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ABSTRACT

Unsupervised learning of latent motion from Internet videos is crucial for building
generalist robots. However, existing discrete methods suffer from information
loss and struggle with complex and fine-grained dynamics. We propose CoMo,
which aims to learn more precise continuous latent motion from internet-scale
videos. CoMo employs a early temporal feature difference mechanism to prevent
shortcut learning and suppress static appearance noise. Furthermore, guided by the
information bottleneck principle, we constrain the latent motion dimensionality
to achieve a balance between retaining sufficient action-relevant information and
minimizing the inclusion of action-irrelevant background noise. Additionally, we
also introduce two effective metrics for more directly and affordably evaluating
and analyzing motion and guiding motion learning methods development: (i)
MSE of action prediction, and (ii) cosine similarity between past-to-current and
future-to-current motion embeddings. Critically, CoMo exhibits strong zero-shot
generalization, enabling it to generate effective pseudo actions for unseen videos.
The shared continuous distribution of robot action and video latent motion also
directly benefits the joint learning of unified policy. Extensive simulated and real-
world experiments show that policies co-trained with CoMo pseudo actions achieve
superior performance with both diffusion and autoregressive architectures.

1 INTRODUCTION

While large-scale Internet data has enabled impressive generahzatlon in vision and language mod-
els ( , ), robot learning remains limited by data scarcity, low
diversity, and h1gh heterogene1ty To enable effective scaling in robotics, a promising direction is to
leverage abundant Internet v1de0 data. Consequently, a recent popular paradigm ( , ;

sa; s s ) focuses on learning latent motion models from
extens1ve video datasets. These approaches typically utilize an inverse dynamics encoder—forward
dynamics decoder architecture within a self-supervised framework using video frame pairs. Specifi-
cally, they commonly employ the VQ-VAE objectives ( , ) to quantize learned
motion representations, to generate pseudo action labels for the unlabeled video data.

However, real-world motion is inherently continuous, characterized by complex, fine-grained, and
often uncertain dynamics. Representing such motion with discrete codebook inevitably leads to
information loss and limits its generalization to novel motion patterns. Furthermore, the underlying
vector quantization techniques often introduce training 1nstab1l1ty ( , ,

) and face scalability challenges ( R ). Evidence from visual
generation ( , ; s ) and robot learning ( s

, ) also suggests that continuous representations can yield superior performance This
motivates a natural question: Could we learn continuous motion representations from action-less
videos? Continuous latent motion enables more accurate representation of fine-grained inter-frame
changes and inherently provides better consistency with the continuity of robot action.

A key reason previous works favored discrete latent motion, using a small codebook, was to inhibit
the model collapse risk. When attempting to learn continuous motion directly, models are highly
susceptible to ‘shortcut learning’. Specifically, the encoder may capture excessive future frame
background information, rather than focusing on the foreground motion, so that the decoder can
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reconstruct pixel-level details. This might degenerate the model into a future-frame predictor,
subverting its utility as an action prediction mechanism suitable for co-training unified robot policies.

To address this issue, our CoMo, introduces a early temporal feature difference strategy, inspired by
temporal difference networks ( , ) in video understanding. Specifically, we remove
the direct encoding of future frame and replace it with features difference between current and future
frame before the encoder input, which serves to suppress static future frame background information
while enhancing dynamic motion cues. This design significantly mitigates the aforementioned model
collapse. Furthermore, to ensure learned continuous motion representations to serve as more effective
pseudo actions for unified joint training with robot data, we carefully determine an appropriate
embedding dimensionality guided by the information bottleneck principle ( , ), seeking
a balance between capturing sufficient motion detail and minimizing background noise.

Additionally, evaluating and analyzing the latent motion representation presents unique challenges.
Our ultimate objective is to leverage latent motion as pseudo-labels for action-less video data to
improve policy performance. However, policy success rate is affected by many external factors, is not
a direct measure of latent motion, and often lacks stability and interpretability. Furthermore, training
and evaluating policies is resource-intensive. To enable a more direct latent motion analysis and
low-cost evaluation, we introduce two extra metrics: (i) MSE of action prediction (MSE). It assesses
the action-relevant information within the latent motion. We train a MLP to predict ground-truth
actions using these motion embeddings and report the MSE. A lower MSE signifies richer action-
specific content. (ii) Cosine similarity between Past-to-Current and Future-to-Current motions
(S-PCFC). It measures the similarity between motion from temporally symmetric segments relative to
a central frame z(0;_p,, 0¢) (past-to-current) and z(0¢4, 0¢) (future-to-current). Higher-dimensional
latent motion, while capturing more richer action-relevant information, also inevitably introduces
redundant, action-irrelevant details like future frame backgrounds, which harm pseudo-labeling.
Statistically, lower S-PCFC under the same data indicates relatively less future frame background
redundancy. Empirically, we find that combined MSE and S-PCFC effectively reflects policy success
rate, with the best success rate when both are relatively low (a better trade-off).

Finally, CoMo can generate effective pseudo action labels for action-less video data. The consistent
continuous distribution between robot action and video latent motion directly facilitates unified and
joint policy learning, removing complex multi-stage pretraining and finetuning procedures ( ( ,

)) or explicit two-stage motion-before-action pipelines ( ( s )). Finally, extensive
simulation and real-world experiments validate that CoMo provides more precise, effective pseudo
action labels and achieves superior policy performance compared to those using discrete latent motion
or naive continuous baseline. In summary, our main contributions are as follows.

