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Abstract

3D few-shot class incremental learning (FSCIL)
aims to learn new point cloud categories from
limited samples while preventing the forgetting
of previously learned categories. This research
area significantly enhances the capabilities of
self-driving vehicles and computer vision sys-
tems. Existing 3D FSCIL approaches primar-
ily utilize multimodal pre-trained models to ex-
tract the semantic features, heavily dependent
on meticulously designed high-quality prompts
and fine-tuning strategies. To reduce this depen-
dence, this paper proposes a novel method for
3D FSCIL with Embedded Geometric features
(3D-FLEG). Specifically, 3D-FLEG develops a
point cloud geometric feature extraction module
to capture category-related geometric characteris-
tics. To address the modality heterogeneity issues
that arise from integrating geometric and text fea-
tures, 3D-FLEG introduces a geometric feature
embedding module. By augmenting text prompts
with spatial geometric features through these mod-
ules, 3D-FLEG can learn robust representations of
new categories even with limited samples, while
mitigating forgetting of the previously learned
categories. Experiments conducted on several
publicly available 3D point cloud datasets, in-
cluding ModelNet, ShapeNet, ScanObjectNN,
and CO3D, demonstrate 3D-FLEG’s superiority
over existing state-of-the-art 3D FSCIL methods.
Code is available at https://github.com/
lixiangqi707/3D-FLEG.
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1. Introduction
Capturing the 3D shapes of objects from point clouds has
become increasingly critical across a wide range of fields,
including robotic automation, healthcare, and autonomous
driving (Xiao et al., 2024; Xue et al., 2024; Xu et al., 2023;
An et al., 2024b;a). In these applications, there is a grow-
ing need for models that can continuously adapt to new
object characteristics with limited samples while retaining
the ability to recognize previously encountered objects (Zhu
et al., 2021; Ahmadi et al., 2024; Xing et al., 2025; Huang
et al., 2024b; Wu et al., 2025). This growing demand has
spurred the development of few-shot class incremental learn-
ing (FSCIL) techniques specifically designed for 3D point
clouds (Tan & Xiang, 2024; Cheraghian et al., 2025). How-
ever, 3D FSCIL faces unique challenges, including catas-
trophic forgetting, overfitting to new data, and domain gaps
between synthetic training data and real-world scans (Tan
& Xiang, 2024; Huang et al., 2024a). These challenges
significantly increase the complexity of applying FSCIL to
3D point clouds (Chowdhury et al., 2022; Cheraghian et al.,
2025).

To address these challenges, Microshape (Chowdhury et al.,
2022) proposed a universal description language to miti-
gate distribution differences. While this approach reduces
knowledge forgetting and somewhat addresses data distri-
bution discrepancies, it struggles with learning new cat-
egories. Cross-Domain (Tan & Xiang, 2024) introduced
distinct recognition methods for new and old categories by
incorporating soft and hard-label replay strategies, further
alleviating forgetting and enhancing learning capabilities for
new categories. Given the extremely limited training sam-
ple available for new categories, researchers have explored
leveraging pre-trained foundation models to improve learn-
ing while minimizing the forgetting of previously learned
information (Zhou et al., 2025). The C3PR method inves-
tigated how the knowledge from the CLIP model could be
applied to 3D point cloud data by projecting point clouds
into depth images from optimal angles and integrating a
model reprogramming paradigm, offering a new way to
handle 3D objects using CLIP (Cheraghian et al., 2025).
However, 2D foundation models like CLIP were not de-
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signed for 3D tasks and cannot directly process point clouds.
Even when depth images are projected and fed into CLIP’s
image encoder for classification, CLIP’s sensitivity to color
and texture information leads to lower classification perfor-
mance due to the absence of these details in the projected
images (Wang et al., 2022). In contrast, 3D pre-trained foun-
dation models, which are trained on large datasets of point
cloud-image-text pairs, are more adept at handling point
cloud data. Ahmadi et al. (Ahmadi et al., 2024) were the
first to apply 3D foundation models to FSCIL, introducing
an adaptive module that requires no additional training and
a dual-cache system, significantly improving the capability
of 3D vision-language models in incremental learning tasks.
However, similar to the 2D counterparts, the performance
of 3D pre-trained models heavily relies on high-quality text
prompts and elaborate training strategies, especially when
working with limited new samples (Sun et al., 2024a).

As shown in the preliminary 3D FSCIL results in Fig. 1,
the choice of prompt and training strategies significantly
influences the effectiveness of the foundation model dur-
ing the incremental learning phase. Surprisingly, a simpler
prompt template outperforms more complex ones, resulting
in an improvement of approximately 6% in recognition ac-
curacy during the final phase. Manually crafting effective,
elaborate prompts can be quite challenging, and intricate
training strategies may unnecessarily increase model com-
plexity. Based on this observation, we identify two critical
challenges that need to be addressed to advance FSCIL on
3D point clouds: minimizing reliance on text prompts and
enhancing the model’s ability to learn robust feature repre-
sentations. One promising approach is to embed geometric
information into the prompts, an aspect that has not been
fully explored in previous studies.

We propose a novel method called 3D Few-shot class in-
cremental Learning method with Embedded Geometric fea-
tures (3D-FLEG). This method aims to reduce dependence
on text prompts while improving the model’s capacity to
learn robust feature representations by incorporating spatial
geometric knowledge from 3D point cloud features.

