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ABSTRACT

Current approaches to Video Question Answering (VideoQA) primarily focus on
cross-modality matching, which is limited by the requirement for extensive data
annotations and the insufficient capacity for causal reasoning (e.g. attributing
accidents). To address these challenges, we introduce a causal framework for
video reasoning, termed Learning Latent Causal Processes (LLCP). At the heart of
LLCP lies a multivariate generative model designed to analyze the spatial-temporal
dynamics of objects within events. Leveraging the inherent modularity of causal
mechanisms, we train the model through self-supervised local auto-regression
eliminating the need for annotated question-answer pairs. During inference, the
model is applied to answer two types of reasoning questions: accident attribution,
which infers the cause from observed effects, and counterfactual prediction, which
predicts the effects of counterfactual conditions given the factual evidence. In the
first scenario, we identify variables that deviate from the established distribution by
the learned model, signifying the root cause of accidents. In the second, we replace
embeddings of previous variables with counterfactual ones, enabling us to forecast
potential developments. Once we have identified these cause/effect variables,
natural language answers are derived through a combination of grammatical parsing
and a pre-trained vision-language model. We assess the efficacy of LLCP on both
synthetic and real-world data, demonstrating comparable performance to supervised
methods despite our framework using no paired textual annotations. The code is
available at https://github.com/CHENGY12/LLCP.

1 INTRODUCTION

Video Question Answering (VideoQA) aims to comprehend and analyze video content, subsequently
providing responses to queries posed in natural language. Leveraging its capability of visual dynamics
understanding and cross-modality alignment, it serves as a pivotal component in the field of interactive
AI, garnering significant attention in recent years.

Current methods Chen et al. (2023); Cong et al. (2021); Feng et al. (2021); Xu et al. (2021); Le et al.
(2020) for VideoQA often treat it as a cross-modality matching task to learn temporal dynamics with
annotations, as shown the part (a) of Figure 1. For example, HCRN Le et al. (2020) enables video
understanding by matching the visual and textual latent embeddings which are learned with annotated
natural language question-answer pairs. However, these methods utilize the likelihood of cross-modal
matching to learn the spatial-temporal relations, which may fail to capture the underlying causality of
the temporal dynamics, leading to serious issues for the performance of video reasoning systems.

To address this challenge, this paper introduces a novel framework for video reasoning, named LLCP
(Learning Latent Causal Processes), which utilizes a causality-based approach to uncover the latent
causal relations and enhance the VideoQA task. LLCP employs a temporal multivariate generative
model (TMGM) to understand the underlying causal patterns of the agents in the video events. As
illustrated on the right side (b) of Figure 1, we show an example of using our framework for traffic
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Figure 1: Comparisons between conventional VideoQA methods and LLCP. Conventional meth-
ods directly match the video content and texts, where the optimization heavily relies on textual
annotations. While LLCP learns the latent causal processes with a temporal multivariate generative
model by self-supervision (without paired data). Taking accident attribution as an example, LLCP
can answer the reasoning question by matching the identified cause agent with parsed keywords. The
red node on the right side denotes the root cause (the agent causing the accident).

accident analysis. We apply the causal mechanisms to model the interactions among agents, and
leverage the trained model to conduct causal inference to answer questions.

Specifically, to learn temporal multivariate generative model (TMGM), we first localize the possible
objects in the video event. Following the current video reasoning methods Cong et al. (2021); Ji et al.
(2020), we utilize a pre-trained tracker or object detector to identify and monitor agents. Subsequently,
we employ TMGM to identify the underlying causal mechanisms that guide the behaviors of these
agents. Relying on the inherent modularity of causal mechanisms, the TMGM focuses solely on
the parent variables from the last time step for each variable. These variables include the agent’s
historical state, interactions in the vicinity, and environmental information. This generative model
is optimized by maximizing the Evidence Lower Bound (ELBO) through self-supervision (without
textual annotations).

In the inference, we apply this self-supervised model to answer two types of reasoning questions,
including accident attribution, which infers the cause from observed effects, and counterfactual
prediction, which predicts the effects of specific counterfactual assumption. For accident attribution,
we detect causes by identifying changing factors that do not follow the regular causal processes, i.e.,
the agents that cannot fit the causal mechanism well, to explain the accident. Specifically, we apply
the reconstruction accuracy to check whether an agent is aligned well and then identify the root cause
with low reconstruction accuracy. For counterfactual prediction, we first abduct the intra-characters
with factual evidence. Then we replace the embeddings of the cause variables with the ones in the
counterfactual condition, and predict the potential changes with the learned model. After identifying
the cause/effect variables, we apply them to answer the neural language questions. We first implement
a grammar parse which uses logical rules to identify the key objects from the question-answer (QA)
pairs. Then, leveraging a pre-trained vision-language model, we match the recognized visual objects
with the extracted textual concept, thereby answering basic reasoning questions effectively. We
evaluated our framework on two simulation datasets and two real-world VideoQA datasets. It consists
of SUTD-TrafficQA Xu et al. (2021) for accident attribution and Causal-VidQA Li et al. (2022a)
for counterfactual prediction. We show that LLCP using no annotated textual question-answer pairs
exhibits comparable performance with those methods that train with full supervision.

Contributions: 1) We propose a framework, LLCP, which introduces a causal perspective of video
reasoning to reduce annotation reliance and enhance reasoning ability. 2) We propose TMGM to
learn the local latent causal process and apply it for both cause-based and effect-based reasoning
tasks. 3) We show that LLCP achieves comparable performance with supervised methods without
using the paired Question-Answer(QA) annotations for the model training.

2 METHOD

In this section, we first introduce the TMGM model and then describe how we can leverage this
model in the inference for both cause-based and effect-based video reasoning tasks.

2.1 TEMPORAL MULTIVARIATE GENERATIVE MODEL

Causal Processes. Without loss of generality, we assume the given video X consists of T frames
and N agents as X = {xt,i|T,N

t=1,i=1}. For each variable, we introduce our data-generating pro-
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cess shown in Figure 2. In this figure, we provide a closer look using zt+1,3 as the example to
explain the causal processes. The gray shade of nodes indicates that the variable is observable.
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Figure 2: The multivariate causal
generation process, in which the
historical state zt,3, neighbor-
hoods zt,1, zt,2, and environment
variables et are variables in the
temporal dynamic system

Here we assume that the observed objects x have the latent
variables z. Then the spatial-temporal transitions of the latent
variables are divided into three parts: historical states (zt,3),
neighborhood interactions (zt,1 and zt,2), and environmental
information (et). Specifically, For a given variable xt,i, its his-
torical state is the variable with the same identity but in the past
frame, i.e., xt′,i|t′ < t. Similarly, its neighborhoods denote
other variables (not experimental variables) in the previous
frame, such as xt′,j |j ̸= i, t′ < t. The environment variables
denote the environmental context, such as traffic lights, zebra
crossing, and traffic signals. Mathematically,{

zt,i = f ({zt−τ,j |zt−τ,j ∈ Pa(zt,i)}, ϵt,i) ,
xt,i = g(zt,i),
ϵt,i ∼ pϵt,i ,

(1)

where the observed object xt,i is generated from a latent vari-
able zt,i with a nonlinear function g. We apply a pre-trained multiple object tracking model Pang et al.
(2021); Contributors (2020) to detect the objects, which indicates a part of g and the tracking labels
serve as a bridge to connect objects and words. The latent variables zt,i have stationary time-delayed
(τ denotes the time lag) causal relations which are formulated by f , where Pa(zt,i) are the parent
variables of zt,i, i.e., Pa(zt,i) denotes the set of latent factors that directly cause zt,i. In addition to
parent variables, zt,i is also influenced by a noise term ϵt,i, for different spatial-temporal variables,
the noise terms ϵt,i are mutually-independent. To simplify, and W.L.O.G, in the following sections,
we utilize the traffic events as an example to show the model and consider the setting with τ = 1.
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Figure 3: Network architecture of the temporal mul-
tivariate generative model. We provide an example to
show how the temporal multivariate generative model
learns the latent causal processes of xt+1,3. Blue denotes
the neighborhood objects, green denotes the historical
state, gray denotes no-related variables, and orange de-
notes the environment variable. fH , fN , and fE are the
sub-networks to learn the causal processes from histori-
cal states, neighborhood interactions, and environmental
clues, respectively. ffuse is a sub-network to fuse them.

