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Abstract

Corruption is frequently observed in collected data and has been extensively studied1

in machine learning under different corruption models. Despite this, there remains2

a limited understanding of how these models relate such that a unified view of3

corruptions and their consequences on learning is still lacking. In this work, we4

formally analyze corruption models at the distribution level through a general,5

exhaustive framework based on Markov kernels. We highlight the existence of6

intricate joint and dependent corruptions on both labels and attributes, which are7

rarely touched by existing research. Further, we show how these corruptions affect8

standard supervised learning by analyzing the resulting changes in Bayes Risk.9

Our findings offer qualitative insights into the consequences of “more complex”10

corruptions on the learning problem, and provide a foundation for future quanti-11

tative comparisons. Applications of the framework include corruption-corrected12

learning, a subcase of which we study in this paper by theoretically analyzing loss13

correction with respect to different corruption instances.14

1 Introduction15

Machine learning starts with data. The most widespread conception of data defines them as atomic16

facts, perfectly describing some reality of interest [1]. In learning theories, this is reflected by the17

often-used assumption that training and test data are drawn independently from the same distribution.18

The goal of learning is to identify and synthesize patterns based on the knowledge, or information,19

embedded in these data. In practice, however, corruption regularly occurs in data collection. This20

creates a mismatch between training and test distributions, forcing us to learn from imperfect facts.21

We should thus doubt the view of data as static facts, and consider them as a dynamic element of a22

learning task [2]. Besides the predictor and the loss function, one may focus on the data dynamics,23

studying corruptions and intervening in the learning process. Toward this goal, there has been a surge24

of research in the machine learning community proposing various corruption models, examining and25

correcting their effects on learning formally or empirically [3, 4, 5, 6, 7, 8]. Nevertheless, it is still26

unclear how these models relate and whether they characterize all types of corruption. Even though27

the necessity of investigating this topic is recognized both at a practical [9, 10] and a theoretical28

[11, 12] level, no standardized way to model and analyze corruption has been so far created [13].29

Our primary objective here is to systematically study the problem of learning under corruption,30

providing a general framework for analysis. Whilst there have been some existing attempts, cer-31

tain limitations persist in terms of homogeneity and exhaustiveness. A famous early endeavor is32

Quinonero-Candela et al. [14], grouping together works about the multi-faceted topic of dataset shift,33

yet not in a unifying or comprehensive manner. Later on, several studies aim to provide a more homo-34

geneous view of corruption, often referred to as noise or distribution shift. However, their frameworks35
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typically rely on some corruption-invariant assumptions on the marginal or conditional probabilities,36

and the extent of exhaustiveness is merely conjectured or not considered [15, 16, 17, 18].37

In this paper, we take a different point of view from the previous work: we categorize corruption38

based on its dependence on the feature and label space, rather than relying on the notion of invariance.39

Our resulting framework is generic, encompassing all possible pairwise stochastic corruptions.1 The40

underpinning mathematical tool that enables such exhaustiveness is the Markov kernel. While Markov41

kernels have been utilized in formalizing corruption [7, 19], their primary focus has been solely on42

label corruption, attribute corruption, or simple joint corruption. To our knowledge, the proposed43

framework is novel in the sense of demonstrated exhaustiveness in this domain. Our contributions are44

summarized as follows:45

C1 We propose a new taxonomy of corruption in the supervised learning setting (§ 3), hierarchically46

organized through the notion of dependence (Fig. 1), and connect existing corruption models to47

this taxonomy (Tab. 1).48

C2 We analyze the implications of our family of corruptions on learning (§ 4), linking the Bayes risk49

of the clean and corrupted supervised learning problems through equality results (Theorem 3,50

Theorem 4, Theorem 5).51

C3 We derive corruption-corrected loss functions for different corruption instances within our frame-52

work (§ 5). A subcase of these corrections (Theorem 8) generalizes prior results on corruption-53

corrected learning in simple label corruption.54

Though abstract in general, our results expand upon existing ones on specific corruption models and55

shed light on the relatively under-explored joint and dependent corruptions.56

2 Background57

Before introducing our analysis, we review the background framework and notations.58

Supervised learning In statistical decision theory [20, 21], a general decision problem can be59

viewed as a two-player game between nature and decision-maker. Nature chooses its state, then60

experiment leads to some observations given the state, and the decision-maker picks a suitable action61

from a fixed set of decision rules. In the specific setting of supervised learning, observations are in62

the feature space X ⊂ Rd , d ≥ 1, states are in the label space Y , then the experiment E leads to a63

probability associated with the observation X , given the state Y . Here we focus on the classification64

task, that is, assuming the label space to be finite. All the stated results can be easily extended to65

regression cases by considering a continuous label space; we leave it for future application.66