Specifically, 3D-FLEG integrates geometric feature extrac-
tion and geometric embedding modules. The geometric
feature extraction module is designed to isolate category-
specific features and capture object spatial structures. Its
core is the construction of dynamic geometric feature projec-
tion clusters (DGPC) through clustering and dimensionality
reduction. To select cluster centers in real-world point cloud
datasets, which often contain noise and complex topolo-
gies, we employ spectral clustering (Ng et al., 2001). This
technique effectively identifies complex distributions and
non-convex clusters in noisy data, ensuring the selection of
representative centers for point clouds (Resani et al., 2025).
Furthermore, 3D-FLEG utilizes Laplacian eigenmaps to
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Figure 1. Comparison of 3D FSCIL results on “ModelNet →
ScanObjectNN” datasets using various ‘Prompt-Training Strat-
egy’ Combinations: (1) GPT-generated prompts combined with
model reprogramming and canonical shape projection (Cheraghian
et al., 2025), (2) 64 different prompt templates along with the
alignment module and dual cache system (Ahmadi et al., 2024),
(3) GPT-generated prompts together with the alignment module
and dual cache System, (4) only a prompt template Along with
the alignment module and dual cache system, (5) GPT-generated
prompts together with embedded geometric features, (6) 64 dif-
ferent prompt templates along with embedded geometric features,
and (7) only a prompt template with embedded geometric features.

preserve the local geometric structure during high-to-low di-
mensional embedding (Belkin & Niyogi, 2003). By captur-
ing both global and local geometric characteristics, this ap-
proach boosts the model’s representation capabilities while
minimizing reliance on text prompts. To further address
modality heterogeneity, 3D-FLEG incorporates the geomet-
ric feature embedding module. By leveraging multi-head
attention mechanisms, this module enables the model to
better integrate and utilize the extracted geometric features,
thereby enhancing both the model’s learning ability and
the robustness of its feature representations. We validated
3D-FLEG on the ModelNet, ShapeNet, ScanObjectNN, and
CO3D point cloud datasets, demonstrating superior perfor-
mance in mean accuracy, harmonic mean accuracy, and
accuracy drop percentage compared to existing 3D FSCIL
methods (Wu et al., 2015; Chang et al., 2015; Uy et al., 2019;
Reizenstein et al., 2021; Chowdhury et al., 2022; Tan & Xi-
ang, 2024; Cheraghian et al., 2025; Ahmadi et al., 2024). In
summary, our contributions are threefold:

1. We propose 3D-FLEG, a prompt semantic enhance-
ment strategy based on point cloud geometric features.
This approach not only mitigates the forgetting of old
knowledge but also enables efficient learning of new
category representations with minimal training data,
thereby providing a novel solution for 3D few-shot
class incremental learning.

2. We designed a framework with two innovative mod-
ules: a geometric information extraction module that
extracts geometric information from point cloud fea-
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tures, and a geometric information embedding module
that efficiently fuses this information with text features.

3. Our method achieves significant performance improve-
ments in within-dataset and cross-dataset experiments,
proving its effectiveness and robustness in handling FS-
CIL on several publicly used 3D point cloud datasets.

2. Related Work
2.1. Point Cloud Processing

As one of the primary representations of three-dimensional
objects, point clouds have garnered increasing attention due
to the growing demand for 3D object representation learning
(Xiao et al., 2024). Current approaches to processing point
clouds can be primarily categorized into voxel-based meth-
ods, projection-based methods, and point-based methods
(Lahoud et al., 2022).

Specifically, voxel-based methods map point cloud data
into a 3D grid, simplifying computations and supporting
convolutional operations. However, they lead to increased
computational costs at high resolutions due to higher spatial
complexity (Choy et al., 2019; Maturana & Scherer, 2015).
Projection-based methods, alternatively, project point clouds
onto 2D planes or tangent planes to form multi-view rep-
resentations, allowing the use of 2D CNNs for feature ex-
traction. While this leverages powerful pattern recogni-
tion, it can result in loss of depth information and relies
on effective multi-view integration (Huang et al., 2023; Su
et al., 2015). In contrast, point-based methods have gar-
nered more attention due to their ability to learn features
directly from unordered, variable-length data without trans-
forming them into a regular structure. PointNet pioneered
this field by proposing the use of Multi-Layer Perceptrons
to independently process each point, combined with global
max pooling to generate permutation-invariant features (Qi
et al., 2017a). Its successor, PointNet++, further developed
hierarchical local feature aggregation strategies, enhancing
the capture of local geometric structures (Qi et al., 2017b).
To improve feature expressiveness, researchers have drawn
inspiration from successful models in the 2D domain, such
as CNNs, Graph Neural Networks, and BERT, developing
advanced point cloud encoders that significantly boost the
capability to understand and process point clouds (Li et al.,
2018; Wang et al., 2019; Yu et al., 2022; Liu et al., 2019; Wu
et al., 2019). Leveraging these mature point cloud encoders,
there has recently been an emergence of foundational 3D
models aimed at constructing a unified three-dimensional
representation (Zhou et al., 2023; Xue et al., 2023; Liu et al.,
2024b; Xue et al., 2024; Zhang et al., 2024; Qi et al., 2024;
Zhang et al., 2023). Among these, the Uni3D model uti-
lizes pre-trained Vision Transformers and is trained in an
end-to-end manner, achieving effective alignment between
3D point cloud features and image-text features (Zhou et al.,

2023). This approach has demonstrated significant potential
across a variety of point cloud processing tasks.

2.2. Few-Shot Class Incremental Learning

Few-shot class incremental learning has garnered significant
attention due to its high challenge and practical research
significance (Tao et al., 2020; Cheraghian et al., 2021; Zhu
et al., 2021; Peng et al., 2022; Ahmad et al., 2022; Liu
et al., 2022; Kang et al., 2022; Kim et al., 2023; Liu et al.,
2023; Lin et al., 2024; Sun et al., 2024b; Liu et al., 2024a;
Wang et al., 2024; Park et al., 2024; Zheng et al., 2025). Mi-
croshapes was the first study to explore FSCIL on 3D point
clouds (Chowdhury et al., 2022). It highlighted that FSCIL
tasks often rely on extensive synthetic data for training but
require continuous learning of new real-world categories,
introducing a cross-domain discrepancy challenge. To ad-
dress this, Microshapes introduced a universal description
language to reduce data distribution differences. Meanwhile,
Cross-Domain employed a dual-branch architecture and a
label replay strategy to mitigate catastrophic forgetting (Tan
& Xiang, 2024). Pre-trained foundation models, rich in
knowledge, are well-suited to meet FSCIL challenges. The
C3PR method explored the application of CLIP models
to 3D point cloud processing by generating depth images
from optimal projection angles and combining them with
model reprogramming paradigms, offering a novel approach
(Cheraghian et al., 2025). However, 2D models like CLIP
have limitations when directly applied to point clouds, such
as sensitivity to color and texture information, which can
degrade classification performance. With the emergence
of 3D pre-trained models, researchers have shifted towards
using models specifically designed for point clouds. Foun-
dationModel was the first to apply a 3D foundation model
to FSCIL, introducing an adaptive module that requires no
additional training and a dual-cache system, significantly en-
hancing the ability of 3D vision-language models to handle
continual learning tasks (Ahmadi et al., 2024).