In this scenario, we further fi-
nalize the formulation of parent
variables Pa(zt,i) as Pa(zt,i) =
{zt−1,i,N (zt−1,i), et−τ}, where zt−τ,i

denotes the historical state of the
current agent. N (zt−1,i) denotes the
neighborhood variables in the t− 1 time
step, which can be easily obtained by
the distance on spatial locations. et−1

is the historical environmental state.

Based on the aforementioned data gener-
ation process, we further provide the the-
oretical analysis to show that the Granger
Causal relationship can be captured. We
begin with the definition of Granger non-
causality of multi-type object sequences.

Definition 1 (Granger non-causality of
multi-type object sequences) Suppose
that the object sequences X are gener-
ated according to Equation 1, we can
determine the Granger non-causality of the object xi with respect to object xj as follows: For all
xt−1:t−τ,1,xt−1:t−τ,2, · · · ,xt−1:t−τ,N , and the same variable with different values xt−1:t−τ,i ̸=
x′
t−1:t−τ,i, if the following condition holds:

ϕj(xt−1:t−τ,1, · · · ,xt−1:t−τ,i, · · · ,xt−1:t−τ,N ) = ϕj(xt−1:t−τ,1, · · · ,x′
t−1:t−τ,i, · · · ,xt−1:t−τ,N ),

(2)
that is, xt,j is invariant to xt−1:t−τ,i with ϕj .

Sequentially, we provide that the Granger Causality in the estimated function fj is identifiable. Proof
of the theoretical results are shown in Appendix A2.

Proposition 1 (Identification of Granger Causality in the estimated function fj .) Suppose that the
estimated function fj well models the relationship between xi and xj from the training data. Given
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Figure 4: Overall framework of LLCP. In the training, we first obtain agents from regular videos by
a tracking model, then apply these agents to fit a temporal multivariate generative model to learn the
causal processes. Note that “Hist”, “Nbrhd”, “Env” denote history, neighborhood, and environment,
respectively. This model is learned by the ELBO loss with self-supervision. In the inference, we
first apply the learned generative model to process the test data, and then identify the cause variable
(changing factor) which doesn’t follow the regular causal processes. With identified cause variables
and language keywords parsed from the reasoning task, we can give the answer by matching them
with pre-trained CLIP models.

the ground truth Granger Causal structure G(V,EV ) with the maximum time lag of 1, where V and
EV denote the nodes and edges, respectively. Assume that the data are generated by Equation (1),
then xi → xj /∈ EV if and only if ∂xt,j

∂xt−1,i
= 0.

Network. Given the features of observed variables extracted from a frozen CLIP image encoder, we
model TMGM as an extension of Conditional Variational Auto-Encoders Sohn et al. (2015) (CVAE)
with tailored modules to enforce the causal processes as Eq. 1. As shown in Figure 3, TMGM consists
of three modules including a learnable encoder network to map the features of observed variables into
the latent space, a decoder to generate the observed variables with the latent variables, and a transition
module modeling the latent causal dynamics. In the transition module, we respectively learn three
sub-networks fN , fH , and fE , to learn the transitions from historical states (green), neighborhood
interaction (blue), and environment information (orange). Then, we apply another sub-network to
fuse the information that comes from different sources. All sub-networks are built by the Multilayer
Perceptron (MLP).

Optimization. To train the TMGM, we formulate it as an auto-regression task that predicts the future
state with past information. Specifically, it is optimized by the classical ELBO objective:

LELBO=

T∑
t=1

N∑
i=1

LRecon(xt,i, x̂t,i)−βEẑt,i∼q log q (ẑt,i|xt,i,Pa(ẑt,i))−log p(ẑt,i|Pa(ẑt,i)), (3)

where the LRecon to calculate the distance between the generation and the ground truth is imple-
mented by the binary cross-entropy function, and β is a hyperparameter to balance two loss terms.
The KL divergence LKLD between the prior distribution p(ẑt,i|Pa(ẑt,i)) and posterior distribution
q (ẑt,i|xt,i,Pa(ẑt,i)). The implementation details can be found in Appendix A4.

2.2 IDENTIFYING ROOT CAUSE OF ACCIDENT

Definition of Root Cause. In a temporal dynamic system, the root causes of accidents are defined as
the variables that significantly diverge from the established local causal mechanisms Sheet (2016);
Yang et al. (2022b). Basically, these alterations occur exclusively from the local causal mechanism,
unaffected by other extraneous variables. To illustrate, consider a traffic accident scenario where the
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root causes can clearly be attributed to individuals or vehicles that disregard traffic rules, rather than
the agents impacted by these variables.

Implementation. We apply the TMGM method to learn the stationary local causal mechanisms
of each variable, by analyzing transitions from historical states to the present states under normal
events. When a variable serves as the root cause, a notable shift in its local causal mechanisms
becomes evident. To identify the changing factors, we contrast the observed transitions of each
variable in the query sample against the causal mechanisms established through TMGM. The variable
demonstrating deviation from the learned transitions potentially stands under the influence of altering
factors. Specifically, we propose two criteria to examine whether the query variable is the root cause,
including the Maximum Reconstruction Error (MRE) and the Outlier Reconstruction Noise (ORN).

Maximum Reconstruction Error. MRE serves as a direct method to confirm whether a variable
aligns with the local causal mechanisms by analyzing the reconstruction error. Typically, variables
exhibiting a larger reconstruction error are more likely to contain changing factors. Given a query
video, we first detect the variables X′ = {x′

t,i|
T,N
t=1,i=1} in the same manner as the training stage. For

each variable x′
t,i, we can generate its predictions with our learned TMGM model using its parent

variables. The process for detecting the root cause variable using MRE is as follows:

x′
C = argmax

t,i
||x̂′

t,i − x′
t,i||, (4)

where x̂′
t,i is the expected prediction obtained by the learned TMGM model

f ({zt−τ,j |zt−τ,j ∈ Pa(zt,i)},0).
Outlier Reconstruction Noise. An alternative manner is to detect outliers by analyzing noise
variables–with a fixed functional form of causal influence, we consider the instance as an outlier
if the value of the noise is an outlier. Specifically, we generate a set of predictions x̂′

t,i(ϵk) with
different samples ϵk of the noise variable, and find the noise value with the best prediction (the one
with minimal predictive errors) as

ϵ̂t,i = argmin
ϵk

||x′
t,i − x̂′

t,i(ϵk)||. (5)

Given the prior distribution of noise variables can be touched in Eq.1, i.e., a standard Gaussian
distribution N (0, I), we can conduct the statistical test to verify whether (or how) ϵ̂t,i follows the
prior distribution. Variables that demonstrate notable deviations in best-reconstruction noise from
prior expectations are identified as root causes.

2.3 COUNTERFACTUAL PREDICTION

Definition. The counterfactual prediction in the causal dynamic system aims to reason the potential
development if some historical actions are changed. Mathematically, let ZH and ZF denote the sets of
history and future latent variables, respectively. The counterfactual prediction ZF (u|ZH = zh) = zf
denotes that “ZF would be zf , given the situation u, if had ZH been zh”.