* We propose CoMo, for unsupervised learning of more fine-grained continuous latent motion
representation from Internet videos, featuring a simple yet effective early temporal difference
mechanism to suppress static background noise and ensure more meaningful motion capture.

» We introduce MSE and S-PCFC metrics, enabling more direct, comprehensive, low-cost and stable
evaluation for latent motion analysis and learning methods development.

* We generate more precise pseudo action labels using CoMo. The consistently continuous distribu-
tions of latent motion and robot action naturally facilitate the joint learning of unified policy.

* Extensive simulation and real-world experiments demonstrate the superior performance of policies
trained using the CoMo pseudo labels, including both diffusion and autoregressive approaches.

2 RELATED WORK

Learning from Internet Data for Robotic Manipulation. Limited robot data restricts scalable policy
learning. Incorporating large-scale internet videos can enhance generalization and efficiency (
, ). Prevailing methods predict signals from video data, either as implicit auxiliary
tasks for improved learning ( , ) or as explicit guidance for policy execution (
R ). These signals include future visual observations ( s ; .
; s ), affordances ( s ; s ), object
masks ( s ; , ), optical flow ( s ), human hand
poses ( , ; ) ), and sparse point trajectories ( s ;
s ; s : s ). A recent popular framework ( s

bl s s¢chs bl

9 9 b 9 9
) utilizes an inverse dynamics encoder—forward dynamics decoder architecture with unsupervised
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Figure 1: CoMo framework. We first self-supervisedly learn inter-frame latent motion from Internet
videos. In the second stage, we directly utilize the trained IDM to extract pseudo labels for action-less
videos, ensuring joint learning of continuous robot action and latent motion under a unified policy.

VQ-VAE (Van Den Oord et al., 2017) objectives to extract discrete latent motion from action-less
videos. Additionally, concurrent works (Liang et al., 2025; Nikulin et al., 2025) introduce extra robot
action supervision to train continuous motion encoders. In contrast, CoMo is purely self-supervised.

Robotic Manipulation Policy Architecture. Early works focused on state-based reinforcement
learning (Andrychowicz et al., 2020; Joshi et al., 2020), while more recent methods leverage visual
observations for imitation learning (Jang et al., 2022; Torabi et al., 2018; Fang et al., 2023; Yang
et al., 2025). Many methods use generative probabllrstrc modeling (Brohan et al., 2022; Chi et al.,
2023; Zhao et al., 2023) to capture the complex multi-modal action distribution. Among these, some
methods (Brohan et al., 2023; O’ Neill et al., 2024; Kim et al., 2024) adopt autoregressive-based policy
architectures, which benefit from the generalization of pretrained VLMs but require discretizing robot
actions. In contrast, others (Chi et al., 2023; Liu et al., 2024) use diffusion-based policy architecture
to generate continuous robot action d1rect1y. Recent studres (Kim et al., 2025; Intelligence et al., 2025)
have shown that continuous action representations enable finer-grained behavror modeling and often
yield better performance. As a result, many advanced approaches (Wen et al., 2025; Li et al., 2024a;
Black et al., 2024; Liu et al., 2025) combine autoregressive VLM backbones with diffusion-based
action experts, thereby benefiting from both the strong generalization ability of pretrained VLMs
and the expressive power of continuous action representations. On this basis, CoMo could leverage a
unified policy architecture to jointly learn both continuous robot action and video latent motion.

3 METHOD
3.1 LEARNING CONTINUOUS LATENT MOTION WITH TEMPORAL FEATURE DIFFERENCE

We first describe our CoMo framework. CoMo adopts a inverse dynamics encoder—forward dynamics
decoder paradigm, as illustrated on the left side of Fig. 1. Subsequently, we detail the technical aspects
of our motion-enhanced inverse dynamics encoder and forward dynamics decoder respectively.

Motion-Enhanced Inverse dynamics Model (ME-IDM). Our ME-IDM aims to extract precise
and background-irrelevant continuous motion information. Given a pair of the current frame O;
and the future frame Oy, we use a shared MAE (He et al., 2022) pretrained ViT (Dosovitskiy
et al., 2021) to extract their respective token-level features F} and F,. Subsequently, to enhance
motion cues and suppress static backgrounds, we perform a early temporal difference operation
between F; and F},, to obtain the token-level temporal feature differences D;. To further alleviate
the problem of shortcut learning when learning continuous motion representations, we explicitly
remove the future frame features F;,, before the ecoder extracting motion embeddings. Specifically,
we concatenate only the current frame features F; and the temporal feature differences Dy, resulting
in the combined representation [F;, D;]. Following Moto-GPT (Chen et al., 2024b), we concatenate
a set of learnable query embeddings with this token-level combined representation and perform full
attention interaction within standard multi-layer Transformer layers (Motion Q-former). We then
take the query features from the output of the Transformer layers as our motion representation Z;.

Forward dynamics Model (FDM). Conditioned on the latent motion representation Z; obtained
from the IDM and the current frame visual observation Oy, the forward dynamics decoder aims to
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Figure 2: The Metrics for evaluating and analyzing latent motion representations. MSE and
S-PCFC are used to analyze the representation of action-relevant information and future frame
background information in latent motion, respectively. Better latent motion representations typically
lead to higher policy success rate and lower MSE and S-PCFC.

reconstruct the the future frame observation Oy.,,. Specifically, we first obtain a low-level patch-level
embedding of O using a linear patch embedding layer. Simultaneously, we further perform a pooling
operation to compress the motion representation Z;, and then add the pooled motion feature to the
low-level patch-level embedding of Oy, resulting in F(O;, Z;). Subsequently, several Transformer
layers process the combined features. Finally, the output features are processed using convolutional

layers and a pixel shuffling operation to reconstruct the predicted future frame Ot+n.

