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Abstract

Dataset distillation has demonstrated remarkable effective-001
ness in high-compression scenarios for image datasets.002
While video datasets inherently contain greater redun-003
dancy, existing video dataset distillation methods primarily004
focus on compression in the pixel space, overlooking ad-005
vances in the latent space that have been widely adopted006
in modern text-to-image and text-to-video models. In this007
work, we bridge this gap by introducing a novel video008
dataset distillation approach that operates in the latent009
space using a state-of-the-art variational encoder. Fur-010
thermore, we employ a diversity-aware data selection strat-011
egy to select both representative and diverse samples. Ad-012
ditionally, we introduce a simple, training-free method to013
further compress the distilled latent dataset. By combin-014
ing these techniques, our approach achieves a new state-of-015
the-art performance in dataset distillation, outperforming016
prior methods on all datasets, e.g. on HMDB51 IPC 1, we017
achieve a 2.6% performance increase; on MiniUCF IPC 5,018
we achieve a 7.8% performance increase.019

1. Introduction020

Dataset distillation has emerged as a pivotal technique for021
compressing large-scale datasets into computationally effi-022
cient representations that retain their essential characteris-023
tics [38]. While this technique has seen remarkable success024
in compressing image datasets [4, 5, 22, 27, 36, 44], appli-025
cations onto video datasets remain an underexplored chal-026
lenge. Videos inherently possess temporal redundancy, as027
characterized by consecutive frames often sharing substan-028
tial similarity, presenting the potential for optimization via029
dataset distillation.030

Existing video distillation methods predominantly fo-031
cus on pixel-space compression. VDSD [39] addresses the032
temporal information redundancy by disentangling static033
and dynamic information. Method IDTD [48] tackles the034
within-sample and inter-sample redundancies by leverag-035
ing a joint-optimization framework. However, these frame-036
works overlook the potential of latent-space compressions,037

which have proven transformative in generative models for 038
images and videos [34, 47]. Modern variational autoen- 039
coders (VAEs) [29, 40] offer a pathway to address this gap 040
by encoding videos into compact, disentangled representa- 041
tions in latent space. 042

In this work, we improve video distillation by operating 043
entirely in the latent space of a VAE. Our framework dis- 044
tills videos into low-dimensional latent codes, leveraging 045
the VAE’s ability to model temporal dynamics [47]. Un- 046
like previous methods, our approach encodes entire video 047
sequences into coherent latent trajectories to model tem- 048
poral dynamics through its hierarchical architecture. We 049
compress the VAE itself through post-training quantiza- 050
tion, largely reducing the model size, while retaining accu- 051
racy [5]. After distillation, we apply Diversity-Aware Data 052
Selection using Determinantal Point Processes (DPPs) [17] 053
to select both representative and diverse instances. Unlike 054
clustering-based or random sampling methods, DPPs in- 055
herently favor diversity by selecting samples that are well- 056
spread in the latent space, reducing redundancy while en- 057
suring comprehensive feature coverage [26]. This leads to 058
a more informative distilled dataset that enhances down- 059
stream model generalization. 060

Our method further introduces a training-free latent com- 061
pression strategy, which uses high-order singular value de- 062
composition (HOSVD) to decompose spatiotemporal fea- 063
tures into orthogonal subspaces [39]. This isolates domi- 064
nant motion patterns and spatial structures, enabling further 065
compression while preserving essential dynamics [34]. By 066
factorizing latent tensors, we dynamically adjust the rank of 067
the distilled representations, allowing denser instance pack- 068
ing under fixed storage limits. Experiments on the Mini- 069
UCF dataset demonstrate that our method outperforms prior 070
pixel-space approaches by 11.5% in absolute accuracy for 071
IPC 1 and 7.8% for IPC 5. 072

Overall, our contributions are: 073

1. We propose the first video dataset distillation framework 074
operating in the latent space, leveraging a state-of-the-art 075
VAE to efficiently encode spatiotemporal dynamics. 076

2. We address the challenge of sparsity in the video latent 077
space by integrating Diversity-Aware Data Selection us- 078
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ing DPPs and High-Order Singular Value Decomposi-079
tion (HOSVD) for structured compression.080

3. Our method generalizes to both small-scale and large-081
scale video datasets, achieving a new state-of-the-art per-082
formance on all settings compared to existing methods.083

2. Related Work084

Coreset Selection Coreset selection aims to identify a small085
but representative subset of data that preserves the essential086
properties of the full dataset, reducing computational com-087
plexity while maintaining model performance. One of the088
foundational approaches utilizes k-center clustering [30] to089
formulate coreset selection as a geometric covering prob-090
lem, where a subset of data points is chosen to maxi-091
mize the minimum distance to previously selected points.092
By iteratively selecting the most distant samples in feature093
space, this method ensures that the coreset provides broad094
coverage of the dataset’s distribution, making it a strong095
candidate for reducing redundancy in large-scale datasets.096
Herding methods [40] take an optimization-driven approach097
to coreset selection by sequentially choosing samples that098
best approximate the mean feature representation of the099
dataset. Probabilistic techniques leverage Bayesian infer-100
ence [24] and divergence minimization [33] to construct101
coresets that balance diversity and statistical representative-102
ness. Influence-based selection methods [41] instead fo-103
cus on quantifying the contribution of individual samples104
to generalization performance, retaining only the most im-105
pactful data points.106

Image Dataset Distillation Dataset distillation [38] has107
emerged as a powerful paradigm for compressing large-108
scale image datasets while preserving downstream task per-109
formance. Early gradient-based methods like Dataset Dis-110
tillation (DD) [38] optimized synthetic images by match-111
ing gradients between training trajectories on original and112
distilled datasets. Later works introduced dataset conden-113
sation with gradient matching [46]. Further, Meta-learning114
frameworks Like Matching Training Trajectories (MTT) [3]115
and Kernel Inducing Points (KIP) [28] advances perfor-116
mance by distilling datasets through bi-level optimization117
over neural architectures. Dataset condensation with Distri-118
bution Matching (DM) [45] synthesizes condensed datasets119
by aligning feature distributions between original and syn-120
thetic data across various embedding spaces.121