To formalize the processes described above, we introduce the Markov kernel.67

Definition 1 (Klenke [22]). A Markov kernel κ from a measurable space (X1,X1) to a measurable68

space (X2,X2) is a function x1 7→ κ(x1, ·) from X1 to P(X2), the set of probability measures on69

X2, such that κ(x1, B) is measurable in x1 for each set B ∈ X2. We denote it by κ : X1 ⇝ X2, or70

more compactly by κX1X2 . The set of Markov kernels from X1 to X2 is referred to as M(X1, X2).71

The Markov kernel generalizes the concept of conditional probability. Looking at the function κ(·, B),
it associates different probabilities to the set B given different values of the parameter x1. It can
transform a distribution µ ∈ P(X1) into another distribution µκ ∈ P(X2), as well as transform a
function f : X2 → R into another function κf : X1 → R with the following two operators:

µκ(B) :=

∫
X1

κ(x1, B)µ(dx1) ∀B ∈ X2 , κf(x1) :=

∫
X2

κ(x1, dx2)f(x2) ∀x1 ∈ X1 ,

provided the integral exists. Next, we define different operations to combine Markov kernels:72

P1 Given κ : X1 ⇝ X2 and λ : X1 × X2 ⇝ X3, their chain composition κ ◦ λ : X1 ⇝ X373

is defined by (κ ◦ λ)f(x1) :=
∫
X2

κ(x1, dx2)
∫
X3

λ((x1, x2), dx3)f(x3) = κ(λ f)(x3) where74

f : X3 → R is a positive X3-measurable function;75

P2 For κ : X1 ⇝ X2 and λ : X1 ×X2 ⇝ X3, their product composition κ×λ : X1 ⇝ X2 ×X3 is76

(κ × λ)f(x1) :=
∫
X2

κ(x1, dx2)
∫
X3

λ((x1, x2), dx3) f(x2, x3) for every f positive X2 × X3-77

measurable.78

1As for non-stochastic ones, we show that they always have a stochastic alternative representation. See § 3.
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Notice that a probability distribution is a specific instance of a Markov kernel, constant in its parameter79

space. Therefore, P1 and P2 are well defined for κ ≡ µ ∈ P(X2). We can unify the notation of ×80

for distributions thanks to the flexibility of kernels, and consider the µκ as a subcase of µ ◦ κ.81

Bayes risk Having defined all these objects, a supervised learning problem can be represented

by the diagram Y X Y,E h where h is a decision rule chosen in M(X,Y ). Its task can be
formalized as a risk minimization problem, i.e., finding the optimal action h ∈ H by considering the
Bayes Risk (BR) measure

BRℓ(π × E) = inf
h∈M(X,Y )

Rπ,ℓ(π × E) = inf
h∈M(X,Y )

EY∼πEX∼EY
ℓ(hX,Y) ,

where the notation κX stands for the kernel κ evaluated on the parameter X, e.g., hX, EY (this subscript
notation will be used throughout), and π is a prior distribution on Y . The function ℓ is asked to be
bounded and a proper loss [23, 24], i.e., a loss function ℓ : P(Y )× Y → R+ whose minimization
set contains the ground truth class probability. More formally, we ask for

∃ h∗ ∈ arg min
h∈M(X,Y )

Rπ,ℓ,A(E) such that h∗ × µ = E × π ,∃ µ ∈ P(X) .

Since in real-world applications, one deploys a model with only limited representation capacity, we
consider the constrained version of BR

BRℓ,H(πY × E) = inf
h∈H⊆M(X,Y )

EY∼πY
EX∼EY

ℓ(hX,Y) .

We call H the model class. If we fix the joint space to Z = X × Y and the joint probability82

distribution to P = πY × E ∈ P(Z), we can refer to a supervised learning problem as the triple83

(ℓ,H, P ). Notice that we can also use an equivalent decomposition of the joint distribution through a84

posterior kernel F : X ⇝ Y , so that P = πX × F for some prior on the feature space. Hence, each85

supervised learning problem can have two associated kernels, the experiment E and the posterior86

one F . We then obtain two views of the learning problem, a generative and a discriminative one, as87

previously noted by Reid et al. [25]. By means of these, we can define two Conditional BR (CBR):88

Discriminative: EX∼πX
CBRℓ,H(FX) = EX∼πX

inf
hX∈HX

EY∼FX
ℓ(hX,Y) , (1)

Generative: EY∼πY
CBRℓ,H(EY) = EY∼πY

inf
h∈H

EX∼EY
ℓ(hX,Y) ,

both equal to their corresponding constrained BR. Notice that for Eq. (1) to be well defined, we need89

at least one minimum of the unconstrained BR to be included in the model class. For our convenience,90

we ask it to be the h matching the F .91

3 A general framework for corruption92

In this section, we present a general framework of pairwise corruptions based on the notion of93

dependence and discuss how existing corruption models fit into this framework as subcategories.94