The CoMo framework is trained by jointly minimizing a weighted reconstruction loss and a perceptual
loss to ensure both pixel-level accuracy and perceptual fidelity of the predicted future frames.

3.2 JOINT PoLICY LEARNING

As illustrated on the right side of Fig. 1, we perform joint learning of action-less video data and
continuous robot action data within a unified policy model. Specifically, given an action-labeled
robot dataset Dg = {71, ..., T}, Where each 7; represents a trajectory consisting of paired robot
observations and actions, denoted as 7; = [(0g,a0),- .., (or,ar)], and a larger-scale action-less
video data Dy, we utilize the trained IDM to extract continuous latent motion embeddings for
Dy . As a result, each trajectory in Dy can be augmented as [(o0g, 29), . . ., (0T, 21)], Where z;
denotes the latent motion inferred by the IDM at time step ¢. Since both a and z exhibit continuous
data distribution, we can seamlessly perform joint imitation learning using the combined dataset
Dgr U Dy within a unified generative policy model. The ability to leverage larger-scale dataset
sources allows our CoMo to offer a scalable robot learning paradigm. In this work, we develop both
a unified diffusion-based policy model and an autoregressive policy model.

3.3 MSE AND S-PCFC METRICS

Considering the policy success rate may be affected by many other factors, including high computa-
tional and data costs, we propose two extra metrics to more directly, stably and affordably evaluate
and analyze latent motion representations, as shown in Fig. 2.

MSE of action prediction (MSE). Given an action-labeled robot dataset D g, we directly extract the
latent motion embeddings at each timestep in an offline manner using the IDM trained in the first
stage, resulting in a latent motion dataset D z. We then train a extra MLP to map the latent motion
embeddings to the corresponding ground-truth robot actions, and report the mean squared error of the
prediction results in testing set. This process can be formally described as follows:

dt = MLP(Zt), (1)

Cosine Similarity between Past-to-Current and Future-to-Current motions (S-PCFC). While
MSE reflects how well latent motion representations capture fine-grained inter-frame changes, it
is only suitable for fair comparison when latent dimensionality is the same. From an information
bottleneck ( , ) perspective, latent motion should also minimize action-irrelevant noise,
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such as static future frame background. However, MSE does not directly or fairly evaluate this,
especially when comparing different latent dimensions. Therefore, we further propose S-PCFC.
Specifically, given a sampled triplet of frames (0¢_,,, 0¢, 04+, ) from a short video clip, we extract the
past-to-current motion z(0;—p,, 0;) and the future-to-current motion z (04, 0;). We then compute
the cosine similarity between them, which can be formally defined as follows:

Z(Ot mOt)T (0t+n70t)

S-PCFC(t .
©) = T20rm o0l T2(r1m o)l

3

Notably, S-PCFC assumes that latent motion inevitably contains action-irrelevant future frame
background noise and that the sampled short video clips do not frequently exhibit periodic or
repetitive motions. In our experiments, higher-dimensional latent motion representations inevitably
introduce more background redundancy than low-dimensional robot action. These assumptions are
satisfied, as S-PCFC is usually computed on approximately 1-second robot movement clips.

Overall, we demonstrate the effectiveness of both MSE and S-PCFC in evaluating and analyzing
latent motion through qualitative analysis and quantitative results. Importantly, the combination of
these metrics shows a strong correlation with downstream policy success rates. When both MSE and
S-PCFC attain relatively low values (indicating a better trade-off between action-relevant information
and future frame background redundancy), the downstream policy achieves the highest success rate.

4 EXPERIMENTS

We perform experiments using the LIBERO ( R ) and CLVIN ( )
benchmarks and a Franka Emika Research 3 robot. Our experiments study the following questlons

Q1: Can self-supervised CoMo extract effective pseudo action labels for action-less video data and
enable unified joint training with robot data to improve policy performance?

Q2: Do latent motion extracted by CoMo outperform other unsupervised predictive signals in videos?

Q3: Do continuous latent motion representations extracted by CoMo effectively mitigate model
collapse and outperform discrete latent motion, naive continuous baseline, and other related methods?

Q4: Can continuous latent motion embedding dimensions extracted by CoMo be easily scaled?

Q5: Can MSE and S-PCFC effectively evaluate and analyze latent motion representations and reliably
reflect downstream policy success rates?

4.1 SIMULATION EXPERIMENTS
4.1.1 SIMULATION BENCHMARKS AND SETUPS

In this section, we describe our experiment setups for latent motion learning and evaluation, as well
as unified policy learning and evaluation, on two simulation benchmarks. For more details, please
refer to subsection A.5, A.6,and A.7.