Representative Matching for Dataset Condensation122
(DREAM) [21] improved sample efficiency by selecting123
representative instances that retained the most informative124
patterns from the original dataset, reducing redundancy in125
synthetic samples. Generative modeling techniques have126
also been explored, with Distilling Datasets into Generative127
Models (DiM) [37] encoding datasets into latent generative128
spaces, allowing for smooth interpolation and novel sample129
generation. Similarly, Hybrid Generative-Discriminative130

Dataset Distillation (GDD) [19] balanced global structural 131
coherence with fine-grained detail preservation by combin- 132
ing adversarial generative models with traditional distilla- 133
tion objectives. However, temporal redundancy and frame 134
sampling complexities, as noted in [11, 20], highlight the 135
unique difficulties of extending image-focused distillation 136
to video datasets. 137

Video Dataset Distillation While dataset distillation has 138
achieved significant success in static image datasets, di- 139
rect application to videos presents unique challenges due 140
to temporal redundancy and the need for efficient frame 141
selection [34]. Recent attempts to address video dataset 142
distillation have primarily focused on pixel-space com- 143
pression. Video Distillation via Static-Dynamic Disentan- 144
glement (VDSD) [39] tackles temporal redundancies be- 145
tween frames by separating static and dynamic components. 146
VDSD partitions videos into smaller segments and employs 147
learnable dynamic memory block that captures and syn- 148
thesizes motion patterns, improving information retention 149
while reducing redundancy. IDTD [48] addresses the chal- 150
lenges of within-sample redundancy and inter-sample re- 151
dundancy simultaneously. IDTD employs an architecture 152
represented by a shared feature pool alongside multiple fea- 153
ture selectors to selectively condense video sequences while 154
ensuring sufficient motion diversity. To retain the temporal 155
information of synthesized videos, IDTD introduces a Tem- 156
poral Fusor that integrates diverse features into the temporal 157
dimension. 158

Text-to-Video Models and Their Role in Latent Space 159
Learning Latent-space representations have become a cor- 160
nerstone of modern video modeling, offering structured 161
compression while maintaining high-level semantic in- 162
tegrity [34, 47]. Variational autoencoders provide to enable 163
efficient storage and reconstruction [13]. Extending this 164
concept, hierarchical autoregressive latent prediction [31] 165
introduces an autoregressive component that improves tem- 166
poral coherence, leading to high-fidelity video reconstruc- 167
tions. Further enhancing latent representations, latent video 168
diffusion transformers [23] incorporate diffusion-based pri- 169
ors to refine video quality while minimizing storage de- 170
mands. 171

Building upon these latent space techniques, recent text- 172
to-video models have demonstrated their capability to gen- 173
erate high-resolution video content from textual descrip- 174
tions. These methods employ a combination of transformer- 175
based encoders and diffusion models to synthesize realistic 176
video sequences. Imagen Video leverages cascaded video 177
diffusion models to progressively upsample spatial and tem- 178
poral dimensions, ensuring high-quality output [9]. Mean- 179
while, zero-shot generation approaches utilize decoder- 180
only transformer architectures to process multimodal in- 181
puts, such as text and images, without requiring explicit 182
video-text training data [15]. Hybrid techniques combin- 183
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Figure 1. Our training-free latent video distillation pipeline. The entire video dataset is encoded into latent space with a VAE. We further
employ the DPPs to select both representative and diverse samples, followed by latent space compression with HOSVD for efficient storage.

ing pixel-space and latent-space diffusion modeling further184
enhance computational efficiency while maintaining visual185
fidelity by leveraging learned latent representations during186
synthesis [43]. These advancements in latent space learn-187
ing not only improve video compression but also drive the188
development of scalable and high-quality text-driven video189
generation.190

3. Methodology191

In this section, we first introduce the variational autoen-192
coder (VAE) used to encode video sequences into a com-193
pact latent space. We then discuss our Diversity-Aware Data194
Selection method. Next, we present our training-free la-195
tent space compression approach using High-Order Singu-196
lar Value Decomposition (HOSVD). Finally, we describe197
our two-stage dynamic quantization strategy. The entire198
pipeline of our framework is shown in Fig. 1.199

3.1. Preliminary200

Problem Definition In video dataset distillation, given a201

large dataset T = {(xi, yi)}|T |
i=1 consisting of video sam-202

ples xi and their corresponding class labels yi, the objec-203
tive is to construct a significantly smaller distilled dataset204

S = {x̃i, ỹi}|S|
i=1, where |S| ≪ |T |. The distilled dataset205

is expected to achieve comparable performance to the orig-206
inal dataset on action classification tasks while significantly207
reducing storage and computational requirements.208

Latent image distillation has emerged as an effective209
alternative to traditional dataset distillation methods. In-210
stead of distilling datasets at the pixel level, latent distilla-211
tion leverages pre-trained autoencoders or generative mod-212
els to encode images into a compact latent space. La-213
tent Dataset Distillation with Diffusion Models [25], have214

demonstrated that distilling image datasets in the latent 215
space of a pre-trained diffusion model improves generaliza- 216
tion and enables higher compression ratios while maintain- 217
ing image quality. Similarly, Dataset Distillation in Latent 218
Space [6] adapts conventional distillation methods like Gra- 219
dient Matching, Feature Matching, and Parameter Match- 220
ing to the latent space, significantly reducing computational 221
overhead while achieving competitive performance. Differ- 222
ent from these methods, we extend latent space distillation 223
to video datasets by encoding both spatial and temporal in- 224
formation into the latent space. 225