Implementation. Given the factual evidence (existing event X), this counterfactual prediction
ZF (u|ZH = zh) can be estimated with the following steps Pearl (2009):

• Abduction: Estimate the situation u using existing factual event X as P (u|X). We employ
the learned TMGM model given by f ({zt−τ,j |zt−τ,j ∈ Pa(zt,i)}, ϵ) to represent the local
causal mechanism. The variable ϵ represents the situation variable that requires estimation.
For a given query video X′, we initially produce a set of predictions by introducing different
noises, represented as x̂′

t,i(ϵk). We then select the prediction with the optimal reconstruction
as the estimated û, as outlined in Equation (5).

• Action: Take the action do(ZH = zh) to modify the causal process into counterfactual world.
Based on the textual description of the counterfactual condition, we derive the textual
embedding through an encoder, treating it as the estimated visual counterfactual condition ẑh.

• Prediction: Use the modified causal process to predict counterfactuals as ZF (u|ZH = zh).
With the estimated situation û and counterfactual condition ẑh at hand, we adjust the relevant
variables in the TMGM model to forecast possible effects. For these counterfactual conditions,
we modify only the changing variables, retaining the rest in their original state.
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2.4 ANSWER REASONING QUESTION

In this section, we demonstrate how the derived causal/effect variables can be applied to effectively
answer fundamental reasoning questions. Prior to this, we first outline a fundamental characteristic of
reasoning questions that allows them to be differentiated from reasoning-free questions. At their core,
reasoning questions necessitate understanding variable “changes” and the corresponding impacts. To
clarify, we provide several representative examples of reasoning questions, drawing attention to the
notion of variable “changes”. Consider the question Q1: “What is the reason for the accident?”. It
could be rephrased as: “Which variable change led to the accident?”. Similarly, the question Q2:
“What would happen if the rope broke?”, translates to: “What would occur if the rope’s status changes
from intact to broken?”. Lastly, Q3: “Would the accident still happen if the blue car did not run a red
light?”, can be understood as: “Would the accident still happen when the state of variable ‘blue car’
is changed to ‘did not run a red light’?”.

This suggests that the reasoning questions center on the variable “changes”, evident in both questions
(Q2, Q3) and answers (Q1). Furthermore, these questions can be segmented into two types: inferring
causes (Q1, Q3) and predicting counterfactual effects Q2. Specifically, Q1 and Q2 represent attribu-
tion and counterfactual prediction respectively. For Q3, though it also follows the sentence pattern of
Q2 such as “ ... happen if ...”, it is a true-or-false question but not an open-choice question. Such a
question can be answered via attribution reasoning. For instance, if the established cause is not ‘run a
red light’, the answer to this question is “no”.

Technically, for open-choice attribution questions like Q1, we measure the distance between the
identified root cause and answer candidates, choosing the most fitting one as the answer. This
distance calculation can be facilitated by a pretrained vision-language model, such as CLIP Radford
et al. (2021). In the case of open-choice counterfactual prediction questions like Q2, we begin by
estimating potential counterfactual effects with counterfactual inference using the trained model,
followed by comparing the effect to textual candidates. For true-or-false questions like Q3, we
initially identify the key object of the question, such as ‘blue car’. It is accomplished via language
parsing, particularly by examining conditional adverbial clauses. (Additional parsing outcomes are
available in the Appendix A6.4.) We then determine if this subject aligns with the identified root
causal variable by gauging its cross-matching similarity against a set threshold. This match indicates
that modifying this element might prevent the incident (answer yes) or not (answer no).

3 EXPERIMENTS

We executed the experiments in two synthetic and two real-world VideoQA datasets. In the simulation
tests, we assess the capability of LLCP to identify the root cause and predict counterfactual effects,
utilizing the ground truth as a benchmark. For the real-world tests, we evaluate LLCP with reasoning-
based VideoQA tasks related to cause identification and counterfactual prediction, respectively.

3.1 SIMULATION EXPERIMENTS

In this section, we conducted these types of simulation experiments to evaluate whether LLCP can
learn the causal process and how it can help downstream inferences. The first one focuses on root
cause identification, which aims to attribute the cause of accidents. The second one is counterfactual
inference, predicting the possible state with the given factual evidence and counterfactual conditions.
We further conduct simulation experiments to demonstrate the proposed LLCP can uncover underlying
causal relationships, whose details are shown in Appendix A5.3.

Root cause identification. In this experiment, we examine two potential root causes: function change
(where the accident occurs during the generation process) and structure change (where the accident
pertains to the causal structure). We construct a random causal structure, G, comprising 10 nodes,
and introduce both function and structure changes to simulate accidents. Our dataset comprises a
training set of 700 regular samples, and a test set of 1243 regular samples and 543 accident samples.
For assessment, we employ Recall and F1-score as our metrics, marking an evaluation as false if
either metric is not met.

Table 1 displays the experimental results. We have considered both VAE and LSTM-VAE as baseline
methods. For each method, we employed five random seeds and reported the average outcomes.
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Additionally, we conducted the Wilcoxon signed-rank test on these results. LLCP distinctly surpasses
the baselines, with a p-value threshold set at 0.05. Some observations are summarized below. Firstly,
in terms of recall performance, the proposed approach markedly excels over other methods across
all datasets, indicating LLCP ’s effectiveness in accurately identifying true causal variables with
minimal misses. Furthermore, LLCP also demonstrates considerable advantages in the F1-Score
metric, signifying its efficiency in minimizing false detections—particularly crucial in scenarios with
sparse accident samples. Delve deeper into data generation specifics and extended experimental
analysis in Appendix A5.

Table 1: Performance comparison (Recall and F1 Scores) on
the simulation datasets.

Methods Function change Structure change
Recall F1 Score Recall F1 Score

LSTM-VAE 52.11 27.81 37.75 20.78
VAE 51.92 27.33 31.08 19.35
LLCP 63.34 63.01 45.04 44.19

Counterfactual inference. For sim-
ulating counterfactual inference, we
generate paired validation data com-
prising both factual evidence and
counterfactual events (which share
identical noise). During the infer-
ence phase, we examine the factual
evidence and forecast the counterfac-
tual effects under counterfactual con-
ditions, using the trained model. Our dataset consists of 32,000 training samples and 16,800 paired
samples (both factual and counterfactual) for evaluation. The RMSE of the prediction serves as our
evaluation metric.

Table 2: Performance comparison (RMSE) on
the simulation datasets.

w/ Counterfactual
Inference

w/o Counterfactual
Inference

0.0936 0.0967

Table 2 displays the experimental results. Predic-
tions are evaluated under conditions with and with-
out counterfactual inference. The tables provided
are averages derived from three distinct experiments.
Furthermore, after employing the Wilcoxon signed-
rank test on these findings, it’s evident our approach
markedly surpasses the baselines, given a p-value
threshold set at 0.05. It’s worth emphasizing that the model that incorporates counterfactual inference
consistently demonstrates superior performance compared to its counterpart. Further elaboration can
be found in Appendix A5.

3.2 REAL-WORLD EXPERIMENTS: SUTD-TRAFFICQA

We conduct experiments on the SUTD-TrafficQA Xu et al. (2021) dataset to evaluate the efficacy of
LLCP in terms of traffic accident reasoning. The questions in SUTD-TrafficQA focus on the analysis
of accidents, i.e., identifying the root cause of accidents.

Table 3: More Ablation study on SUTD-TrafficQA. We
focus on the reasoning tasks including C: “Counterfac-
tual inference”, I: “Introspection”, and A: “Attribution”.
CLIP* denotes using the template to refine answer candi-
dates in the unsupervised way as Chen et al. (2023).

