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ABSTRACT

Transformer-based models have shown remarkable capabilities in sequence learning
across a wide range of tasks, often performing well on specific task by leveraging
input-output examples. Understanding the mechanisms by which these models
capture and transfer information is important for driving model understanding
progress, as well as guiding the design of more effective and efficient algorithms.
However, despite their empirical success, a comprehensive theoretical understand-
ing on it remains limited. In this work, we investigate the layerwise behavior of
Transformers to uncover the mechanisms underlying their multi-task generalization
ability. Taking explorations on a typical sequence model—Hidden Markov Models
(HMMs), which are fundamental to many language tasks, we observe that: (i)
lower layers of Transformers focus on extracting feature representations, primar-
ily influenced by neighboring tokens; (ii) on the upper layers, features become
decoupled, exhibiting a high degree of time disentanglement. Building on these
empirical insights, we provide theoretical analysis for the expressiveness power of
Transformers. Our explicit constructions align closely with empirical observations,
providing theoretical support for the Transformer’s effectiveness and efficiency on
sequence learning across diverse tasks.

1 INTRODUCTION

Transformer-based models have achieved state-of-the-art performance across a broad range of
sequence learning tasks, from language modeling and translation (Touvron et al., 2023; Dubey
et al., 2024; Achiam et al., 2023; Team et al., 2023) to algorithmic reasoning (Liu et al., 2024; Ye
et al., 2024). Remarkably, a single Transformer can often generalize across diverse tasks with minimal
supervision, leveraging only a few input-output examples—a capability that underpins its success in
few-shot and in-context learning (Brown et al., 2020; Wei et al., 2022; Dong et al., 2023; Min et al.,
2022).

While the empirical success is well-documented, a key question remains elusive:

How do Transformers capture and transfer information across layers?

Understanding these internal mechanisms is crucial for advancing algorithmic design and developing
more efficient model architectures. In particular, the internal mechanisms by which Transformers
represent and process sequential information across layers are not yet fully understood. This gap is
especially pressing given the growing interest in deploying large-scale Transformers in multi-task
and general-purpose settings.

In this work, we aim to bridge this understanding gap by investigating the layerwise behavior of
Transformers. We take explorations on Hidden Markov Model (HMMs)(Rabiner, 1989; Baum &
Eagon, 1967), a classical class of sequence models where observations depend on unobserved hidden
states evolving underlying Markov dynamics. Through empirical analysis, we uncover that while
achieving good performance, Transformer learns feature representations on the lower layers, which
are heavily influenced by nearby tokens, as well as developing decoupled features on upper layers,
behaving like time disentangled representations (see Section 2 for details). Motivated by these
observations, we provide a theoretical analysis of Transformer expressiveness. By constructing
explicit Transformer architectures that model HMMs efficiently, we demonstrate how the observed
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empirical patterns naturally emerge from our constructions. These results offer principled insights
into how Transformers capture and generalize sequence information across tasks, shedding light
on their success in multi-task and few-shot learning. Such feature decoupling phenomenon may
also have potential practical implications, such as improving inference efficiency by design parallel
computing on upper layers, which might be valuable future directions. Our main contributions are
summarized as follows:

1. Expressiveness. On the theoretical side, we model language tasks in Transformers through
Hidden Markov Models. Given the large hidden state space often encountered in practice, we
adopt a low-rank structure for latent transitions, which has received tremendous attention recently
for its efficiency in computation and inference (Siddiqi et al., 2010; Chiu et al., 2021). We
show that under mild observability assumptions, Transformers can approximate low-rank HMMs
using a fixed-length memory structure, enabling effective in-context learning. On the empirical
side, we present that well-trained Transformers achieve high accuracy under in-context learning,
with performance improving as more input-output examples are provided or as sequence length
increases, which aligns with Theorem 1.

2. Feature Decoupling Phenomenon. On the empirical side, we observe that lower layers focus on
learning local representations, primarily influenced by neighboring tokens. Upper layers develop
decoupled, temporally disentangled representations that are less tied to specific input positions and
encode higher-level abstractions. Our theoretical constructions provide corresponding explana-
tions: lower layers extract local features, which are then transformed into decoupled, task-relevant
representations in upper layers.

3. Generalization to ambiguous settings. We extend our theoretical results to more challenging sce-
narios where the hidden state space exceeds the observation space, which are natural assumptions
in NLP. And we show that Transformers can still learn expressive representations by composing
features from multiple future observations.

4. Technical contribution. From the technical level, we first provide a theoretical analysis of sample
complexity on causal tasks, establishing a quantitative relationship between sample size, model
capacity and prediction performance.

1.1 RELATED WORKS
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Figure 1: Accuracy of the Trans-
former under in-context learning
setting. The y-axis denotes the
number of demonstrative examples
in-context, and the x-axis denotes
the length of the test input otest.
All demonstrative examples have
a length of 8 in this setting.

The expressiveness of Transformers on sequence modeling has
been explored from several perspectives. Liu et al. (2022a)
demonstrate that Transformers can emulate automata by learn-
ing deterministic transition patterns. Nichani et al. (2024) ana-
lyze a simplified setting where the data follows a Markov chain
governed by a transition matrix. Other works, such as Sander
et al. (2024) and Wu et al. (2025), study the expressiveness
of Transformers in autoregressive modeling, focusing on non-
causal tasks. In contrast, our work takes a first step toward
understanding the expressive power of Transformers on Hidden
Markov Models, which are arguably among the simplest yet
fundamental tools for modeling natural language tasks.

The detailed related works can be seen in Appendix A.

2 STARTING FROM THE EMPIRICAL FINDINGS

2.1 EXPERIMENT SETTINGS

To empirically investigate how Transformers learn multiple
tasks on sequential data, we construct a dataset generated by
a mixture of Hidden Markov Models (HMMs). Each HMM
is used to model a tasks-specific distribution, and by mixing
them we get a dataset similar to a pre-training corpus to learn language modeling on. In specific,
we randomly simulate 8192 HMMs. The generation process is as follows. There is an initial
task distribution on which we sample the HMM id. Each HMM composes of 128 hidden states
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randomly transiting between each other. Each next state depends purely on the previous state,
making the sequence of hidden states Markovian. All HMMs share a 16-token vocabulary. Each
hidden state is associated with an emission distribution to randomly output a token. We sample
131k data, which allows training for 64 epochs1, with 64 steps in each epoch on a batch size of
32. We build a transformer of 16 layers and 16 heads in each layer, and a hidden state dimension
of 1024.(Verifications on other models are in Appendix B.) The transformer adopts the design of
Roformer Su et al. (2024) which uses rotary positional encoding technique, and determines the
attention logit between two tokens based on their relative position.
Remark 1. Unlike Edelman et al. (2024); Park et al. (2024), our focus is not on task-level general-
ization to unseen HMMs, but on the model’s ability to adapt to a new sequence realization and infer
the latent dynamics in-context, which aligns with the definition used in GPT-3 (Brown et al., 2020)
and many empirical ICL works.

2.2 RESULTS

Expressiveness power on HMMs. Figure 1 iterates over per-sample length (x-axis, from 1 to
8) and the number of samples (y-axis, also 1 to 8), and reports the ICL accuracy obtained from
these prompts. The high accuracy observed in Figure 1 highlights the expressiveness of well-trained
Transformers. Moreover, we find that (1) accuracy improves as the number of input-output examples
increases, and (2) task outputs become more predictable with longer test sequences.
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Figure 2: After randomly shuffling
the positions of demonstrative in-
puts, we examine how the logits re-
ceive changes over layers (y-axis)
and attention heads (x-axis). The
measure is 1− std(logits)

mean(logits) .

Decoupled features on upper layers. Figure 2 is produced
by shuffling the demonstration examples, and tracking how
each sample’s received logit change as the same sample is
moved to different positions. The color shows the stability
metric 1 − std/mean. As each attention head assigns a logit
distribution, we plot a matrix to illustrate each head (x-axis)
and layer (y-axis). As shown in Figure 2, the upper layers
(layers 9–15) exhibit attention logits that are less dependent
on the positions of input tokens. This suggests that feature
representations in these layers become increasingly decoupled,
reflecting a high degree of time disentanglement.

Layerwise investigations on Transformer recognitions.
Figure 3a and Figure 3b are generated by probing the interme-
diate layer representations with linear classifiers to test whether
they contain task IDs, hidden-state IDs, or previous-token infor-
mation. In the probing experiments, it is computed by training
linear classifiers on the hidden representations from each layer
and reporting standard classification accuracy. Figure 3a shows
that Transformers gradually recognize the task identity across
layers. Within a single task, the hidden state is identified earlier than the task itself, indicating
that Transformers first learn the relationship between observations and hidden states in the lower
layers, and then capture task-level structural information in the upper layers. This reflects a layerwise
processing hierarchy in how Transformers handle sequential information. In Figure 3b, we observe
three key patterns: (1) The Transformer identifies previous tokens (i−1, i−2, i−3, i−5, i−10) with
decreasing accuracy as the distance increases, suggesting that feature learning in lower layers relies
primarily on nearby tokens. (2) The accuracy curves for all distances follow a rising-then-falling
trend across layers, implying that Transformers initially aggregate information from local contexts,
and the resulting features then act as decoupled representations in upper layers. (3) The peak of each
curve shifts to upper layers as the distance to the previous token increases, showing that Transformers
first integrate information from close neighbors and then progressively attend to more distant tokens.
Remark 2. In this work, our primary goal is to clarify and explain the feature-decoupling phe-
nomenon, which we believe may have implications for practical large-scale models. For example, as

1The term “epoch” in our implementation refers to a training cycle consisting of 64 gradient steps, each with
a batch size of 32. This usage follows standard practice in large-scale language-model pretraining, where the
data stream is effectively infinite and an “epoch” denotes a fixed number of optimization steps rather than a full
pass over a dataset.
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(a) Task/ State recognition performance.
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(b) Token recognition performance.

