMER CONSTRUCTION AND PROOF SKETCHES

5.1 PROOF SKETCHES FOR THEOREM [I]
Recalling Lemma [I] our Transformer construction is mainly based on approximating
Pr(-|0test,k—L+1:k—1) With expression: Py (og|og—r41.6—1) = " (0k)P(0k—rL+1:6—1)-

To approximate the error in prediction, we can take the following decomposition:
Eorect 161 [IP(0test,1:6—1) — read(TFo(Mo))]x

< Eopese 1o 1 IPCl0test,1:6—1) — PL(-|0test, k—L+1:6—1) |1

€1 :model approximation

+ Bopeue 11 IPL([0test, o L4 1:6-1) — PL(:[0test b —L41:5-1) |11 ()

€9 :generalization

+ Eopess 101 ||]}ADL("0tcst,k7L+1:k71) —read(TFq(Mo))||1,

ez:optimization

*The conditional probability in Theorem [2]is related to a m-step prediction, which induces that the car-
dinality of observation is p™. So we enlarge D such that D > 2p™ L, and the read out function should be

P(0test, k [Otest,1:k—1) = read(TF(Mo)) := [TF(Mo)] (n(L+1)+k,(L+1)(p+3)+1:(L+1)(p+3)+p™) -
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where I@’L(~|otest’k, L+1:k—1) € RP refers to the optimal approximation for P;, based on n i.i.d.
samples we collected. Considering the one-hot format of oy, and the linear assumption on ¢(-), we
can express both x(-) and ¢(+) as linear function, which implies that

Pr(-lor—ry1:k-1) = Waop_L41:8-1,
for some W, € RPXP(L—U Accordingly, we have ]fDL('|0test,k7L+1:k71) = Wotest,k7L+1:k71’ in
which
7 .— : e : o 12
W := arg mvénL(W) = arg mwllnz lloi.L — Wzi5. )
K3

Here we use the short-hand notation z; := 0;1.,—1 € RP(L=1)_ From Lemma [1, we obtain
€1 = O(de‘74L). And in the following analysis, we focus on bounding €5 and €3, respectively.

5.1.1 TRANSFORMER CONSTRUCTION

To predict the conditional probability vector P L (|0test k—L+1:k—1), the transformer proceeds in
three main steps: (i) it first learns the (L — 1)-step history feature 0;,1:1,—1 associated with o; 1,
as well as Ogest k—1+1:k—1 associated with oyt . (i1)it then performs linear regression based on
Eq. (6), (ii)finally, it approximates Py, (-|0test, k— L+1:k—1) using W and oest k—r+1:5—1. The explicit
construction of the Transformer is detailed below:

Decoupled feature learning. Before formally construction, for any step index 1 < r < L, we
define history and future matrix Z,., F,. € R(*(E+1D)+k)x(p+3) for further analysis:
Z.]) = {[MO](t7T,1:p+3)7 r<t<n(L+1)+k,
' [Mo](1,1:p+3), 1<t <,
[Fr](t N = {[MO]<t+T’1:p+3)7 Istsnll+)+k-mr
’ [Mo]n(L+1)+k,1p+3), n(L+1)+k—r<t<n(L+1)+k.
To be specific, for each o; 5, Z, and F}. are corresponding to o0; ., (history observation) and 0; s,

(future observation) respectively. To learn these two types of features, we use two special matrices on
the position embedding vector of each observation:

1 . 1 1 : 1
A= B [ <08 1500, ) Sln(lOO?nk)] . B:=5 [ <08 T5a0mE ) Sm(moom)} .

—sin(To00mk ) COS(To00mR sin(1go0m%)  ©0(To00mF)
For t1,t2 € [1: n(L + 1) + k] with position embedding vectors s, , st,, we have

tl_tQ_]- tl_t2+1
Sg;ASt2 = 51 + COS <1000nk) 5 SZ;Bstg = 61 - COS (1000771k'> :

By using A in Query-Key matrix with enough large 31, and applying the softmax activation along
with a carefully designed Value matrix, we can learn Z; after the first Attention layer. On the second
layer, we again use A to design Query-Key matrix, which enables the learning of Z5, Z3 (see Figure[3]
as a detailed illustration). Repeating such process for O(In L) layers, we will obtain {Z1, ..., Zp_1}
using O(In L)-layer single-head Attention. Also, use matrix B, we can obtain F; on the following
layer. The output matrix after these decoupled-feature layers should be

Maee = [[Mo](. p+3)> 21, Z2, 23, - - -, Z1—1, F1, [Mo] (. (L4+1)(p+3)+1:D) -

Gradient descent performing and final prediction. The following O(T')-layer architecture is
designed to learn P, (+| 21 ) based on history information {Z1, ..., Zy_1 }. To be specific, from Eq. (Z)),

we need to take linear regression to estimate a matrix W e Rexr(L=1) To perform such estimation
process for W, we construct a 2p-head O(T')-layer Attention. Each layer can perform single gradient
descent step on £(W), starting from an initial value 0. Each row of T is assigned to two independent
attention heads for parallel learning (see Figure [6|for detailed illustration). The construction closely
follows the method proposed in Bai et al.|(2024)), with the key difference being that we use F to pick
up n samples for the gradient descent updating. After O(T')-step gradient descent, we use the learned

{Way,- [W} (p,)} @nd Otest k—L+1:k—1 to predict ]fDL(-|otest,k_L+1:k_1). The corresponding
error €3 = O(pL'/?e=*T/(2L)) can be estimated using Lemma

3As the (p + 1)-th dimension is designed only for 0gelim, We consider the observation as a p-dim vector for
simplicity.
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Figure 6: Illustration of gradient descent performance.

5.1.2 GENERALIZATION ERROR APPROXIMATION

Using the notations for labels and covariates O := [o1L,...,0n1] € RP*" Z =
[01,1:0-1,---,0n1:L—1] € RP(L=1x7 the least square estimator has the following closed-form
solution: W := 0Z7(Z2ZT)~ 1.

Then, denoting Ziest := Otest,k—r+1:k—1 and error A := O — W, Z, we can take the estimator into
€2 and upper bound it by

P - NG P
& <D VLWl = 0162 (22") Ml < - =3 1Al 2" |12
j=1 Jj=1

3)
VL ¢ VL
<3S Il — EMB1Go) 27l + 22 S IEA) ) 27 2
j=1 Jj=1
where the second inequality uses the definition O = A + W, Z and Apin(ZZ ") > « in Assumption
[l and invokes the Cauchy-Schwartz inequality. For the first term on the last row of (3)), we use the

matrix concentration in Lemma []to obtain that with a high probability,

(1Al Gy = ElA)G)) 27 (|2 < O(V/nLIn(nLp?)).
For the second term on the last row of (3)), based on the observation that E[[A](; ;)] = E,, ..., [P(e; |
o1:k-1) — Pr(ej | 0k—r4+1:5—1)], we can bound it by O(Ld/« - e*L74) via Lemma

5.2 PROOF SKETCHES FOR THEOREM 2]

The error analysis and the corresponding Transformer construction follow a similar approach to
Theorem [2] with one key modification. After the decoupled feature extraction stage, the resulting
output matrix takes the following form:

Mdec = HMO](<,1:p+3)7 Zla Z2a ey ZL*’mn Fla F27 e 7Fm7 [MO](<,(L+1)(p+3)+1:D)]'

Before feeding it into subsequent Attention layers, we apply an one-hot encoding function Vec(+) to
each row of {[Mo](. 1:p), [F1](. 1:p)» - - - » [Frn—1](.,1:p) }» Which correspond to the current and future
observations at each time step.