First, let us formally define corruption and two additional kernel operations, which will be useful in95

the buildup of our corruption taxonomy.96

Definition 2. A corruption is a Markov kernel κ that sends a probability space (X × Y,X × Y, P )97

into another, (X × Y,X × Y, P̃ ). We write it as κZZ̃ ,2 and call the variables z = (x, y) ∈ Z98

parameters and the differentials dz̃ = dx̃dỹ corrupted variables.99

The following operations are not considered in the classical probability literature but have been100

studied in other areas, e.g., through the lens of category theory [26, 27, 28]. Here we rework them to101

fit our framework.102

P3 Given κ : X1 ⇝ X2 and λ : X3 ⇝ X4, their superposition (see § S2.1) is equal to κλ :103

X1 × X3 ⇝ X2 × X4 as (κλ)f(x1, x3) :=
∫
X2

κ(x1, dx2)
∫
X4

λ(x3, dx4) f(x2, x4), where104

f : X2 ×X4 → R is positive X2 ×X4-measurable;105

2We slightly abuse the kernel notation κZZ̃ to describe how corruption changes the probability spaces. For
instance, if a corruption acts solely on the space X , it will be written as κXX̃ ; however, only the probability
measure on it will be actually changed.
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κZZ̃
2J

κXY Ỹ

2D-Ỹ

κXỸ

1D-Ỹ
κY Ỹ

S-Ỹ

κY X̃Ỹ
1J-Y

κXX̃Ỹ
1J-X

κXY X̃

2D-X̃

κY X̃

1D-X̃
κXX̃

S-X̃

(a) Corruption hierarchy. It is based on the independence
from a parameter or a corrupted variable. Arrow: child
is constant w.r.t. exactly one of the variables in parent.

2D-X̃ , 2D-Ỹ

1D-X̃ , 2D-Ỹ 2D-X̃ , 1D-Ỹ S-X̃ , 2D-Ỹ 2D-X̃ , S-Ỹ ,

S-X̃ , S-Ỹ1D-X̃ , 1D-Ỹ

(b) Feasible combinations. The partial ordering is
induced by corruptions, i.e., one corruption in child
and one in parent respect the corruption hierarchy.

Figure 1: Partial orderings on the corruption and combination sets, based on the amount of dependence
on the spaces. In the left panel, we underline with dotted nodes the corruptions that cannot be used in
any feasible combination. Trivial cases of independence from all parameters or identical kernels are
excluded from this analysis.

P4 The pseudo-inverse of a kernel κ : X1 ⇝ X2 is defined as κ† : X2 ⇝ X1 such that (κ† ◦κ)µ1 =106

µ1 and (κ ◦ κ†)µ2 = µ2 with µ1, µ2 being the probabilities associated to X1, X2. In general,107

the pseudo-inverse is not unique, since it corresponds to a class of equivalence induced by the108

probability measure on X1 (see details in § S2.2).109

Again, P3 is well defined for κ ≡ µ ∈ P(X2). This operation allows for more flexible combinations110

of kernels, in a “parallel” fashion. No restriction is imposed on the parameter spaces to be equal, e.g.,111

X1 = X2, or Cartesian products with some space in common, e.g., X1 = Y1 × Y2, X2 = Y1 × Y3.112

When this happens, the action of the two kernels “superpose” on the same space. In addition, having113

more than one measure in the integral acting on the same space would make the integral ill-defined,114

so this case is excluded. Because of these properties, we say that P3 is the operation with the weakest115

feasibility conditions, i.e., the set of rules to fulfill a well-defined operation.116

Building a taxonomy of corruptions Corruptions can be naturally classified in different ways,117

depending on their behavior with respect parameters and corrupted variables. In Fig. 1a, we show all118

possible non-trivial corruption types, i.e., those that are not identical and not constantly equal to a119

probability. We classify them based on the number of parameters they depend on, and the type of120

corrupted variables they result in. Specifically, we employ the following abbreviations: J is short for121

Joint (both variables are corrupted), S is short for Simple (the parameter and the corrupted variable122

are the same), and D is short for Dependent (others). We then obtain the classification: 2-parameter123

joint corruption (2J), 1-parameter joint corruption (1J), 2-parameter dependent corruption (2D),124