3.2. Variational Autoencoder 226

Variational Autoencoders (VAEs) are a class of generative 227
models that encode input data into a compact latent space 228
while maintaining the ability to reconstruct the original 229
data [13]. Unlike traditional autoencoders, VAEs enforce a 230
probabilistic structure on the latent space by learning a dis- 231
tribution rather than a fixed mapping. This allows for better 232
generalization and meaningful latent representations. 233

A VAE consists of an encoder and a decoder. The en- 234
coder maps the input x to a latent distribution qϕ(z|x), 235
where z is the latent variable. Instead of producing a deter- 236
ministic latent representation, the encoder outputs the mean 237
and variance of a Gaussian distribution, from which sam- 238
ples are drawn. This ensures that the latent space remains 239
continuous, facilitating smooth interpolation between data 240
points [14]. The decoder then reconstructs the input x from 241
a sampled latent variable z, following the learned distribu- 242
tion pθ(x|z). 243

To ensure a structured latent space, VAEs introduce a 244
regularization term that aligns the learned distribution with 245
a prior distribution, typically a standard normal distribution 246
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p(z) = N (0, 1). This prevents the model from collapsing247
into a purely memorized representation of the data, encour-248
aging better generalization.249

The training objective of a VAE is to maximize the Ev-250
idence Lower Bound (ELBO) [18], which consists of two251
terms: reconstruction loss and Kullback-Leibler (KL) di-252
vergence regularization [13]. The reconstruction loss en-253
sures that the decoded output remains similar to the original254
input, while the KL divergence forces the learned latent dis-255
tribution to be close to the prior, preventing overfitting and256
promoting smoothness in the latent space. The overall loss257
function is formulated as follows.258

LVAE = Eqϕ(z|x)[− log pθ(x|z)]+β ·DKL(qϕ(z|x) ∥ pθ(z))
(1)259

3.3. Diversity-Aware Data Selection260

After encoding the entire video dataset into the latent space261
using a state-of-the-art VAE, an effective data selection262
strategy is crucial to maximize the diversity and represen-263
tativeness of the distilled dataset. To this end, we employ264
Diversity-Aware Data Selection using Determinantal Point265
Processes (DPPs) [17], a principled probabilistic frame-266
work that promotes diversity by favoring sets of samples267
that are well-spread in the latent space.268

DPPs [17] provide a natural mechanism for selecting a269
subset of latent embeddings that balance coverage and in-270
formativeness while reducing redundancy. Given the en-271
coded latent representations of the dataset, we construct a272
similarity kernel matrix L, where each entry Lij quantifies273
the pairwise similarity between latent samples zi and zj .274
The selection process then involves sampling from a deter-275
minantal distribution parameterized by L, ensuring that the276
chosen subset is both diverse and representative of the full277
latent dataset. We define a kernel matrix L using the fol-278
lowing function:279

Lij = exp(−∥ zi − zj ∥2

2σ2
) (2)280

Then subset S is sampled according to:281

P (S) =
det(LS)

det(L+ I)
(3)282

here LS is the submatrix of L that corresponds to the rows283
and columns indexed by S. The denominator det(L + I)284
serves as a normalization factor, ensuring that the probabili-285
ties across all possible subsets sum to 1. This normalization286
stabilizes the sampling process by incorporating an iden-287
tity matrix I , which prevents numerical instability in cases288
where L is near-singular.289

Our approach is motivated by the observation that naive290
random sampling or traditional clustering-based selection291

strategies [12] tend to underperform in high-dimensional 292
latent spaces [7], where redundancy is prevalent. By lever- 293
aging DPPs, we effectively capture a more comprehensive 294
distribution of video features, thereby improving the qual- 295
ity of the distilled dataset. Furthermore, the computational 296
efficiency of DPPs sampling allows us to scale our selection 297
process to large datasets without significant overhead. 298

Applying DPPs in the latent space instead of the pixel 299
space offers several key advantages. First, latent representa- 300
tions encode high-level semantic features, making it possi- 301
ble to directly select samples that preserve meaningful vari- 302
ations in motion and structure, rather than relying on pixel- 303
wise differences that may be redundant or noisy. Second, 304
the latent space is significantly more compact and disen- 305
tangled, allowing DPPs to operate more effectively with re- 306
duced computational complexity compared to pixel-space 307
selection [39], which often involves large-scale feature ex- 308
traction. Finally, in the latent space, similarity measures are 309
inherently more structured, which makes DPPs better suited 310
for ensuring diverse and representative selections that gen- 311
eralize well to downstream tasks. 312

3.4. Training-free Latent Space Compression 313

While our Diversity-Aware Data Selection effectively dis- 314
tills a compact subset of the latent dataset, we observe that 315
the selected latent representations remain sparse, leading to 316
inefficiencies in storage and downstream processing. 317

Singular Value Decomposition (SVD) is a fundamental 318
matrix factorization technique widely used in dimensional- 319
ity reduction, data compression, and noise filtering. Given 320
a matrix X ∈ Rm×n , SVD decomposes it into three com- 321
ponents: 322

X = UΣV T (4) 323

where U is an orthogonal matrix whose columns represent 324
the left singular vectors, Σ is a diagonal matrix containing 325
the singular values that indicate the importance of each cor- 326
responding singular vector, and V is an orthogonal matrix 327
whose columns represent the right singular vectors. A key 328
property of SVD is that truncating the smaller singular val- 329
ues allows for an effective low-rank approximation of the 330
original matrix, reducing storage requirements while pre- 331
serving essential information. This property makes SVD 332
particularly useful in data compression and feature selec- 333
tion. 334