6 CONCLUSION

This work advances our theoretical and empirical understanding of how Transformers achieve
strong generalization across diverse sequence learning tasks. By analyzing their layerwise behavior
and constructing explicit architectures for modeling HMMs, we demonstrate that Transformers
gradually transition from learning local, token-level features in lower layers to forming decoupled
representations in upper layers. These findings align with empirical observations, as well as providing
a principled explanation for the Transformer’s expressiveness and efficiency in multi-task and in-
context learning settings.



Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Alekh Agarwal, Sham Kakade, Akshay Krishnamurthy, and Wen Sun. Flambe: Structural complexity

and representation learning of low rank mdps. Advances in neural information processing systems,
33:20095-20107, 2020.

Ekin Akyiirek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning algo-
rithm is in-context learning? investigations with linear models. arXiv preprint arXiv:2211.15661,
2022.

Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statisticians:
Provable in-context learning with in-context algorithm selection. Advances in neural information
processing systems, 36:57125-57211, 2023.

Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statisticians:
Provable in-context learning with in-context algorithm selection. Advances in neural information
processing systems, 36, 2024.

Leonard E Baum and John Alonzo Eagon. An inequality with applications to statistical estimation
for probabilistic functions of markov processes and to a model for ecology. 1967.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Justin Chiu, Yuntian Deng, and Alexander Rush. Low-rank constraints for fast inference in structured
models. Advances in Neural Information Processing Systems, 34:2887-2898, 2021.

Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Shuming Ma, Zhifang Sui, and Furu Wei. Why can gpt
learn in-context? language models implicitly perform gradient descent as meta-optimizers. arXiv
preprint arXiv:2212.10559, 2022.

Antoine Dedieu, Nishad Gothoskar, Scott Swingle, Wolfgang Lehrach, Miguel Lazaro-Gredilla, and
Dileep George. Learning higher-order sequential structure with cloned hmms. arXiv preprint
arXiv:1905.00507, 2019.

Yuxian Dong et al. A survey of in-context learning: Recent progress and future directions. arXiv
preprint arXiv:2301.00234, 2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
ArXiv preprint, abs/2407.21783,2024. URL|https://arxiv.org/abs/2407.21783|

Jianging Fan, Zhaoran Wang, Zhuoran Yang, and Chenlu Ye. Provably efficient high-dimensional
bandit learning with batched feedbacks. arXiv preprint arXiv:2311.13180, 2023.

Pedro Felzenszwalb, Daniel Huttenlocher, and Jon Kleinberg. Fast algorithms for large-state-space

hmms with applications to web usage analysis. Advances in neural information processing systems,
16, 2003.

Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn
in-context? a case study of simple function classes. Advances in Neural Information Processing
Systems, 35:30583-30598, 2022.

Jiacheng Guo, Zihao Li, Huazheng Wang, Mengdi Wang, Zhuoran Yang, and Xuezhou Zhang. Prov-
ably efficient representation learning with tractable planning in low-rank pomdp. In International
Conference on Machine Learning, pp. 11967-11997. PMLR, 2023a.

Tianyu Guo, Wei Hu, Song Mei, Huan Wang, Caiming Xiong, Silvio Savarese, and Yu Bai. How do
transformers learn in-context beyond simple functions? a case study on learning with representa-
tions. arXiv preprint arXiv:2310.10616, 2023b.

10


https://arxiv.org/abs/2407.21783

Under review as a conference paper at ICLR 2026

William L Hamilton, Mahdi Milani Fard, and Joelle Pineau. Modelling sparse dynamical systems with
compressed predictive state representations. In International Conference on Machine Learning, pp.
178-186. PMLR, 2013.

Daniel Hsu, Sham M Kakade, and Tong Zhang. A spectral algorithm for learning hidden markov
models. Journal of Computer and System Sciences, 78(5):1460-1480, 2012.

Hui Jiang. A latent space theory for emergent abilities in large language models. arXiv preprint
arXiv:2304.09960, 2023.

Alex Kulesza, Nan Jiang, and Satinder Singh. Spectral learning of predictive state representations
with insufficient statistics. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 29, 2015.

Licong Lin, Yu Bai, and Song Mei. Transformers as decision makers: Provable in-context reinforce-
ment learning via supervised pretraining. arXiv preprint arXiv:2310.08566, 2023.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

Bingbin Liu, Jordan T Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Transformers
learn shortcuts to automata. arXiv preprint arXiv:2210.10749, 2022a.

Qinghua Liu, Alan Chung, Csaba Szepesvari, and Chi Jin. When is partially observable reinforcement
learning not scary? In Conference on Learning Theory, pp. 5175-5220. PMLR, 2022b.

Arvind Mahankali, Tatsunori B Hashimoto, and Tengyu Ma. One step of gradient descent is
provably the optimal in-context learner with one layer of linear self-attention. arXiv preprint
arXiv:2307.03576, 2023.

Sewon Min et al. Rethinking the role of demonstrations: What makes in-context learning work? In
EMNLP, 2022.

Eshaan Nichani, Alex Damian, and Jason D Lee. How transformers learn causal structure with
gradient descent. arXiv preprint arXiv:2402.14735, 2024.

Lawrence R Rabiner. A tutorial on hidden markov models and selected applications in speech
recognition. Proceedings of the IEEE, 77(2):257-286, 1989.

Michael E Sander, Raja Giryes, Taiji Suzuki, Mathieu Blondel, and Gabriel Peyré. How do trans-
formers perform in-context autoregressive learning? arXiv preprint arXiv:2402.05787, 2024.

Sajid Siddiqi, Byron Boots, and Geoffrey Gordon. Reduced-rank hidden markov models. In
Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp.
741-748. IMLR Workshop and Conference Proceedings, 2010.

Sajid M Siddiqi and Andrew W Moore. Fast inference and learning in large-state-space hmms. In
Proceedings of the 22nd international conference on Machine learning, pp. 800-807, 2005.