Figure 3: Investigation on Transformer recognitions.

features become decoupled in higher layers, it may be possible to reduce the number of attention
heads in these layers, as fewer heads may be sufficient to learn information. Besides, the decoupling
phenomenon also suggests the possibility of more parallelizable architectures in higher layers, which
could further improve computational efficiency. Moreover, since the features learned in the lower
layers rely mainly on local neighboring tokens, it is also a potential implication to mask far-history
tokens to improve model efficiency, if the task does not have strong long-range dependencies.

3 PROBLEM SETUP

Notation. For a set H, we use ∆(H) to denote the set of all probability distributions on H.
Let the emission operator T∗ : ∆(H) → ∆(O). For any b ∈ ∆(H), we use T∗b ∈ ∆(O) to
denote

∫
H T∗(x|h)b(h)dh. For a vector a, we use [a]i to denote the i-th element of a. For a

sequence {xi}∞i=1, we define the concatenated vector x1:n = [x1, . . . , xn]
⊤. For a matrix A ∈

Rd1×d2 , we use [A](i,·) ∈ Rd2 and [A](·,j) ∈ Rd1 to denote the i-th row vector and the j-th
column vector of A respectively, use [A](i1:i2,·) and [A](·,j1:j2) to denote the submatrix consisting
of rows i1 through i2, and the submatrix consisting columns j1 through j2 respectively. For a
distribution P : {e1, . . . , ep} → [0, 1] supported on the tabular space, we define the vector P (·) =
[P (e1), . . . , P (ep)]

⊤.

We represent each observation as a one-hot vector o ∈ Rp+1. We collect n i.i.d. HMM-generated
sequences, each of length L. The corresponding hidden states are denoted by h, which are unobserved.
The token embedding dimension is D. We denote by T the number of attention layers in the
Transformer after the features have become decoupled.2

3.1 TRANSFORMER ARCHITECTURE

We begin by describing the framework of Transformers as follows:

Attention head. We first recall the definition of the (self-)Attention head Attn(·, Q,K, V ). With
any input matrix M ,

Attn (M,Q,K, V ) = σ
(
MQKTMT

)
MV,

where {Q,K, V } refer to the Query, Key and Value matrix respectively. The activation function σ(·)
can be row-wise softmax function3 or element-wise ReLU function4.

2A more detailed notation table is provided in Table 1.
3Given a vector input v, the i-th element of Softmax(v) is given by exp(vi)/

∑
j exp(vj).

4ReLU(x) = max{x, 0}

4
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Figure 4: Illustration of Hidden Markov Model.

Transformer. Based on the architecture of Attention head, with the input matrix M , the definition
of multi-head multi-layer Transformer TF(·) is give by

H(0) =M, H(l) = H(l−1) +

Ml∑
m=1

Attn
(
H(l−1), Qm,Km, Vm

)
,

for any l ∈ [N ], where N refers to the number of Transformer layers, and Ml is the number of
Attention heads on the l-th layer.

One-hot encoding. Considering a vector set with finite elements S := {v1, v2, . . . , vm}, the One-
hot encoding refers to mapping these vectors into Rm, i.e, Vec(·) : S → Rm. Each vector is mapped
to an one-hot vector within {e1, e2, . . . , em}, and for any two different vectors vs, vs′ ∈ S , there will
be Vec(vs) ̸= Vec(vs′).

3.2 IN-CONTEXT LEARNING FOR HIDDEN MARKOV MODEL

To show the expressive power of Transformers on sequence tasks, we consider a finite state case
in this work, hidden Markov models (HMMs). To perform in-context learning, we collect n i.i.d.
demonstrate short observation sequences, i.e, {oi,1, . . . , oi,L}ni=1, each sequence consists of L− 1
observations. Denote the hidden state for each observation as hi,s for any i ∈ [n], s ∈ [L], the HMM
is defined as (more intuitive description is shown in Figure 4):

P(oi,s|oi,1, . . . , oi,s−1, hi,1, . . . , hi,s−1, hi,s) = P(oi,s|hi,s), ∀i ∈ [n], s ∈ [L],

P(hi,s|oi,1, . . . , oi,s−1, hi,1, . . . , hi,s−1) = P(hi,s|hi,s−1), ∀i ∈ [n], s ∈ [L].

During testing, to predict otest,k given a long sequence history {otest,s}k−1
s=1 , where k > L, we

construct the input matrix M0 for Transformers in the following format:

M0 := [M0,1 M0,2 · · · M0,n M0,test]
T ∈ R(n(L+1)+k)×D,

in which the column number D will be specified later, and

M0,i :=

 oi,1 oi,2 · · · oi,L odelim
s(i−1)(L+1)+1 s(i−1)(L+1)+2 · · · si(L+1)−1 si(L+1)

v(i−1)(L+1)+1 v(i−1)(L+1)+2 · · · vi(L+1)−1 vi(L+1)

 ∈ RD×(L+1), ∀i ∈ [n],

M0,test :=

 otest,1 otest,2 · · · otest,k−1 0
sn(L+1)+1 sn(L+1)+2 · · · sn(L+1)+k−1 sn(L+1)+k

vn(L+1)+1 vn(L+1)+2 · · · vn(L+1)+k−1 vn(L+1)+k

 ∈ RD×k,

where each column of M0, i.e, [oT , sT , vT ] represents the embedding for one observation, and odelim
is the delimiter embedding, which represents the end of one sequence. o ∈ Rp+1 refers to the token
embedding, which is a one-hot vector within {e1, . . . , ep+1}. Specifically, we have

o ∈ {e1, . . . , ep} for o ̸= odelim, odelim = ep+1.

The following s ∈ R2 is position embedding, which is referred to as

[spos]1 = sin
( pos

1000nk

)
, [spos]2 = cos

( pos

1000nk

)
, ∀1 ≤ pos ≤ n(L+ 1) + k.

And the last (D − p− 3)-dim vector v ∈ RD−p−3 is the fixed embedding, with elements of ones,
zeros and indicators for being the test sequence:

vpos :=
[
0⊤D−p−5, 1, 1(pos > n(L+ 1))⊤

]⊤
, ∀1 ≤ pos ≤ n(L+ 1) + k.
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We will choose D ≥ 2p2L to allocate sufficient capacity for storing the learned features. After
feeding M0 into the Transformer, we will obtain the output TF(M0) ∈ R(n(L+1)+k)×D with
the same shape as the input, and read out the conditional probability P(otest,k|otest,1:k−1) from
[TF(M0)](n(L+1)+k,1:p) :

P̂(otest,k|otest,1:k−1) = read(TF(M0)) := [TF(M0)](n(L+1)+k,1:p).

The goal is to predict the conditional probability that is close to the true model.

4 THEORETICAL ANALYSIS

4.1 LOW-RANK HMM

Our analysis is mainly based on the low-rank structure for HMM.
Assumption 1 (Low rank structure). We suppose that the hidden state transition P : H → ∆(H)
admits a low-rank structure: there exist two mappings w∗, ψ∗ : H → Rd such that P(h′|h) =
w∗(h′)⊤ψ∗(h).

This condition requires that the latent transition has a low-rank structure, and the underlying rep-
resentation maps w∗, ψ∗ are unknown. This structure is commonly used in representation learning
(Agarwal et al., 2020; Uehara et al., 2021; 2022; Guo et al., 2023a).In practice, for example in tabular
cases, the transition matrix P =WΨT . This condition mean the transition matrix is decomposed into
two low-rank matrices, and this low-rank assumption holds in lots of scenarios with high-dimensional
data, such as Robot Navigation. The environment information is high-dimensional but the state
transition is determined by low-dimension latent common factors.
Assumption 2 (Over-complete γ-Observability). There exists γ > 0 such that for any distributions
d, d′ ∈ ∆(H), we have ∥T∗d− T∗d′∥1 ≥ γ∥d− d′∥1.

This condition requires that the observation space is large enough to distinguish the hidden states
by observations, i.e., the condition makes the reverse mapping from observation to hidden states
a contraction. This aligns with some practical scenarios where meaningful representations allow
models to infer latent structure. Observability is necessary and commonly assumed in HMM and
partially observed systems (Uehara et al., 2022; Guo et al., 2023a), and it is essentially equivalent to
assuming that the emission matrix has full-column rank (Hsu et al., 2012). Further, Assumption 2
implies that we can reverse the inequality to obtain the contraction from observation to hidden state
distributions ∥d− d′∥1 ≤ γ−1∥T∗d− T∗d′∥1.
Therefore, we can approximate the posterior hidden state distribution by a posterior sharing the
same (L− 1)-memory (refer to Lemma 4). Together with the low-rank condition that renders the
transition P(ok|o1:k−1) := µ⊤(ok)ξ(o1:k−1), where µ, ξ are two d-dim vector functions, we can
approximate P by a (L − 1)-memory transition in the following lemma: P̂L(ok|ok−1:k−L−1) :=
µ(ok)

⊤ϕ(ok−L+1:k−1), where µ(·), ϕ(·) ∈ Rd denote the representations. The representation ϕ is a
low-rank embedding of the belief distribution of hidden states. For simplicity, here we assume ϕ can
be represented by a linear mapping.
Lemma 1 (Model Approximation). Under Assumptions 1 and 2, there exists a (L − 1)-memory
transition probability P̂L with L = Θ(γ−4 log(d/ϵ) such that

Eo1:k−1

∥∥P(· | o1:k−1)− P̂L(· | ok−L+1:k−1)
∥∥
1
≤ ϵ.

This lemma shows that for a finite observability coefficient γ, the model approximation error can be
controlled when the memory length L− 1 is large enough. To prove this result, we bring the analysis
techniques from POMDP literature Guo et al. (2023b); Uehara et al. (2022). The detailed proof can
be referred to Appendix F.