LIBERO. The LIBERO ( , ) is divided into five categories: LIBERO-Spatial, LIBERO-
Object, LIBERO-Goal, LIBERO-Long, and LIBERO-90. In our LIBERO experiments, we train two
CoMo models for pseudo action labels extraction. We first use the entire in-domain LIBERO dataset
to conduct ablation, which includes 13,000 videos from two camera views across 130 tasks. Then, to
evaluate CoMo ’s zero-shot cross-domain transfer capability, we then jointly train it on Internet videos

by uniformly sampling 120,000 videos from SAM-V ( s ), EgoVid ( R ),
and Droid ( s ), which cover in-the-wild, ego-centric human, and robot scenarios.
For unified policy joint training, we adopt the data configuration of ATM ( , ), where

each task is provided with only 10 robot trajectories and 40 video trajectories with pseudo action
labels generated by CoMo. Regarding the policy architecture, following prior approaches ( ,
, ), we implement a diffusion-based policy that conducts a joint denoising process
w1th1n both the real robot action space and continuous latent motion space. For policy evaluation, we
use the final epoch model and evaluate each task with 20 trials, repeating the evaluation three times
to report the mean and standard deviation. In addition, to ensure a more robust and comprehensive
ablation of the latent motion representation learning, we further report the MSE and S-PCFC results.
These results are aggregated from 2,000 videos spanning 40 tasks across the four LIBERO suites.
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Table 1: The ablation experiments results on the LIBERO benchmark.

Metric 02-Fea w/o. VQ Pre-VQ RGB-Diff Fea-Diff (CoMo)

Success Rate 1 81.0+3.0 81.7+1.2 76.0+0.8 82.7+4.1 80.3+1.2
Spatial MSE | 1.208 1.189 3.055 0.891 0.881
S-PCFC | 1.000 0.988 0.821 0.786 0.892

Success Rate 1 95.740.5 93.04+2.2 89.3+1.2 92.3+1.2 95.040.0
Object MSE | 0.896 0.865 2.363 0.604 0.662
S-PCFC | 1.000 0.992 0.810 0.810 0.902

Success Rate 1 78.3+1.7 89.0+2.4 74.74+0.5 85.0+2.4 85.0+2.2
Goal MSE | 1.101 1.077 3.038 0.921 0.839
S-PCFC | 1.000 0.989 0.796 0.760 0.899

Success Rate 1 477433 47.0£1.6 54.31+0.5 59.0+5.1 63.0+1.6
Long MSE | 1.123 0.927 3.412 0.949 0.754
S-PCFC | 1.000 0.988 0.810 0.899 0.910
Success Rate 1 75.7 77.7 73.6 79.8 80.8
Avg. MSE | 1.082 1.015 2.967 0.841 0.784
S-PCFC | 1.0 0.989 0.810 0.814 0.901

Table 2: The comparison results with other related methods on the LIBERO benchmark.

| Spatial Object Goal Long | Avg.
DP (5x data) 92.0£3.3 96.3+0.9 93.0£2.2 75.3+£2.0 89.2
DP (1x data) 72.3+2.5 82.340.5 70.3+0.5 56.7+3.0 70.4
DP + ATM* ( s ) 79.0£3.7 81.0+2.5 58.7£4.6 44.0+6.4 65.7
DP + GR2-like ( s ) 81.04+3.0 95.7+0.5 78.3+1.7 47.7+£3.3 75.7
DP + GROOT ( , ) 76.0+£0.8 89.3+1.2 74.7+£0.5 54.3+0.5 73.6
DP + Dynamo ( s ) 78.3+3.3 95.54+0.5 84.34+2.5 44.7+3.7 75.7
DP + CoMo 80.3+1.2 95.0+0.0 85.0+£2.2 63.0£1.6 80.8

CALVIN. The CALVIN ( , ) benchmark is built upon the Franka robot and focuses

on assessing long-horizon task completion. During each trial, the robot is required to sequentially
complete five tasks. The benchmark consists of four different environments (A, B, C, D), allowing for
robust evaluation of generalization capabilities. We conduct experiments under the most challenging
ABC — D setup, training on environments A, B, and C, and evaluating on D. Following the setup
of Moto-GPT ( , ), we use all action-less videos from environments A, B, and C to
train CoMo and 35% data (18k trajectory videos) with language annotations to conduct unified policy
joint training. In terms of policy architecture, to enable joint prediction of continuous robot action
and latent motion under a unified autoregressive-based policy framework, following (

R ), we add two additional MLP networks after the final hidden states of the
autoregressrve decoder to jointly predict robot action and latent motion. As for policy evaluation, we
select the last three epochs and report the mean and standard deviation of success rates.

4.1.2 SIMULATION EXPERIMENTS RESULTS AND ANALYSIS

To comprehensively explore different latent motion learning methods, we design and implement five
primary ablation variants: O2-Fea (using the future frame ViT features as latent motion), w/o. VQ

(continuous latent motion by naively removing vector quantization of prior works ( );
( )), VQ (discrete latent motion by applying vector quantization, following prior
works ( ); ( )), RGB-Diff (removing vector quantization and replacing

the original future frame ViT features with the ViT features of the RGB difference between frames as
input, to suppress background noise), and Fea-Diff (Our CoMo) (removing vector quantization and
replacing the original future frame ViT features with the frame-wise difference of ViT features as input,
to suppress background norse) As for VQ, con51der1ng the assumption of continuous data distribution
in diffusion ( , ), and following GROOT (

), we utilize pre- quantlzed embeddrngs as the latent motion in diffusion-based policy, referred
to as Pre-VQ. Although these embeddings are continuous, the commitment loss imposed during
training encourages them to approximate a discrete distribution. To ensure fair comparison, all the
above variants use nearly identical architectures and parameter counts. The main differences are
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Table 3: The experiment results on the CALVIN benchmark.