Despite their potential to effectively address FSCIL chal-
lenges, the performance of 3D pre-trained models still de-
pends on high-quality text prompts and sophisticated train-
ing strategies. Therefore, there is a need for new training
approaches. These new methods should minimize this de-
pendence and fully unleash the latent capabilities of these
models. To this end, we propose a method based on point
cloud geometric feature embedding. This approach effec-
tively addresses catastrophic forgetting and cross-domain
discrepancies, thereby improving the model’s ability to learn
effective feature representations from limited new category
data.
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Figure 2. Overall pipeline of 3D-FLEG. The process begins with point cloud data {Pi}Ni=1 and category descriptions formatted using the
template “a point cloud model of a { }”, denoted as {Tj}Mj=1. A pre-trained frozen 3D encoder extracts initial features from the point
cloud data, while a frozen text encoder generates corresponding text features. Next, the model employs spectral clustering and Laplacian
eigenmaps to construct dynamic geometric feature projection clusters that are specifically designed to continuously adapt to novel data
distributions. Leveraging learnable attention weights for basis vectors, these dynamic projection clusters serve the purpose of extracting
geometric information. Subsequently, the extracted geometric features are then processed by a trainable Transformer encoder to generate
semantically rich representations. Finally, the model fuses geometric and expanded text features for comprehensive embeddings. During
inference, it optimizes parameters by minimizing cross-entropy loss between the original point cloud features and enhanced text features.

3. Method
3.1. Problem Formulation

3D FSCIL faces a sequence of T tasks, Q =
{Q1,Q2, . . . ,QT }, where Q1 is the base task and
Q2, . . . ,QT are novel tasks introduced incrementally. Each
task Qt has a distinct set of classes Ct, ensuring Ci ∩Cj = ∅
for any i ̸= j. Each class within a task includes a prompt
description Pt. Thus, each task Qt can be represented as a
set of tuples {(Xti, yti, pti)}nt

i=1, where:

• Xti = {xtij}lij=1 denotes the i-th 3D point cloud with
li points in R3.

• yti ∈ Ct is the class label.

• pti ∈ Pt is the class prompt description.

• nt represents the number of instances per task Qt.

In 3D FSCIL, the model initially trains on a large synthetic

dataset for Q1. For subsequent tasks (t > 1), training uses
limited real-world 3D point clouds per new class. Training
proceeds sequentially from t = 1 to t = T , with the model
receiving Xt, yt, and prompt descriptions up to the current
task {P1, . . . ,Pt}. After training on Qt, the model must
classify test samples from all tasks up to Qt, ensuring it
retains knowledge of previous classes while learning new
ones. This formulation evaluates the model’s ability to
handle incremental learning challenges, especially when
new classes have limited data, balancing old knowledge
retention and new information acquisition (Chowdhury et al.,
2022; Cheraghian et al., 2025).

3.2. Model Overview

Our proposed method, 3D-FLEG, is illustrated in Fig. 2.
It begins with data preparation and initialization and takes
as input point cloud data {Pi}Ni=1 and a list of categories
with predefined templates {Tj}Mj=1, where N is the number
of point clouds, M is the number of categories. A pre-

4



Geometric Feature Embedding for Effective 3D Few-Shot Class Incremental Learning

trained 3D base model’s point cloud encoder fP (·) extracts
initial features {featBasei}Ni=1 = {fP (Pi)}Ni=1, while a
text encoder fT (·) generates corresponding text features
{featTextj}Mj=1. Subsequently, the model constructs dy-
namic geometric feature projection clusters for the base-
class point clouds. Initial features are clustered using spec-
tral clustering combined with K-means, followed by di-
mensionality reduction via Laplacian eigenmap to compute
basis vectors B = {b1, b2, ..., bk}. Upon the arrival of
new classes, these clusters adapt to new distributions, with
each basis vector bi associated with a learnable weight wi.
Point cloud features featPointi are then dot-multiplied
with basis vectors and aggregated through a weighted sum
to extract geometric information featGeoi. In the geomet-
ric feature embedding module, geometric features are pro-
cessed by a Transformer encoder with self-attention layers
to generate semantically enriched feature representations
featTransi. Text features are integrated by concatenat-
ing featTransi with expanded, dimension-matched text
features {featExpTextj}Mj=1, resulting in the final fused
feature {featF inalj}Mj=1.

During inference, 3D-FLEG compares original point cloud
features featPointi with the enhanced text features
{featF inalj}Mj=1, guided by cross-entropy loss L for op-
timization. By minimizing this loss, the model refines its
parameters to better accommodate evolving data distribu-
tions and improve classification accuracy.

3.3. Geometric Feature Extraction Module

In 3D-FLEG, we introduce a geometric feature extraction
module designed to extract more representative and stable
high-level geometric attributes from raw point cloud fea-
tures, serving the task of text enhancement. This module
first uses spectral clustering to select cluster centers from
the base-class point cloud features and then applies gener-
alized eigenmaps for dimensionality reduction, generating
dynamic projection clusters.

For base-class point cloud data, we extract an initial set
of point cloud features {featBasei}Ni=1 = {fP (Pi)}Ni=1.
Spectral clustering on featBase yields cluster assignments
C, with K-means applied internally for final clustering. The
affinity matrix W is constructed as follows:

Wij = exp

(
−∥xi − xj∥2

2σ2

)
. (1)

The degree matrix D has diagonal elements given by:

Dii =
∑
j

Wij . (2)

Normalization of the Laplacian matrix L is performed as:

L = I −D− 1
2WD− 1

2 . (3)

Eigendecomposition on L selects the top k smallest non-
zero eigenvalues’ corresponding eigenvectors to form matrix
U . Each row of U is normalized to obtain the final feature
representation Y = [y1, y2, ..., yk]

T . K-means clustering
on Y achieves the final clustering result C.