4.2 MAIN RESULTS

Assumption 3. Given the data observation history, we denote

voi = Vectorize(oi,1:L−1) ∈ Rp(L−1), i ∈ [n],

6
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we define Z := [vo1, . . . , von] ∈ Rp(L−1)×n, then suppose that the mean sample covariance
n−1ZZ⊤ has lower-bounded eigenvalue: λmin(n

−1ZZ⊤) ≥ α.

This assumption requires that the eigenvalues of the mean sample covariance are lower-bounded,
implying that the data are distributed relatively evenly. It concerns having a sufficiently large number
of sequences n.This is consistent with practice: modern sequence models are typically trained on
large datasets. This condition is commonly used in concentration analysis to bound the generalization
error. Our main result can be formally stated as:
Theorem 1. Assume Assumption 1, 2 and 3 hold, there exists a O(lnL+ T )-layer Transformer TFθ,
such that for any input matrix M0, with probability at least 1− n−1 over {oi,1, . . . , oi,L}ni=1:

Eotest,1:k−1
∥P(·|otest,1:k−1)− read (TFθ(M0))

]
∥1

≤ O(de−γ4L)︸ ︷︷ ︸
model approximation

+O(pL1/2e−αT/(2L))︸ ︷︷ ︸
optimization

+O(pL
√
ln(nLp)/(

√
nα) + Ld/α · e−Lγ4

)︸ ︷︷ ︸
generalization

.

More specifically, the Transformer contains O(lnL) lower layers and O(T ) upper layers, and the
learned features become decoupled after the first O(lnL) layers.

The proof is in Appendix D. Theorem 1 demonstrates that a sufficiently large Transformer can
accurately approximate the HMM, revealing its strong expressive power in modeling sequential data.

Sources of errors. As shown in Lemma 1, a fixed-length memory model is sufficient to approximate
the full-memory transition probabilities, introducing only a small “model approximation” error. Our
Transformer construction is based primarily on this approximation, denoted as PL. The “general-
ization” error arises due to the use of a finite sample size n: we learn PL from n i.i.d. samples, and
the optimal learned model we can obtain, P̂L, remains close to PL as long as n is sufficiently large.
The final source of error, the “optimization” error, stems from the finite capacity of the Transformer.
Since we approximate P̂L using a Transformer with a limited number of layers, a gap between the
two remains. However, this gap can be made arbitrarily small by increasing the model size (e.g.,
number of layers), thereby improving the approximation accuracy.
Remark 3 (The connection between theory and empirical results). Consider the layerwose modeling,
our explicit construction aligns closely with the empirical observations presented in Section 2. The
construction proceeds in several stages. First, in the lower layers, the Transformer learns information
from the neighborhood L tokens, gradually incorporating information from nearby to more distant
tokens, which is consistent with the patterns shown in Figure 3b. In the upper layers, to take the
final prediction, the learned features become decoupled and are used to infer a causal structure
aligned with the underlying HMM task, which corresponds to Figure 2 and the rising-then-falling
trend observed in Figure 3b. Finally, the overall progression—from token-level feature learning to
task-level abstraction—matches the trends in Figure 3a, reflecting a clear layerwise hierarchy in how
Transformers process sequential information.

Discussion on induction head. The “induction head” phenomenon demonstrates that Transformers
can learn to predict future tokens by identifying repeating patterns in the input sequence. In contrast,
our result reveals that even when such patterns do not appear in the input history, the Transformer can
still make accurate predictions by learning to infer, rather than simply matching previous patterns.
This highlights a deeper aspect of its in-context learning ability. As a result, our approach remains
effective even with a relatively small sample size. Moreover, when the sample size is sufficiently large,
our framework becomes consistent with the induction head behavior, bridging the two perspectives.

4.3 EXTENSION TO INDISTINGUISHABLE SITUATION

In NLP tasks, a natural assumption is that the cardinality of hidden state space may be larger that the
observation space evidence, or the true number of observations that can reveal the hidden states is
small, called “weak revealing" cases. In this section, we show that Transformer can still perform well
under such ambiguous setting. Inspired by the overcomplete POMDPs (Liu et al., 2022b), we start by
expanding the output space of emission operators.
Assumption 4 (Under-complete γ-Observability). Let operator M : ∆(H) → ∆m(O × · · · × O)
such that MdH : O× · · · ×O → R denotes

∫
O×···×O M(ot:t+m|ht)dH(ht)dht, where m is a small

7
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Figure 5: Illustration of Feature learning process.

constant such that m < L. There exists γ̃ > 0 such that for any distributions d, d′ ∈ ∆(H), we have
∥Mb−Mb′∥1 ≥ γ̃∥b− b′∥1.

Then the corresponding theorem should be:5

Theorem 2. Denote the data observation Z ′ := [o1,1:L−m, . . . , on,1:L−m] ∈ Rp(L−m)×n. Assume
Assumption 1, 4 hold, and λmin(n

−1Z ′Z
′T ) ≥ α, there exists a O(lnL + T )-layer Transformer

TFθ, such that for any input matrix M0, with probability at least 1− n−1 over {oi,1, . . . , oi,L}ni=1:

Eotest,1:k−1
∥P(·|otest,1:k−1)− read (TFθ(M0)) ∥1

≤ O(de−γ̃4L)︸ ︷︷ ︸
model approximation

+O(pmL1/2e−αT/(2L))︸ ︷︷ ︸
optimization

+O(pmL
√
ln(nLp)/(

√
nα) + Ld/α · e−Lγ̃4

)︸ ︷︷ ︸
generalization

.

The proof is in Appendix E. From Theorem 2, we show that Transformers can still learn HMMs
efficiently under such “weak revealing” case, by concatenating several steps of future observations.

5 TRANSFORMER CONSTRUCTION AND PROOF SKETCHES

5.1 PROOF SKETCHES FOR THEOREM 1

Recalling Lemma 1, our Transformer construction is mainly based on approximating
PL(·|otest,k−L+1:k−1) with expression: PL(ok|ok−L+1:k−1) = µ⊤(ok)ϕ(ok−L+1:k−1).

To approximate the error in prediction, we can take the following decomposition:

Eotest,1:k−1∥P(·|otest,1:k−1)− read(TFθ(M0))∥1
≤ Eotest,1:k−1∥P(·|otest,1:k−1)− PL(·|otest,k−L+1:k−1)∥1︸ ︷︷ ︸

ϵ1:model approximation

+ Eotest,1:k−1∥PL(·|otest,k−L+1:k−1)− P̂L(·|otest,k−L+1:k−1)∥1︸ ︷︷ ︸
ϵ2:generalization

+ Eotest,1:k−1∥P̂L(·|otest,k−L+1:k−1)− read(TFθ(M0))∥1︸ ︷︷ ︸
ϵ3:optimization

,

(1)

where P̂L(·|otest,k−L+1:k−1) ∈ Rp refers to the optimal approximation for PL based on n i.i.d.
samples we collected. Considering the one-hot format of ok and the linear assumption on ϕ(·), we
can express both µ(·) and ϕ(·) as linear function, which implies that

PL(·|ok−L+1:k−1) :=W∗ok−L+1:k−1,

5The conditional probability in Theorem 2 is related to a m-step prediction, which induces that the car-
dinality of observation is pm. So we enlarge D such that D ≥ 2pmL, and the read out function should be
P̂(otest,k|otest,1:k−1) = read(TF(M0)) := [TF(M0)](n(L+1)+k,(L+1)(p+3)+1:(L+1)(p+3)+pm).
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Figure 6: Illustration of gradient descent performance.

for some W∗ ∈ Rp×p(L−1)6. Accordingly, we have P̂L(·|otest,k−L+1:k−1) := Ŵotest,k−L+1:k−1, in
which

Ŵ := argmin
W

L(W ) := argmin
W

∑
i

∥oi,L −Wzi∥22. (2)

Here we use the short-hand notation zi := oi,1:L−1 ∈ Rp(L−1). From Lemma 1, we obtain
ϵ1 = O(de−γ4L). And in the following analysis, we focus on bounding ϵ2 and ϵ3, respectively.

5.1.1 TRANSFORMER CONSTRUCTION

To predict the conditional probability vector P̂L(·|otest,k−L+1:k−1), the transformer proceeds in
three main steps: (i) it first learns the (L − 1)-step history feature oi,1:L−1 associated with oi,L,
as well as otest,k−L+1:k−1 associated with otest,k, (ii)it then performs linear regression based on
Eq. (6), (iii)finally, it approximates P̂L(·|otest,k−L+1:k−1) using Ŵ and otest,k−L+1:k−1. The explicit
construction of the Transformer is detailed below:

Decoupled feature learning. Before formally construction, for any step index 1 ≤ r < L, we
define history and future matrix Zr, Fr ∈ R(n(L+1)+k)×(p+3) for further analysis:

[Zr](t,·) :=

{
[M0](t−r,1:p+3), r < t ≤ n(L+ 1) + k,

[M0](1,1:p+3), 1 ≤ t ≤ r,

[Fr](t,·) :=

{
[M0](t+r,1:p+3), 1 ≤ t ≤ n(L+ 1) + k − r,

[M0](n(L+1)+k,1:p+3), n(L+ 1) + k − r < t ≤ n(L+ 1) + k.

To be specific, for each oi,s, Zr and Fr are corresponding to oi,s−r (history observation) and oi,s+r

(future observation) respectively. To learn these two types of features, we use two special matrices on
the position embedding vector of each observation:

A := β1

[
cos( 1

1000nk ) sin( 1
1000nk )

− sin( 1
1000nk ) cos( 1

1000nk )

]
, B := β1

[
cos( 1

1000nk ) − sin( 1
1000nk )

sin( 1
1000nk ) cos( 1

1000nk )

]
.

For t1, t2 ∈ [1 : n(L+ 1) + k] with position embedding vectors st1 , st2 , we have

sTt1Ast2 = β1 · cos
(
t1 − t2 − 1

1000nk

)
, sTt1Bst2 = β1 · cos

(
t1 − t2 + 1

1000nk

)
.