Le Song, Byron Boots, Sajid M Siddiqi, Geoffrey J Gordon, and Alex Smola. Hilbert space
embeddings of hidden markov models. 2010.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu
Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable
multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language
models. arXiv Preprint, 2023.

11



Under review as a conference paper at ICLR 2026

Masatoshi Uehara, Xuezhou Zhang, and Wen Sun. Representation learning for online and offline rl
in low-rank mdps. arXiv preprint arXiv:2110.04652, 2021.

Masatoshi Uehara, Ayush Sekhari, Jason D Lee, Nathan Kallus, and Wen Sun. Provably efficient
reinforcement learning in partially observable dynamical systems. Advances in Neural Information
Processing Systems, 35:578-592, 2022.

Peter Van Overschee and Bart De Moor. A unifying theorem for three subspace system identification
algorithms. Automatica, 31(12):1853-1864, 1995.

Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, Jodo Sacramento, Alexander Mordvintsev,
Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient descent. In
International Conference on Machine Learning, pp. 35151-35174. PMLR, 2023.

Lingxiao Wang, Qi Cai, Zhuoran Yang, and Zhaoran Wang. Embed to control partially observed sys-
tems: Representation learning with provable sample efficiency. arXiv preprint arXiv:2205.13476,
2022.

Xinyi Wang, Wanrong Zhu, and William Yang Wang. Large language models are implicitly topic
models: Explaining and finding good demonstrations for in-context learning. arXiv preprint
arXiv:2301.11916, pp. 3, 2023.

Jason Wei et al. Emergent abilities of large language models. arXiv preprint arXiv:2206.07682, 2022.

Dennis Wu, Yihan He, Yuan Cao, Jianqging Fan, and Han Liu. Transformers and their roles as time
series foundation models. arXiv preprint arXiv:2502.03383, 2025.

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context
learning as implicit bayesian inference. arXiv preprint arXiv:2111.02080, 2021.

Chenlu Ye, Wei Xiong, Quanquan Gu, and Tong Zhang. Corruption-robust algorithms with uncertainty
weighting for nonlinear contextual bandits and markov decision processes. In International
Conference on Machine Learning, pp. 39834-39863. PMLR, 2023.

Tian Ye, Zicheng Xu, Yuanzhi Li, and Zeyuan Allen-Zhu. Physics of language models: Part 2.1,
grade-school math and the hidden reasoning process. In The Thirteenth International Conference
on Learning Representations, 2024.

Wenhao Zhan, Masatoshi Uehara, Wen Sun, and Jason D Lee. Pac reinforcement learning for
predictive state representations. arXiv preprint arXiv:2207.05738, 2022.

Tong Zhang. Mathematical Analysis of Machine Learning Algorithms. Cambridge University Press,
2023. doi: 10.1017/9781009093057.

Han Zhong, Wei Xiong, Sirui Zheng, Liwei Wang, Zhaoran Wang, Zhuoran Yang, and Tong Zhang.
Gec: A unified framework for interactive decision making in mdp, pomdp, and beyond. arXiv
preprint arXiv:2211.01962, 2022.

12



Under review as a conference paper at ICLR 2026

A RELATED WORKS

Expressiveness of Transformer. The expressive power of Transformers has been studied exten-
sively from various perspectives. For example, |/Akyiirek et al.| (2022)); 'Von Oswald et al.[ (2023);
Mabhankali et al.| (2023)); |Dai et al.| (2022)) demonstrate that a single attention layer is sufficient to
compute a single gradient descent step. |Garg et al.|(2022); Bai et al.|(2024)); \Guo et al.|(2023b)) show
that Transformers can implement a wide range of machine learning algorithms in context. Similarly,
Xie et al.| (2021); [Wang et al.| (2023)); Jiang (2023) establish that Transformers can approximate
Bayesian optimal inference. Other works have explored different capabilities of Transformers: [Liu
et al.[(2022a)) show they can learn shortcuts to automata, [Lin et al.| (2023) demonstrate their ability to
implement reinforcement learning algorithms, and Nichani et al.[(2024) reveal their capacity to learn
Markov causal structures under a fixed transition matrix, [Sander et al.|(2024); Wu et al.| (2025) show
the expressiveness power on learning autoregressive models.

Hidden Markov Model. Identification for uncontrolled partially observable systems has been
broadly studied, especially for the spectral learning based models (Hsu et al.,|2012; |[Van Overschee
& De Moor, (1995} Song et al., [2010; [Hamilton et al.l 2013} |[Kulesza et al., 2015). Intuitively,
all the frameworks require some observability conditions to reveal the hidden states via sufficient
observations. For complex sequential spaces with a large hidden state space, there is another line of
work considering structured latent transitions, allowing for more efficient inference and computation
complexity (Siddiqi & Moore, [2005; [Felzenszwalb et al., 2003} Dedieu et al., 2019; |Siddiqi et al.|
2010; |Chiu et al.l [2021)). Especially, |Chiu et al.| (2021) consider a low-rank structure for hidden
state transitions. Such a low-rank structure is also widely studied in partially observable Markov
Decision processes (Uehara et al., 2022} |Guo et al., 2023a; |Zhong et al.| 2022; Wang et al., 2022}
Zhan et al.,[2022). The most related ones to our work are [Uehara et al. (2022);|Guo et al.| (2023a)),
which utilize the low-rank latent transition and observability to avoid a long-memory learning and
inference. Instead, they can approximate the posterior distribution of the hidden states given whole
observations by a distribution conditioned on a fixed-size history.

B ADDITIONAL EXPERIMENT DETAILS AND RESULTS

B.1 EXPERIMENT SETTINGS

Here we construct a dataset generated by a mixture of Hidden Markov Models (HMMs). Each
HMM is used to model a tasks-specific distribution, and by mixing them we get a dataset similar to a
pre-training corpus to learn language modeling on. In specific, we randomly simulate 8192 HMMs.
The generation process is as follows. There is an initial task distribution on which we sample the
HMM id. Each HMM composes of 128 hidden states randomly transiting between each other. Each
next state depends purely on the previous state, making the sequence of hidden states Markovian. All
HMMs share a 16-token vocabulary. Each hidden state is associated with an emission distribution
to randomly output a token. We sample 131k data, which allows training for 64 epochs, with 64
steps in each epoch on a batch size of 32. We build a transformer of 16 layers and 16 heads in each
layer, and a hidden state dimension of 1024. The experiments run on a single V100 GPU with 16
GB of memory for 10 hours. The mixture-of-HMMs simulation runs with default multiprocessing of
Python.

See Figure [/|for the attention heatmap.