For Laplacian eigenmap dimensionality reduction, a set
of basis vectors B = {b1, b2, ..., bk} is calculated from
the clustering results. The generalized eigenvalue problem
Lz = λDz is solved, where z represents eigenvectors and
λ represents eigenvalues. Eigenvectors corresponding to
the top k smallest eigenvalues form a matrix Z, which is
standardized to obtain the basis vector matrix B.

When new classes arrive, the geometric feature projection
cluster B is updated based on an update rate parameter to
adapt to new distributions. For test samples, each basis
vector bi ∈ B has a learnable weight wi ∈ W . Geomet-
ric information is aggregated via a weighted sum to get
geometric features featGeoi:

featGeoi =

k∑
j=1

wj · (featPointi · bj). (4)

Spectral clustering, based on spectral analysis from graph
theory, is well-suited for capturing data distributions with
complex topological structures and is robust to noise. Lapla-
cian eigenmaps, as a manifold learning technique, preserve
the local geometric properties of the point clouds. By com-
puting the weighted similarity between point cloud features
and dynamic projection clusters, we extract geometric fea-
tures that exhibit good invariance to different viewpoints
and scale transformations.

3.4. Geometric Feature Embedding Module

For 3D FSCIL, we have designed a novel geometric fea-
ture embedding module aimed at fully utilizing the rich
spatial and geometric information from point cloud data
and the semantic information from text descriptions. This
module optimizes the processing of geometric features to
ensure that data from both modalities interact on similar
levels of abstraction, thereby achieving more effective in-
formation integration. Specifically, 3D-FLEG incorporates
both AdaptiveAvgPool1d and AdaptiveMaxPool1d to ex-
tract features at different granularity levels. In our design,
we leverage these pooling methods to effectively capture
both fine-grained and coarse-grained characteristics of the
input data:

Fp = [AvgPool(featGeoi),MaxPool(featGeoi)]. (5)

Here, Fp combines both levels of detail from the geometric
features. Next, Fp undergoes linear projection and is passed
through a Transformer-based multi-head attention mech-
anism to capture long-range dependencies and optimize
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feature relevance. The resulting features are further pro-
cessed through a fully connected layer to adjust the feature
space. These transformations refine the geometric features
and prepare them for fusion with text features. We denote
the final transformed feature as featTransi.

featTransi = fTr(Fp), (6)

where fTr denotes the processing through a Transformer
encoder. The fused feature featF inalj is obtained by con-
catenating processed geometric features featTransi with
dimension-matched expanded text features featExpTextj ,
followed by an activation function:

featF inalj = tanh
(
[featTransi, featExpTextj ]

)
, (7)

where featExpTextj refers to text features expanded to
align with the geometric feature dimensions, facilitating
their effective fusion.

This structured approach ensures effective transformation
and integration of geometric features with textual informa-
tion, leading to improved model performance and adaptabil-
ity.

3.5. Training Pipeline

During model training, both the point cloud encoder and the
text encoder remain frozen. Only the dynamic geometric fea-
ture projection clusters in the geometric feature extraction
module, the weights of each basis vector within them, and
the parameters of the geometric feature embedding module
are trained. 3D-FLEG primarily relies on two key com-
ponents: the geometric feature extraction module and the
geometric feature embedding module. In the geometric fea-
ture extraction module, the core step involves constructing
initial dynamic geometric feature projection clusters using
base-class data. Notably, during the incremental learning
phase, we introduce an update rate to adjust the dynamic
projection clusters and train the corresponding weights for
each basis vector to adapt to the new data distribution. For
each input sample, the dynamic geometric feature projection
clusters extract category-relevant geometric features from
the raw point cloud features. Subsequently, these geometric
features are transmitted to the geometric feature embedding
module for semantic enhancement of text features. Finally,
3D-FLEG is trained using a loss function that computes the
categorical cross-entropy loss between the original point
cloud features and the enhanced text features:

L = − 1

N

N∑
i=1

K∑
k=1

gik log(q̂ik). (8)

where gik denotes the one-hot encoded ground-truth la-
bel vector, and q̂ik represents the predicted class prob-
ability distribution generated from the fused features
{featF inalj}Mj=1.

4. Experiment
4.1. Dataset Partitioning and Evaluation Metrics

Dataset partitioning. For dataset partitioning, we first
conducted within-dataset experiments to establish baseline
performance. Using ModelNet, we allocated 20 base classes
with the remaining 20 classes divided into four incremen-
tal stages. For ShapeNet and CO3D, we utilized 25 base
classes, distributing the incremental classes across 7 or 6
tasks respectively, comprising either 30 or 25 incremental
classes. To simulate limited real-scanned data for new cate-
gories, we also designed cross-dataset experiments. For the
transition from ModelNet to ScanObjectNN, we followed
(Chowdhury et al., 2022) with four tasks. In the case of
ShapeNet to ScanObjectNN, we structured four tasks in-
volving 44 ShapeNet base classes and 15 ScanObjectNN
incremental classes. Lastly, for ShapeNet to CO3D, we
set up eleven tasks with 44 ShapeNet base classes and 50
CO3D incremental classes, representing the most challeng-
ing setup.

Evaluation metrics. In our experiment, we use three key
metrics:

• Average Accuracy: We calculate overall accuracy af-
ter each incremental step, covering both base and new
classes. This measures the proportion of correctly clas-
sified samples out of the total number of samples.

Average Accuracy =
Correct samples
Total samples

. (9)

• Relative Accuracy Drop Rate (∆): We introduce ∆
to quantify performance changes during incremental
learning:

∆ =

∣∣∣∣accT − acc0
acc0

∣∣∣∣× 100, (10)

where accT and acc0 are the accuracies of the last and
first incremental tasks, respectively. Lower ∆ values
indicate better stability.