Methods SUTD-TrafficQA
C I A Avg

CLIP Radford et al. (2021) 32.6 23.5 27.7 27.7
CLIP* Chen et al. (2023) 43.4 34.8 30.1 31.2
w/o fN 49.7 45.6 30.1 31.4
w/o fE 48.8 46.1 30.4 31.8
random fN 49.1 44.6 30.0 32.2
random fE 45.6 45.6 30.2 32.2
w/ Order 47.8 47.3 30.7 32.4
LLCP (ORN) 49.6 48.2 30.8 33.2
LLCP (MRE) 50.4 46.4 31.3 33.5

Dataset and experimental settings.
SUTD-TrafficQA consists of 10,080
traffic video sequences depicting vari-
ous scenarios, along with over 60,000
QA sets, where 56,460 QA sets are
used for training and the rest 6,075
are used for testing. It includes 6
tasks, including “Basic Understanding”,
“Event Forecasting”, “Reverse Reason-
ing”, “Counterfactual Inference”, “Intro-
spection”, and “Attribution”. For our
study, we primarily focus on causality-
based question types, such as “Attribu-
tion”, “Introspection”, and “Counterfac-
tual”, as prediction-based problems can
be solved using conventional likelihood-
based methods. Specifically, we selected
approximately 2,000 questions for our
experiments. To ensure that the ques-
tions were challenging and causal-related, we removed questions that focused on basic prediction
and videos without any tracked variables. For a detailed list of the selected questions, please refer
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to the supplementary materials. All tasks were formulated as multiple-choice questions, with no
limitations on the number of candidate answers. The evaluation metric we used was the accuracy of
the multiple-choice responses.

Ablation study. Here we compare LLCP with the baseline and other ablation versions on SUTD-
TrafficQA. The ablation versions consist of “w/o fN”, “w/o fE”, and "w/ Order", where “w/o fN”
and “w/o fE” denote that we remove the fN or fE part. "w/ Order" denotes that we don’t use the
shared network for different neighborhoods but build sub-network for each of them, where we use
the spatial distance to calculate the order of neighborhoods to avoid misalignment.

Table 3 summarizes the performance of all versions of LLCP and the baseline unsupervised CLIP Rad-
ford et al. (2021) method. We can draw the following conclusions from the comparison. First,
comparing the CLIP baseline with our LLCP , we observe that learning causal process with a multi-
variate generative model can obtain overall significant improvement. Second, removing fN and fE
hurts the performance, which demonstrates both these two modules help learn the causal generation
process. Beyond “w/o fN”, “w/o fE”, we added “random fN” and “random fE”. We found that the
parameters also influence the performance since the performance of using the random feature is a
bit better than the total removal. Second, using random fN and fE hurts the performance, which
demonstrates both these two modules help learn the causal generation process. Third, when we use
different sub-networks for different neighborhoods and introduce the order, the performance drops. It
is reasonable since the calculation of orders might be inaccurate since the spatial distance in the image
is affected by 3D-to-2D projection and the quality of tracking models. Besides, we also compare two
kinds of methods (ORN and MRE) to identify the cause variable. We find that both of them achieve
good performance and LLCP (MRE) is a little higher.

Table 4: Comparison with the state-of-the-
art methods on SUTD-TrafficQA. QA denotes
whether the QA pair annotation is used for training.

Methods QA Acc
Avgpooling

Yes

30.5
CNN+LSTM 30.8
I3D+LSTM 33.2
VIS+LSTM Ren et al. (2015a) 29.9
BERT-VQA Yang et al. (2020) 33.7
TVQA Lei et al. (2018) 35.2
HCRN Le et al. (2020) 36.5
Eclipse Xu et al. (2021) 37.1
Tem-Adapter Chen et al. (2023) 46.0
ATP + CLIP Buch et al. (2022) 35.6
CLIP Radford et al. (2021) No 27.5
LLCP + CLIP 33.3

Compared with supervised SOTAs. We
also compare our LLCP with other state-of-
the-art supervised methods. The results are
summarized in Table 4. We apply LLCP to
reasoning-based questions and employ the un-
supervised CLIP model for the other reasoning-
free questions, which directly matches the
video and the declarative version of QA pairs.
Though without using the QA annotation (only
using whether the video is regular or not),
our LLCP achieves promising results com-
pared with other supervised methods. Specif-
ically, we outperform some baseline meth-
ods such as CNN+LSTM, I3D+LSTM, and
VIS+LSTM Ren et al. (2015a). Besides, com-
pared to the recent method ATP Buch et al.
(2022), which also used the CLIP and further
learned an adapter module with the annotated supervision signals, LLCP can still achieve comparable
performance.

3.3 REAL-WORLD EXPERIMENTS: CAUSAL-VIDQA

To further assess the capability of LLCP for counterfactual prediction tasks, we have performed
experiments on the Causal-VidQA Li et al. (2022a) dataset. We have chosen not to include the
NextQA dataset in this study as they possess identical question types.

Dataset and experimental settings. Questions in the Causal-VidQA dataset are divided into four
types: description, explanatory, prediction, and counterfactual. In this study, we only focus on
reasoning-based questions, specifically those of counterfactuals. We conduct evaluations on both
validation and test sets. We follow the experimental protocol in Li et al. (2022a) to report the results.

Results and Analysis. As shown in Table 5, we compared LLCP with other state-of-the-art methods.
Every method was re-implemented using the official code, uniformly employing the same CLIP
feature. Compared with the CLIP baseline, LLCP registers an improvement of nearly 10 percent
on average. Remarkably, even when compared against other supervised learning approaches, our
method yields results that are comparable, despite the absence of annotated data for training.
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Table 5: Comparison with baseline methods on Causal-VidQA. We re-train all methods using the
same CLIP features using the officially released code and report the results on both validation and
test datasets related to reasoning tasks. More results are in the Appendix.

Methods QA Validation_C Test_C Avg
Q → A Q → R Q → AR Q → A Q → R Q → AR

EVQA Antol et al. (2015)

Yes

28.27 28.05 9.54 28.05 28.05 10.09 22.00
CoMem Gao et al. (2018) 47.61 47.01 25.60 45.70 47.60 25.44 39.83
HME Fan et al. (2019) 46.09 47.12 25.53 45.48 46.51 24.74 39.25
HCRN Le et al. (2020) 45.64 46.01 24.79 44.26 45.64 24.35 38.49
HGA Jiang & Han (2020) 45.57 45.75 24.38 45.28 46.80 24.81 38.77
B2A Park et al. (2021) 48.83 48.98 27.68 47.41 48.74 27.39 41.51
CLIP Radford et al. (2021) No 31.61 28.50 11.32 29.95 29.51 11.48 23.73
LLCP 38.36 38.91 17.93 39.07 38.46 19.03 32.13

Q: What might be the reason which led to this accident?
A: The white sedan did an illegal lane changing.

… … …

(c) Attribution (success)

Q: Could the accident be prevented if the involved vehicles change
lane or turn properly?
A: Yes.

… … …

(b) Introspection	 (success)

Q: Could any involved vehicles stop in time to prevent the accident?
A: Yes, there was enough time to react.

… … …

(d) Introspection	 (fail)

Q: What types of vehicles that if get removed from the videos,
there won't be an accident?

A: Bicycle or tricycle or non-motor vehicles .

… … …

(a) Counterfactual	 (success)

Figure 5: Visualization results of LLCP on SUTD-TrafficQA. We show 3 positive examples of
different question types including (a) Counterfactual, (b) Introspection, and (c) Attribution. Besides,
we also provide a failure case (d) Introspection.