B.2 ADDITIONAL RESULTS ON OTHER MODELS

Verification on smaller models. We conducted additional experiments on smaller models. We
use the same experimental setting and investigate Transformers of smaller sizes (number of layers 8,
number of heads 8) and (number of layers 4, number of heads 4). The 8-layer model is capable of
learning the HMMs with the final-example accuracy of 0.707 (a similar level to the 16-layer model,
indicating a saturated accuracy). In contrast, the 4-layer model has a degraded accuracy of 0.213,
meaning that the learning ability gradually emerges between a layer depth of 4 and 8. Moreover,
interestingly, we observed a similar feature decoupling phenomenon. The results of 8-layer 8-head
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Figure 7: Attention of the Transformer on in-context learning inputs. The y-axis denotes layers
and attention heads within each layers, and the x-axis denotes the attention of the last token on all
previous tokens in the ICL input (including both demonstrative examples and the test input).

Transformer can be seen in Figure and[TT} The results of 4-layer 4-head Transformer can be
seen in Figure[12] [T3] [T4] and [T3]

Figure 8: Accuracy of the Transformer under in-context learning setting.

Verification on larger model. We analyze the LLaMA-3-8B model on the SST-2 dataset using
64 (demonstration set, test sample) pais, each with 16 samples of length 16. We apply 16 random
permutations per group and measure attention consistency across permutations using the metric 1
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Figure 9: After randomly shuffling the positions of demonstrative inputs, we examine how the logits

receive changes over layers (y-axis) and attention heads (x-axis). The measure is 1 —

Task and State IDs Accuracy Last Token Accuracy

std(logits)

mean(logits) *

— token i1

token -2
0281 — token i-3
— token -4
— token 5
— token i6

token i-7
—— token 18

024

A
token 115
022 token 16

[

Accuracy

— task_ids_accuracy
02 state_ids_accuracy | g4

0 1 2 3 a H 6 7 [ 1 2 3
Layer Layer

Figure 10: Investigation on Transformer recognitions.

- std/mean of attention logits to the final token. The results (unfortunately we are prohibited from
uploading images) reveal a clear trend: higher layers contain a larger proportion of position-invariant
heads, suggesting these layers rely less on the absolute positions of ICL examples. More specifically,
the initial 8 layers have an average ratio of std / mean = 1.59, while the last 8 layers have the average

ratio of 0.79. See reults in Figure [I6]
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Figure 11: Attention of the Transformer on in-context learning inputs.

0.24

0 1 2 3 4 5 6 7
0.22
0.20
0.18
0.16
0.14
0.12
0.10

Figure 12: Accuracy of the Transformer under in-context learning setting.
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Figure 13: After randomly shuffling the positions of demonstrative inputs, we examine how the logits

: . . . . std(logits)
receive changes over layers (y-axis) and attention heads (x-axis). The measure is 1 — mean(logits)
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Figure 14: Investigation on Transformer recognitions.

Figure 15: Attention of the Transformer on in-context learning inputs.
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C NOTATION TABLE

Table 1: The table of notations used in this paper.

Notation | Description

A(H) the set of all probability distributions on H

T the emission operator
T*b J3, T*(z|h)b(h)dh
e; one-hot vector
[a]; the i-th element of vector a
Tin concatenated vector [z1, ..., 7]

[A] i the i-th row vector of A
[A].jy | the j-th column vector of A
(i1:i5,) | the submatrix consisting of rows iy through iz of A
(-ji:jo) | the submatrix consisting columns j; through jz of A
the vector [P(e1),. .., P(e,)] " for adistribution P : {ey,...,e,} — [0,1]
sequence length on training samples
observability coefficient
observation state number
feature dimension in transition matrix low-rank structure
sequence sample number
sequence length on test sample
the number of gradient descent steps after feature obtaining

Ha3S a2 bv’,E

D PROOFS FOR THEOREMI]
Recalling Lemma [I] our Transformer construction is mainly based on approximating
Pr(+|Otest,k—L+1:k—1) With expression:

T
Pr(oklok—r+1:6-1) = p(0k)” (0k—L41:6-1)-
To approximate the error in prediction, we can take the following decomposition:

Eopewe 11 [IP([0test, 1:6—1) — read(TFq(Mo))]]1

< Eopese oot IPC|0test,1:—1) — PL(-|0test,k—L41:6—1) |11

€1 :model approximation

+ Eopn vt IPL(|0test k—L410—1) — PL(-|0test i—L+1:0—1) 11 4)

€2 :generalization
+ By [IPL (J0test, k- L+1:0-1) — read(TFo(Mo))]|1,

e3:optimization

where IAP’L(~|otest7k_ L+1:k—1) € RP refers to the optimal approximation for Py, based on n i.i.d.
samples we collected.

Considering the one-hot vector o, € R?, which representing the observation stateE], We can express
p(-) as
p(ox) = Uog,
for some U € R¥*P, Also, recalling the linear mapping assumption for ¢(-), we can also obtain
P(ok—r+1:6-1) = VOr—ry1:6-1,
for some V' € R¥P(L=1) which further implies that

Py (oklok—r+1:6-1) = 0p UL Vor_p 1151

%As the (p + 1)-th dimension is designed only for 0gelim, We consider the observation as a p-dim vector in
proofs for simplicity.
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As the feature embeddings are within {e1, ..., e,}, the vector Pr,(-|og—r+1:5—1) € R? equals to
Pr(|ok—r41:6-1) = UTVor_py10—1 = WaOk_L4+1:6-1, ©)

where W, € RP*P(L=1) S0 for Pr(-|0test k—L+1:k—1) = W Otest, k—L+1:k—1. the solution is

Pp— 1 D — N . — . 2
W .= arg mvénﬁ(W) = arg mwl/nz lloi.. — Wzill3, (6)

where we use the short-hand notation z; := 0;1.1—1 € RP(L=1) From Lemma |1, we have that
€1 = O(de‘74L). In the following two subsections, we focus on bounding €5 and €3, respectively.

D.1 TRANSFORMER CONSTRUCTION

To approximate the conditional probability vector P (+|0test k—L+1:k—1), the transformer mainly
takes three steps: (1) firstly learning the (L — 1)-step history features 0;,1:1,—1 for o; 1, as well
as Otest k—L+1:k—1 fOr Otest k» (2) then performing linear regression based on Eq. (6), (3) finally

approximating Py, (|Otest,k—L+1:k—1) using W and 0Otest k—+1:x—1- The explicit construction of the
Transformer is as follows:

Decoupled feature learning. Here we first construct an O(ln L)-layer single head Attention, to
learn 0; 1.7,—1 for 0;,1,, as well as O¢est, k—L+1:k—1 fOT Otest, 1. Before formally construction, for any
step index 1 < r < L, we define history and future matrix Z,, F, € R(*(L+D+k)x(+3) for further
analysis:

lt=r1ipt3), T <t<n(L+1)+k,
Mo 1pys)y, 1<t <,

](f+r1p+3); ].StS?'L(L-'—].)—f—k—T,

Jn(t+1)+k1pt3)y, ML+ +k—r<t<n(L+1)+Fk,

=

0

Here we also define a special matrix

=)  sin(

#)
A:=B [ 100pnk ] 7

—sin(1555,%) 08155077

where ;1 > 0 1is a fixed constant. Then on the first layer, the Query-Key matrix is designed as