1-parameter dependent corruption (1D), simple corruption (S), along with an indication of parameter125

or corrupted space. The general naming rule is {#parameters} + {abbreviation} + {-} + {parameter126

or corrupted space, depending on where the ambiguity lies}.127

We now want to generate all possible corruptions of the type κZZ̃ : X × Y ⇝ X̃ × Ỹ . We128

combine the nodes in Fig. 1a using the superposition operation (P3), obtaining all the feasible129

combinations included in Fig. 1b. The missing couples are excluded because of P3’s feasibility130

conditions described above, which, even if weak, still do not allow some corruption pairings. Needing131

each corrupted variable to appear exactly once, we cannot include the 1-parameter joint corruptions132

in any factorization of the κXY X̃Ỹ . It is easy to check that no corruption from (a subset of) {X,Y }133

to (a subset of) {X̃, Ỹ } can be combined with them. Compatibility problems arise also when trying134

to combine a simple corruption (S) with a 1-parameter dependent one (1D); we cannot fulfill the135

feasibility conditions for P3 and obtain a complete joint corruption, since we will be always missing136

a parameter. We then exclude this combination from our taxonomy.3137

Markov kernels and exhaustiveness Our motivation for formalizing corruptions through Markov138

kernels is their representation power in terms of couplings. A coupling is formally defined for two139

probability spaces Σ1 := (Z1,Z1, P1), Σ2 := (Z2,Z2, P2) as a probability space Σ := (Z1 ×140

Z2,Z1 × Z2, P ), such that the marginal probabilities associated to P w.r.t. Zi, i ∈ {1, 2} are141

3Note that 1Js are still valid corruptions if seen as a subcase of a 2J, the full one, e.g., 2J =
κXX̃Ỹ (dx̃dỹ, x) 1(y). Similarly, a 1D corruption can be seen as a subcase of a 2D corruption. Here we
are exploring the possibility of combining them with other corruptions. The constraints are only dimensional.
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Table 1: Illustration of the taxonomy with examples of existing corruption models.

Name Action diagram Corrupted distribution Examples

S-X̃ Y X X̃E κ
XX̃ P̃ = (κXX̃δY Ỹ ) ◦ (πY × E) attribute noise [30, 31, 4, 19]

S-Ỹ X Y ỸF κ
Y Ỹ P̃ = (δXX̃κY Ỹ ) ◦ (πX × F )

class-conditional noise
[32, 33, 5, 34, 7, 19]

1D-X̃ X Y X̃F κ
Y X̃ P̃ = (κY X̃δY Ỹ ) ◦ (πX × F ) style transfer [35, 36, 37]

1D-Ỹ Y X ỸE κ
XỸ P̃ = (δXX̃κXỸ ) ◦ (πY × E)

instance-dependent noise
(IDN) [8]

2D-X̃ Y X X̃E

κ
XY X̃

κ
XY X̃ P̃ = (κXY X̃δY Ỹ ) ◦ (πY × E)

adversarial noise
[38, 39, 40, 41, 42]

2D-Ỹ X Y ỸF

κ
XY Ỹ

κ
XY Ỹ P̃ = (δXX̃κXY Ỹ ) ◦ (πX × F )

instance & label-dependent
noise [8, 43, 44, 45]

S-X̃ ,
S-Ỹ

Ỹ Y X X̃
κ
Y Ỹ E

κ
XX̃ P̃ = (κXX̃κY Ỹ ) ◦ (πY × E) combined simple noise [19]

1D-X̃ ,
2D-Ỹ

X̃ Y X Ỹ
κ
Y X̃ E

κ
XY Ỹ

κ
XY Ỹ P̃ = (κY X̃κXY Ỹ ) ◦ (πY × E) target shift [46, 47, 48, 49]

2D-X̃ ,
S-Ỹ

Ỹ Y X X̃
κ
Y Ỹ E

κ
XY X̃

κ
XY X̃ P̃ = (κXY X̃κY Ỹ ) ◦ (πY × E)

mutually contaminated
distributions [6, 50, 51]

2D-X̃ ,
1D-Ỹ

Ỹ X Y X̃
κ
XỸ F

κ
XY X̃

κ
XY X̃ P̃ = (κXY X̃κXỸ ) ◦ (πX × F ) covariate shift [3, 52, 53, 54]

2D-X̃ ,
2D-Ỹ

Ỹ Y X X̃
κ
XY Ỹ

κ
XY Ỹ

E

κ
XY X̃

κ
XY X̃ P̃ = (κXY X̃κXY Ỹ ) ◦ (πY × E)

generalized target shift
[55, 56, 57]

concept drift [58, 59]

the respective Pi. By construction, Markov kernels are in bijection with all the possible couplings142

existent on Z × Z with two fixed probability measures, for us, P, P̃ . Hence, they represent all143

possible pairwise dependencies between probability spaces that are stochastic, and for non-stochastic144

mappings, we are sure to have an alternative Markov kernel representation.4145

In most machine learning research considering corruption, the corruption process typically involves146

two environments, that is, the training one and the test one. Our definition of corruption (Def. 2)147

covers all such pairwise cases. Furthermore, one may also apply this framework to settings with148

more than two spaces, e.g., online learning or learning from multiple different domains [29]. For149

these cases, we can employ a composed model, where different corruptions are acting together in a150