• Harmonic Accuracy (Ah): To balance performance
on old and new classes, especially given the limited
data for new classes, we adopt harmonic accuracy:

Ah =
2×Ab ×An

Ab +An
, (11)

where Ab and An are the accuracies of base and new
classes, respectively. Higher Ah indicates a better bal-
ance between old and new class performances. Addi-
tionally, we report separate accuracies for base and new
classes at each incremental stage for detailed analysis
(Peng et al., 2022).
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Table 1. Average accuracy within a single dataset.

Method ModelNet CO3D ShapeNet

20 25 30 35 40 ∆ ↓ 25 30 35 40 45 50 ∆ ↓ 25 30 35 40 45 50 55 ∆ ↓
FT 89.8 9.7 4.3 3.3 3.0 96.7 76.7 11.2 3.6 3.2 1.8 0.8 99.0 87.0 25.7 6.8 1.3 0.9 0.6 0.4 99.5
Joint 89.8 88.2 87.0 83.5 80.5 10.4 76.7 69.4 64.8 62.7 60.7 59.8 22.0 87.0 85.2 84.3 83.0 82.5 82.2 81.3 6.6

LwF 89.8 36.0 9.1 3.6 3.1 96.0 76.7 14.7 4.7 3.5 2.3 1.0 98.7 87.0 60.8 33.5 15.9 3.8 3.1 1.8 97.9
IL2M 89.8 65.5 58.4 52.3 53.6 40.3 76.7 31.5 27.7 18.1 27.1 21.9 71.4 87.0 58.6 45.7 40.7 50.1 49.4 49.3 43.3
ScaIL 89.8 66.8 64.5 58.7 56.5 37.1 76.7 39.5 34.1 24.1 30.1 27.5 64.1 87.0 56.6 51.8 44.3 50.3 46.3 45.4 47.8
EEIL 89.8 75.4 67.2 60.1 55.6 38.1 76.7 61.4 52.4 42.8 39.5 32.8 57.2 87.0 77.7 73.2 69.3 66.4 65.9 65.8 22.4
FACT 90.4 81.3 77.1 73.5 65.0 28.1 77.9 67.1 59.7 54.8 50.2 46.7 40.0 87.5 75.3 71.4 69.9 67.5 65.7 62.5 28.6
Sem-aware 91.3 82.2 74.3 70.0 64.7 29.1 78.6 66.9 59.2 53.6 49.1 42.9 44.1 87.2 74.9 68.1 69.0 68.1 66.9 63.8 26.8
Microshape 93.6 83.1 78.2 75.8 67.1 28.3 78.5 67.3 60.1 56.1 51.4 47.2 39.9 87.6 83.2 81.5 79.0 76.8 73.5 72.6 17.1
C3PR 91.6 82.3 75.8 72.2 70.9 22.5 81.5 69.4 66.5 63.0 54.2 53.8 34.0 88.0 81.6 77.8 76.7 76.9 76.2 74.7 15.1
3D-FLEG(ours) 98.3 95.5 93.5 91.4 87.3 11.2 82.1 75.4 69.7 66.7 57.7 57.3 30.2 94.3 91.4 89.7 89.2 88.4 86.2 83.0 12.0

Table 2. Average accuracy across datasets.

Method ShapeNet → CO3D ModelNet → ScanObjectNN ShapeNet → ScanObjectNN

39 44 49 54 59 64 69 74 79 84 89 ∆ ↓ 26 30 34 37 ∆ ↓ 44 49 54 59 ∆ ↓
FT 81.0 20.2 2.3 1.7 0.8 1.0 1.0 1.3 0.9 0.5 1.6 98.0 88.4 6.4 6.0 1.9 97.9 81.4 38.7 4.0 0.9 98.9
Joint 81.0 79.5 78.3 75.2 75.1 74.8 72.3 71.3 70.0 68.8 67.3 16.9 88.4 79.7 74.0 71.2 19.5 81.4 82.5 79.8 78.7 3.3

LwF 81.0 57.4 19.3 2.3 1.0 0.9 0.8 1.3 1.1 0.8 1.9 97.7 88.4 35.8 5.8 2.5 97.2 81.4 47.9 14.0 5.9 92.8
IL2M 81.0 45.6 36.8 35.1 31.8 33.3 34.0 31.5 30.6 32.3 30.0 63.0 88.4 58.2 52.9 52.0 41.2 81.4 53.2 43.9 45.8 43.7
ScaIL 81.0 50.1 45.7 39.1 39.0 37.9 38.0 36.0 33.7 33.0 35.2 56.5 88.4 56.5 55.9 52.9 40.2 81.4 49.0 46.7 40.0 50.9
EEIL 81.0 75.2 69.3 63.2 60.5 57.9 53.0 51.9 51.3 47.8 47.6 41.2 88.4 70.2 61.0 56.8 35.7 81.4 74.5 69.8 63.4 22.1
FACT 81.4 76.0 70.3 68.1 65.8 63.5 63.0 60.1 58.2 57.5 55.9 31.3 89.1 72.5 68.3 63.5 28.7 82.3 74.6 69.9 66.8 18.8
Sem-aware 80.6 69.5 66.5 62.9 63.2 63.0 61.2 58.3 58.1 57.2 55.2 31.6 88.5 73.9 67.7 64.2 27.5 81.3 70.6 65.2 62.9 22.6
Microshape 82.6 77.9 73.9 72.7 67.7 66.2 65.4 63.4 60.6 58.1 57.1 30.9 89.3 73.2 68.4 65.1 27.1 82.5 74.8 71.2 67.1 18.7
C3PR 83.6 80.0 77.8 75.4 72.8 72.3 70.3 67.9 64.9 64.1 63.2 24.4 88.3 75.7 70.6 67.8 23.2 84.5 77.8 75.5 71.9 14.9
FoundationModel 87.3 86.2 84.4 82.2 80.7 79.6 78.2 76.8 76.1 74.5 72.6 16.8 87.7 84.7 81.5 79.2 9.7 90.8 86.5 86.4 85.6 5.7
3D-FLEG(ours) 91.7 90.5 89.0 86.8 84.9 83.3 82.3 81.1 79.8 77.8 76.8 16.2 93.8 91.9 87.5 86.8 7.5 90.9 89.1 87.1 86.3 5.1