Opt+)x(pt1) 0 0
QKW ::[ 0 A 0| e RP*P,
0 0 0

which induces that with input matrix M, we have

t1—tyg—1
(Mo, Q@KW [ Mo,y = pi - cos (100()nk) ’

forany 1 < t;,ty < n(L + 1) + k. Then with softmax function on MyQK ™M) M, as well as the
Value matrix

0 i 0 D—2p—
) l D Laors) Dt o-2e-0] by

0 0 0

sending 31 — 0o, we obtain the output on each row as

)

[Softmax ([Moht,.>QK(”MoT) MoV“)L - [0, [Mo)(t—1.1:p43), 0T, V1 <t < n(L+1)+k,

which refers that after the first Attention layer, the output matrix should be

My = My + Attn(Mo, QKD V) = [[Mo] (. 1943y, Z1. [Mo) (- 2(p+3) 11:)]-
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It implies that the first layer Attention head learn the first history feature o; ;.1 for each observation
0;,1.- Then on the second layer, we design the Query-Key matrix as

, O2p+4)x(p+1) O(2p+4)x2 O(2p+4)x (D-p-3)
QK® .= O2x (p+1) A O2x(D—p—3) ,
(D-2p-6)x(p+1) O(D—2p-6)x2  O(D-2p—6)x(D—p-3)

as well as the Value matrix as
O2(p+8)x2(p4+3)  L2(p+3)x2(p+3)  O2(p+3)x (D—4p—12)

V(2) = 0 0 0 c RD*D
0 0 0

)

which will induce the output on this layer as
My = My + Attn(M;, QK V®) = [[Mo](. p1 3y Z1, Za, Z3, [Mo) (- a(pr3)+1:)]-

Repeating such construction O(In L) times, we can obtain the (L — 1)-step history (see Figure 5| for
a detailed illustration). Now the output matrix should be

My, = [[Mo)(1pt3)s Z1, Z2, Z3y - -, Zi—1, [Mo) (. L(pr3)11:p)) € ROEFDTRIXD,

On the following layer, we consider the Query-Key matrix as

0 0 O .
QK(f) _ (P+1)O>< (p+1) B ol. B=g { c.os( 100110nk) — Sln(7101010nk )} ’
0 0 0 sin(1g507%)  €o8(Tg00m%

and the value matrix is constructed as

Op+3)xL(p+3)  L(p+3)x(p+3)  O(p+3)x (D—(L+1)(p+3))
v .— 0 0 € RP*D,

o O

0 0

which implies that sending 5; — oo, the output on each row should be
[softmax ([MO}(L,)QK(UMOT) MOV“)L =D, [Mo)(t41.1:p48), 0], V1<t < n(L+1)+k,
t,

So the output decouple matrix after this layer should be
Maee = [[Mo](. p+3)> 21, Z2, Z3, . ., Z1—1, F1, [Mo](. (1) (p+3)+1:D)]-

Then the decoupled feature learning process has been finished, which needs O(In L) layers (see
details in Figure[5).

Gradient descent performing. The following O(T)-layer 2p-head architecture is designed to
learn P, (-|z;,) based on history information {Z1, ..., Z;_1 }. The construction follows immediately
from Lemmal(7] To be specific, from Eq. (€], we need to take linear regression to estimate a matrix
W e RPxP(L=1) Baged on the n samples collected, the estimation process is based on MSE loss, i.e,

arg min L(W) := arg mvxi/nz lloi,. — Wzilf3,
K3

where z; refers to the (L — 1)-step history of o, 1,, which has been learned in previous layers. To
perform such estimation process for W, we construct an 2p-head O(T')-layer Attention. Each layer
can perform one step gradient descent on £(W') with initial value 0, and each row of W is assigned
to be learned by two heads independently (see Figure[6]for detailed illustration). Here we take the
updating for [JW]; .y as an example, and denote the initial point as 0,,(, 1), which has been stored in
[Maec) (t,(L4+1) (p+3)+1:(L+1) (p+3)+p(L—1)) On each 1 < ¢ < n(L + 1) + k. The gradient vector is

8[,/6W(1’.) = QZ(W{'[;’,)Z-; — [Oi,L]l) -2

(N
=2 Z (RGLU(W(T;’,>ZZ' — [Oi,L]l) — ReLU(—WaA’,)Zi + [Oi,L]l)) - 2.
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The construction will show that each attention layer is related to one-step gradient descent with
learning rate (L — 1)~!, and the construction for each layer is the same. As the first two heads on
each layer is related to the updating for [W]; .y, we design the first Attention head on each layer with
Query-Key matrix as

[Zl](tz,l:p)
Wi,
. -1 [Z1—1](t2.1:p)
([Mdec}(tl,-)Q(gvl)) = _5211) ) K(gﬂl)[Mdec](tQ,-) = [MO](tg,l) ;
0 1) (t2.,1:p)
—B2 0
1(ty > n(L+1))]

forany 1 < ¢1,ts < n(L 4+ 1) + k. Choosing 82 > 1000nk, with ReLU activation function, we
obtain

ReLU ([W]Erl,<)Z£2 - [Mo](z2,1)) v [F1](ts,1:p4+1) = Odelim

0, otherwise,

ReLU ([Mdec]:(z;h.)Q(gJ)K(g’l)[Mdec](tz,')> = {

where we denote 2; == [[Z1](,, 1.0, [Z0—1](;, 1.7 € RP(E=1) Then with the Value matrix
satisfying that
0
1 [Z1) t2,1:9)

VD [ Ml ) =
ec (t27.) — 9
L 1 [ZL—lg)(tz,lzp)

we can obtain the value on each row of the output matrix:
1
(9.1 glo.1) 17(g:0) - - T o o
{Atm (MdeC,Q SN K\ VY )}(t’-) = [0, 7] EZ ReLU ([W](LA)Zl [Ol’Lh) ,0] ,

forany 1 < ¢t < n(L 4+ 1) + k. Also, we consider another Attention head for W1 . with
{=Q@V K1)V, 11}, the output on each row should be

[Attn (Mdec, —QWh, Kl ,V(QJ))] _

t,-

0, *ﬁ ZReLU (—[W](Tl,)zi + [Oz‘,L]l) ,0] :

Taking summation on both of the two heads, we can finish the update on [W], .y as in Eq. (7). The
updates on other rows of W are similar, so with such 2p Attention heads on each layer, we can finish
one-step gradient descent on MSE loss by

p
My + Y Attn (Mdm Q@D |99, V(g,j)) © Attn (MdeC7 QD Kod), _V<g,j>) ,

Jj=1

Considering O(T') layers with the same structure, we can obtain W with a small error. Now the
output matrix should be