3.4 QUALITATIVE RESULTS AND DISCUSSION

In this section, we provide some qualitative results on the SUTD-TrafficQA dataset in Figure 5, to
analyze our framework by case. We provide both success and failure cases on different question
types, such as (a) Counterfactual, (b) Introspection, and (c) Attribution, to understand the methods
and explore the boundary. We provide the question, our answer, and our learned causal process to
show why LLCP can work or fail. Taking (a) Counterfactual as an example, LLCP identifies the root
cause as “bicycle”, i.e., the bicycle doesn’t follow the normal causal mechanism (fall down). For (c)
Attribution, LLCP can identify the abnormal action of the white car (the illegal lane changing) given
its neighborhoods and environmental information. For the failure case (d), though the model can
identify the cause variable, the understanding of the current variable’s state is incorrect, which leads
to the failure.

4 CONCLUSION

In this paper, we introduce a novel framework, LLCP, designed to tackle reasoning-based VideoQA
through a causality lens. In this framework, we exploit the modularity of causal mechanisms to
develop a temporal multivariate generative model tailored for local causal processes. During the
inference phase, LLCP can attribute the accidents by identifying the root cause, or forecast the
potential outcomes under counterfactual scenarios. Furthermore, aligning the visual and textual
domains with CLIP allows us to respond to queries using neural language. In the experiments, our
framework has proven effective on both synthetic and real-world datasets.
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Table A1: A summary and classification of VideoQA datasets.

Datasets MSVD-QA MSRVTT-QA ActivityNet-QA TVQA MovieQA CLEVRER NExT-QA TrafficQA Causal-VidQA
Xu et al. (2016)Xu et al. (2016) Yu et al. (2019) Lei et al. (2018)Tapaswi et al. (2016)Yi et al. (2020)Xiao et al. (2021)Xu et al. (2021)Li et al. (2022a)

Reasoning × × × × × ✓ ✓ ✓ ✓
Multimodal × × × ✓ ✓ × × × ×
Real Videos ✓ ✓ ✓ ✓ ✓ × ✓ ✓ ✓

A1 RELATED WORKS

Video Question Answering. Depending upon the nature of the questions, VideoQA tasks can be
categorized into two distinct sectors: perception-based VideoQA and reasoning-based VideoQA,
as shown in Table A1. The former, as evidenced in studies such as Xu et al. (2016); Yu et al.
(2019); Tapaswi et al. (2016); Lei et al. (2018; 2019), focuses on deciphering video content to
respond to natural language inquiries concerning visual facts such as location (where), time (when),
object (who), attributes (e.g., color or quantity), and manner (how). A core hurdle here is achieving
seamless cross-modality matching. On the other hand, reasoning-based VideoQA, documented in
Xu et al. (2021); Yi et al. (2020); Li et al. (2022a); Xiao et al. (2021), concentrates on analyzing
temporal dynamics and discerning the causality of video events, addressing ’why’ or ’what if’ types
of questions. This necessitates the model’s comprehension of the causal relations among the agents.
Conventional methods for reasoning-based VideoQA often delineate the task through the lens of
cross-modality matching Ji et al. (2020); Cong et al. (2021); Feng et al. (2021); Le et al. (2020); Gao
et al. (2018); Lei et al. (2021); Bain et al. (2021); Yang et al. (2022a). Yet, these strategies are heavily
dependent on extensive paired annotated data, and may be misled by spurious correlations present in
the training sets. Recently, several methods Wei et al. (2023); Zang et al. (2023); Li et al. (2022b)
have incorporated causal inference techniques to mitigate bias and enhance resilience. However,
these approaches necessitate prior understanding of established causal frameworks, alongside paired
annotations. In this study, we propose a groundbreaking framework, LLCP, which eliminates the
need for paired data and prior knowledge of causal structures.

Abnormal Event Detection. Abnormal event detection methods often learn a familiarity model to
distinguish the outlier samples from the pool of regular videos. To build the regular distribution,
existing methods apply dictionary learning methods Cong et al. (2011); Lu et al. (2013); Cheng et al.
(2015) or deep neural networks including deep generic knowledge Hinami et al. (2017), stacked
RNN Luo et al. (2017), C3D Sabokrou et al. (2017), and plug-and-play CNNs Hasan et al. (2016);
Liu et al. (2018). Unlike abnormal event detection which only focuses on the distribution of the
whole event, we go further to understand the underlying causal processes of the event and find the
reason why this event is abnormal.

Causal Representation Learning. Recently, causal representation learning methods have demon-
strated remarkable success in identifying the latent variables from time-series data by learning the
causal latent processes in an unsupervised manner Yao et al. (2022b;a). Unlike these methods of iden-
tifying latent variables, in this paper, we focus more on how to apply the learned causal mechanism
to discover changed factors and analyze the video event.

A2 THEORETICAL ANALYSIS

In this section, we will theoretically analyze the identification of the proposed model. To achieve this,
we begin with the definition of the Granger non-causality of multi-type object sequences as follows.

Definition 1 (Granger non-causality of multi-type object sequences) Suppose that the object se-
quences X are generated according to Equation 1, we can determine the Granger non-causality of
the object xi with respect to object xj as follows: For all xt−1:t−τ,1,xt−1:t−τ,2, · · · ,xt−1:t−τ,N ,
and the same variable with different values xt−1:t−τ,i ̸= x′

t−1:t−τ,i, if the following condition holds:

ϕj(xt−1:t−τ,1, · · · ,xt−1:t−τ,i, · · · ,xt−1:t−τ,N ) = ϕj(xt−1:t−τ,1, · · · ,x′
t−1:t−τ,i, · · · ,xt−1:t−τ,N ),

(6)
that is, xt,j is invariant to xt−1:t−τ,i with ϕj .

Proposition 1 (Identification of Granger Causality in the estimated function fj .) Suppose that the
estimated function fj well models the relationship between xi and xj from the training data. Given
the ground truth Granger Causal structure G(V,EV ) with the maximum time lag of 1, where V and
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EV denote the nodes and edges, respectively. Assume that the data are generated by Equation (1),
then xi → xj /∈ EV if and only if ∂xt,j

∂xt−1,i
= 0.

Proof 1 =⇒: If xi → xj /∈ EV (there is no Granger Causality between xi and xj in the ground
truth process), then according to Definition 1, there must be xj = x′

j for all the different values of
xi. If ∂xt,j

∂xt−1,i
= 0, then when the input values are different, i.e. xi ̸= x′

i, the outputs of fj are also
different, i.e., xj ̸= x′

j , which results in contradictions.

⇐=: Suppose xi → xj ∈ EV (there is Granger Causality between xi and xj in the ground truth
process), for any xj and x′

j in Definition 1, if xj ̸= x′
j , there must be different input xi ̸= x′

i. If
∂xt,j

∂xt−1,i
= 0, then when xj ̸= x′

j , there might be xi = x′
i, which results in contradictions.

A3 FURTHER ANALYSIS AND DISSUSIONS OF LLCP

A3.1 ASSUMPTIONS OF LLCP

To well illustrate our method, we intuitively discuss the assumptions inherent in LLCP, which are
crucial for understanding the causality in the temporal dynamic system. To strengthen the credibility
and rationality of our outlined assumptions, we also delve deeper into their practical applications and
justifications:

1. Granger Causality Principle: It is assumed that the past values of one variable can predict
the future values of another. This implies a directional relationship between variables in
a time-series context. It also indicates there are no instantaneous effects in the temporal
dynamics, i.e., the variables zt are independent given the historical state Pa(zt). This
assumption aligns seamlessly with the data generation process, as described in Eq. 1.
Implementation: Implementationally, we employed auto-regression to capitalize on the
concept of Granger Causality. This method predicates future events based on historical data,
thereby validating our assumption about the predictability of one variable’s future values
based on another’s past values. We provided a proposition and corresponding proof to show
the identification of the proposed model in Section A2.