By using A in Query-Key matrix with enough large β1, and applying the softmax activation along
with a carefully designed Value matrix, we can learn Z1 after the first Attention layer. On the second
layer, we again use A to design Query-Key matrix, which enables the learning of Z2, Z3 (see Figure 5
as a detailed illustration). Repeating such process for O(lnL) layers, we will obtain {Z1, . . . , ZL−1}
using O(lnL)-layer single-head Attention. Also, use matrix B, we can obtain F1 on the following
layer. The output matrix after these decoupled-feature layers should be

Mdec = [[M0](·,:p+3), Z1, Z2, Z3, . . . , ZL−1, F1, [M0](·,(L+1)(p+3)+1:D)] ∈ R(n(L+1)+k)×D.
6As the (p+ 1)-th dimension is designed only for odelim, we consider the observation as a p-dim vector for

simplicity.
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Gradient descent performing and final prediction. The following O(T )-layer architecture is
designed to learn P̂L(·|zk) based on history information {Z1, . . . , ZL−1}. To be specific, from Eq. (2),
we need to take linear regression to estimate a matrix Ŵ ∈ Rp×p(L−1). To perform such estimation
process for W , we construct a 2p-head O(T )-layer Attention. Each layer can perform single gradient
descent step on L(W ), starting from an initial value 0. Each row of W is assigned to two independent
attention heads for parallel learning (see Figure 6 for detailed illustration). The construction closely
follows the method proposed in Bai et al. (2024), with the key difference being that we use F1 to pick
up n samples for the gradient descent updating. After O(T )-step gradient descent, we use the learned
{[Ŵ ](1,·), . . . , [Ŵ ](p,·)} and otest,k−L+1:k−1 to predict P̂L(·|otest,k−L+1:k−1). The corresponding
error ϵ3 = O(pL1/2e−αT/(2L)) can be estimated using Lemma 7.

5.1.2 GENERALIZATION ERROR APPROXIMATION

Using the notations for labels and covariates O := [o1,L, . . . , on,L] ∈ Rp×n, Z =

[o1,1:L−1, . . . , on,1:L−1] ∈ Rp(L−1)×n, the least square estimator has the following closed-form
solution: Ŵ := OZT (ZZT )−1.

Then, denoting ztest := otest,k−L+1:k−1 and error ∆ := O −W∗Z, we can take the estimator into
ϵ2 and upper bound it by

ϵ2 ≤
p∑

j=1

√
L∥[W∗](j,·) − [O](j,·)Z

T (ZZT )−1∥2 ≤
√
L

nα

p∑
j=1

∥[∆](j,·)Z
T ∥2

≤
√
L

nα

p∑
j=1

∥
(
[∆](j,·) − E[[∆](j,·)]

)
ZT ∥2 +

√
L

nα

p∑
j=1

∥E[[∆](j,·)]
)
ZT ∥2

(3)

where the second inequality uses the definition O = ∆+W∗Z and λmin(ZZ
⊤) ≥ α in Assumption

3, and invokes the Cauchy-Schwartz inequality. For the first term on the last row of (3), we use the
matrix concentration in Lemma 6 to obtain that with a high probability,

∥
(
[∆](j,·) − E[[∆](j,·)]

)
ZT ∥2 ≤ O

(√
nL ln(nLp2)

)
.

For the second term on the last row of (3), based on the observation that E[[∆](j,i)] = Eoi,1:k−1
[P(ej |

o1:k−1)− PL(ej | ok−L+1:k−1)], we can bound it by O(Ld/α · e−Lγ4

) via Lemma 1.

5.2 PROOF SKETCHES FOR THEOREM 2

The error analysis and the corresponding Transformer construction follow a similar approach to
Theorem 2, with one key modification. After the decoupled feature extraction stage, the resulting
output matrix takes the following form:

Mdec = [[M0](·,1:p+3), Z1, Z2, . . . , ZL−m, F1, F2, . . . , Fm, [M0](·,(L+1)(p+3)+1:D)].

Before feeding it into subsequent Attention layers, we apply an one-hot encoding function Vec(·) to
each row of {[M0](·,1:p), [F1](·,1:p), . . . , [Fm−1](·,1:p)}, which correspond to the current and future
observations at each time step.

6 CONCLUSION

This work advances our theoretical and empirical understanding of how Transformers achieve
strong generalization across diverse sequence learning tasks. By analyzing their layerwise behavior
and constructing explicit architectures for modeling HMMs, we demonstrate that Transformers
gradually transition from learning local, token-level features in lower layers to forming decoupled
representations in upper layers. These findings align with empirical observations, as well as providing
a principled explanation for the Transformer’s expressiveness and efficiency in multi-task and in-
context learning settings.
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A RELATED WORKS

Expressiveness of Transformer. The expressive power of Transformers has been studied exten-
sively from various perspectives. For example, Akyürek et al. (2022); Von Oswald et al. (2023);
Mahankali et al. (2023); Dai et al. (2022) demonstrate that a single attention layer is sufficient to
compute a single gradient descent step. Garg et al. (2022); Bai et al. (2024); Guo et al. (2023b) show
that Transformers can implement a wide range of machine learning algorithms in context. Similarly,
Xie et al. (2021); Wang et al. (2023); Jiang (2023) establish that Transformers can approximate
Bayesian optimal inference. Other works have explored different capabilities of Transformers: Liu
et al. (2022a) show they can learn shortcuts to automata, Lin et al. (2023) demonstrate their ability to
implement reinforcement learning algorithms, and Nichani et al. (2024) reveal their capacity to learn
Markov causal structures under a fixed transition matrix, Sander et al. (2024); Wu et al. (2025) show
the expressiveness power on learning autoregressive models.

Hidden Markov Model. Identification for uncontrolled partially observable systems has been
broadly studied, especially for the spectral learning based models (Hsu et al., 2012; Van Overschee
& De Moor, 1995; Song et al., 2010; Hamilton et al., 2013; Kulesza et al., 2015). Intuitively,
all the frameworks require some observability conditions to reveal the hidden states via sufficient
observations. For complex sequential spaces with a large hidden state space, there is another line of
work considering structured latent transitions, allowing for more efficient inference and computation
complexity (Siddiqi & Moore, 2005; Felzenszwalb et al., 2003; Dedieu et al., 2019; Siddiqi et al.,
2010; Chiu et al., 2021). Especially, Chiu et al. (2021) consider a low-rank structure for hidden
state transitions. Such a low-rank structure is also widely studied in partially observable Markov
Decision processes (Uehara et al., 2022; Guo et al., 2023a; Zhong et al., 2022; Wang et al., 2022;
Zhan et al., 2022). The most related ones to our work are Uehara et al. (2022); Guo et al. (2023a),
which utilize the low-rank latent transition and observability to avoid a long-memory learning and
inference. Instead, they can approximate the posterior distribution of the hidden states given whole
observations by a distribution conditioned on a fixed-size history.

Transformer and Markov Data. A growing body of work studies Transformers through the
lens of Markovian structures and in-context learning. Bietti et al. (2023) interpret Transformers as
dynamic memory systems that integrate features across layers. Edelman et al. (2024) and Ekbote
et al. (2025) analyze induction heads, showing that Transformers can implement Markov chains and
pattern-matching behaviors. Zhou et al. (2024) demonstrate that Transformers can learn variable-
order Markov chains in-context. Makkuva et al. (2024a;b) provide principled frameworks to analyze
attention on Markov data and study how learning dynamics evolve from local to global representations.
Rajaraman et al. (2024) show that constant-depth Transformers suffice to model Markov processes.
Nichani et al. (2024) study how Transformers learn causal structures, while Li et al. (2023) and Ren &
Liu (2024) focus on topic structure and representation learning dynamics in in-context learning. Our
work differs in three main aspects. First, rather than studying training dynamics or pattern-matching
mechanisms, we focus on the expressive power of Transformers for representing hidden Markov
models. Second, we observe a feature-decoupling phenomenon, in which Transformers can infer
latent states even without repeated patterns in the input, contrasting with classical induction head
behavior that relies on explicit token matches. Third, while our approach works with relatively small
sample sizes, it becomes consistent with induction-head behavior when the sample size is large,
bridging the inference-driven and pattern-matching perspectives.

B ADDITIONAL EXPERIMENT DETAILS AND RESULTS

B.1 EXPERIMENT SETTINGS

Here we construct a dataset generated by a mixture of Hidden Markov Models (HMMs). Each
HMM is used to model a tasks-specific distribution, and by mixing them we get a dataset similar to a
pre-training corpus to learn language modeling on. In specific, we randomly simulate 8192 HMMs.
The generation process is as follows. There is an initial task distribution on which we sample the
HMM id. Each HMM composes of 128 hidden states randomly transiting between each other. Each
next state depends purely on the previous state, making the sequence of hidden states Markovian. All
HMMs share a 16-token vocabulary. Each hidden state is associated with an emission distribution
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to randomly output a token. We sample 131k data, which allows training for 64 epochs, with 64
steps in each epoch on a batch size of 32. We build a transformer of 16 layers and 16 heads in each
layer, and a hidden state dimension of 1024. The experiments run on a single V100 GPU with 16
GB of memory for 10 hours. The mixture-of-HMMs simulation runs with default multiprocessing of
Python.

See Figure 7 for the attention heatmap.

Figure 7: Attention of the Transformer on in-context learning inputs. The y-axis denotes layers
and attention heads within each layers, and the x-axis denotes the attention of the last token on all
previous tokens in the ICL input (including both demonstrative examples and the test input).