4.2. Implementation Details

In the implementation of the incremental stages, we ran-
domly selected five samples per category and retained one
sample from previously learned categories, simulating prac-
tical data scarcity. The dynamic geometric feature projec-
tion cluster contains 1024 base vectors and has an update
rate of 0.1 during the incremental phase. For all samples,
we select 1024 points from the 3D point cloud objects using
the farthest point sampling method as the input. Specifi-
cally, considering the computational overhead and model
performance, our experiment is configured the same as the
(Ahmadi et al., 2024). We employed the “EVA02-E-14+”
CLIP model and the “eva02-base patch14 448” model as
our point cloud encoder. The Transformer encoder com-
prises 2 standard layers, each with 8-head self-attention. As
indicated by Uni3D, while more training parameters can
lead to better training results, it also incurs greater computa-
tional overhead (Zhou et al., 2023). Therefore, we opted for
the basic version of the point cloud encoder. Additionally,
the entire experimental process was conducted on a single
NVIDIA A100 GPU. The optimizer utilized is the AdamW
optimizer, with the weight decay set to 1 × 10−4. During
the basic category training, we trained for 10 epochs with
a learning rate of 0.0005. For the new categories, we in-
creased the training to 50 epochs and set the learning rate to
0.001, maintaining a fixed batch size of 32.

4.3. Overall Experiment

Compared methods. In this section, we evaluate a series of
methods for FSCIL on 3D point clouds. These methods en-
compass fine-tuning and joint training, where fine-tuning up-
dates the model using only data from new categories to sim-
plify the incremental learning process, while joint training
allows the model to simultaneously access data from all cat-
egories to mitigate forgetting issues. Additionally, we adapt
common 2D FSCIL methods such as IL2M, ScaIL, EEIL,
LwF, and FACT by replacing their CNNs with PointNet
to accommodate point cloud data, exploring the applicabil-
ity of established 2D techniques in 3D contexts(Belouadah
& Popescu, 2019; 2020; Castro et al., 2018; Li & Hoiem,
2017; Zhou et al., 2022; Cheraghian et al., 2021). Finally,
we examine specialized strategies specifically designed for
3D FSCIL tasks, addressing unique challenges associated
with point cloud data (Chowdhury et al., 2022; Tan & Xiang,
2024; Cheraghian et al., 2025; Ahmadi et al., 2024).

Experimental results and analysis. In Tab. 1 and Tab. 2,
we present the experimental comparison results for within-
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Figure 3. Experimental results of harmonic accuracy on ModelNet
→ ScanObjectNN (Left) and ShapeNet → ScanObjectNN (Right).

dataset and cross-dataset scenarios. 1 These results indicate
that while many existing incremental learning methods per-
form admirably with 2D images, they tend to exhibit subopti-
mal performance when applied to 3D point cloud data. This
shortfall primarily stems from their inability to effectively
address catastrophic forgetting and the distributional shifts
between different data sources. In contrast, methods specifi-
cally designed for few-shot incremental learning on point
clouds, such as Microshape, demonstrate superior perfor-
mance. By leveraging the powerful pre-training knowledge
of the base model, C3PR and FoundationModel have also
shown enhanced capabilities in mitigating forgetting and
learning new categories. Our proposed method, 3D-FLEG,
advances this further by seamlessly integrating geometric
features of point clouds with text prompts, thereby augment-
ing the capabilities of 3D foundation models. In experi-
ments conducted within a single dataset, 3D-FLEG not only
demonstrates a significantly smaller drop in accuracy but
also achieves an approximate 4% increase in accuracy over
existing state-of-the-art methods at each incremental stage.
In the more challenging cross-dataset experiments, our ap-
proach also significantly outperforms the existing optimal
solutions and achieves the best performance.

It is worth noting that since the absolute values of the aver-
age accuracy recorded in the tables may be affected by the
training effect of the base model, it cannot comprehensively
measure the specific performance of the model during the
incremental stage. To more accurately reflect the forgetting
situation of the model during the incremental learning stage,
we further calculated the accuracy drop of each incremental
stage compared to the base model. For detailed information,
please refer to Tab. 5 and Tab. 6 in the Appendix A.

In addition, to further highlight the accuracy of our method
in classifying new categories, we adopted the harmonic

1The experimental results for the comparison methods pre-
sented in the table are derived from the studies in (Ahmadi et al.,
2024) and (Cheraghian et al., 2025), with all experiments con-
ducted under consistent settings. Note that the FoundationModel
was excluded from Tab. 1 because its original publication did not
report results within the dataset, and notable performance discrep-
ancies were encountered during our reproduction attempts.

Table 3. Effectiveness of the dynamic geometric feature projection
clusters and attention weight in 3D-FLEG.

Average Accuracy (%) Harmonic Accuracy (%)

DGPC Attention Weight 0 1 2 3 1 2 3

✕ ✕ 93.8 89.5 83.8 84.1 85.1 75.4 76.2
✓ ✕ 93.8 91.6 86.7 84.9 86.4 76.5 75.4
✓ ✓ 93.8 91.9 87.5 86.8 87.0 77.4 77.5

mean metric evaluation index and conducted experiments
on two cross-datasets. As shown in Fig. 3, 3D-FLEG out-
performs current state-of-the-art methods in all scenarios,
which fully demonstrates that it can not only better reduce
the forgetting of old knowledge but also efficiently learn the
feature representations of new classes using limited samples.

4.4. Ablation Study

To evaluate the effectiveness of our proposed method and
its individual modules, we conducted a series of ablation
studies on the cross-dataset task from ModelNet to ScanOb-
jectNN. During the evaluation, we utilized average accuracy
and harmonic accuracy as our metrics.