2. Shared Feature Spaces in Visual and Textual Domains: The assumption here is that the
feature spaces for both visual and textual domains are shared, allowing for matching the
same variables across these domains. Implementation: To validate this assumption about
the shared feature spaces in visual and textual domains, we incorporated the pre-trained
CLIP model. This model acts as a feature extractor for both video objects and textual
elements (questions and answers). Its application ensures that both visual and textual data
are represented in congruent feature spaces, thereby affirming the feasibility of matching
variables across these domains.

A3.2 LIMITATIONS

One notable limitation in our approach is the reliance on the Granger Causality assumption, which
can be considered somewhat robust. For the sake of simplicity, our current model does not account
for more complex scenarios, such as the presence of latent confounders or non-stationary conditions.
These factors, while critical in certain contexts, are beyond the scope of our initial assumptions.
Despite this, our application of Granger Causality serves as a foundation for a potential framework.
This framework is instrumental in understanding and leveraging causal relationships within temporal
dynamics for subsequent reasoning tasks. Looking ahead, we aim to explore the identifiability of
causal variables under less stringent assumptions. This progression will enable a more nuanced
understanding of causal relationships in diverse and complex environments.

Another aspect of our methodology is its reliance on pre-trained models, notably CLIP and tracking
models. The primary motivation behind employing these models is to minimize the necessity of
textual annotations. We leave it as the future work to remove these assumptions and learn the latent
variable from scratch with textual annotations.
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A3.3 RATIONALITY AND MOTIVATION FOR TRAINING WITHOUT TEXTUAL ANNOTATIONS

Please note that the usages of textual information in training and inference are different. We provide
the discussions on usage proposals in both stages below.

Training Without Textual Pairs. It would be really good if we could always have enough annotated
question-answering pairs as the supervision. It would help the learning of the reasoning model.
However. the annotated question-answering pairs are not easy to obtain, especially for tasks requiring
domain knowledge such as traffic accident attribution. For humans, learning to reason can be
effectively achieved without cross-modality supervision, relying solely on observation induction
within shared feature spaces. This concept aligns with causality theories Yao et al. (2022b;a),
suggesting the feasibility of uncovering latent variables and causal relationships unsupervised. This
approach is particularly relevant in real-world applications for several reasons. Firstly, the acquisition
of annotated textual pairs is more challenging and costly compared to collecting unannotated videos.
Additionally, models trained with textual annotations are susceptible to language biases, where they
might learn shortcuts based on linguistic patterns rather than understanding the content. For instance,
if all questions in the training set beginning with "What is the reason" have similar answers, the
model might generalize inaccurately, associating any question with this format to a specific answer,
such as "White car speeding", regardless of context. This phenomenon, known as language bias, has
been extensively discussed in question-answering research Yuan (2021); Kv & Mittal (2020); Wen
et al. (2021).

Use of Text Queries in the Inference Phase. Despite the avoidance of textual pairs in training, text
queries play a crucial role during the inference phase. Our model, trained exclusively on visual data,
can identify the visual causal relations of variables. During inference, textual queries are employed to
first identify the local causal mechanisms we are interested in. Then, we leverage the causal relations
to answer the detailed question. For example, if two accidents occur in the same video, our model
will find causal mechanisms with two root causes. Then the query questions can help to identify the
root cause we are more interested in.

A4 IMPLEMENTATION DETAILS OF LLCP

In this section, we provide the implementation details of our approach for better reproduction.

Models and Network Architecture. In our experiments, we track the variables with QDTrack Pang
et al. (2021) pre-trained on the TAO Dave et al. (2020) dataset. We select only traffic-related
categories, such as “bicycle”, “bus”, “car”, “motorcycle,” and so on. After obtaining the bounding
box, we extract the feature of each agent by the ROI Ren et al. (2015b) pool from the CLIP Radford
et al. (2021) (RN50) image encoder. For the environment variable, we use the feature of the whole
image and thus do not need to build specific causal processes for environment variables. Given the
dimension of features from CLIP is 1024, the encoder network we used for CVAE is Linear(1024,
256). Correspondingly, the decoder is Linear(256, 1024). For the sub-networks fH , fN , and fE to
learn the causal process from historical states, neighborhood interactions, and environmental clues,
are built with Linear(1024, 256), respectively. In the experiments for SUTD-TrafficQA, we set the
number of neighborhoods as 2, and they share the same fN . Then we connect 4 local features and
use a Linear(1024, 16) for information fusion. The dimension of the generative noise is set as 10. In
the inference, the features of textual keywords are extracted by a CLIP text encoder.

Hyperparameters. We follow the video frames sampling strategy with Le et al. (2020). We first
uniformly sample 8 frames from the video sequence, then with these frames as the center, we select 4
frames around each center. Finally, we obtained 32 frames for each video. For the loss function, we
set the β = 0.5 to balance the reconstruction and KLD.

Optimization Details. We apply Adam Kingma & Ba (2014) as the optimizer with the initial learning
rate as 1e-4 and batch size as 16. The learning rate decay is set to 0.5 to reduce the learning rate
to half in every 10 epochs. The number of total epochs is set as 50. The model is implemented in
PyTorch 1.13.1 and trained on a single Tesla V100 GPU.
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A5 MORE DETAILS OF SIMULATION EXPERIMENTS

A5.1 ROOT CAUSAL IDENTIFICATION

Dataset and experimental settings.To evaluate whether LLCP can learn the causal process and
identify the cause variables, we design a series of simulation experiments based on a random causal
structure with a given sample size and variable size. To simulate the ground-truth circumstance, we
assume that the training dataset does not contain any accident videos and that the test dataset contains
regular videos and accident videos. The simulated datasets are generated in the following three steps.

𝐟 P𝑎(𝐳!"#,#) → 𝐟′ P𝑎(𝐳!"#,#)
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(a) Function change (b) Structure change

𝐟 P𝑎(𝐳!"#,#) → 𝐟 P𝑎′(𝐳!"#,#)

Figure A1: The examples of two types
of change factors.(a) Function change
denotes that changes are caused by the
generation function. For example, the
generation function f (Pa(zt+1,1), ϵt+1,1)
changes to f ′ (Pa(zt+1,1), ϵt+1,1). (b)
shows the changes come from the causal
structures, e.g. the edge zt,2 → zt+1,1 is
blocked due to some accidents.

First, we randomly generate a causal structure G with
the number of 10 nodes for the training data. Specif-
ically, we let Gi,j be the value in the i-th row and
j-th column of G. Therefore, if Gi,j ̸= 0, thej-th
variable becomes the direct cause of i-th variable, i.e.,
zt−1,j → zt,i. Since the causal structure might be
sparse in reality, we assume that each node at most
has three causes. Second, we recursively generate the
simulated data with the nonlinear function:

zt+1,i = Sigmoid(
k∑

j=0

Gi,j × zt,j + Et) + ϵt+1,

xt+1,i = ϕ(zt+1,i),

(7)

where z denotes the latent variables and x denotes the
observed variables; ϕ(·) is a linear transformation from
z to x; Et = sin(t) denotes the environment variables
and ϵt+1 denotes the noise variables. Third, to simulate
accidents, we consider two types of changes, i.e., the
function change and the structure change, as shown in
Figure A1. Function changes act on the nonlinear functions while structure changes act on the causal
structure. The function changes are implemented as the direct value change of the latent variables:

z′t+1,i = α (zt+1,i − z̄1:t,i) + z̄1:t,i, (8)

in where z̄1:t,i denotes the average value of zi from 1-st timestamp to t-th timestamp. For the structure
change, we block some edges (e.g., zt,2 → zt+1,1) from G and obtain intervened causal graph G′,
and generate the accident value by replacing G with G′ in Equation (7). Using these two types of
accidents, we build a test set that contains 1243 regular samples and 543 accident samples.