B.2 ADDITIONAL RESULTS ON OTHER MODELS

Verification on smaller models. We conducted additional experiments on smaller models. We
use the same experimental setting and investigate Transformers of smaller sizes (number of layers 8,
number of heads 8) and (number of layers 4, number of heads 4). The 8-layer model is capable of
learning the HMMs with the final-example accuracy of 0.707 (a similar level to the 16-layer model,
indicating a saturated accuracy). In contrast, the 4-layer model has a degraded accuracy of 0.213,
meaning that the learning ability gradually emerges between a layer depth of 4 and 8. Moreover,
interestingly, we observed a similar feature decoupling phenomenon. The results of 8-layer 8-head
Transformer can be seen in Figure 8, 9, 10 and 11. The results of 4-layer 4-head Transformer can be
seen in Figure 12, 13, 14 and 15.

Verification on larger model. We analyze the LLaMA-3-8B model on the SST-2 dataset using
64 (demonstration set, test sample) pais, each with 16 samples of length 16. We apply 16 random
permutations per group and measure attention consistency across permutations using the metric 1
- std/mean of attention logits to the final token. The results (unfortunately we are prohibited from
uploading images) reveal a clear trend: higher layers contain a larger proportion of position-invariant
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Figure 8: Accuracy of the Transformer under in-context learning setting.
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Figure 9: After randomly shuffling the positions of demonstrative inputs, we examine how the logits
receive changes over layers (y-axis) and attention heads (x-axis). The measure is 1− std(logits)

mean(logits) .

heads, suggesting these layers rely less on the absolute positions of ICL examples. More specifically,
the initial 8 layers have an average ratio of std / mean = 1.59, while the last 8 layers have the average
ratio of 0.79. See reults in Figure 16.
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Figure 10: Investigation on Transformer recognitions.

Figure 11: Attention of the Transformer on in-context learning inputs.

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7
0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

Figure 12: Accuracy of the Transformer under in-context learning setting.
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Figure 13: After randomly shuffling the positions of demonstrative inputs, we examine how the logits
receive changes over layers (y-axis) and attention heads (x-axis). The measure is 1− std(logits)

mean(logits) .
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Figure 14: Investigation on Transformer recognitions.

Figure 15: Attention of the Transformer on in-context learning inputs.
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Figure 16: After randomly shuffling the positions of demonstrative inputs, we examine how the logits
receive changes over layers (y-axis) and attention heads (x-axis). The measure is 1− std(logits)
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C NOTATION TABLE

Table 1: The table of notations used in this paper.

Notation Description
∆(H) the set of all probability distributions on H
T∗ the emission operator
T∗b

∫
H T∗(x|h)b(h)dh

ej one-hot vector
[a]j the i-th element of vector a
x1:n concatenated vector [x1, . . . , xn]⊤
[A](i,·) the i-th row vector of A
[A](·,j) the j-th column vector of A

[A](i1:i2,·) the submatrix consisting of rows i1 through i2 of A
[A](·,j1:j2) the submatrix consisting columns j1 through j2 of A
P (·) the vector [P (e1), . . . , P (ep)]⊤ for a distribution P : {e1, . . . , ep} → [0, 1]
L sequence length on training samples
γ observability coefficient
p observation state number
d feature dimension in transition matrix low-rank structure
n sequence sample number
k sequence length on test sample
T the number of gradient descent steps after feature obtaining

D PROOFS FOR THEOREM 1

Recalling Lemma 1, our Transformer construction is mainly based on approximating
PL(·|otest,k−L+1:k−1) with expression:

PL(ok|ok−L+1:k−1) = µ(ok)
Tϕ(ok−L+1:k−1).

To approximate the error in prediction, we can take the following decomposition:

Eotest,1:k−1
∥P(·|otest,1:k−1)− read(TFθ(M0))∥1

≤ Eotest,1:k−1
∥P(·|otest,1:k−1)− PL(·|otest,k−L+1:k−1)∥1︸ ︷︷ ︸

ϵ1:model approximation

+ Eotest,1:k−1
∥PL(·|otest,k−L+1:k−1)− P̂L(·|otest,k−L+1:k−1)∥1︸ ︷︷ ︸

ϵ2:generalization

+ Eotest,1:k−1
∥P̂L(·|otest,k−L+1:k−1)− read(TFθ(M0))∥1︸ ︷︷ ︸

ϵ3:optimization

,

(4)

where P̂L(·|otest,k−L+1:k−1) ∈ Rp refers to the optimal approximation for PL based on n i.i.d.
samples we collected.

Considering the one-hot vector ok ∈ Rp, which representing the observation state7, we can express
µ(·) as

µ(ok) = Uok,

for some U ∈ Rd×p. Also, recalling the linear mapping assumption for ϕ(·), we can also obtain

ϕ(ok−L+1:k−1) = V ok−L+1:k−1,

for some V ∈ Rd×p(L−1), which further implies that

PL(ok|ok−L+1:k−1) = oTk U
TV ok−L+1:k−1.

7As the (p+ 1)-th dimension is designed only for odelim, we consider the observation as a p-dim vector in
proofs for simplicity.
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As the feature embeddings are within {e1, . . . , ep}, the vector PL(·|ok−L+1:k−1) ∈ Rp equals to

PL(·|ok−L+1:k−1) = UTV ok−L+1:k−1 :=W∗ok−L+1:k−1, (5)

where W∗ ∈ Rp×p(L−1). So for P̂L(·|otest,k−L+1:k−1) := Ŵotest,k−L+1:k−1, the solution is

Ŵ := argmin
W

L(W ) := argmin
W

∑
i

∥oi,L −Wzi∥22, (6)

where we use the short-hand notation zi := oi,1:L−1 ∈ Rp(L−1). From Lemma 1, we have that
ϵ1 = O(de−γ4L). In the following two subsections, we focus on bounding ϵ2 and ϵ3, respectively.

D.1 TRANSFORMER CONSTRUCTION

To approximate the conditional probability vector P̂L(·|otest,k−L+1:k−1), the transformer mainly
takes three steps: (1) firstly learning the (L − 1)-step history features oi,1:L−1 for oi,L, as well
as otest,k−L+1:k−1 for otest,k, (2) then performing linear regression based on Eq. (6), (3) finally
approximating P̂L(·|otest,k−L+1:k−1) using Ŵ and otest,k−L+1:k−1. The explicit construction of the
Transformer is as follows:

Decoupled feature learning. Here we first construct an O(lnL)-layer single head Attention, to
learn oi,1:L−1 for oi,L, as well as otest,k−L+1:k−1 for otest,k. Before formally construction, for any
step index 1 ≤ r < L, we define history and future matrix Zr, Fr ∈ R(n(L+1)+k)×(p+3) for further
analysis:

[Zr](t,·) :=

{
[M0](t−r,1:p+3), r < t ≤ n(L+ 1) + k,

[M0](1,1:p+3), 1 ≤ t ≤ r,

[Fr](t,·) :=

{
[M0](t+r,1:p+3), 1 ≤ t ≤ n(L+ 1) + k − r,

[M0](n(L+1)+k,1:p+3), n(L+ 1) + k − r < t ≤ n(L+ 1) + k,
.

Here we also define a special matrix

A := β1

[
cos( 1

1000nk ) sin( 1
1000nk )

− sin( 1
1000nk ) cos( 1

1000nk )

]
,

where β1 > 0 is a fixed constant. Then on the first layer, the Query-Key matrix is designed as

QK(1) :=

[
0(p+1)×(p+1) 0 0

0 A 0
0 0 0

]
∈ RD×D,

which induces that with input matrix M0, we have

[M0]
T
(t1,·)QK

(1)[M0](t2,·) = β1 · cos
(
t1 − t2 − 1

1000nk

)
,

for any 1 ≤ t1, t2 ≤ n(L + 1) + k. Then with softmax function on M0QK
(1)MT

0 , as well as the
Value matrix

V (1) :=

[
0(p+3)×(p+3) I(p+3)×(p+3) 0(p+3)×(D−2p−6)

0 0 0
0 0 0

]
∈ RD×D,

sending β1 → ∞, we obtain the output on each row as[
Softmax

(
[M0](t,·)QK

(1)MT
0

)
M0V

(1)
]
(t,·)

= [0, [M0](t−1,1:p+3), 0]
T , ∀1 < t ≤ n(L+1)+k,

which refers that after the first Attention layer, the output matrix should be

M1 =M0 +Attn(M0, QK
(1), V (1)) = [[M0](·,1:p+3), Z1, [M0](·,2(p+3)+1:D)].
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It implies that the first layer Attention head learn the first history feature oi,L−1 for each observation
oi,L. Then on the second layer, we design the Query-Key matrix as

QK(2) :=

 0(2p+4)×(p+1) 0(2p+4)×2 0(2p+4)×(D−p−3)

02×(p+1) A 02×(D−p−3)

0(D−2p−6)×(p+1) 0(D−2p−6)×2 0(D−2p−6)×(D−p−3)

 ,
as well as the Value matrix as

V (2) :=

[
02(p+3)×2(p+3) I2(p+3)×2(p+3) 02(p+3)×(D−4p−12)

0 0 0
0 0 0

]
∈ RD×D,

which will induce the output on this layer as

M2 =M1 +Attn(M1, QK
(2), V (2)) = [[M0](·,p+3), Z1, Z2, Z3, [M0](·,4(p+3)+1:D)].

Repeating such construction O(lnL) times, we can obtain the (L− 1)-step history (see Figure 5 for
a detailed illustration). Now the output matrix should be

Mh = [[M0](·,1:p+3), Z1, Z2, Z3, . . . , ZL−1, [M0](·,L(p+3)+1:D)] ∈ R(n(L+1)+k)×D.