“chained” (P1, P2) or “parallel” (P3) fashion and creating more complex patterns. We discuss further151

possibilities for applying this framework to n > 2 corrupted spaces in § S2.3.152

Relations to existing paradigms Next, we examine how existing corruption models fit into our153

taxonomy. To do so, we reformulate them as specific instantiations of Markov corruptions. This154

reveals their relationships within the corruption hierarchy presented in Fig. 1a. Our goal here is155

not to merely demonstrate that a child problem can be solved by a parent one, but rather to gain a156

deeper understanding of the problem settings. The exhaustiveness of the framework allows us to157

identify what has been previously overlooked in characterizing all types of corruption. Notably, we158

highlight the existence of joint and dependent corruptions, which receive far less attention than simple159

4When the mapping between two fixed probability spaces is a transition kernel, e.g., a non-normalized
Markov kernel, the map is deterministic. An example is the selection bias classically formalized as absolutely
continuous probabilities P̃ ≪ P [14]. However, given the bijection with the coupling space, we can always find
a stochastic map connecting Σ1, Σ2. A similar argument can be replicated for mappings between Σ1, Σ2 that
are not kernel-induced, e.g., they are not positive. For more details, see § S2.2.
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corruptions, while far greater problems arise in such complicated cases (see § 4). Moreover, we notice160

that existing categorizations rely mostly on the notion of invariance, i.e., corruptions are defined161

based on which element of the distributions are preserved. These invariance-based taxonomies have162

been introduced mainly for robustness and causal analyses. However, they do not have a one-to-one163

correspondence with ours, and do not allow for a hierarchical nor compositional view of corruption.164

A summary of representative corruption models in the literature is given in Tab. 1, while all the165

technical details about correspondences and relations between taxonomies are given in § S1.166

4 Consequences of corruption in supervised learning167

Traditionally, experiments have been compared through Bayes Risk using what is known as the Data168

Processing Inequality, or Blackwell-Sherman-Stein Theorem [20, 60].5 Recently, in Williamson and169

Cranko [19], Data Processing Equality results have also been studied within the supervised learning170

framework. Here we adopt the equality approach to compare the clean and corrupted experiments171

through Bayes Risk. The equalities formally characterize how the optimization problem is affected by172

the different kinds of joint corruption in our taxonomy. This gives us a quantitative result in terms of173

conserved “information” [19] between corrupted and clean learning problems, and a bridge between174

the problems themselves.175

We rewrite the minimization set of the BR in a more compact way, such as ℓ ◦ H := { (x, y) 7→176

ℓ(hx, y) |h ∈ H ⊆ M(X,Y ) }. We define the action of a corruption κ on this set as the set of all the177

corrupted functions κf, f ∈ ℓ ◦ H. Lastly, we ask f∗ = ℓ ◦ h∗ ∈ argminf EP̃ [f(X̃, Ỹ )] to belong178

to the constraining space ℓ ◦ H, for reasons already discussed for Eq. (1).179

The first two theorems cover the (S, 2D) cases and their subcase (S-X̃ , S-Ỹ ), as proved in [19].180

Theorem 3 (BR under (S-X̃ , S-Ỹ ), (2D-X̃ , S-Ỹ ) joint corruption). Let (ℓ,H, P ) be a learning181

problem, E : Y ⇝ X an experiment and κX̃ ∈ {κXX̃ , κY XX̃} a corruption. Let κY Ỹ be a182

simple corruption on Y . Then we can form the corrupted experiment as per the transition diagram6183

Ỹ Y X X̃
κY Ỹ E

κX̃

κX̃

and obtain184

EỸ∼κY Ỹ πY
CBRℓ◦H(κX̃EỸ) = EY∼πY

CBRκX̃(κY Ỹ ℓ◦H)(EY) .

Moreover, if κX̃ = κXX̃ , we have185

BRℓ◦H[κY Ỹ (πY × κXX̃E)] = BRκXX̃(κY Ỹ ℓ◦H)(πY × E) . (2)

Here in Theorem 3 we have shown the BR equality for the experiment E, in line with the Comparison186

of Experiments and Information Equalities literature mentioned at the beginning of the section.187

However, for some corruptions the equalities results cannot be stated with E and the Generative188

CBR, unless ignoring the joint corruption factorization formula (see § S5 for a detailed explanation).189

We hence use the posterior kernel F defined with the Discriminative CBR (Eq. (1)), and gain more190

insights about the minimization set while paying a price in elegance of the result.191

Theorem 4 (BR under (S-X̃ , 2D-Ỹ ) joint corruption). Let (ℓ,H, P ) be a learning problem, F :192

X ⇝ Y a posterior and κXY Ỹ } a Y corruption. Let κXX̃ be a simple corruption on X . Then we193

can form the corrupted experiment as per the transition diagram X̃ X Y Ỹ
κXX̃ F

κỸ

κXY Ỹ
194

and obtain195

EX̃∼κXX̃πX
CBRℓ◦H(κXY Ỹ FX̃) = EX∼πX

CBRκXX̃(κXY Ỹ ℓ◦H)(FX) .