Mgd = [[MO](‘,]D+3)7 Zla Z2a ZS7 ey ZL717 Fla [W](L-)y ceey [W](p’.), [MO](-,(L+1)(p+3)+p2(L71)+1:D)]~

Prediction with decoupled features. Finally, on the last layer, we construct a 2p-head Attention to
make prediction on Py, (- |otest7 k—1s- -+ Otest k— 1+1), and each dimension is corresponding to two

Attention heads. To be specific, for the first dimension of P (‘|0test, k—1, - - - ; Otest, k—1L )» Attention
head is designed with

. [Z1](t2,1:p) .
(pre,1) — (pre,1) T _ (1,9
([Mgd](“")Q ’ ) T Ze-t)te ) | Ko Ml = { 0 ] ’
0

1
V(pre,l)[Mgd}%;%.) — |:n(L—61)+k} .
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Then we will obtain

[.Attn (Mgd, Qrre) felpred) V(pre,l))} - [ReLU ([W]a7.)0test,k—L+1:k—1) ,0} ,

(n(L+1)+k,-)

and

[Attn (Mgd7 Q(PT571)7 K(pfr’e,l)7 V(;m“&,l)) + Attn ( ody — Q(;DT’& 1) [((pre,l)7 _V(pre,1)>:|
(n(L+1)+k,)

= {[W]Er17.)0test,k—L+1:k’—la0} )

which finish the prediction on Pr,(0est k = €1]0test, k—15 - - - » Otest.k—L ). The constructions on other
2p — 2 heads are similar.

Optimization error. Then we turn to the approximation for e3, which is induced by the finite
gradient steps (O(T) steps) the transformer performs. The error could be estimated directly from
Lemma(7] Denoting

7 = [01,1;L71, ceey On,lzL—l} c R;D(L—l)xn’

from Assumption 3] we have
1,7 L o7
a < )\min EZZ < /\max EZZ < L, Hotest,k—L-&-l:k—lHQ =vL-— 17 H[W*}(L)”Q = 0(1)7

SO

e3=0 ( —aT/(2L) L1/2 m?x ||[ ] () ||2) — O(le/ZefaT/(QL)).
Jje

D.2 GENERALIZATION ERROR
For €5, we can express the solution W for Eq. (6) as
W:=0z"(z2")"!
where we use the notation
O:=lo1,L o231 -+ Onr] ERP*"  Z=Jo11.0-1,--+,0n1:L-1] € RP(E-Dxn

Denoting Ziest = Otest,k—L+1:k—1 and A := O — W, Z, we have

€ = E%bt e IPL(Jotest k- na1:6—1) — PL(|0test k- Lo 1:6—1) |11

- Z Ezteit

(] D [O]%;’f)ZT(ZZT)il)Ztest

r%
s

Ao = 013027 (Z227) 72

— Ji VLW — (WG Z +[Algy) 25 (Z2Z27) 71,

= VEY 8l 722

<V Z (8T~ AT ]+ AL ) 27

< T S ~EIDZ T+ g SIS D2 ®

<
Il
N
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where the first inequality uses the Cauchy-Schwartz inequality, and the second inequality is from
Assumption where the expectation E[[A](; )] = Eo, .., [P(ej | 01:6—1) = Pr(ej | 0p—r41:-1)]
due to the decomposition:

(A6 =10,y — Wi, 0i1:0-1
=1(0;,1, = e;) — P(ejlo;1:.0-1) + P(ejl0i1:0-1) — Pr(ejloi1:—1)-

Hence, we can deal with the second term above:

%Z IE[[A] ) Z 2 <*ZZE01 o1 IP(ej [ o1k—1) = Pr(e; | op—r41:k-1)]
Jj=11i=1

n

L
7& ZEOi,l:k—l ||P( ‘ Oi,l:k—l) - ]P)L(' | Oi,k—L-{—l:k—l)Hl
=1

<O(% . e*M‘L),

o «
where the first inequality uses the formulation that ||[Z] @ l < VL, and the second inequality uses

Lemmalll

Next, for the first term in (8), we can define the error d; ; := [A](; ;) — E[[A](;,:)]. For each i, j, 6, ;
is a zero-mean 1-sub-Gaussian variable. We also have for each i, max{||z;z, ||2, ||z, z:|2} < L.
Thus, we can invoke Lemmato obtain that with probability at least 1 — %, forany j =1,...,p,

1([A] ) = E[[AlG]) 27Nl = 1) bizill2 < 44/nLIn(2nLp?).

=1

Therefore, by taking the results above back into @]) we can obtain that

€ < O(pL\/ln(an) N Ld 67L’Y4).
Vna e

E PROOF SKETCHES FOR THEOREM [2]
We also decompose the prediction error into three parts as in (@) and analyze them correspondingly.

E.1 MODEL APPROXIMATION

For the model approximation error €1, under Assumption[d, we can also approximate the m-step tran-
sition probability P(0k.+m | 01.k—1) by a (L — 1)-memory probability P, (0k.k+m | Ok—rL+1:k—1)-
Since we can take og:x+m as a whole vector, with similar techniques in Section@ we can show that

Lemma 2. For any ¢ > 0, there exists a O(L)-memory transition probability P, with L =
O(y~*log(d/e) such that

4
EolzkHP(Ok:k}-&-m | 01:74:) - IP)L(Ok::k-i-n% I Ot—L:t)H1 S @) (de_L7 ) .
This model approximation bound is the same to Lemma [T} and the Py, also enjoys the low-rank
structure
PL(0kiktm | Ok—Ltmik—1) =(Okiktm) | H(Ok—Lmik—1),

where 11(0k.k+m); P(0k—L+m:k—1) € R? are representation vectors. For conciseness, we defer the
details to Appendix |G|

After embedding the m-step observation ok, as one-hot vector Vec(og.+m) € RP™, we can
express the mapping function p(-) as

p(0k:k+m) = U'Vec(ok:ktm)s
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where U’ € R4*P" . Considering the linear assumption on ¢, similar to Eq. (@), we can also obtain
Pr(|ok—Lymik—1) = W0k Limk—1,
for some W/ € RP™ *P(L=m) Taking decomposition for the approximation error, we have

Eotest,l:k,l HP(Otcst,k:kJﬂnfl ‘Otcst,l:kfl) - read(TFG (MO))”l

< Eotest,lzk—l ||P(0test,k:k+m—1|0test,1:k—1) - Py (Otest,k:k+m—1|0test,k—L+m:k—1) ||1

€1:model approximation

+ Eotestyltk_l ||PL(0test,k:k+mfl |Otest,k7L+m:k:71) - PL (Otest,k::kerfl ‘Otest,kaer:kfl) || 1

e2:generalization

+ Eomstwlzk,l ||@L(Otest,k:k+m—l |Otest,k—L+m:k—1) - read(TFO(MO))Hl)

ez:optimization
where Py, (+|0test, k—+1:k—1) refers to the solution based on n samples we collected:

I©>L('|Otesth—L-'rm:k—l) = W/[Otest,k—L+m7 cee 70test7k—1]Ta
W’ = argmwi/nz |‘V€C(Oi7L_m+1;L) — WOi,l:L—mH%-
i

In the error decomposition, €; = O(de’”’4L ) can be obtained from Lemmaimmediately. And in
further analysis, we will estimate €5 and €3 respectively.