However, when applied to higher-dimensional data, such 335
as video representations in latent space, SVD requires flat- 336
tening the tensor into a 2D matrix, which disrupts spa- 337
tial and temporal correlations. This limitation motivates 338
our adoption of High-Order Singular Value Decomposition 339
(HOSVD), which extends SVD to multi-dimensional ten- 340
sors while preserving their inherent structure. 341
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Dataset MiniUCF HMDB51 Kinetics-400 SSv2
IPC 1 5 1 5 1 5 1 5

Full Dataset 57.2± 0.1 28.6± 0.7 34.6± 0.5 29.0± 0.6

Coreset Selection
Random 9.9± 0.8 22.9± 1.1 4.6± 0.5 6.6± 0.7 3.0± 0.1 5.6± 0.0 3.2± 0.1 3.7± 0.0
Herding [40] 12.7± 1.6 25.8± 0.3 3.8± 0.2 8.5± 0.4 4.3± 0.3 8.0± 0.1 4.6± 0.3 6.8± 0.2
K-Center [30] 11.5± 0.7 23.0± 1.3 3.1± 0.1 5.2± 0.3 3.9± 0.2 5.9± 0.4 3.8± 0.5 4.0± 0.1

Dataset Distillation

DM [45] 15.3± 1.1 25.7± 0.2 6.1± 0.2 8.0± 0.2 6.3± 0.0 9.1± 0.9 4.1± 0.4 4.5± 0.3
MTT [3] 19.0± 0.1 28.4± 0.7 6.6± 0.5 8.4± 0.6 3.8± 0.2 9.1± 0.3 3.9± 0.2 6.5± 0.2
FRePo [49] 20.3± 0.5 30.2± 1.7 7.2± 0.8 9.6± 0.7 − − − −
DM+VDSD [39] 17.5± 0.1 27.2± 0.4 6.0± 0.4 8.2± 0.1 6.3± 0.2 7.0± 0.1 4.3± 0.3 4.0± 0.3
MTT+VDSD [39] 23.3± 0.6 28.3± 0.0 6.5± 0.1 8.9± 0.6 6.3± 0.1 11.5± 0.5 5.7± 0.2 8.4± 0.1
FRePo+VDSD [39] 22.0± 1.0 31.2± 0.7 8.6± 0.5 10.3± 0.6 − − − −
IDTD [48] 22.5± 0.1 33.3± 0.5 9.5± 0.3 16.2± 0.9 6.1± 0.1 12.1± 0.2 − −
Ours 34.8 ± 0.5 41.1 ± 0.6 12.1 ± 0.3 17.6 ± 0.4 9.0 ± 0.1 13.8 ± 0.1 6.9 ± 0.6 10.5 ± 0.4

Table 1. Performance comparison between our method and existing baselines on both small-scale and large-scale datasets. Follow previous
works, we report Top-1 test accuracies (%) for small-scale datasets and Top-5 test accuracies (%) for large-scale datasets.

HOSVD is a tensor decomposition technique that gen-342
eralizes traditional SVD to higher-dimensional data. By343
treating the selected latent embeddings as a structured ten-344
sor rather than independent vectors, we exploit multi-modal345
correlations across feature dimensions to achieve more effi-346
cient compression. Specifically, given a set of selected la-347
tent embeddings Z ∈ Rd1×d2×···×dn , we decompose it into348
a core tensor G and a set of orthonormal factor matrices Ui,349
such that350

Z = G ×1 U1 ×2 U2 × · · · ×n Un (5)351

where ×i denotes the mode- i tensor-matrix product. By352
truncating the singular values in each mode with a rank353
compression ratio, we discard low-energy components354
while preserving the most informative structures in the la-355
tent space.356

A key advantage of HOSVD over traditional SVD is its357
ability to retain the original tensor structure, rather than re-358
quiring flattening into a 2D matrix. More importantly, trun-359
cating the singular values in the temporal mode directly re-360
duces temporal redundancy, ensuring that only the most rep-361
resentative motion patterns are retained. This enables more362
efficient storage and reconstruction, while minimizing the363
loss of critical temporal information.364

Unlike conventional post-hoc compression techniques365
that require fine-tuning or retraining, HOSVD operates in a366
completely training-free manner, making it highly efficient367
and scalable. Furthermore, our empirical analysis shows368
that applying HOSVD after DPPs-based selection leads to369
a substantial reduction in storage and computational re-370
quirements while maintaining near-optimal performance in371
downstream tasks.372

By integrating HOSVD into our dataset distillation373
pipeline, we achieve an additional compression gain with374
minimal loss of information, further pushing the boundaries375
of efficiency in video dataset distillation.376

3.5. VAE Quantization 377

To further improve storage efficiency, we apply a two-stage 378
quantization process to the 3D-VAE [47], combining dy- 379
namic quantization for fully connected layers and mixed- 380
precision optimization for all other layers. 381

The first stage involves dynamic quantization, where all 382
fully connected layers are reduced from 32-bit floating- 383
point to 8-bit integer representations. Dynamic quantization 384
works by scaling activations and weights dynamically dur- 385
ing inference. Formally, given an activation x and weight 386
matrix W , the quantized representation is computed as: 387

Wq = round
(

W

sW

)
+zW , xq = round

(
x

sx

)
+zx (6) 388

where sW and sx are learned scaling factors, and zW and 389
zx are zero points for weight and activation quantization, 390
respectively. The dynamically scaled operation ensures that 391
numerical stability is preserved while reducing the model 392
size. This quantization is applied to all fully connected lay- 393
ers in the encoder and decoder, allowing for efficient mem- 394
ory compression without requiring retraining. 395