5Briefly, the theorem states that for an experiment E and its image through a suitably defined Markov kernel
κ w.r.t. some operation, we have BRπ,ℓ,H(E) ≤ BRπ,ℓ,H(κE) for all π, ℓ,H.

6The first arrow in the diagram is Ỹ ⇝ Y , the opposite direction given for the Y corruption. However, we
are not using any notion of inverse corruption here. We are only using the flexibility of Markov kernels as
operators and introducing an alternative notation. The kernel used here is exactly the κY Ỹ : Y ⇝ Ỹ , which acts
on an input measure in a “push-forward” fashion. The notation will be further used in the rest of the paper.
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We can notice, thanks to Theorems 3, 4, that when corruption involves dependent structures in
the factorization, the loss function or the whole minimization set are modified in a parameterized,
dependent way. For instance,

κXX̃(κXY Ỹ ℓ ◦ H) = {κXX̃(κY Ỹ ℓx ◦ h) |h ∈ H} ,

with κXY Ỹ now viewed as a parameterized label corruption, i.e. (κY Ỹ )x. An additional consequence196

is also that the result can only be given in terms of CBR, Discriminative or Generative. We also see197

that corruptions on Y only affect the loss function and does not touch the model class, even in the198

dependent case.199

The next theorems cover the factorizations involving 1D corruptions. In the first case, we are again200

forced to use either E or F , depending on the involved factors. We group the two results in one201

theorem for brevity.202

Theorem 5 (BR under (1D, 2D) joint corruption). Let (ℓ,H, P ) be a learning problem, E : Y ⇝ X203

and F : X ⇝ Y be an experiment and a posterior on it.204

1. Let κY X̃ be a corruption on X and κXY Ỹ be a corruption on Y , then we can form the jointly205

corrupted experiment as per the transition diagram X̃ Y X Ỹ
κY X̃ E

κXY Ỹ

κXY Ỹ and obtain206

BRℓ◦H[κY X̃κXY Ỹ (πY × E)] = EY∼πY
CBRκY X̃(κXY Ỹ ℓ◦H)(EY) . (3)

2. Let κXỸ be a corruption on Y and κXY X̃ be a corruption on X , then we can form the jointly207

corrupted posterior as per the transition diagram Ỹ X Y X̃
κXỸ F

κXY X̃

κXY X̃ and obtain208

BRℓ◦H[κXỸ κXY X̃(πX × F )] = EX∼πX
CBRκXY X̃(κXỸ ℓ◦H)(FX) . (4)

Being the (1D, 1D) a subcase of both previous corruptions, we can prove the result as a simple209

corollary. Notice that this implies both E and F formulations to hold.210

Corollary 6 (BR under (1D, 1D) joint corruption). Let (ℓ,H, P ) be a learning problem, E : Y ⇝ X211

and F : X ⇝ Y be an experiment and a posterior on it. Let κY X̃ be a corruption on X and κXỸ be212

a corruption on Y , then we can form the jointly corrupted experiment as per the transition diagram213

X̃ Y X Ỹ
κY X̃ E κXỸ or equivalently Ỹ X Y X̃.

κXỸ F κY X̃ We obtain214

BRℓ◦H[κY X̃(πY × κXỸ E)] = BRκY X̃(κXỸ ℓ◦H)(πY × E) ,

or equivalently215

BRℓ◦H[κXỸ (πX × κY X̃F )] = BRκY X̃(κXỸ ℓ◦H)(πX × F ) .

In all the Theorems involving a 1D corruption, the minimization set is heavily modified. In Eq. (3),216

the loss function is corrected such that it will be dependent on the parameter x (ℓx), while the whole217

composition will be evaluated on y instead of x. We the obtain functions of the form ℓ̃x ◦ h(y). In218

Eq. (4), we instead end up having a minimization space of the form (̃ℓ ◦ h)y(x). Lastly, both results219

of Corollary 6 lead to a comparison of performance on the X space instead of Y , with a new loss220

function that takes in imput y and a probability on X parameterized by y. We can consider the these221

cases as an expansion of the loss space; more detail will be added in the next section.222

The only factorization missing from Fig. 1b is the (2D, 2D) one. Because of its high dependence223

on the parameters, we could not recover a meaningful decomposition of the effect on ℓ ◦ H. This224

suggests it to be equivalent to a 2J corruption when looked at through the lens of Bayes Risk. For225

detailed analysis, see Supplementary material § S3.226

5 Corruption-corrected learning227

We now leverage our corruption framework for answering the question “what can we do to ensure228

unbiased learning from biased data?”. This question has different answers depending on what we229

mean by unbiased learning. As for the biased data, we assume that biased here refers to non-identical230

joint corruption acting on a probability, giving us a corrupted training distribution.231
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Past work from Van Rooyen and Williamson [7] and Patrini et al. [34] considered unbiased learning232

as what is known as generalization, i.e. learn on the corrupted space P̃ a hypothesis h∗ such that it is233

also optimal on the clean distribution P at test time. They choose the approach of corrected learning,234

which is, correcting the loss function or the model class in order to learn a h∗ capable to generalize.235