E.2 TRANSFORMER CONSTRUCTION

Then the construction is similar to the construction for Theorem[I} So here we just provide a sketch
for it.

Decoupled feature learning. Recalling the matrix:

A= B <05 ( 5507 Sin(mol?nk)] . B:=5 { C.C)S(loo%)n/c) — sin(g55057) 7

—sin(15500%)  ©0S(Ta00m% sin(1550,%)  ©08(1000m%)

on each time index ¢, we can use A to capture the history information Z,., and use B to capture the
future information F.. So with O(In(L — m) + Inm) = O(In L) layers, we can obtain the output
matrix as

Maee = [[Mo](.1:p+3), 21, Z2y - o ZL—ms F1, Fay ooy Fon [Mo] (141 (p+3) +1:D) ) -

Then before taking gradient descent, we use the one-hot mapping function Vec on each row of
{IMo] . 1:p)s [F1] (- 1:p)s - - - 5 [Fim—1](-,1:p) }» Which refers to the current and future observations on
each time index. After that, we will obtain

MU = [[MO]-,ltp+37 Zly Z27 ey ZLfmv F17 F2a ceey Fm» H7 [MO](-,(L+1)(p+3)+p’”+1:D)]7
where -
[H](t,) = Vec [[MO](t,l:p)a [Fl](t,lzp)a ey [Fm—l](t,l:p)}
foreachl <t¢t<nL-+n-+k.

Gradient descent and final prediction. After obtaining these features, we shall perform gradient
descent on MSE loss

argmin  _ [[Vee(0;L—m+1:0) = Woi 1L —mll3-
7

Then we could use 2p™-head O(T")-layer Attention to perform the gradient descent on W, in which
the feature H and {71, ..., Zr,_, } will be taken into consideration. The construction is similar to
Theorem[1]
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Optimization error. For €3, under Assumption[3] we can also use Lemma 3]to obtain that

3=0 <me1/2e—aT/(2L)) .

E.3 GENERALIZATION ERROR

We can rewrite I@)L('|0test,ka+1:k7m) as
I@)L('|Otest7I€7L+m:k:71) = Wlotest,k7L+m:k717 W/ = OmZZ;(ZmZZD_la
where we denote
Op = [Vec(o1,L—m+1:1.) Vec(ogr—mi1:z) -+ Vec(on—mi1.n)] € RP™ X",
Zm = [01,1:L—m 02.1:L-m " On,l:L—nL] S R(L—m)Xn.

Denoting Ziest := Otest,k—L+m:k—1 and A := Oy, — W/ Z,,,, we have

€2 = Eotestyl:k,l ||]P)L('|Otcst,ka+m:k71) - ]IADL('|0tcst,k7L+m:kfl)”1

E

M= I

([W;]a) - [Om]z;,-)ZrE(ZmZZm)_l)Ztest

Ztest

<

IN

WG,y = [Oml Gy Zm (Zm Z ) " 2

m

P
= > VLIWAGo = (WG Zm + [BlG.) Za(ZmZy) |2
j=1
an
= VLY A Z5(ZnZy) " 12
j=1
p’VYL

IN

1([A] .y = Eil[A] o] + Eal[AlG)]) Zm 2

[ 1]

IA

2 2N

1(1A]G.y — EllA)Go]) Zall2 + g > IE[AIG ) Zi 2, ©)
j=1

j=1

where the first inequality uses the Cauchy-Schwartz inequality, and the second inequality is from
Assumption where the expectation E[[A](; ] = Eo, ., _, [P(ej | 01:k-1) =Pr(ej | Ok—Ltmik—1)]
due to the decomposition:

(Al =[0](i) — Wil(,)0i1:L-m
=1(0i,L—m+1:L = €;) — P(€]05,1:0—m) + P(€j]0i,1:-m) — Pr(€j]0i1:-m)-

Hence, we can deal with the second term above:

\/f p77l T L pﬂl n
P > IE[A]G]) Zmll2 < DO Eorrii [P(es | 01-1) = Prle; | 05— Limen1)]
j=1

j=1i=1

L n
= ;Eoi,ljk,l ||IP’( | 0i1:6-1) — Pr(- | 0i,k—L+m:k—1)Hl

Ld

_L'Y4
e
o )

<O( ,

where the first inequality uses the formulation that ||[Z,,] @i ll < V'L, and the second inequality uses
Lemma

Next, for the first term in (@), we can define the error d;; := [A];. — E[[A]]-

For each i,j, J;; is a zero-mean 1-sub-Gaussian variable. =~ We also have for each i,
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max{||[Zm].:)[Z. ] ||2,||[ ] [ m)(iyll2} < L. Thus, we can invoke Lemmalto obtain
that with probability at least 1-—- E for any j=1,...,p",

112G,y —ElAIG)) Z7llz = 1Y 6i3lZmlc.ol2 < 4y/nLIn(2nLpm+L).

Therefore, by taking the results above back into @]), we can obtain that

m
62§@(p L+/In(nLp) +E.€_L,¥4)-
a

F PROOF FOR LEMMA (1]

To facilitate analysis, we define the belief state by (01.,—1) € A(H) as the posterior given observa-
tions: by (01.5)(h) = P(hy | 01.1). Combining this notation and the low-rank hidden-state transition,
we can write

P(ok | 01:6—1) = Z P(ok | hi)P(hi | hie—1)P(hg—1 | 01:6—1)

hishi—1
(ST [ () (32 0 (e )blons 1) (s ).
h hi—1

The transition is the inner product of d-dimensional representations of history 01.;—1 and next token
oy. Especially, the historical information is embedded into the belief state. Thus, to approximate
P by P;,, we need to approximate b(01.x—1) by a (L — 1)-memory belief state by, (0x—r+1.5—1)-
Assumption ] implies that we can reverse the inequality to obtain the contraction from observation to
hidden state distributions

ld—d'l <57 |Td — Td'|s.