Unlike convolutional layers, fully connected layers pri- 396
marily perform matrix multiplications, which exhibit high 397
redundancy and are well-suited for integer quantization 398
(INT8). Quantizing these layers from FP32 to INT8 signif- 399
icantly reduces memory consumption and improves com- 400
putational efficiency while maintaining inference stabil- 401
ity [10]. Since fully connected layers do not require the 402
high dynamic range of floating-point precision, INT8 quan- 403
tization achieves optimal storage and performance benefits. 404

In the second stage, we employ mixed-precision opti- 405
mization, where all remaining convolutional and batch nor- 406
malization layers undergo reduced-precision floating-point 407
compression, scaling them from FP32 to FP16. Unlike in- 408
teger quantization, FP16 maintains a wider dynamic range, 409
preventing significant loss of information in convolutional 410
layers, which are more sensitive to precision reduction [42]. 411
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This hybrid quantization approach balances storage effi-412
ciency and numerical precision, ensuring that the 3D-VAE413
remains compact while preserving its ability to model spa-414
tiotemporal dependencies in video sequences. While apply-415
ing post-training dynamic quantization on CV-VAE[47], we416
achieve a more than 2.6× compression ratio while maintain-417
ing high reconstruction fidelity.418

4. Experiments419

4.1. Datasets and Metrics420

Following previous works VDSD [39] and IDTD [48], we421
evaluate our proposed video dataset distillation approach422
on both small-scale and large-scale benchmark datasets.423
For small-scale datasets, we utilize MiniUCF [39] and424
HMDB51 [16], while for large-scale datasets, we con-425
duct experiments on Kinetics [2] and Something-Something426
V2 (SSv2) [8]. MiniUCF is a miniaturized version of427
UCF101 [32], consisting of the 50 most common ac-428
tion classes selected from the original UCF101 dataset.429
HMDB51 is a widely used human action recognition dataset430
containing 6,849 video clips across 51 action categories.431
Kinetics is a large-scale video action recognition dataset,432
available in different versions covering 400, 600, or 700 hu-433
man action classes. SSv2 is a motion-centric video dataset434
comprising 174 action categories.435

4.2. Baselines436

Based on previous work, we include the following base-437
line: (1) coreset selection methods such as random selec-438
tion, Herding [40], and K-Center [30], and (2) dataset dis-439
tillation methods including DM [45], MTT [3], FRePo [49],440
VDSD [39], and IDTD [48]. DM [45] ensures that the mod-441
els trained on the distilled dataset produce gradient updates442
similar to those trained on the full dataset. MTT [3] im-443
proves distillation by aligning model parameter trajectories444
between the synthetic and original datasets. FRePo [49]445
focuses on generating compact datasets that allow pre-446
trained models to quickly recover their original perfor-447
mance with minimal training. VDSD [39] introduces a448
static-dynamic disentanglement approach for video dataset449
distillation. IDTD [48] enhances video dataset distillation450
by increasing feature diversity across samples while densi-451
fying temporal information within instances.452

4.3. Implementation Details453

Dataset Details For small-scale datasets, MiniUCF and454
HMDB51, we follow the settings from previous work455
[39, 48], where videos are dynamically sampled to 16456
frames with a sampling interval of 4. Each sampled frame457
is then cropped and resized to 112×112 resolution. We458
adopt the same settings as prior work [39, 48] for Kinetics-459
400, each video is sampled to 8 frames and resized to460

64×64, maintaining a compact representation suitable for 461
large-scale dataset distillation. In Something-Something 462
V2 (SSv2), which is relatively smaller among the two large- 463
scale datasets, we sample 16 frames per video and re- 464
size them to 112×112, demonstrating the scalability of our 465
method across datasets of varying sizes. 466

Evaluation Network Following the previous works, we 467
use a 3D convolutional network, C3D [35] as the evaluation 468
network. C3D [35] is trained on the distilled datasets gen- 469
erated by our method. Similar to previous works, we assess 470
the performance of our distilled datasets by measuring the 471
top-1 accuracy on small-scale datasets and top-5 accuracy 472
on large-scale datasets. 473

Fair Comparison Throughout our experiments, we rig- 474
orously ensure that the total storage space occupied by the 475
quantized VAE model and the decomposed matrices remain 476
within the constraints of the corresponding Instance Per 477
Class (IPC) budget. Specifically, on SSv2, our method uti- 478
lizes no more than 68% of the storage space allocated to 479
the baseline methods DM and MTT, guaranteeing a fair and 480
consistent comparison. A comprehensive analysis of fair 481
comparisons across all four video datasets is provided in 482
the supplementary material. 483

4.4. Experimental Results 484

In Tab. 1, we present the performance of our method 485
across MiniUCF [39], HMDB51 [16], Kinetics-400 [2], and 486
SSv2 [8] under both IPC 1 and IPC 5 settings. 487

On MiniUCF, our approach outperforms the best base- 488
line (IDTD) by 12.3% under IPC 1, achieving 34.8% ac- 489
curacy compared to 22.5%, and by 7.8% under IPC 5, 490
reaching 41.1% accuracy. Similarly, on HMDB51, our 491
method achieves 12.1% accuracy under IPC 1, surpass- 492
ing the strongest baseline by 2.6%, while under IPC 5, it 493
reaches 17.6%, a 1.4% improvement. These results high- 494
light the effectiveness of our latent-space distillation frame- 495
work, which provides superior compression efficiency and 496
classification performance compared to pixel-space-based 497
approaches. The consistent performance gains across both 498
IPC settings demonstrate the robustness of our method in 499
preserving essential video representations while achieving 500
high compression efficiency. 501