On the following layer, we consider the Query-Key matrix as

QK(f) :=

[
0(p+1)×(p+1) 0 0

0 B 0
0 0 0

]
, B := β1

[
cos( 1

1000nk ) − sin( 1
1000nk )

sin( 1
1000nk ) cos( 1

1000nk )

]
,

and the value matrix is constructed as

V (f) :=

[
0(p+3)×L(p+3) I(p+3)×(p+3) 0(p+3)×(D−(L+1)(p+3))

0 0 0
0 0 0

]
∈ RD×D,

which implies that sending β1 → ∞, the output on each row should be[
Softmax

(
[M0](t,·)QK

(1)MT
0

)
M0V

(1)
]
(t,·)

= [0, [M0](t+1,1:p+3), 0]
T , ∀1 ≤ t < n(L+1)+k,

So the output decouple matrix after this layer should be

Mdec = [[M0](·,p+3), Z1, Z2, Z3, . . . , ZL−1, F1, [M0](·,(L+1)(p+3)+1:D)].

Then the decoupled feature learning process has been finished, which needs O(lnL) layers (see
details in Figure 5).

Gradient descent performing. The following O(T )-layer 2p-head architecture is designed to
learn P̂L(·|zk) based on history information {Z1, . . . , ZL−1}. The construction follows immediately
from Lemma 7. To be specific, from Eq. (6), we need to take linear regression to estimate a matrix
Ŵ ∈ Rp×p(L−1). Based on the n samples collected, the estimation process is based on MSE loss, i.e,

argmin
W

L(W ) := argmin
W

∑
i

∥oi,L −Wzi∥22,

where zi refers to the (L − 1)-step history of oi,L, which has been learned in previous layers. To
perform such estimation process for W , we construct an 2p-head O(T )-layer Attention. Each layer
can perform one step gradient descent on L(W ) with initial value 0, and each row of W is assigned
to be learned by two heads independently (see Figure 6 for detailed illustration). Here we take the
updating for [W ](1,·) as an example, and denote the initial point as 0p(L−1), which has been stored in
[Mdec](t,(L+1)(p+3)+1:(L+1)(p+3)+p(L−1)) on each 1 ≤ t ≤ n(L+ 1) + k. The gradient vector is

∂L/∂W(1,·) = 2
∑
i

(WT
(1,·)zi − [oi,L]1) · zi

= 2
∑
i

(
ReLU(WT

(1,·)zi − [oi,L]1)− ReLU(−WT
(1,·)zi + [oi,L]1)

)
· zi.

(7)
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The construction will show that each attention layer is related to one-step gradient descent with
learning rate (L− 1)−1, and the construction for each layer is the same. As the first two heads on
each layer is related to the updating for [W ](1,·), we design the first Attention head on each layer with
Query-Key matrix as

(
[Mdec](t1,·)Q

(g,1)
)T

=


[W ](1,·)
−1

−β21p
0

−β2

 , K(g,1)[Mdec](t2,·) =



[Z1](t2,1:p)
· · ·

[ZL−1](t2,1:p)
[M0](t2,1)
[F1](t2,1:p)

0
1(t2 > n(L+ 1))


,

for any 1 ≤ t1, t2 ≤ n(L + 1) + k. Choosing β2 > 1000nk, with ReLU activation function, we
obtain

ReLU
(
[Mdec]

T
(t1,·)Q

(g,1)K(g,1)[Mdec](t2,·)

)
=

{
ReLU

(
[W ]⊤(1,·)z

′
t2 − [M0](t2,1)

)
, [F1](t2,1:p+1) = odelim,

0, otherwise,

where we denote z′t := [[Z1]
T
(t2,1:p)

, . . . , [ZL−1]
T
(t2,1:p)

]T ∈ Rp(L−1). Then with the Value matrix
satisfying that

V (g,1)[Mdec]
T
(t2,·) =

1

L− 1


0

[Z1](t2,1:p)
· · ·

[ZL−1](t2,1:p)
0

 ,
we can obtain the value on each row of the output matrix:[

Attn
(
Mdec, Q

(g,1),K(g,1), V (g,1)
)]

(t,·)
=

[
0,

1

L− 1

∑
i

ReLU
(
[W ]⊤(1,·)zi − [oi,L]1

)
, 0

]
,

for any 1 ≤ t ≤ n(L + 1) + k. Also, we consider another Attention head for W1,· with
{−Q(q,1),K(g,1), V(g,1)}, the output on each row should be[
Attn

(
Mdec,−Q(g,1),K(g,1),−V (g,1)

)]
t,·

=

[
0,− 1

L− 1

∑
i

ReLU
(
−[W ]⊤(1,·)zi + [oi,L]1

)
, 0

]
.

Taking summation on both of the two heads, we can finish the update on [W ](1,·) as in Eq. (7). The
updates on other rows of W are similar, so with such 2p Attention heads on each layer, we can finish
one-step gradient descent on MSE loss by

Mdec +

p∑
j=1

Attn
(
Mdec, Q

(g,j),K(g,j), V (g,j)
)
+Attn

(
Mdec,−Q(g,j),K(g,j),−V (g,j)

)
.

Considering O(T ) layers with the same structure, we can obtain Ŵ with a small error. Now the
output matrix should be

Mgd = [[M0](·,p+3), Z1, Z2, Z3, . . . , ZL−1, F1, [W ](1,·), . . . , [W ](p,·), [M0](·,(L+1)(p+3)+p2(L−1)+1:D)].

Prediction with decoupled features. Finally, on the last layer, we construct a 2p-head Attention to
make prediction on P̂L(·|otest,k−1, . . . , otest,k−L+1), and each dimension is corresponding to two
Attention heads. To be specific, for the first dimension of P̂L(·|otest,k−1, . . . , otest,k−L), Attention
head is designed with

(
[Mgd](t1,·)Q

(pre,1)
)T

=

 [Z1](t2,1:p)
· · ·

[ZL−1](t2,1:p)
0

 , K(pre,1)[Mgd]
T
(t2,·) =

[
[W ](1,·)

0

]
,

V (pre,1)[Mgd]
T
(t2,·) =

[
1

n(L+1)+k

0

]
.
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Then we will obtain[
Attn

(
Mgd, Q

(pre,1),K(pre,1), V (pre,1)
)]

(n(L+1)+k,·)
=

[
ReLU

(
[W ]⊤(1,·)otest,k−L+1:k−1

)
, 0
]
,

and[
Attn

(
Mgd, Q

(pre,1),K(pre,1), V (pre,1)
)
+Attn

(
Mgd,−Q(pre,1),K(pre,1),−V (pre,1)

)]
(n(L+1)+k,·)

=
[
[W ]⊤(1,·)otest,k−L+1:k−1, 0

]
,

which finish the prediction on P̂L(otest,k = e1|otest,k−1, . . . , otest,k−L). The constructions on other
2p− 2 heads are similar.

Optimization error. Then we turn to the approximation for ϵ3, which is induced by the finite
gradient steps (O(T ) steps) the transformer performs. The error could be estimated directly from
Lemma 7. Denoting

Z = [o1,1:L−1, . . . , on,1:L−1] ∈ Rp(L−1)×n,

from Assumption 3, we have

α ≤ λmin

(
1

n
ZZT

)
≤ λmax

(
1

n
ZZT

)
≤ L, ∥otest,k−L+1:k−1∥2 =

√
L− 1, ∥[W∗](j,·)∥2 = O(1),

so

ϵ3 = O
(
e−αT/(2L)pL1/2 max

j∈[p]
∥[W∗](j,·)∥2

)
= O(pL1/2e−αT/(2L)).

D.2 GENERALIZATION ERROR

For ϵ2, we can express the solution Ŵ for Eq. (6) as

Ŵ := OZT (ZZT )−1,

where we use the notation

O := [o1,L o2,L · · · on,L] ∈ Rp×n, Z = [o1,1:L−1, . . . , on,1:L−1] ∈ Rp(L−1)×n.

Denoting ztest := otest,k−L+1:k−1 and ∆ := O −W∗Z, we have

ϵ2 = Eotest,1:k−1
∥PL(·|otest,k−L+1:k−1)− P̂L(·|otest,k−L+1:k−1)∥1

=

p∑
j=1

Eztest

∣∣∣([W∗]
T
(j,·) − [O]T(j,·)Z

T (ZZT )−1
)
ztest

∣∣∣
≤

p∑
j=1

√
L∥[W∗](j,·) − [O](j,·)Z

T (ZZT )−1∥2

=

p∑
j=1

√
L∥[W∗](j,·) −

(
[W∗](j,·)Z + [∆](j,·)

)
ZT (ZZT )−1∥2

=
√
L

p∑
j=1

∥[∆](j,·)Z
T (ZZT )−1∥2

≤
√
L

nα

p∑
j=1

∥
(
[∆](j,·) − Ei[[∆](j,·)] + Ei[[∆](j,·)]

)
ZT ∥2

≤
√
L

nα

p∑
j=1

∥
(
[∆](j,·) − E[[∆](j,·)]

)
ZT ∥2 +

√
L

nα

p∑
j=1

∥E[[∆](j,·)]
)
ZT ∥2 (8)
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where the first inequality uses the Cauchy-Schwartz inequality, and the second inequality is from
Assumption 3, where the expectation E[[∆](j,i)] = Eoi,1:k−1

[P(ej | o1:k−1)− PL(ej | ok−L+1:k−1)]
due to the decomposition:

[∆](j,i) =[O](j,i) − [W∗](j,·)oi,1:L−1

=1(oi,L = ej)− P(ej |oi,1:L−1) + P(ej |oi,1:L−1)− PL(ej |oi,1:L−1).

Hence, we can deal with the second term above:
√
L

nα

p∑
j=1

∥E[[∆](j,·)]
)
ZT ∥2 ≤ L

nα

p∑
j=1

n∑
i=1

Eoi,1:k−1
|P(ej | o1:k−1)− PL(ej | ok−L+1:k−1)|

=
L

nα

n∑
i=1

Eoi,1:k−1

∥∥P(· | oi,1:k−1)− PL(· | oi,k−L+1:k−1)
∥∥
1

≤O(
Ld

α
· e−Lγ4

),

where the first inequality uses the formulation that ∥[Z]
(i,)̇

∥2 ≤
√
L, and the second inequality uses

Lemma 1.