Evaluation metric. Based on the aforementioned simulation dataset, we evaluate LLCP with two
tasks including abnormal event detection to classify where the data contains accidents and changed
factor identification to find the changed variable. We apply both Recall and F1-score as our evaluation
metrics and we mark false when either one of them is wrong.

Quantitative results.

Table A2: Performance comparison (Recall and F1 Scores)
on the simulation datasets.

Methods Function change Structure change
Recall F1 Score Recall F1 Score

LSTM-VAE 52.11 27.81 37.75 20.78
VAE 51.92 27.33 31.08 19.35

SlowVAE 54.41 29.03 38.12 21.39
SKD 58.93 34.76 35.72 19.79
LLCP 63.34 63.01 45.04 44.19

Experiment results on the simula-
tion dataset are shown in Table A2,
where the VAE, LSTM-VAE, Slow-
VAE Klindt et al. (2020), and
SKD Berman et al. (2023) are consid-
ered as compared to baseline meth-
ods. For all the methods, we try five
different random seeds and report the
average results. We also conducted
the Wilcoxon signed-rank test on the
results, our method significantly out-
performs the baselines, with a p-value threshold of 0.05.

According to the experiment results, we have the following observations. First, compared with the
performance of recall, we find that the performance of the proposed approach outperforms the other
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methods on all the datasets with a large gap, reflecting that LLCP can identify true cause variables
with low missed detections. This is because our method leverages causal mechanisms to infer the
accident with the local causal process instead of detecting the variables with the abnormal distribution.
Moreover, we find LLCP also enjoy more advantages in the metric of F1-Score, reflecting that it
obtains low false detections and thus works well for the situation where accident samples are rare. We
found that even compared with the advanced SKD Berman et al. (2023) model, LLCP can achieve
significant improvement.

A5.2 COUNTERFACTUAL PREDICTION

Dataset and experiment settings.

To evaluate whether the proposed method can address the counterfactual inference problem, we
devise the counterfactual prediction simulation experiment.

The generation processes of factual and counterfactual data are shown in Figure A2. As
for the factual datasets, we randomly generate a causal structure G with the number of
10 nodes. Specifically, we let Gi,j be the value in the i-th row and j-column of G.Data Generation Process
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Figure A2: The examples of factual and
counterfactual data. Both factual and
counterfactual data are generated via the
same causal process. The counterfactual
data are generated with perturbed input.

Similar to the simulated data in the function change
scenario in A5.1, we assume that each node at most
has three causes and the factual simulated datasets are
recursively generated via Equation (7). As for the coun-
terfactual datasets, we employ the same data genera-
tion process but different historical variables, which is
shown in Equation(9).

zct+1,i = Sigmoid(
k∑

j=0

Gi,j × (zct,j) + Et) + ϵt+1,

xc
t+1,i = ψ(zct+1,i),

(9)
where zc denotes the counterfactual latent variables and
xc denotes the observed counterfactual variables; ψ is a
nonlinear function. We use the historical observation zt
as input and predict the future observation zt+1. There
are 32000 samples in the training dataset and 16800 pairs of factual and counterfactual samples in the
test dataset for counterfactual inference.

Evaluation metric. Based on the above simulation dataset, we employ Root Mean Square Error
(RMSE) to evaluate our counterfactual prediction performance, the lower values of RMSE reflect a
better performance of counterfactual inference.

Table A3: Performance comparison (RMSE)
on the simulation datasets.

w/ Counterfactual
Inference

w/o Counterfactual
Inference

0.0936 0.0967

Quantitative result. Experiment results on the
simulation datasets are shown in Table A3. The
w/o Counterfactual Inference denotes the model of
standard variational autoencoder (VAE) and the w/
Counterfactual Inference denotes the VAE model
with noise estimation like Pearl (2009). For all
the methods, we try three different random seeds
and report the average results. We also conducted
the Wilcoxon signed-rank test on the results, our
method significantly outperforms the baselines, with a p-value threshold of 0.05. According to the
experiment results, we find that the model with noise estimation achieves a better performance than
the normal VAE, showing that our method can address the counterfactual prediction problem.

A5.3 GRANGER CAUSALITY DISCOVERY

To demonstrate the proposed LLCP can uncover underlying causal relations as opposed
to merely correlational patterns, we further evaluate our method on the Granger Causal-
ity task. To achieve this, we follow the setting in Marcinkevičs & Vogt (2021)
and evaluate the proposed methods on the simulated FMRI time series benchmark.
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Figure A3: Parameter analysis of LLCP. We analyze three main hyperparameters including the
distance ratio to fuse the local distance and global distance, the dimension of the latent space, and
the dimension of the local sub-networks (fH ,fN ,fE), which show in the left, middle, and right,
respectively.

Table A4: Experiments results on the capability to
uncover Granger Causality.

Models ACC BA AUROC AUPRC

LLCP 0.788 0.632 0.657 0.289
HCRN 0.632 0.491 0.504 0.095

To make our method generate the Granger
Causality explicitly, we employ the
conditional-VAE architecture and consider
the Granger causal structures as the latent
variables. As for the HCRN model, we
obtain the estimated structure by an inner
product between the extracted features from
the HCRN model. We further consider
four different metrics, i.e., accuracy (ACC),
balanced accuracy (BA) scores, areas under receiver operating characteristic (AUROC), and
precision-recall (AUPRC) curves. Experiment results are shown in Table A4. According to the
experiment results, we can find that the proposed LLCP can capture the underlying causal relations.

A6 MORE EXPERIMENTAL ANALYSIS

A6.1 PARAMETERS ANALYSIS

In this section, we re-trained our model with different hyperparameters and provided the experimental
results on the SUTD-TrafficQA dataset to investigate their effects. Specifically, we analyzed three
main hyperparameters including the distance ratio to fuse the local distance and global distance, the
dimension of the latent space, and the dimension of the local sub-networks (fH ,fN ,fE).

The local distance is calculated by the detected variable and language keywords and the global
distance is calculated by the global visual features (the average of features of all frames) and textual
description. We fuse these two complementary distances for better reasoning, where the local one can
identify the separated causal variable while the global one focuses more on overall event perception.
The left one of Figure A3 shows the results on the SUTD-TrafficQA dataset with different ratios.
We found that our model achieves the optimal results with the ratio of 1/6 between local and global
distances.

As shown in the middle and right parts of Figure A3, we provide the performance of the models with
different latent and middle layer dimensions. We observe that LLCP achieves better results when we
increase the latent dimensions and middle layer dimensions, since the representation abilities increase
with more parameters. However, we also find that this increase will converge when parameters are
enough. Balancing the accuracy and cost, we set the latent dimension as 16 and the middle layer
dimensions as 256, respectively.

A6.2 COMPARED WITH LLMS-BASED METHODS

The LLMs-based methods Alayrac et al. (2022); Gan et al. (2022); Awadalla et al. (2023); Su et al.
(2023) also don’t require the reasoning QA pair for the training. To make a more complete comparison,
we also compare our method with these LLMs-based methods, such as OpenFlamingo Awadalla et al.
(2023). We evaluate all the models on the SUTD-TrafficQA dataset with a zero-shot setting. For
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OpenFlamingo, we used the 2/4 textual demo examples (no visual data due to zero-shot) to guide the
outputs. Here is an illustrative Python code of how to use the demo example in the prompt.