Hence, by constructing a history-independent belief state by within a KL-ball of b: KL(b, 50) <d3

(which can be realized by G-optimal design), the belief state by, (0x—r,+1.5,—1) induced from 50 can
gradually approximate b(01.,—1) that has the same (L — 1)-length observations. Theorem 14 of
Uehara et al.|(2022) demonstrated that

Lemma 3 (Theorem 14 of [Uehara et al.| (2022)). Under Assumption W l for K > L+1, L >
Cy~*log(d/¢), where C > 0 is a constant, we have

Eoppo o ||b(01:k-1) = br(0h—rL41:0-1) ||, < € (10

Proof of Lemma[l] The proof is the same to Proposition 7 of [Guo et al](2023a)). The only difference
is there is no actions in HMM. For any k > L + 1, given the by, satisfying @]), now, we can construct
the probability as

Pr(ok | ok—r41:8-1) (ZT ok | hi)w )T : ( > 1P*(hk—l)bL(Ok—LH:/c—l)(h/~c—1))

hi—1

=p(or) " d(op—pLy1:k-1),

where we use the notation

) =Y T(ox | he)w* (hi),  ¢(ok—ri1m-1) = D " (hi-1)br(0k—r41:8-1) (k1)
hy

hik—1
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Hence, we deduce that

Eoy 1 Plok | 01:6-1) =Ko, , ZT ok | i )w* (he) "+ Y 4" (hg—1)b(015—1) (ha—1)

hr—1

<Ko, ZT Ok | hk w* hk)T
h

: Z ¢*(hk—1)(|b(01:k—1)(hk—1) — br(0k—r+1:6—1) (he—1)| + bL(Ok—L+1:k—1)(hk—1)>

hg—1
=Eop s O Tok [ Be)w(hi) "+ Y 0" (hi—1)br(0k—L115-1) (hi—1)
hi hi—1
Eory Y T(ok | hi)w* (hie) T > " (hie—1)[b(01:5-1) (hi—1) = br(0k—L1:5-1) (hi—1)]-
h hi—1
1D
Since we have for any hj_1
ZT Ok‘hk hk)Td) hk 1 ZP0k|hk hk|hk 1) 1
term (TT)) can be bounded as
Eoves D0 (20 T(ok | hi)w () T 0" (hi-1)) - [bor—1) (ha-1) = bu.(0k-L10-1) ()|
hk—1  hi
<Eop_y|0(01:6-1) (hi—1) — br(0k—p41:8—1) (hie—1)|
<e

b

where the first inequality is by the Cauchy-Schwarz inequality, and the second inequality uses Lemma
[l Therefore, we obtain

Eop . Plog | 01:6-1) < Eop., Pr(ok | 0Ok—p+1:6-1) + €,

which concludes the proof. O

Then, we can construct the (L — 1)-memory probability by replacing the belief state

Pr(ok | ok—r+1:6-1) (ZT o | hi)w )T . ( > w*(hkfl)bL(OkaJrl:k:fl)(hkfl))

hrp_1

=u(ox) " Plop—r41:5-1),

G PROOF FOR LEMMA

Proof of Lemma |2} Under the operator M, we can write

Pogiim | he) = / M(0ptirm | Best ) (hes) To* (he)dhe.
H

We wish to approximate
P(og:k+m | 01:n) bY Pr(0k:ktm | 0t—141:t)-
Given a history observation o1.x, we define the belief state b;(01.) € A(S) as the distribution
be(01.1)(h) =P(hy, = h | 01.%).
Additionally, for any distribution b € A(S), we define the belief update operator By 1 (b, 0:k+m) as

M(0k:km | B) 3 (R )P(RIR)
2 M(Okekgm | B) 32 b(R)P(R )

Bi_1 (b7 0k:k+nz)(h) =
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then, the update for belief state is
b(01:5-1) = B(bk—1(01:5-1), Ok:k+m)-

Given this notation, we can write P as

-
P(op:ktm | 01:1-1) = (/ M(0k:k+m | ht+1)w*(ht+l)dht+1) / V" (hig—1)b(01: 1) (hg—1)dhg—1.
H H
(12)

Thus, to approximate PP by Py, it suffices to approximate b(01.;) by some belief state by, (0¢—r..¢)-
To construct a good approximation, we can first construct a history-independent belief distribution
by € A(S) by G-optimal design (Uehara et al.,[2022)) such that for any belief state

KL(b, by) < d°. (13)
Lemma 4 (Exponential Stability for Low-rank Transition). Under Assumption |4} for L >
Cy~*log(d/e), we have

E||b(o1:6-1) — bL(Ot:t+L)H1 <e.

Then, by following the same analysis as the proof of Lemma[I] we can prove the desired result. [

H TECHNICAL LEMMAS

Lemma 5 (Convergence rate in gradient descent). Suppose L is a-strongly convex and [3-smooth
for some 0 < « < (3. Then the gradient descent iterates wtgg = wk, — NV L(wk ) with learning
rate n = 7! and initialization wl, ;, satisfies

U wgp — w3,

B

ety — w3,

lwep — w3 < e”
L(wgp) — L(w") <

where k = B/« is the condition number, and w* = arg min L(w) is the optimizer of function L — 1.
Lemma 6 (Lemma G.2 in|Ye et al.|(2023), Theorem 2.29 in|Zhang| (2023)). Let {¢;} be a sequence
of zero-mean conditional o-subGaussian random variable, i.e, InE[e*|S;_1] < A2o2 /2, where
S;_1 represents the history data. With probability at least 1 — 6, for any t > 1, we have

t

Ze? < 2to? + 302 1In(1/9).

i=1
Lemma 7 (Theorem 4 in Bai et al.[(2023)). Forany A > 0, 0 < o < § with

B
T oa+ N
By >0,ande < B “QB w, there exists an L-layer attention-only transformer T F}) with
M = [2klog(B,B,/(2¢))] +1
(With R := max{B,B.,, By, 1}) such that the following holds. On any input data (D, xn11) such
that the regression problem is well-conditioned and has a bounded solution:
@ < Amin(X T X/N) < Anax (X TX/N) < B,
[wiagellz < Bu/2,

TFé) approximates the prediction yn 1 as

IN+1 — (Whages TN41)| < €.

Lemma 8 (Lemma F.3 of |Fan et al|(2023)). Consider a sequence of matrix { A;}$2, with dimension
dy X do and an i.i.d. sequence {€,}3°,, where €, is conditional o-subgaussian (i.e., E(e*¢t | A;) <
e * 12 glmost surely for all o € R). Define the matrix sub-Gaussian series S = Z;Lzl €Ay with
bounded matrix variance statistic:

max {[| 4,7 |, AT A, } < v

Then, for all w > 0, we have
2

u
IED(HS”op > u) < (di +dz)exp ( - m)
t=1
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I LLM USAGE STATEMENT

We used LLMs to aid in polishing the writing of this paper. Specifically, LLMs were employed as a
general-purpose assistant to improve clarity, grammar, and style, and to suggest alternative phrasings
for technical explanations. They were not used to generate novel research ideas, design experiments,
or produce results. The authors take full responsibility for all content, including text refined with the

assistance of LLMs.
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