Next, for the first term in (8), we can define the error δj,i := [∆](j,i) − E[[∆](j,i)]. For each i, j, δj,i
is a zero-mean 1-sub-Gaussian variable. We also have for each i, max{∥ziz⊤i ∥2, ∥z⊤i zi∥2} ≤ L.
Thus, we can invoke Lemma 8 to obtain that with probability at least 1− 1

n , for any j = 1, . . . , p,

∥
(
[∆](j,·) − E[[∆](j,·)]

)
ZT ∥2 = ∥

n∑
i=1

δi,jzi∥2 ≤ 4
√
nL ln(2nLp2).

Therefore, by taking the results above back into (8), we can obtain that

ϵ2 ≤ O
(pL√ln(nLp)√

nα
+
Ld

α
· e−Lγ4

)
.

E PROOF SKETCHES FOR THEOREM 2

We also decompose the prediction error into three parts as in (4) and analyze them correspondingly.

E.1 MODEL APPROXIMATION

For the model approximation error ϵ1, under Assumption 4, we can also approximate the m-step tran-
sition probability P(ok:k+m | o1:k−1) by a (L− 1)-memory probability P̂L(ok:k+m | ok−L+1:k−1).
Since we can take ok:k+m as a whole vector, with similar techniques in Section 4.1, we can show that

Lemma 2. For any ϵ > 0, there exists a O(L)-memory transition probability P̂L with L =
Θ(γ−4 log(d/ϵ) such that

Eo1:k

∥∥P(ok:k+m | o1:k)− PL(ok:k+m | ot−L:t)
∥∥
1
≤ O

(
de−Lγ4

)
.

This model approximation bound is the same to Lemma 1, and the PL also enjoys the low-rank
structure

PL(ok:k+m | ok−L+m:k−1) :=µ(ok:k+m)⊤ϕ(ok−L+m:k−1),

where µ(ok:k+m), ϕ(ok−L+m:k−1) ∈ Rd are representation vectors. For conciseness, we defer the
details to Appendix G.

After embedding the m-step observation ok:k+m as one-hot vector Vec(ok:k+m) ∈ Rpm

, we can
express the mapping function µ(·) as

µ(ok:k+m) = U ′Vec(ok:k+m),
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where U ′ ∈ Rd×pm

. Considering the linear assumption on ϕ, similar to Eq. (5), we can also obtain

PL(·|ok−L+m:k−1) :=W ′
∗ok−L+m:k−1,

for some W ′
∗ ∈ Rpm×p(L−m). Taking decomposition for the approximation error, we have

Eotest,1:k−1
∥P(otest,k:k+m−1|otest,1:k−1)− read(TFθ(M0))∥1

≤ Eotest,1:k−1
∥P(otest,k:k+m−1|otest,1:k−1)− PL(otest,k:k+m−1|otest,k−L+m:k−1)∥1︸ ︷︷ ︸

ϵ1:model approximation

+ Eotest,1:k−1
∥PL(otest,k:k+m−1|otest,k−L+m:k−1)− P̂L(otest,k:k+m−1|otest,k−L+m:k−1)∥1︸ ︷︷ ︸

ϵ2:generalization

+ Eotest,1:k−1
∥P̂L(otest,k:k+m−1|otest,k−L+m:k−1)− read(TFθ(M0))∥1︸ ︷︷ ︸

ϵ3:optimization

,

where P̂L(·|otest,k−L+1:k−1) refers to the solution based on n samples we collected:

P̂L(·|otest,k−L+m:k−1) = Ŵ ′[otest,k−L+m, . . . , otest,k−1]
T ,

Ŵ ′ := argmin
W

∑
i

∥Vec(oi,L−m+1:L)−Woi,1:L−m∥22.

In the error decomposition, ϵ1 = O(de−γ4L) can be obtained from Lemma 2 immediately. And in
further analysis, we will estimate ϵ2 and ϵ3 respectively.

E.2 TRANSFORMER CONSTRUCTION

Then the construction is similar to the construction for Theorem 1. So here we just provide a sketch
for it.

Decoupled feature learning. Recalling the matrix:

A := β1

[
cos( 1

1000nk ) sin( 1
1000nk )

− sin( 1
1000nk ) cos( 1

1000nk )

]
, B := β1

[
cos( 1

1000nk ) − sin( 1
1000nk )

sin( 1
1000nk ) cos( 1

1000nk )

]
,

on each time index t, we can use A to capture the history information Zr, and use B to capture the
future information Fr. So with O(ln(L−m) + lnm) = O(lnL) layers, we can obtain the output
matrix as

Mdec = [[M0](·,1:p+3), Z1, Z2, . . . , ZL−m, F1, F2, . . . , Fm, [M0](·,(L+1)(p+3)+1:D)].

Then before taking gradient descent, we use the one-hot mapping function Vec on each row of
{[M0](·,1:p), [F1](·,1:p), . . . , [Fm−1](·,1:p)}, which refers to the current and future observations on
each time index. After that, we will obtain

Mv := [[M0]·,1:p+3, Z1, Z2, . . . , ZL−m, F1, F2, . . . , Fm, H, [M0](·,(L+1)(p+3)+pm+1:D)],

where
[H](t,·) = Vec

[
[M0](t,1:p), [F1](t,1:p), . . . , [Fm−1](t,1:p)

]T
for each 1 ≤ t ≤ nL+ n+ k.

Gradient descent and final prediction. After obtaining these features, we shall perform gradient
descent on MSE loss

argmin
W ′

∑
i

∥Vec(oi,L−m+1:L)−W ′oi,1:L−m∥22.

Then we could use 2pm-head O(T )-layer Attention to perform the gradient descent on W , in which
the feature H and {Z1, . . . , ZL−m} will be taken into consideration. The construction is similar to
Theorem 1.
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Optimization error. For ϵ3, under Assumption 3, we can also use Lemma 5 to obtain that

ϵ3 = O
(
pmL1/2e−αT/(2L)

)
.

E.3 GENERALIZATION ERROR

We can rewrite P̂L(·|otest,k−L+1:k−m) as

P̂L(·|otest,k−L+m:k−1) = Ŵ ′otest,k−L+m:k−1, Ŵ ′ = OmZ
T
m(ZmZ

T
m)−1,

where we denote

Om := [Vec(o1,L−m+1:L) Vec(o2,L−m+1:L) · · · Vec(on,L−m+1:L)] ∈ Rpm×n,

Zm := [o1,1:L−m o2,1:L−m · · · on,1:L−m] ∈ R(L−m)×n.

Denoting ztest := otest,k−L+m:k−1 and ∆ := Om −W ′
∗Zm, we have

ϵ2 = Eotest,1:k−1
∥PL(·|otest,k−L+m:k−1)− P̂L(·|otest,k−L+m:k−1)∥1

=

pm∑
j=1

Eztest

∣∣∣([W ′
∗]

T
(j,·) − [Om]T(j,·)Z

T
m(ZmZ

T
m)−1

)
ztest

∣∣∣
≤

pm∑
j=1

√
L∥[W ′

∗](j,·) − [Om](j,·)Z
T
m(ZmZ

T
m)−1∥2

=

pm∑
j=1

√
L∥[W ′

∗](j,·) −
(
[W ′

∗](j,·)Zm + [∆](j,·)
)
ZT
m(ZmZ

T
m)−1∥2

=
√
L

pm∑
j=1

∥[∆](j,·)Z
T
m(ZmZ

T
m)−1∥2

≤
√
L

nα

pm∑
j=1

∥
(
[∆](j,·) − Ei[[∆](j,·)] + Ei[[∆](j,·)]

)
ZT
m∥2

≤
√
L

nα

pm∑
j=1

∥
(
[∆](j,·) − E[[∆](j,·)]

)
ZT
m∥2 +

√
L

nα

pm∑
j=1

∥E[[∆](j,·)]
)
ZT
m∥2, (9)

where the first inequality uses the Cauchy-Schwartz inequality, and the second inequality is from
Assumption 3, where the expectation E[[∆](j,i)] = Eoi,1:k−1

[P(ej | o1:k−1)−PL(ej | ok−L+m:k−1)]
due to the decomposition:

[∆](j,i) =[O](j,i) − [W ′
∗](j,·)oi,1:L−m

=1(oi,L−m+1:L = ej)− P(ej |oi,1:L−m) + P(ej |oi,1:L−m)− PL(ej |oi,1:L−m).

Hence, we can deal with the second term above:
√
L

nα

pm∑
j=1

∥E[[∆](j,·)]
)
ZT
m∥2 ≤ L

nα

pm∑
j=1

n∑
i=1

Eoi,1:k−1
|P(ej | o1:k−1)− PL(ej | ok−L+m:k−1)|

=
L

nα

n∑
i=1

Eoi,1:k−1

∥∥P(· | oi,1:k−1)− PL(· | oi,k−L+m:k−1)
∥∥
1

≤O(
Ld

α
· e−Lγ4

),

where the first inequality uses the formulation that ∥[Zm]
(i,)̇

∥2 ≤
√
L, and the second inequality uses

Lemma 2.

Next, for the first term in (9), we can define the error δj,i := [∆](j,i) − E[[∆](j,i)].
For each i, j, δj,i is a zero-mean 1-sub-Gaussian variable. We also have for each i,
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max{∥[Zm](·,i)[Zm]⊤(·,i)∥2, ∥[Zm]⊤(·,i)[Zm](·,i)∥2} ≤ L. Thus, we can invoke Lemma 8 to obtain
that with probability at least 1− 1

n , for any j = 1, . . . , pm,

∥
(
[∆](j,·) − E[[∆](j,·)]

)
ZT ∥2 = ∥

n∑
i=1

δi,j [Zm](·,i)∥2 ≤ 4
√
nL ln(2nLpm+1).

Therefore, by taking the results above back into (9), we can obtain that

ϵ2 ≤ O
(pmL√ln(nLp)√

nα
+
Ld

α
· e−Lγ4

)
.