\ 1 2 3 4 5 | Avg. Len.
w/o. Motion | 0.81420.016 0.586-20.029 0.412:£0.030 0.294:£0.033 0.200-£0.024 | 2.3064-0.119
vQ 0.82440.024 0.619£0.031 0.446£0.025 0.341£0.020 0.247-£0.019 | 2.477+0.084
w/o. VQ 0.828+0.013 0.637+0.013 0.481£0.016 0.387+£0.020 0.299+0.024 | 2.63240.148
RGB-Diff 0.81540.022 0.628+0.037 0.475+0.025 0.375+£0.031 0.285:£0.034 | 2.577+0.184

Fea-Diff (CoMo) | 0.854£0.021 0.684+0.039 0.538+0.044 0.438+0.041 0.334£0.043 | 2.848+0.129

whether vector quantization is applied and what input is used for the IDM. For our experiments, both
VQ and Pre-VQ employed a codebook with a vocabulary size of 128.

In Tab. 1, we present ablation studies of the above variants on LIBERO, reporting S.R., MSE, and S-
PCFC. In Tab. 2, we further compare the policy performance of CoMo with other related methods on
LIBERO. In Tab. 3, we report ablation results of the core design of CoMo on CALVIN. In Tab. 4, we
provide additional ablation results of the core design of CoMo on LIBERO under out-of-domain data
settings. Overall, these results address the aforementioned questions and make following findings:

Result 1: The results in Tab. 2 indicate that incorporating video data with CoMo pseudo labels into the
diffusion-based policy can increase the success rate on LIBERO from 70.4% to 80.8%. Meanwhile,
the results in Tab. 3 show that CoMo also improves CLVIN’s performance from 2.306 to 2.848.

Finding 1: CoMo provides effective pseudo labels for action-less video data. The ability of incorpo-
rating much richer data sources leads to a more powerful policy performance, making CoMo a more
scalable and data-efficient learning paradigm, including diffusion and autoregressive architecture.

Result 2: In Tab. 2, achieves the best policy performance. GR2-like and GROOT correspond to
02-Fea and Pre-VQ, respectively. Dynamo utilizes a covariance regularization loss to suppress
shortcut learning. Overall, we incorporate the core designs of the compared methods into our unified
diffusion policy. The use of the same framework and data ensures the fairness of the comparison.

Finding 2: In the comparison of different predictive signals from video data to improve robot policy,
the CoMo latent motion outperforms future frame visual features, 2D point trajectory, pre-quantized
latent motion of GROOT, and regularized latent motion of dynamo.

Result 3: We emphasize the following comparison results: (i) Policy Success Rate: As shown in
Tab. 1, for diffusion-based policy architectures, CoMo achieves an average success rate of 80.8%,
consistently outperforming all other methods. In particular, it surpasses Pre-VQ by a notable margin
of 7.2 (increasing from 73.6% to 80.8%). Furthermore, the results in Tab. 4 demonstrate that this
conclusion remains valid when CoMo is trained on larger-scale, out-of-domain Internet videos,
achieving an even higher policy success rate (from 80.8% to 81.8%). Meanwhile, as shown in
Tab. 3, CoMo also attains the highest performance within the autoregressive-based policy architecture.
Compared to using discrete latent motion, the results improve from 2.477 to 2.848. (ii) MSE: The
results in Tab. 1 also indicate that CoMo achieves the best performance on the MSE metric, with a
substantial margin over Pre-VQ (0.784 vs. 2.967). Similarly, the results in Tab. 4 further demonstrate
that the conclusion still hold when training is extended to out-of-domain Internet video data. (iii)
S-PCFC: For S-PCFC, the results in Tab. 1 and Tab. 4 jointly show that discrete latent motion achieves
the lowest value, regardless of whether in-domain data or out-of-domain internet video data are used
for training. For the other approaches, naively removing VQ only achieves a result close to 1.0
(0.989). When employing temporal difference mechanism for static background suppression, RGB
difference performs better on in-domain data (0.814 vs. 0.901), whereas feature difference yields
better results on out-of-domain internet video data (0.873 vs. 0.851).

Finding 3: Based on the above results, we have the following findings and analysis: (i) Although
extracting discrete latent motion and explicitly imposing vector quantization constraints can effectively
mitigate the shortcut learning problem, this approach leads to significant information loss. As a result,
the extracted motion struggle to capture the robot’s fine-grained movements (the highest MSE). As
shown in Fig. 4, discrete latent motion may only capture the general movement direction. On the
other hand, continuous latent motion and robot action share a consistent continuous distribution,
and this consistency is beneficial for the joint learning of a unified policy. (ii) Simply removing the
vector quantization leads to a severe shortcut learning problem, where the model tends to collapse
by directly learning substantial future frame background noise as continuous latent motion. In
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Figure 3: The latent motion embedding dimension scaling results. (Left) Our CoMo achieves
the highest success rate when the motion dimension is 128 (the better trade-off between MSE and
S-PCFC). (Right) Our CoMo obtains a lower S-PCFC as the motion dimension decreases, whereas
simply removing vector quantization does not (with severe shortcut learning problem).

contrast, employing temporal difference mechanisms can effectively alleviate this issue (Both MSE
and S-PCFC effectively reduce). As shown in Fig. 3(right), for CoMo, gradually reducing the motion
embedding dimensionality effectively lowers the S-PCFC, whereas the naive w/o VQ baseline does
not achieve the same effect. The visualization in Fig. 4 also confirms this: compared to naive
continuous baseline, the predicted future frame of our CoMo include much less of the prompt
video’s background noise. Regarding the choice between RGB difference and feature difference,
the former amplifies low-level motion signals more effectively, but may disrupt more abstract and
complex motion information. Consequently, feature difference demonstrates greater scalability when
applied to larger-scale internet video data (Both MSE and S-PCFC are lower). (iii) CoMo trained
on large-scale internet videos exhibits strong generalization capabilities, enabling direct zero-shot
transfer to robotic scenarios for generating continuous pseudo action labels without the need for
fine-tuning. Moreover, the more complex motion patterns in real-world data can further mitigate the
shortcut learning problem (The S-PCFC can be reduced from 0.901 to 0.851), thereby enhancing
policy performance (from 80.8% to 81.8%).