They both used frameworks related to ours, although only in the presence of simple Y corruption.236

We prove similar results to these works for the loss correction task and analyze what we can achieve237

in other corruption cases described by our taxonomy. In general, we cannot prove generalization but238

we exhibit a corrected loss allowing the model learned on P̃ to have the same biases (i.e. loss scores)239

as the one found for the clean learning problem. To do so, we make use of the pseudo-inverse of a240

Markov kernel (P4), as it is more convenient and powerful than the kernel reconstruction introduced in241

[7]. The results we show here also serve as a first step towards understanding the effect of corruption242

of the minimization set ℓ◦H, in the cases where the BR equalities are not giving us much information243

(i.e. all the cases that are not simple label noise [19]).244

Again, in this analysis, we ignore the influence of the data sample and the optimization technique. We245

use all the assumptions introduced when defining the learning problem in § 2 and the BR results § 4.246

The BR equalities for cleaning kernels The theorems proved in § 4 can then be restated, in terms247

of learning problems and pseudo-inverse κ† : Z̃ ⇝ Z, as248

(ℓ,H, P ) → (κ†(ℓ ◦ H), κP ) . (5)

We will refer here to the pseudo-inverse of our corruption as the cleaning kernel. Notice that the set249

κ†(ℓ ◦H) is not trivially decomposable as ℓ̃ ◦ H̃ for some loss and model class. In this case, κ†(ℓ ◦H)250

is said to have no ◦-factorized structure.251

The BR equalities are ensuring the existence of a function f∗ ∈ ℓ ◦ H ∩ κ†(ℓ ◦ H) that minimizes
the Bayes Risk, i.e.

f∗ ∈ argmin
f∈ℓ◦H

EP f(Z) and f∗ ∈ argmin
f∈κ†(ℓ◦H)

EκP f(Z) .

Sadly, this is not enough for us to find an optimal hypothesis working for both probability spaces.252

Formal results on this optimal h ∈ H for both clean and corrupted spaces only exist for label noise253

[7, 8]. However, by introducing a few further assumptions, we can get results on which alternative loss254

to use on train distribution so that the learned h on P̃ will have the same performance scores as the255

optimal on (ℓ,H, P ). Let us consider the composed representation of the function f∗ in the test (clean)256

minimization set, which is f∗ = ℓ ◦ h∗. We want to construct a suitable composed representation for257

f∗ also in the space κ†(ℓ ◦ H), namely f∗ = ℓ̃ ◦ h̃∗. We start by fixing a h̃∗ ∈ H of our choice, that258

if asked to be invertible (A1) identifies the loss function as ℓ̃ = ℓ ◦ h∗ ◦ (h̃∗)−1 : P(Y )× Y → R+.7259

There can be weaker conditions on (ℓ̃, h̃∗) enabling all the following results, but do not investigate260

the here.261

Since in general κ†(f∗) ̸= f∗, we have that: ∃h′ ∈ H s.t. κ†(ℓ◦h′) = ℓ̃◦ h̃∗ , where we ask h′ ̸= h∗,262

otherwise we would be imposing the trivial condition ℓ ◦h∗ = ℓ̃ ◦ h̃∗ = κ†(ℓ ◦h∗), i.e. the corruption263

is harmless w.r.t. the Bayes Risk value. In order to study the possible loss correction, we choose the264

corrupted optimum as h̃∗ = h′ (A2).265

Loss corrections We now try to formalize how to define a suitable loss for the corrupted learning266

problem, such that the optimal hypothesis is learned in the clean learning space. The problem setting267

gives us access to ℓ, κ† given by the problem, and h̃∗ chosen by us. We want to find a way to retrieve a268

suitable h∗ for the clean distribution. That means, the loss correction task here is finding a formulation269

of ℓ̃ that depends on ℓ, κ†. An essential preliminary result, for which the proof is given in § S4.1, is270

Lemma 7. The feasible factorization of a Markov kernel κ is also a valid factorization for its271

pseudo-inverse κ†, both for the full kernel or considering their parameterized versions.272