F PROOF FOR LEMMA 1

To facilitate analysis, we define the belief state bk(o1:k−1) ∈ ∆(H) as the posterior given observa-
tions: bk(o1:k)(h) = P(hk | o1:k). Combining this notation and the low-rank hidden-state transition,
we can write

P(ok | o1:k−1) =
∑

hk,hk−1

P(ok | hk)P(hk | hk−1)P(hk−1 | o1:k−1)

=
(∑

hk

T(ok | hk)w∗(hk)
)⊤

·
( ∑

hk−1

ψ∗(hk−1)b(o1:k−1)(hk−1)
)
.

The transition is the inner product of d-dimensional representations of history o1:k−1 and next token
ok. Especially, the historical information is embedded into the belief state. Thus, to approximate
P by PL, we need to approximate b(o1:k−1) by a (L − 1)-memory belief state bL(ok−L+1:k−1).
Assumption 4 implies that we can reverse the inequality to obtain the contraction from observation to
hidden state distributions

∥d− d′∥1 ≤ γ−1∥Td− Td′∥1.

Hence, by constructing a history-independent belief state b̃0 within a KL-ball of b: KL(b, b̃0) ≤ d3

(which can be realized by G-optimal design), the belief state bL(ok−L+1:k−1) induced from b̃0 can
gradually approximate b(o1:k−1) that has the same (L − 1)-length observations. Theorem 14 of
Uehara et al. (2022) demonstrated that

Lemma 3 (Theorem 14 of Uehara et al. (2022)). Under Assumption 4, for K ≥ L + 1, L ≥
Cγ−4 log(d/ϵ), where C > 0 is a constant, we have

Eo1:k−1

∥∥b(o1:k−1)− bL(ok−L+1:k−1)
∥∥
1
≤ ϵ. (10)

Proof of Lemma 1. The proof is the same to Proposition 7 of Guo et al. (2023a). The only difference
is there is no actions in HMM. For any k ≥ L+1, given the bL satisfying (10), now, we can construct
the probability as

PL(ok | ok−L+1:k−1) =
(∑

hk

T(ok | hk)w∗(hk)
)⊤

·
( ∑

hk−1

ψ∗(hk−1)bL(ok−L+1:k−1)(hk−1)
)

:=µ(ok)
⊤ϕ(ok−L+1:k−1),

where we use the notation

µ(ok) =
∑
hk

T(ok | hk)w∗(hk), ϕ(ok−L+1:k−1) =
∑
hk−1

ψ∗(hk−1)bL(ok−L+1:k−1)(hk−1).
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Hence, we deduce that

Eo1:k−1
P(ok | o1:k−1) =Eo1:k−1

∑
hk

T(ok | hk)w∗(hk)
⊤ ·

∑
hk−1

ψ∗(hk−1)b(o1:k−1)(hk−1)

≤Eo1:k−1

∑
hk

T(ok | hk)w∗(hk)
⊤

·
∑
hk−1

ψ∗(hk−1)
(∣∣b(o1:k−1)(hk−1)− bL(ok−L+1:k−1)(hk−1)

∣∣+ bL(ok−L+1:k−1)(hk−1)
)

=Eo1:k−1

∑
hk

T(ok | hk)w∗(hk)
⊤ ·

∑
hk−1

ψ∗(hk−1)bL(ok−L+1:k−1)(hk−1)

+ Eo1:k−1

∑
hk

T(ok | hk)w∗(hk)
⊤ ·

∑
hk−1

ψ∗(hk−1)
∣∣b(o1:k−1)(hk−1)− bL(ok−L+1:k−1)(hk−1)

∣∣.
(11)

Since we have for any hk−1∑
hk

T(ok | hk)w∗(hk)
⊤ψ∗(hk−1) =

∑
hk

P(ok | hk)P(hk | hk−1) ≤ 1,

term (11) can be bounded as

Eo1:k−1

∑
hk−1

(∑
hk

T(ok | hk)w∗(hk)
⊤ · ψ∗(hk−1)

)
·
∣∣b(o1:k−1)(hk−1)− bL(ok−L+1:k−1)(hk−1)

∣∣
≤Eo1:k−1

∣∣b(o1:k−1)(hk−1)− bL(ok−L+1:k−1)(hk−1)
∣∣

≤ϵ,

where the first inequality is by the Cauchy-Schwarz inequality, and the second inequality uses Lemma
4. Therefore, we obtain

Eo1:k−1
P(ok | o1:k−1) ≤ Eo1:k−1

PL(ok | ok−L+1:k−1) + ϵ,

which concludes the proof.

Then, we can construct the (L− 1)-memory probability by replacing the belief state

PL(ok | ok−L+1:k−1) =
(∑

hk

T(ok | hk)w∗(hk)
)⊤

·
( ∑

hk−1

ψ∗(hk−1)bL(ok−L+1:k−1)(hk−1)
)

:=µ(ok)
⊤ϕ(ok−L+1:k−1),

G PROOF FOR LEMMA 2

Proof of Lemma 2. Under the operator M, we can write

P(ok:k+m | ht) =
∫
H
M(ok:k+m | ht+1)w

∗(ht+1)
⊤ψ∗(ht)dht.

We wish to approximate

P(ok:k+m | o1:h) by PL(ok:k+m | ot−L+1:t).

Given a history observation o1:k, we define the belief state bt(o1:k) ∈ ∆(S) as the distribution

bt(o1:k)(h) = P(hk = h | o1:k).

Additionally, for any distribution b ∈ ∆(S), we define the belief update operator Bk−1(b, ok:k+m) as

Bk−1(b, ok:k+m)(h) =
M(ok:k+m | h)

∑
h′ b(h′)P(h|h′)∑

h′′ M(ok:k+m | h′′)
∑

h′ b(h′)P(h′′|h′)
.
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then, the update for belief state is
b(o1:k−1) = B(bk−1(o1:k−1), ok:k+m).

Given this notation, we can write P as

P(ok:k+m | o1:k−1) =
(∫

H
M(ok:k+m | ht+1)w

∗(ht+1)dht+1

)⊤
·
∫
H
ψ∗(hk−1)b(o1:k−1)(hk−1)dhk−1.

(12)
Thus, to approximate P by PL, it suffices to approximate b(o1:k) by some belief state bL(ot−L:t).

To construct a good approximation, we can first construct a history-independent belief distribution
b̃0 ∈ ∆(S) by G-optimal design (Uehara et al., 2022) such that for any belief state

KL(b, b̃0) ≤ ln d3. (13)
Lemma 4 (Exponential Stability for Low-rank Transition). Under Assumption 4, for L ≥
Cγ−4 log(d/ϵ), we have

E
∥∥b(o1:k−1)− bL(ot:t+L)

∥∥
1
≤ ϵ.

Then, by following the same analysis as the proof of Lemma 1, we can prove the desired result.

H TECHNICAL LEMMAS

Lemma 5 (Convergence rate in gradient descent). Suppose L is α-strongly convex and β-smooth
for some 0 < α < β. Then the gradient descent iterates wt+1

GD := wt
GD − η∇L(wt

GD) with learning
rate η = β−1 and initialization w0

GD satisfies

∥wt
GD − w∗∥22 ≤ e−t/κ · ∥w0

GD − w∗∥22,

L(wt
GD)− L(w∗) ≤ β

2
e−t/κ · ∥w0

GD − w∗∥22,

where κ = β/α is the condition number, and w∗ = argminL(w) is the optimizer of function L− 1.
Lemma 6 (Lemma G.2 in Ye et al. (2023), Theorem 2.29 in Zhang (2023)). Let {ϵt} be a sequence
of zero-mean conditional σ-subGaussian random variable, i.e, lnE[eλϵi |Si−1] ≤ λ2σ2/2, where
Si−1 represents the history data. With probability at least 1− δ, for any t ≥ 1, we have

t∑
i=1

ϵ2i ≤ 2tσ2 + 3σ2 ln(1/δ).

Lemma 7 (Theorem 4 in Bai et al. (2023)). For any λ ≥ 0, 0 ≤ α ≤ β with

κ :=
β + λ

α+ λ
,

Bw > 0, and ε < BxBw

2 , there exists an L-layer attention-only transformer TF 0
θ with

M = ⌈2κ log(BxBw/(2ε))⌉+ 1

(With R := max{BxBw, By, 1}) such that the following holds. On any input data (D,xN+1) such
that the regression problem is well-conditioned and has a bounded solution:

α ≤ λmin(X
⊤X/N) ≤ λmax(X

⊤X/N) ≤ β,

∥wλ
ridge∥2 ≤ Bw/2,

TF 0
θ approximates the prediction ŷN+1 as∣∣ŷN+1 − ⟨wλ

ridge, xN+1⟩
∣∣ ≤ ε.

Lemma 8 (Lemma F.3 of Fan et al. (2023)). Consider a sequence of matrix {At}∞t=1 with dimension
d1 × d2 and an i.i.d. sequence {ϵt}∞t=1, where ϵt is conditional σ-subgaussian (i.e., E(eαϵt |At) ≤
eα

2σ2/2 almost surely for all α ∈ R). Define the matrix sub-Gaussian series S =
∑n

t=1 ϵtAt with
bounded matrix variance statistic:

max
{∥∥AtA

⊤
t

∥∥
op
,
∥∥A⊤

t At

∥∥
op

}
≤ vt.

Then, for all u > 0, we have

P (∥S∥op ≥ u) ≤ (d1 + d2) exp
(
− u2

16σ2
∑n

t=1 vt

)
.
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I LLM USAGE STATEMENT

We used LLMs to aid in polishing the writing of this paper. Specifically, LLMs were employed as a
general-purpose assistant to improve clarity, grammar, and style, and to suggest alternative phrasings
for technical explanations. They were not used to generate novel research ideas, design experiments,
or produce results. The authors take full responsibility for all content, including text refined with the
assistance of LLMs.
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