Result 4: As shown in Fig. 3(left), increasing the .
dimensionality of the latent motion embedding ini- Lable 4: The LIBERO experiment results of
tially leads to improved policy success rates, but COMo trained on larger-scale Internet videos
further scaling results in a decline. This trend di- Without any fine-tuning.

verges from observations reported in prior work (

, ). Notably, during the incremental in- |SR.1T MSE | S-PCFC |
crease of the motion dimensionality, S-PCFC ex- wlo. VQ 772 1368  0.895
hibits a marked improvement (from 0.730 to 0.940), Pre-VQ 787 2226  0.405
whereas the MSE metric remains relatively stable RGB-Diff 80.6 1291 0873
in the later stages. For example, when the motion Fea-Diff (Ours)| 81.8 1.177  0.851

dimension increases from 128 to 256, the MSE only
slightly decreases from 0.784 to 0.780.

Finding 4: The above results indicate that continuous latent motion representations cannot be simply
scaled up. From the perspective of Information Bottleneck theory ( , ), increasing the
dimensionality of motion embeddings may encourage the model to extract more static appearance
information. With a fixed policy model capacity, this is unfavorable for the joint prediction of
low-dimension robot action and latent motion. The MSE and S-PCFC metrics variations further
corroborate this point: although scaling up the motion dimension might capture more comprehensive
motion information, the simultaneous introduction of additional background noise also impedes
accurate action regression. Therefore, in this work, we fix the dimensionality of the latent motion
representation to 128. This ensures that the model achieves a better balance between learning more
informative motion cues and reducing static motion-agnostic background information.

Finding 5: In Tab. 1, Tab. 4, and Fig. 3, we present S.R., MSE, and S-PCFC on LIBERO across
various methods, pre-training data, and latent dimensions. Overall, reducing MSE or S-PCFC alone
does not guarantee better policy performance. The best policy performance is achieved when both
are relatively low, indicating a better trade-off. Although a strict quantitative relationship cannot be
established, the combination of MSE and S-PCFC reliably reflects downstream policy success. For
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Prompt Motion (gt Naive continuous baseline (w/o. VQ
-~

Figure 4: The FDM future frame prediction visualization. Given three frames from a prompt
video clip, we extract the latent motion from the first two frames and from the first and last frames,
respectively. We then render a new environment for the first frame, and use these two sets of
latent motions to predict the subsequent two frames in the new environment via FDM. The red
rectangles indicate that the naive continuous baseline incorporates a significant amount of background
information from the prompt video. In addition, compared to the other two baselines, CoMo provides
finer-grained latent motion that more closely matches the trajectory in the prompt video.

=7 2

Figure 5: The Real-world task illustrations.

example, compared to the naive continuous baseline, our CoMo achieves lower MSE, lower S-PCFC,
and higher policy success rate.

4.2 REAL-WORLD EXPERIMENTS

Real-World Setups. In real-world experiments, Table 5: Real-world experiments.

we aim to validate whether CoMo trained on Inter- | Pick Open Insert Push Pour
net videos, can directly extract latent motion from /0 human videos 160.0 15.0 20.0 80.0 20.0
human videos to serve as effective pseudo action Pre-VQ 650 250 15.0 80.0 25.0
labels. Specifically, we utilize a Franka robot to CoMo 75.0 30.0 25.0 80.0 35.0

execute five tasks: picking a toy and placing it into
a basket, opening a drawer and placing a toy into it, inserting a toy into a container, pressing the
button of the corresponding color, and pouring the vegetables from the basket into the pot, as shown
in Fig. 5. For each task, we utilize 20 teleoperated trajectories and 20 human manipulation videos,
where we construct pseudo action labels via our CoMo training on Internet videos for the latter. We
then train a unified diffusion-based policy using both datasets and evaluate each task with 20 rollouts,
and the results are presented in Tab. 5.

Real-World Results and Analysis. The results demonstrate the effectiveness of CoMo latent motion
in extracting pseudo-action labels from human demonstration videos. Consistent with the conclusions
from simulation experiments, CoMo latent motion achieves better policy than Pre-VQ (GROO0T),
which can be attributed to its continuous distribution that matches real robot action, more precise
motion capture, and reduced action-irrelevant background noise.

5 CONCLUSIONS

We presented CoMo, a framework for self-supervised learning of continuous latent motion from
Internet videos. By employing the straightforward temporal feature differences to replace future
frame features before the encoder input, CoMo effectively mitigates shortcut learning issues, thus
enabling more effective and precise pseudo action labels for action-less video data. This seamlessly
facilitates the joint learning of continuous robot action and latent motion within a unified policy.
Furthermore, we propose MSE and S-PCFC for a more direct and low-cost evaluation and analysis of
latent motion. Extensive experiments results demonstrate the effectiveness of our CoMo.