As shown in Table A5, we summarize the average accuracy of OpenFlamingo, CLIP, and LLCP. We
found that the LLM models don’t work as well as we expected since no particular knowledge is used.
It is interesting and may inspire the following research.

[ l a n g u a g e =Python ,
b a s i c s t y l e = \ t t f a m i l y ,
b r e a k l i n e s = t r u e ,
s h o w s t r i n g s p a c e s = f a l s e ]
f o r i i n r a n g e ( l e n ( q u e s t i o n s ) ) :

t o k e n _ i n p u t s . append (
" Q u e s t i o n : What might have happened moments ago ?

C a n d i d a t e 1 : The b l u e t r u c k h i t t h e w h i t e sedan from t h e back .
C a n d i d a t e 2 : The w h i t e sedan c r a s h e d i n t o t h e b l u e t r u c k .
C a n d i d a t e 3 : The b l u e t r u c k d i d an emergency b r a k e .
C a n d i d a t e 4 : The w h i t e sedan l o s t i t s c o n t r o l .
Answer : The b l u e t r u c k d i d an emergency b r a k e .
< | endofchunk | >
Q u e s t i o n : What might be t h e r e a s o n which l e d t o t h i s a c c i d e n t ?
C a n d i d a t e 1 : The b l a c k sedan exceeded t h e speed l i m i t
C a n d i d a t e 2 : The w h i t e sedan d i d an i l l e g a l l a n e c h a n g i n g
C a n d i d a t e 3 : Extreme w e a t h e r c o n d i t i o n
C a n d i d a t e 4 : The b l u e t r u c k v i o l a t e d t h e t r a f f i c l i g h t s
Answer : The w h i t e sedan d i d an i l l e g a l l a n e c h a n g i n g .

< | endofchunk | >
<image >
Q u e s t i o n : { } C a n d i d a t e 1 : { } C a n d i d a t e 2 : { } C a n d i d a t e 3 : { } c a n d i d a t e 4 : {}
Answer : " . f o r m a t (

q u e s t i o n s [ i ] ,
a n s _ c a n d i d a t e s [ 0 ] [ i ] ,
a n s _ c a n d i d a t e s [ 1 ] [ i ] ,
a n s _ c a n d i d a t e s [ 2 ] [ i ] ,
a n s _ c a n d i d a t e s [ 3 ] [ i ]

)
)

Table A5: Comparison with LLM-based methods on SUTD-TrafficQA

OpenFlamingo (2 examples) OpenFlamingo (4 examples) CLIP LLCP

Accuracy 28.7 29.1 27.7 33.7

A6.3 MORE EXPERIMENTAL RESULTS ON CAUSALVIDQA

We have included the results reported in the original CausalVidQA paper Li et al. (2022a). As
detailed in table A6, we present the results of all baselines using the pre-trained 300-dimensional
GloVe Pennington et al. (2014) word embeddings. It is evident that the CLIP features outperform the
Glove features consistently. In our approach, we solely utilize the CLIP feature and eschew the Glove
feature, owing to the pre-alignment of the visual and textual CLIP features. Notably, our method does
not leverage annotated data and, thus, cannot learn cross-modality matching from scratch.

A6.4 PARSING RESULTS

To explain our process of grammar parsing, which is used to extract key variables from the question-
answers, we share detailed parsing results across varied question types. In Table A7, we enumerate
the type of reasoning question, the original question itself, our logic rules employed for parsing,
and the resulting keywords. Consider, for instance, an Open-choice Counterfactual Prediction
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Table A6: Comparison with baseline methods on Causal-VidQA. We re-train all methods using
the same CLIP features using the officially released code. We also provide the results that use the
glove features. ‘†’ indicates the result re-implemented by the official code.

Methods QA Features Test_C Avg
Q → A Q → R Q → AR

EVQA Antol et al. (2015)

Yes

Glove 27.72 27.57 10.63 21.97
EVQA† Antol et al. (2015) CLIP 28.05 28.05 10.09 22.00
CoMem Gao et al. (2018) Glove 42.97 42.24 22.25 35.82
CoMem† Gao et al. (2018) CLIP 45.70 47.60 25.44 39.83
HME Fan et al. (2019) Glove 35.29 34.19 15.34 28.27
HME† Fan et al. (2019) CLIP 45.48 46.51 24.74 39.25
HCRN Le et al. (2020) Glove 43.69 43.47 22.75 36.64
HCRN† Le et al. (2020) CLIP 44.26 45.64 24.35 38.49
HGA Jiang & Han (2020) Glove 44.00 44.04 23.63 37.22
HGA† Jiang & Han (2020) CLIP 45.28 46.80 24.81 38.77
B2A Park et al. (2021) Glove 45.12 44.99 25.29 38.47
B2A† Park et al. (2021) CLIP 47.41 48.74 27.39 41.51
CLIP Radford et al. (2021) No CLIP 29.95 29.51 11.48 23.73
LLCP CLIP 39.07 38.46 19.03 32.13

question:“What will happen if [person_5] has ingrown hairs or cuts”. Initially, we classify its
question type and determine the pertinent question word. Following this, we identify the conditional
clause by pinpointing the word if’. This conditional clause then serves as the keywords necessary for
responding to counterfactual prediction questions. Delving further, we can pinpoint key objects that
act as the subject within the clause.
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Table A7: Examples of parsing reasoning questions on SUTD-TrafficQA and Causal-VidQA
datasets.

Reasoning Question Type Open-choice Attribution

Question What could possibly cause this accident?

Rules
Identify the “What could” questions and Attribution question type.
Identify the effect is “the accident”.
It means that the keyword is the answer candidates.

Keywords In the answer candidates

Reasoning Question Type Open-choice Attribution

Question Which might be the reason for this accident?

Rules
Identify the “Which might be” questions and Attribution question type.
Identify the effect is “the accident”.
It means that the keyword is the answer candidates.

Keywords In the answer candidates

Reasoning Question Type Open-choice Counterfactual Prediction

Question What would happen if [person_2] dropped the plates?

Rules Identify the “What would happen” questions and Counterfactual question types.
Parse the question and find the conditional clause introduced by “if”.

Keywords [person_2] dropped the plates

Reasoning Question Type Open-choice Counterfactual Prediction

Question What will happen if [person_5] has ingrown hairs or cuts?

Rules Identify the “What will happen” questions and Counterfactual question types.
Parse the question and find the conditional clause introduced by “if”.

Keywords [person_5] has ingrown hairs or cuts

Reasoning Question Type Counterfactual True-or-false

Question Will an accident happen if the vehicle in the front suddenly stop?

Rules
Identify the “Will ... happen if” questions and True-or-false question types.
Parse the question and find the pattern “... happen if ...”.
Parse the conditional clause and find the noun "vehicle".

Keywords Vehicle

Reasoning Question Type Counterfactual True-or-false

Question Would the accident still happen if all vehicles drive in their correct lane?

Rules
Identify the “Would ... happen” questions and True-or-false question types.
Parse the question and find the pattern “... happen if ...”.
Parse the conditional clause and find the nouns "vehicles" and “lane”.

Keywords Vehicles and Lane

Reasoning Question Type Introspection True-or-false

Question Could the accident be prevented if all vehicles keep a safe distance away from one another?

Rules

Identify the “Could ... prevented if” questions and True-or-false question types.
Parse the question and find the pattern “... prevented if ...”.
Parse the conditional clause and find the nouns "vehicles" and “distance”.
Align with the logic: cause → accident. Got "vehicles" and “distance”

Keywords Vehicles and Distance
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