Furthermore, the results in Kinetics-400 and SSv2 re- 502
inforce our findings, as our approach consistently outper- 503
forms all baselines. Improvements in low-IPC regimes 504
(IPC 1) suggest that our training-free latent compression 505
and diversity-aware data selection are particularly effective 506
when dealing with extreme data reduction. Our method 507
achieves 9.0% accuracy on Kinetics-400 IPC 1, outperform- 508
ing the strongest baseline (IDTD) by 2.9%, and 6.9% ac- 509
curacy on SSv2 IPC 1, surpassing VDSD by 2.2%. The 510
trend continues in IPC 5, where our model achieves 13.8% 511
on Kinetics-400 and 10.5% on SSv2, both establishing new 512
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Figure 2. Comparison between different dataset distillation meth-
ods and data sampling methods on the SSv2 when IPC is 1.

state-of-the-art results in video dataset distillation.513

4.5. Ablation Study514

In this section, we systematically analyze the key compo-515
nents of our method to understand their contributions to516
overall performance. We evaluate cross-architecture gen-517
eralization, various sampling methods, different rank com-518
pression ratios in HOSVD, and different latent space com-519
pression techniques.520

Cross Architecture Generalization To further evalu-521
ate the generalization capability of our method, we con-522
duct experiments on cross-architecture generalization, as523
presented in Tab. 2. The results demonstrate that datasets524
distilled using our method consistently achieve superior per-525
formance across different evaluation models—ConvNet3D,526
CNN+GRU, and CNN+LSTM—compared to previous527
state-of-the-art methods.528

Our approach achieves 34.8% accuracy with Con-529
vNet3D, significantly surpassing all baselines, including530
MTT+VDSD (23.3%) and DM+VDSD (17.5%). Notably,531
our method also outperforms all baselines when eval-532
uated on recurrent-based architectures (CNN+GRU and533
CNN+LSTM), obtaining 19.9% and 18.3% accuracy, re-534
spectively. This highlights the robustness of our distilled535
dataset in preserving spatiotemporal coherence, which is536
crucial for models that leverage sequential dependencies.537

Sampling Methods We evaluate the impact of different538
sampling strategies on dataset distillation, comparing our539
Diversity-Aware Data Selection using Determinantal Point540
Processes (DPPs) against random sampling, Kmeans clus-541
tering [12], and prior dataset distillation methods (DM +542
VDSD, MTT + VDSD, IDTD). As shown in Fig. 2, our543
method achieves the highest performance, demonstrating544
the effectiveness of DPP-based selection in video dataset545
distillation.546

Among sampling strategies, DPPs-only selection outper- 547
forms Kmeans and random sampling, indicating that DPPs 548
promote a more diverse and representative subset of the la- 549
tent space. Compared to Kmeans (7.2%), DPPs selection 550
achieves 9.3% accuracy, validating its ability to reduce re- 551
dundancy and improve feature coverage. Furthermore, our 552
full method, which integrates DPPs-based selection with 553
HOSVD, achieves the best overall performance at 10.5%, 554
surpassing both previous dataset distillation methods and 555
other alternative sampling techniques. The complete evalu- 556
ation accuracies are detailed in the supplementary material. 557

These results highlight the importance of an effective 558
data selection strategy in video dataset distillation. Our ap- 559
proach leverages DPPs to maximize diversity while retain- 560
ing representative samples, leading to superior generaliza- 561
tion in downstream tasks. 562

Evaluation Model
ConvNet3D CNN+GRU CNN+LSTM

Random 9.9± 0.8 6.2± 0.8 6.5± 0.3
DM [45] 15.3± 1.1 9.9± 0.7 9.2± 0.3
DM + VDSD [39] 17.5± 0.1 12.0± 0.7 10.3± 0.2
MTT [3] 19.0± 0.1 8.4± 0.5 7.3± 0.4
MTT + VDSD [39] 23.3± 0.6 14.8± 0.1 13.4± 0.2
Ours 34.8± 0.5 19.9± 0.7 18.3± 0.7

Table 2. Result of experiment on cross-architecture generalization
for MiniUCF when IPC is 1.

Rank Compression Ratio 563
We evaluate the impact of different rank compression ra- 564

tios in HOSVD on overall performance in Tab. 3. Empirical 565
results show that a rank compression ratio of r=0.75 consis- 566
tently provides a strong balance between storage efficiency 567
and model accuracy across datasets. While increasing the 568
compression ratio reduces storage requirements, overly ag- 569
gressive compression can lead to significant information 570
loss, negatively affecting downstream tasks. Notably, as 571
shown in Fig. 3, when the rank compression ratio is set to r 572
= 0.1 , both datasets exhibit classification accuracy around 573
4.0%, suggesting that excessive compression leads to de- 574
graded latent representations, making the distilled dataset 575
nearly indistinguishable from random noise. 576

Dataset
Rank Compression Ratio

0.10 0.25 0.50 0.75 1.00
MiniUCF 4.1± 0.1 19.0± 1.3 31.5± 0.7 34.8± 0.5 28.9± 0.5
HMDB51 3.9± 0.6 7.6± 1.0 11.5± 0.1 12.1± 0.3 8.9± 0.5

Table 3. Accuracies under different rank compression ratios. Both
MiniUCF and HMDB51 datasets are evaluated under IPC 1.