9
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based on publicly available datasets and benchmarks, with a primary focus on advancing algorithmic
techniques. We have carefully considered all potential risks and broader societal impacts and have
concluded that this work does not present any notable ethical concerns, nor does it involve the use of
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To guarantee the reproducibility of our results, we offer the following resources:

* Implementation details: We provide detailed descriptions of our CoMo model and training
procedures, as well as policy training and evaluation details, in subsections A.5,A.6, andA.7.

* Code and models: Our source code and trained models will be released upon paper acceptance to
facilitate reproducibility and encourage further research.

We believe these resources establish a solid foundation for the research community to replicate and
extend our work.
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A APPENDIX

A.1 LIMITATIONS AND DISCUSSION

Despite extensive simulation and real-world experiments validating CoMo’s effectiveness and gen-
eralizability in extracting pseudo action labels for action-less videos, and showing its superiority
over discrete latent motion and naive continuous variants, some challenges and future works remain.
As indicated by the results in Tab. 2 (89.2 vs. 80.8), there is still a gap between the latent motion
and actual robot action. A potential future work involves incorporating extra temporal supervision
to obtain more temporally sensitive, skill-centric motion representations, which we leave for future
works. Furthermore, we hope our proposed low-cost and stable MSE and S-PCFC metrics will further
facilitate the exploration and research of better latent motion learning methods.

A.2 THE MSE METRIC FOR ABSOLUTE JOINT STATES

In the main text, the MSE metric is computed and reported using relative end-effector poses as the
action space. In this section, we further supplement the analysis by reporting MSE results with
absolute joint states as the action space. As presented in Tab. 6, the results demonstrate that the early
temporal difference mechanism in our CoMo latent motion remains effective even when evaluated in
the absolute action space. This indicates that when the input to the IDM consists of current frame
features and inter-frame feature differences, it is still able to capture the spatial information of the
foreground in future frames.

Table 6: The MSE metric for absolute joint states.

MSE Spatial Object Goal Long Avg.
Pre-VQ | 0.872 0991 0.562 1.831 1.064
w/o. VQ | 0.156 0.163 0.085 0.187 0.148
CoMo 0.122 0.121 0.074 0.173 0.126

A.3 THE DATA SCALABILITY OF COMO

Table 7: The data scalability of CoMo.

Out-of-domain video data | S R. MSE S-PCFC
30,000 783 1.253 0.868
120,000 81.8 1.177 0.851

In the main text, we demonstrate the generalization capability of CoMo when trained with Internet-
scale out-of-domain video data. In Tab. 7, we also report results obtained by training with only
one-quarter of the data, which further verifies the data scalability of CoMo.

A.4 REAL-WORLD EXPERIMENTS DETAILS

In this section, we detail the specifics of our real-world experiments. Specifically, our experiments
setup is illustrated in Fig. 6, which comprises a single Franka Emika Research 3 robot arm, equipped
with a UMI ( ) gripper, and utilizes a statically positioned RealSense D435 camera
(with a resolution of 640x480 pixels) from a third-person view to acquire real-time RGB visual
observations. Following available code', we employ a 3D mouse for teleoperation data collection.
The robot system operates at 20 Hz (moderately reduced from the native 100 Hz control frequency to
balance training efficiency and motion continuity), with actions defined as relative end-effector pose
changes in SE(3) space (3D position change + quaternion orientation change).

For the five tasks we evaluated—picking a toy and placing it into a basket, opening a drawer and
placing a toy into it, inserting a toy into a container, pressing the button of the corresponding color,
and pouring the vegetables from the basket into the pot—they respectively require the robot arm to

"https://github.com/UT-Austin-RPL/deoxys_control

15


https://github.com/UT-Austin-RPL/deoxys_control

Under review as a conference paper at ICLR 2026

perform basic pick-and-place, long-horizon open-pick-place, fine-grained pick-insert, instruction
following, and pick-pour capability. During evaluation, the initial pose of the robot arm was set to a
fixed home position. The initial poses of the objects to be interacted with were significantly varied. A
special case is the long-horizon open-pick-place task, where adhesive was applied to the bottom of
the drawer to mitigate significant sliding during opening and closing. Consequently, in this task, the
placement pose of the drawer was slightly perturbed, within a range of approximately 8 cm in the
lateral and longitudinal directions.

For the policy of our real-world experiments, we adopt a diffusion-based policy architecture. Specific
training and architecture details can be found in Section A.6. Finally, we jointly train the policy using
collected robot data and human video data labeled with our Internet trained CoMo (CoMo-Internet).

4

Figure 6: The real-world Franka robot arm experiments hardware platform.

A.5 CoMo DETAILS

In this section, we describe the specifics of our CoMo. Utilizing different training data, we train three
versions of CoMo: CoMo-Internet (using sampled SAM-V Ravi et al. (2024), EgoVid Wang et al.
(2024) and Droid Khazatsky et al. (2024)), CoMo-LIBERO Liu et al. (2023) (using entire LIBERO
dataset), and CoMo-CALVIN Mees et al. (2022) (using entire CALVIN data of environments A, B,
and C) to conduct ablation studies across different simulated environments and real-world scenario,
and to validate the zero-shot cross-domain transfer capability of CoMo. We train them using largely
the same training hyperparameters as detailed in Tab. 8. Notably, for a fairer comparison with the
discrete baseline in Moto-GPT Chen et al. (2024b), we train CoMo-CALVIN for a longer duration.
For different datasets, we set different frame intervals to ensure that they maintain approximately
similar FPS.