Evaluating component effectiveness in 3D-FLEG. To rig-
orously evaluate the effectiveness of each component in 3D-
FLEG, we conducted a series of detailed experiments from
three perspectives: assessing the efficacy of the geomet-
ric feature extraction module based on dynamic projection
clusters, validating the approach for constructing dynamic
projection clusters, and evaluating the performance of the
geometric feature embedding module.

As illustrated in Tab. 3, incorporating the dynamic geomet-
ric feature projection clusters significantly enhances the
model’s ability to integrate point cloud and textual features,
markedly outperforming direct fusion of raw features, which
is shown as the first row in the table. By introducing an atten-
tion mechanism that assigns differential attention weights
to each basis vector within the projection cluster, 3D-FLEG
further refines feature representation. Learnable weights
prioritize cluster centers relevant to incremental tasks, en-
suring that the most pertinent geometric features are empha-
sized, improving robustness and adaptability. This approach
enhances stability in the presence of noise, outliers, and
viewpoint changes. Furthermore, we substantiated the effec-
tiveness of the implementation approach for the geometric
feature extraction module, and the results are illustrated in
Fig. 4. In 3D-FLEG, we employed spectral clustering and
Laplacian eigenmaps to process point cloud features. Exper-
iments demonstrated that the dynamic projection clusters
constructed by combining these two methods exhibit supe-
rior performance in 3D few-shot class incremental learning.
To verify the effectiveness and efficiency of the proposed
geometric feature embedding module, we conducted abla-
tion studies by replacing it with long short-term memory
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Figure 4. Evaluating spectral clustering and Laplacian eigenmaps
for geometric feature extraction module.

Figure 5. Validation of the geometric feature embedding module.

Table 4. Impact of Basis Vector Count in Dynamic Projection Clus-
ters on Experimental Results.

Average Accuracy (%) Harmonic Accuracy (%)

Basis Vectors Count 0 1 2 3 1 2 3

256 93.4 91.5 86.4 85.0 86.8 76.2 76.8
512 93.2 91.5 86.3 85.9 87.0 76.2 77.1

1024 93.8 91.9 87.5 86.8 87.0 77.4 77.5
2048 93.6 91.6 87.5 86.7 87.3 77.7 77.7
4096 93.8 91.9 87.8 86.4 87.0 77.7 78.3

networks (LSTM) or full connect neural network (FCNN).
As shown in Fig. 5, our approach achieved better geometric
feature embedding results. By introducing local and global
pooling along with Transformer-based modules, our method
optimizes feature relevance and reduces redundancy, min-
imizing unnecessary noise interference. This enables the
model to learn more meaningful representations.

Hyperparameter sensitivity. In our method, the number
of basis vectors contained in the dynamic projection clus-
ter and the update rate of the dynamic projection cluster in
the incremental phase are two key parameters. We further
explored the impact of different parameters on the experi-
mental results through experiments.

In Tab. 4, we investigate the impact of the number of basis
vectors in dynamic projection clusters on the experimen-
tal results. The experimental results show that when the
number increases to 1024, the performance of the model
in the basic stage and the incremental stage tends to be sta-
ble. This phenomenon can be attributed to the fact that the
base model we use has a feature space of 1024 dimensions.
When the number of basis vectors does not align with this
feature dimension, additional modules must be introduced
to compress or expand the original features to match the
required dimensionality. However, this process not only
increases model complexity but can also lead to the loss of
critical information within the point cloud features or the
introduction of redundant information. Therefore, in our
experimental setup, to maintain consistency and integrity in
feature representation, the number of basis vectors is fixed

at 1024. In addition, we further conducted experiments to in-
vestigate the impact of dynamically adjusting the update rate
of projection clusters during the incremental learning phase
on model performance. Detailed analyses are provided in
the Appendix B.

5. Conclusion
This paper proposes 3D-FLEG, a novel solution to the chal-
lenging and practical problem of few-shot class incremental
learning on 3D point clouds. Previous studies leverage
well-designed prompts and complex strategies to extract
the pre-training knowledge, neglecting the inherent geo-
metric features embedded in the point clouds. To address
these issues, 3D-FLEG introduces the geometric feature
extraction module and the geometric feature embedding
module. These two modules work synergistically to build
a text semantic enhancement strategy based on point cloud
geometric features, enabling 3D-FLEG to reduce reliance
on text prompts and enhance the model’s capacity to learn
robust feature representations while mitigating the forget-
ting problem. Experiments on four widely used 3D datasets
demonstrate that 3D-FLEG outperforms existing methods,
validating its effectiveness and robustness. Despite the ex-
cellent performance of 3D-FLEG in 3D FSCIL, further
advanced geometric feature extraction and embedding meth-
ods are worth exploring. Extending 3D-FLEG to broader
3D vision applications, i.e., 3D object detection and scene
segmentation, is also attractive to the community.
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Impact Statement
3D-FLEG provides a powerful new approach for 3D few-
shot class incremental learning, not only advancing relevant
technologies in the field of machine learning but also signif-
icantly boosting applications that rely on 3D data analysis,
such as medical imaging, autonomous driving technologies,
and virtual reality. In the long term, 3D-FLEG is expected
to foster continuous innovation in these fields, enhancing
the quality and efficiency of products and services based on
3D data.
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Figure 6. Impact of dynamic projection cluster update rate during incremental learning phase on model performance.