HOSVD vs Classic SVD To evaluate the effectiveness 577
of our latent-space compression strategy, we compare trun- 578
cated SVD with HOSVD under the same storage budget at 579
IPC 5. Truncated SVD is a matrix factorization technique 580
that approximates a data matrix by keeping only its largest 581
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Figure 3. Accuracies of HMDB51 (IPC 1) and MiniUCF (IPC 1)
under different rank compression ratios utilized in HOSVD.

singular values, thereby reducing dimensionality while re-582
taining the most informative components. However, SVD583
operates on flattened data matrices, leading to a loss of584
structural information, particularly in spatiotemporal repre-585
sentations.586

As shown in Tab. 4, HOSVD consistently outperforms587
truncated SVD across all datasets, demonstrating its ability588
to better preserve spatial and temporal dependencies in the589
latent space. The performance gains are especially notable590
on MiniUCF (+2.6%) and HMDB51 (+1.8%). Similarly, on591
Kinetics-400 and SSv2, HOSVD achieves higher classifica-592
tion accuracy (+1.4% and +1.2%, respectively), highlight-593
ing its advantage in handling large-scale datasets. These594
results confirm that HOSVD’s tensor-based decomposition595
provides a more compact yet expressive representation.596

Dataset MiniUCF HMDB51 Kinetics-400 SSv2
SVD 38.5± 0.4 15.8± 0.2 12.4± 0.3 9.3± 0.2

HOSVD 41.1± 0.6 17.6± 0.4 13.8± 0.1 10.5± 0.4

Table 4. Classification accuracies comparison between different
latent compression techniques under the same storage budget for
each dataset at IPC 5.

4.6. Visualization597

Following previous works, we provide an inter-frame con-598
trast between DM and our method to illustrate the differ-599
ences in temporal consistency in Fig. 4. Specifically, we600
sample three representative classes (CleanAndJerk, Playing601
Violin, and Skiing) from the MiniUCF dataset and visual-602
ize the temporal evolution of distilled instances. The results603
clearly demonstrate that our method retains more temporal604
information, preserving smooth motion transitions across605
frames. These visualizations further validate the effective-606
ness of our latent-space video distillation framework in pre-607
serving critical spatiotemporal dynamics.608

DM

Ours

(a) CleanAndJerk

DM

Ours

(b) PlayingViolin

DM

Ours

(c) Skiing

Figure 4. Inter-frame comparison between DM and our method.
Our frames are reconstructed from saved tensors and decoded by
a 3D-VAE.

5. Conclusion 609

In this work, we introduce a novel latent-space video 610
dataset distillation framework that leverages VAE encod- 611
ing, Diversity-Aware Data Selection, and High-Order Sin- 612
gular Value Decomposition (HOSVD) to achieve state-of- 613
the-art performance with efficient storage. By applying 614
training-free latent compression, our method preserves es- 615
sential spatiotemporal dynamics while significantly reduc- 616
ing redundancy. Extensive experiments demonstrate that 617
our approach outperforms prior pixel-space methods across 618
multiple datasets, achieving higher accuracy. We believe 619
our method provides an effective and scalable solution for 620
video dataset distillation, enabling improved efficiency in 621
training deep learning models. 622

Future Work Although we have achieved strong perfor- 623
mance using selection-based, training-free methods, there 624
remains room for further improvement. In future work, 625
we aim to explore learning-based approaches in addition to 626
selection-based methods to further enhance dataset distilla- 627
tion performance. By incorporating trainable mechanisms 628
for optimizing distilled representations, we expect to im- 629
prove both efficiency and generalization. Additionally, we 630
plan to investigate non-linear decomposition techniques for 631
latent-space compression, moving beyond linear factoriza- 632
tion methods such as HOSVD. Leveraging non-linear de- 633
composition could lead to a more compact and expressive 634
latent space, enabling even greater storage efficiency while 635
preserving essential video dynamics. 636
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[2] Joúo Carreira and Andrew Zisserman. Quo vadis, action641
recognition? a new model and the kinetics dataset. In CVPR,642
pages 4724–4733, 2017. 6643

[3] George Cazenavette, Tongzhou Wang, Antonio Torralba,644
Alexei A Efros, and Jun-Yan Zhu. Dataset distillation by645
matching training trajectories. In CVPR, 2022. 2, 5, 6, 7646

[4] Justin Cui, Ruochen Wang, Si Si, and Cho-Jui Hsieh. Dc-647
bench: Dataset condensation benchmark. arXiv preprint648
arXiv:2207.09639, 2022. 1649

[5] Justin Cui, Ruochen Wang, Si Si, and Cho-Jui Hsieh. Scaling650
up dataset distillation to imagenet-1k with constant memory.651
In Proceedings of the International Conference on Machine652
Learning (ICML), pages 6565–6590, 2023. 1653

[6] Yuxuan Duan, Jianfu Zhang, and Liqing Zhang. Dataset dis-654
tillation in latent space. arXiv preprint arXiv:2311.15547,655
2023. 3656

[7] Lorenzo Ghilotti, Mario Beraha, and Alessandra Guglielmi.657
Bayesian clustering of high-dimensional data via latent re-658
pulsive mixtures. arXiv preprint arXiv:2303.02438, 2023.659
4660

[8] Raghav Goyal, Samira Ebrahimi Kahou, Vincent Michal-661
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6. VAE820

6.1. 2D-VAE Quantization821

Variational Autoencoders (VAEs) enable significant data822
compression by encoding each image as a probability dis-823
tribution in a learned latent space, having the architecture824
like in Fig. 5. The 2D-VAE used in this paper optimizes the825
following loss function:826

LVAE = Eqϕ(z|x) [log pθ(x | z)]−DKL (qϕ(z | x) ∥ pθ(z))
(7)827

The first term minimizes the reconstruction loss when828
decoding the latent representation of an image, while the829
second term, the KL divergence, ensures each encoded dis-830
tribution aligns with a normal prior distribution. Combined,831
the objective balances the quality of decoded images and832
the smoothness of the latent distribution.833

In order to ensure a fair comparison with previous work,834
the weights of the VAE are quantized through post-training835
static quantization, reducing the bid-width from 32 to 8 bits:836

xq = round
(x
s

)
+ z (8)837

Where s is the scaling factor, and z is the zero point.838
By applying linear quantization, the size of the pre-839

trained model is reduced to one-fourth of its original size.840
Empirically, the quantized VAE continues to yield high ac-841
curacy during experimentation. Compared to other methods842
such as quantization-aware training, static quantization has843
the advantage of retaining a high level of accuracy while844
offering lower computational complexity during the quanti-845
zation phase.846