Following Moto-GPT Chen et al. (2024b), CoMo employs a set of learnable motion queries to
capture the latent motion representations between two frames. Specifically, our CoMo comprises a
Motion-Enhanced Inverse Dynamics Encoder (ME-IDM) and a Forward Dynamics Decoder model
(FDM). To mitigate shortcut learning problem and model collapse, in contrast to prior works, CoMo
early remove future frame visual features before the IDM encoder input, and only utilize both the
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feature differences between the current and future frames and the current frame visual features as
inputs to suppress static backgrounds and enhance motion.

Finally, in Tab. 8, we further report extra architectural details of our CoMo. Notably, our CoMo-
CALVIN employs a higher motion embedding dimensionality, which is used for a fairer comparison
with the discrete baseline in Moto-GPT ( ).

Table 8: The training and architectural hyperparameters for our CoMo learning.

Hyperparameter Value

CoMo training
Optimizer AdamW ( )
Base learning rate 0.0001
Optimizer momentum 51, 82 = 0.9,0.99
Effective batch size 256

Total training steps 50,000 (150,000 on CALVIN)

Frame interval on LIBERO ( ) 10
Frame interval on CALVIN ( ) 5
Frame interval on SAM-V ( ) 10
Frame interval on EgoVid ( ) 10
Frame interval on Droid ( ) 20
Motion-Enhanced Inverse dynamics Model
Feature extractor MAE ( ) ViT-L
Codebook size of discrete baseline 128
Number of motion queries 8
Latent motion embedding dimensionality 16 (32 on CALVIN)
#layers 4
#MHSA heads 12
Hidden dim 768
Forward dynamics Model
#layers 12
#MHSA heads 12
Hidden dim 768

A.6 DIFFUSION-BASED POLICY DETAILS

In this section, we detail our unified diffusion-based policy. We primarily implement the diffusion-
based policy for the LIBERO ( ) simulation and real-world experiments. Specifically,
we jointly learn the unified policy from video data with continuous pseudo action labels constructed
using CoMo, and continuous robot action data.

In Tab. 9, we report the training and architectural details of our diffusion-based policy. Specifically, we

employ BERT ( ) and ViT ( ) to extract language instructions
and visual observations features, respectively. Following RDT-1B ( ), we utilize a more
scalable DiT ( ) block as the backbone. The extracted language and visual features

are incorporated as conditioning through cross-attention layers within the DiT block. To perform joint
learning of action-less video data and robot data within a unified policy model, we construct two sets
of MLP networks to map continuous latent motion and robot actions into a shared embedding space,
and back to their respective original spaces. In the training phase, we adopt the DDPM scheduler
with a glide cosine scheduling scheme (specifically, the squaredcos cap v2 variant) across a diffusion
process of 1000 steps. Conversely, for inference, we leverage the DPM-Solver++ ( ) in
conjunction with an analogous glide cosine scheduler, albeit with a substantially reduced sampling
budget of 5 steps. Finally, to capture the temporal dependencies of actions and ensure real-time
dynamic adaptability during policy execution, we set an action / motion chunk size of 8 in both the
training and inference phases.
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Table 9: The training and architectural hyperparameters for our diffusion-based policy learning.

Hyperparameter Value
Diffusion-based policy training
Optimizer AdamW ( )
Base learning rate 0.0005
Effective batch size 256
Total training epochs 100

Diffusion-based policy architecture

Vision feature extractor DINOv2 ( ) ViT-B ( )
Language feature extractor BERT ( )
#layers 12
#MHSA heads 16
Hidden dim 768
Action / motion chunk size 8
Action projector (7, 768)
Latent motion projector (128, 768)
Action head (768, 7)
Latent motion head (768, 128)
Noise scheduler
Type DDPM ( )
Prediction type sample
Training step number 1000
Sampling step number 5
Solver DPM-Solver++ ( )

A.7 AUTOREGRESSIVE-BASED POLICY DETAILS

In this section, we detail the specifics of our autoregressive-based policy, as hown in Tab. 10.
We primarily implement this policy for the CALVIN ( ) simulation environment
experiments. Specifically, we employ T5 ( ) and ViT ( ) to
extract token-level textual and visual features, respectively. Following ( );

( ), we adopt a GPT-style ( ) autoregressive backbone and append two
additional MLP networks at the output layer to predict continuous robot actions and latent motion
separately. Specifically, for motion prediction, we autoregressively predict latent motion with a chunk
size of 2. For action prediction, we parallelly decode actions with a chunk size of 5 based on a set of
learnable action query tokens. Furthermore, to ensure a fair comparison with the discrete baseline in
Moto-GPT ( ), we first perform a round of pre-training using action-less video data
before conducting joint training on robot action data and action-less video data.

A.8 STATEMENT ON LLM USAGE

Our use of Large Language Models (LLMs) in the preparation of this manuscript was limited strictly
to polish writing.
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Table 10: The training and architectural hyperparameters for our autoregressive-based policy learning.

Hyperparameter Value
Autoregressive-based policy training

Optimizer AdamW ( )
Base learning rate 0.0005
weight decay 0.0001
Effective batch size 512
Total training epochs 20

Autoregressive-based policy architecture
Vision feature extractor MAE ( ) ViT-B ( )
Language feature extractor TS5 ( )
#layers 12
#MHSA heads 12
Hidden dim 768
Action chunk size 5
Motion chunk size 2
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