Table 5. Relative accuracy drop rate within a single dataset

Method ModelNet CO3D ShapeNet

20 25 30 35 40 Mean 25 30 35 40 45 50 Mean 25 30 35 40 45 50 55 Mean

FT - 89.2 95.2 96.3 96.7 94.4 - 85.4 95.3 95.8 97.7 99.0 94.6 - 70.5 92.2 98.5 99.0 99.3 99.5 93.2
Joint - 1.8 3.1 7.0 10.4 5.6 - 9.5 15.5 18.3 20.9 22.0 17.2 - 2.1 3.1 4.6 5.2 5.5 6.6 4.5

LwF - 59.9 89.9 96.0 96.5 85.6 - 80.8 93.9 95.4 97.0 98.7 93.2 - 30.1 61.5 81.7 95.6 96.4 97.9 77.2
IL2M - 27.1 35.0 41.8 40.3 36.0 - 58.9 63.9 76.4 64.7 71.4 67.1 - 32.6 47.5 53.2 42.4 43.2 43.3 43.7
ScaIL - 25.6 28.2 34.6 37.1 31.4 - 48.5 55.5 68.6 60.8 64.1 59.5 - 34.9 40.5 49.1 42.2 46.8 47.8 43.6
EEIL - 16.0 25.2 33.1 38.1 28.1 - 19.9 31.7 44.2 48.5 57.2 40.3 - 10.7 15.9 20.3 23.7 24.3 24.4 19.9
FACT - 10.1 14.7 18.7 28.1 17.9 - 13.9 23.4 29.7 35.6 40.1 28.5 - 13.9 18.4 20.1 22.9 24.9 28.6 21.5
Sem-aware - 10.0 18.6 23.3 29.1 20.2 - 14.9 24.7 31.8 37.5 45.4 30.9 - 14.1 21.9 20.9 21.9 23.3 26.8 21.5
Microshape - 11.2 16.5 19.0 28.3 18.8 - 14.3 23.4 28.5 34.5 39.9 28.1 - 5.0 7.0 9.8 12.3 16.1 17.1 11.2
C3PR - 10.2 17.2 21.2 22.6 17.8 - 14.8 18.4 22.7 33.5 34.0 24.7 - 7.3 11.6 12.8 12.6 13.4 15.1 12.1
3D-FLEG(ours) - 2.8 4.9 7.0 11.2 6.5 - 8.2 15.1 18.8 29.7 30.2 20.4 - 3.1 4.9 5.4 6.3 8.6 12.0 6.7

Table 6. Relative accuracy drop rate across datasets.

Method ShapeNet → CO3D ModelNet → ScanObjectNN ShapeNet → ScanObjectNN

39 44 49 54 59 64 69 74 79 84 89 Mean 26 30 34 37 Mean 44 49 54 59 Mean

FT - 75.1 97.2 97.9 99.0 98.8 98.8 98.4 98.9 99.4 98.0 96.2 - 92.8 93.2 97.9 94.6 - 52.5 95.1 98.9 82.2
Joint - 1.9 3.3 7.2 7.3 7.7 10.7 12.0 13.6 15.1 16.9 9.6 - 9.8 16.3 19.5 15.2 - -1.4 2.0 3.3 1.3

LwF - 29.1 76.2 97.2 98.8 98.9 99.0 98.4 98.6 99.0 97.7 89.3 - 59.5 93.4 97.2 83.4 - 41.2 82.8 92.8 72.3
IL2M - 43.7 54.6 56.7 60.7 58.9 58.0 61.1 62.2 60.1 63.0 57.9 - 34.2 40.2 41.2 38.5 - 34.6 46.1 43.7 41.5
ScaIL - 38.1 43.6 51.7 51.9 53.2 53.1 55.6 58.4 59.3 56.5 52.1 - 36.1 36.8 40.2 37.7 - 39.8 42.6 50.9 44.4
EEIL - 7.2 14.4 22.0 25.3 28.5 34.6 35.9 36.7 41.0 41.2 28.7 - 20.6 31.0 35.7 29.1 - 8.5 14.3 22.1 15.0
FACT - 6.6 13.6 16.3 19.2 22.0 22.6 26.2 28.5 29.4 31.3 21.6 - 18.6 23.3 28.7 23.5 - 9.4 15.1 18.8 14.4
Sem-aware - 13.8 17.5 22.0 21.6 21.8 24.1 27.7 27.9 29.0 31.5 23.7 - 16.5 23.5 27.5 22.5 - 13.2 19.8 22.6 18.5
Microshape - 5.7 10.5 12.0 18.0 19.9 20.8 23.2 26.6 29.7 30.9 19.7 - 18.0 23.4 27.1 22.8 - 9.3 13.7 18.7 13.9
C3PR - 4.3 6.9 9.8 12.9 13.5 15.9 18.8 22.4 23.3 24.4 15.2 - 14.3 20.0 23.2 19.2 - 7.9 10.7 14.9 11.2
FoundationModel - 1.3 3.3 5.8 7.6 8.8 10.4 12.0 12.8 14.7 16.8 9.4 - 3.4 7.1 9.7 6.7 - 4.7 4.8 5.7 5.1
3D-FLEG(ours) - 1.3 2.9 5.3 7.4 9.2 10.3 11.6 13.0 15.2 16.2 9.2 - 2.0 6.7 7.5 5.4 - 2.0 4.2 5.1 3.8

A. Appendix for Experimental Results and Analysis.
To more accurately reflect the model’s forgetting behavior during incremental learning, we further calculated the accuracy
drop relative to the base classes at each incremental stage. The experimental results are presented in Tab. 5 and Tab. 6.
These tables demonstrate that 3D-FLEG consistently exhibits competitive performance across every incremental stage. By
embedding geometric information, our method effectively mitigates the forgetting of previously learned knowledge while
efficiently learning new class representations with only a minimal number of new samples. This approach offers a novel
solution for few-shot class-incremental learning on point clouds.
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B. Appendix for Hyperparameter Sensitivity
In our method, the update rate of the dynamic projection cluster in the incremental phase and the number of basis vectors
contained in the dynamic projection cluster are two key parameters. In this session, we conducted experiments to investigate
the impact of dynamically adjusting the update rate of projection clusters during the incremental learning phase on model
performance. As illustrated in Fig. 6, setting an appropriate update rate during the incremental phase can further enhance
model performance. In particular, when there are discrepancies between the data distributions of base classes and new
classes, static base vectors, lacking an updating mechanism, gradually lose their representativeness and struggle to adapt
to data changes, thereby affecting long-term performance stability. However, our experiments also revealed that choosing
an appropriate update rate is critical. An excessively high update rate can lead to overfitting to the latest data, which may
compromise overall model performance.
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