7. Implementation Details847

In this section, we provide implementation details of our848
experiments, including the selection of VAEs, the prepro-849
cessing steps applied to video datasets, and the measures850
taken to ensure a fair comparison.851

7.1. Additional VAE Selection852

We have adopted and quantized SD-VAE-FT-MSE[1] and853
CV-VAE[47] in our experiments. The variational autoen-854
coders are used to encode video sequences into a compact855
latent space, enabling efficient dataset distillation. When856
dealing with IPC 1, where storage constraints are par-857
ticularly strict, we employ SD-VAE-FT-MSE, a 2D-VAE,858
which compresses videos as independent frames, allowing859

𝑋 𝑋′DecoderEncoder

𝒁

Input Data Output Data

Latent Space

Figure 5. Architecture of Variational Autoencoder(VAE).

for highly compact storage. In contrast, for IPC 5, we uti- 860
lize CV-VAE, a 3D-VAE, which explicitly models temporal 861
dependencies in video sequences. Unlike 2D-VAEs, which 862
treat frames as separate entities, 3D-VAEs capture motion 863
continuity and temporal redundancy, effectively reducing 864
redundant information across consecutive frames. This re- 865
sults in a more structured latent representation, ensuring 866
that only the most informative motion features are retained, 867
leading to improved efficiency in video dataset distillation. 868
This selective choice of VAE architectures ensures that our 869
distilled datasets achieve the optimal balance between com- 870
pression efficiency and information retention across differ- 871
ent IPC levels. 872

7.2. Quantized VAE Model Size 873

We apply post-training static quantization on SD-VAE- 874
FT-MSE, compressing the model from original 335MB to 875
80MB, achieving around 76% compression rate. 876

7.3. Fair Comparison 877

Throughout our experiments across four video datasets un- 878
der two IPC settings (1 and 5), we rigorously ensure that the 879
storage used by our method does not exceed predefined stor- 880
age constraints. For example, in MiniUCF IPC 1, previous 881
methods allocate a storage limit of 115MB. Under the same 882
setting, we sample 24 instances per class and apply HOSVD 883
with a compression rate of 0.75, saving the core tensor 884
and factor matrices. The resulting distilled dataset occu- 885
pies 27MB, while the quantized 2D-VAE requires 80MB, 886
leading to a total memory consumption of 107MB, which 887
remains within the 115MB storage budget. The detailed 888
storage consumption can be found in Tab. 5. 889

7.4. Sampling Methods 890

In Tab. 6, we have provided a detailed accuracies on differ- 891
ent sampling and dataset distillation techniques evaluating 892
on the dataset SSv2 when IPC is 5. 893
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Dataset MiniUCF HMDB51 Kinetics-400 SSv2
IPC 1 107 MB 107 MB 148 MB 223 MB
IPC 5 475 MB 475 MB 455 MB 458 MB

Table 5. Storage consumed by our method for each dataset. Stor-
age represents the total size of the distilled tensors and the associ-
ated VAE model.

Random DM + VDSD MTT + VDSD IDTD Kmeans DPPs only Ours
3.9± 0.1 4.0± 0.1 8.3± 0.1 9.5± 0.3 7.2± 0.3 9.3± 0.1 10.5± 0.2

Table 6. Performance of different dataset distilation and data sam-
pling methods on the SSv2 dataset under IPC 1.

8. Peak Memory Analysis894

To assess the efficiency of our method in terms of mem-895
ory consumption, we compare the peak GPU memory us-896
age during dataset distillation with other methods: DM and897
VDSD. As shown in Tab. 7, our method achieves the lowest898
peak memory consumption at 11,085 MiB, significantly re-899
ducing memory usage compared to DM (20,457 MiB) and900
VDSD (12,545 MiB).901

Method DM VDSD Ours
GPU Memory 20, 457 MiB 12, 545 MiB 11, 085 MiB

Table 7. Peak memory comparsion between different dataset dis-
tillation methods on MiniUCF when IPC is 5.

Our method minimizes peak memory usage by operat-902
ing in the latent space and leveraging training-free compres-903
sion via HOSVD, significantly reducing redundant memory904
allocation during dataset distillation. This lower memory905
footprint allows our approach to scale to larger datasets and906
higher IPC settings while maintaining efficiency.907

9. Runtime Analysis908

To assess the computational efficiency of our method, we909
compare its distillation runtime with VDSD across differ-910
ent datasets. All experiments are conducted on an NVIDIA911
H100 SXM GPU. Our training-free method demonstrates912
a significant speed advantage, particularly on large-scale913
datasets, due to its latent-space processing and training-free914
compression strategy.915

On small-scale datasets, such as HMDB51 and Mini-916
UCF, our method completes the dataset distillation process917
in under 10 minutes, whereas VDSD requires 2.5 hours.918
The efficiency gain is even more pronounced on large-scale919
datasets, where our method finishes in approximately 1 hour920
on Kinetics-400 and SSv2, while VDSD exceeds 5 hours.921

These results confirm that our latent-space approach922
significantly reduces computational overhead compared to923
pixel-space distillation methods like VDSD. By leverag-924
ing structured compression techniques such as HOSVD and925

eliminating costly iterative optimization steps, our method 926
achieves faster dataset distillation without compromising 927
performance. This makes our approach highly scalable and 928
practical for real-world applications, especially in large- 929
scale video analysis scenarios. 930

10. Visualization 931

We provide the reconstructed and decoded frames of our 932
method for MiniUCF across 20 classes in Fig. 6. 933
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Figure 6. Reconstructed and decoded frames of our method for MiniUCF with a 3D-VAE.
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