We then give the correction results (proof in § S4.2), and discuss them.273

7Here h∗ is inverted as a function, not as a kernel. That means, ℓ̃(p, y) = ℓ(h∗((h̃∗)−1(p)), y).
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Theorem 8. Let (ℓ,H, P ) be a clean learning problem and (κ†(ℓ ◦H), κP ) its associated corrupted274

one, not necessarily with a ◦-factorized structure. Let κ† be the joint cleaning kernel reversing κ,275

such that assumptions A1 and A2 hold for the said problems. The factorization of κ† is assumed to be276

feasible and to have an equality result of the form Eq. (5). We write κ†(dz, z̃) = κX(dx, ·)κY (dy, ·),277

with (·) some feasible parameters. Hence, we can prove the following points:278

1. When κ† is either (idX , S-Y ) or (idX , 2D-Y ), we can write the corrected loss as279

ℓ̃(h(x̃), ỹ) = (κY ℓ) (h(x̃), ỹ) ∀ (x̃, ỹ) ∈ X̃ × Ỹ ,

with κY ℓ = κY
x̃ ℓ for the second case.280

2. When κ† is (S-X , S-Y ), (2D-X , S-Y ) or (S-X , 2D-Y ), we have281

ℓ̃(x̃, ỹ, h) = Eu∼κXh(x̃)[κ
Y ℓ (u, ỹ)] ∀ (x̃, ỹ) ∈ X̃ × Ỹ ,

with κX
x̃ h(x̃)(A) := κX(h−1(A), x̃) , A ⊂ P(Y ) being the push-forward probability measure of282

κX(·, x̃) through h, h seen as a function. For the cases that involve a 2D corruption, we have283

κY ℓ = κY
x̃ ℓ for the former κ† factorization, κXh(x̃) = κX

ỹ h(x̃) for the latter.284

3. When κ† is a (1D-X , 1D-Y ) corruption, we can write the corrected loss as285

ℓ̃(x̃, ỹ, h) = Eu∼κXh(ỹ)[κ
Y ℓ (u, x̃)] ∀ (x̃, ỹ) ∈ X̃ × Ỹ ,

with κX
x̃ h(ỹ)(B) := κX(h−1(B), ỹ) , B ⊂ P(X).286

4. When κ† is a (2D, 1D) corruption, we can write the corrected loss as287

ℓ̃(x̃, ỹ, h) = Eu∼κXh(ỹ)[κx̃
Y ℓ (u, ỹ)] , ℓ̃(x̃, ỹ, h) = Eu∼κX

ỹ h(x̃)[κ
Y ℓ (u, x̃)] ∀ (x̃, ỹ) ∈ X̃×Ỹ .

for the (1D-X , 2D-Y ), (2D-X , 1D-Y ) respectively.288

When minimized, the corrected losses will by construction give back the hypothesis h̃∗. Since289

ℓ ◦ h∗ = ℓ̃ ◦ h̃∗, the learned h̃∗ has on the clean distribution the optimum performance we wanted290

to achieve with the original loss function ℓ. Hence, we achieve unbiased learning in the sense of291

matching scores and in the distributional sense.292

The corrections found by the theorem are more complex than the ones defined in previous work293

[7, 34], i.e., the first part of point 1. In the second part, we characterize the effect of a more “dependent”294

Y cleaning kernel, i.e. closer to the root in Fig. 1a. When also κX is non-trivial in the factorization,295

we have an action on h. Then, the corrected functions lie in a larger function space than the usual296

one, the one of positive, bounded functions ℓ : X × Y ×H → R+.297

The result additionally underlines how the cleaning kernel affects the a hypothesis on X: it induces a298

set of “reachable predictions” from h through κ†, depending on the outcome of the stochastic process299

κ† : X̃ ⇝ X . The push-forward probability measures are probabilities on a set of probabilities. For300

instance, in point 2 we have κX
ỹ h(x̃) ∈ P(P(Y )), while for point 3 we have κX

x̃ h(x̃) ∈ P(P(X)).301

6 Conclusions302

We proposed a comprehensive and unified framework for corruption using Markov kernels, system-303

atically studying corruption in three key aspects: classification, consequence, and correction. We304

established a new taxonomy of corruption, enabling qualitative comparisons between corruption305

models in terms of the corruption hierarchy. To gain a deeper quantitative understanding of corruption,306

we analyzed the consequences of different corruptions from an information-theoretic standpoint by307

proving Data Processing Equalities for Bayes Risk. As a consequence of them, we obtained loss308

correction formulas that gives us more insights into the effect of corruption on losses.309

Throughout the work, we consider data as probability distributions, implicitly assuming that each310

dataset has an associated probabilistic generative process. We treat corruption as Markov kernels,311

assuming full access to their actions, and analyze the consequences of corruption through Bayes risks312

without accounting for sampling or optimization. Bridging the gap between the distributional-level313

and the sample-level results would be the next step for this study, which requires tailored ad-hoc314

analyses. Other directions for making this framework more practically usable include developing315

quantitative methods to compare corruption severity and investigating the effects of optimization316

algorithms on the analysis.317
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