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ABSTRACT

Understanding scene semantics plays an important role in solving the object navi-
gation task, where an embodied intelligent agent has to find an object in the scene
given its semantic category. This task can be divided into two stages: exploring
the scene and reaching the found target. In this work, we consider the latter stage
of reaching a given semantic goal. This stage is particularly sensitive to errors
in the semantic understanding of the scene. To address this challenge, we pro-
pose a multimodal and multitasking method called SegDT, which is based on the
joint training of a segmentation model and a decision transformer model. Our
method aggregates information from multiple multimodal frames to predict the
next action and the current segmentation mask of the target object. To optimize
our model, we first performed a pre-training phase using a set of collected trajec-
tories. In the second phase, online policy fine-tuning, we addressed the problems
of long-term credit assignment and poor sampling efficiency of transformer mod-
els. Using the PPO algorithm, we simultaneously trained an RNN-based policy
using ground-truth segmentation and transferred its knowledge to the proposed
transformer-based model, which trains the segmentation in itself through an ad-
ditional segmentation loss. We conducted extensive experiments in the Habitat
Sim environment and demonstrated the advantage of the proposed method over
the basic navigation approach as well as current state-of-the-art methods that do
not consider the auxiliary task of improving the quality of the segmentation of the
current frame during training.

1 INTRODUCTION

Navigating an intelligent agent (e.g. a robot) to a target object in an unknown environment is still a
challenge for existing methods. This is confirmed by the results of modern benchmarks, for example
in the simulators Habitat (Savva et al., 2019), AI2Thor (Kolve et al., 2017), and others. There are
several reasons for this. First, the best existing neural network models that can operate in real time
still do not segment objects reliably enough, especially when they are far away or partially visible
(Miao et al., 2024; Kim et al., 2024). Second, the prediction of agent actions from visual data is also
performed with a large number of errors and has significant improvement potential for both modular
approaches (Chaplot et al., 2020) and end-to-end neural network models (Chen et al., 2023).

A separate problem is the related task of image sequence segmentation for intelligent agents. There
are several approaches based on direct fusion of image sequence features (Shang & Ryoo, 2023;
Su et al., 2023), auto-regressive prediction of segmentation masks based on previous masks and
images (Šarić et al., 2021; Graber et al., 2022), consideration of three-dimensional constraints when
segmenting objects of the sequence (Zhang et al., 2023b; WAN & FANG, 2023; Scarpellini et al.,
2023), including those based on Gaussian blending (Zhu et al., 2024; Lei et al., 2024). However,
in terms of the quality achieved, they still have significant limitations for use in the task of indoor
navigation of an intelligent agent.

The navigation task is a partially observable reinforcement learning (RL) problem where history is
fed into a sequence model (Sutton & Barto, 2018). While transformers are powerful tools in CV
and NLP tasks (Brown et al., 2020; Zhang et al., 2024) and have long-term memory capability with
effective representation learning from context for specific tasks (Lu et al., 2024), they generally have
poor sampling efficiency and do not improve long-term credit assignment compared to recurrent
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Figure 1: The Semantic Object Navigation task requires the agent to reach the target object, seen
from the start position, within a distance of 1.0m. Red dots on the map indicate areas where goal-
type objects are located, and the resulting agent’s path is indicated with the blue line.

neural networks (RNNs) (Ni et al., 2023). To overcome these limitations, we propose a method that
simultaneously trains RNN-based and transformer-based versions of the policy. The advantage of
this approach is that the RNN-based policy can effectively solve the navigation task by accessing the
ground truth segmentation from the simulator, while the Transformer-based policy can predict the
segmentation from the RGB sequence of frames and predict the sequence of actions by transferring
knowledge from the RNN-based policy.

In this work, we propose to combine the action prediction of an intelligent agent and the task of
RGB-D image sequence segmentation in a single transformer model. We will further show that
such a solution allows us to improve the quality of image segmentation and action generation to
solve the navigation problem for an object specified by a semantic label. Such semantic object
navigation (see Fig. 1) can be useful in robotics applications where an embodied agent navigates in
a non-deterministic environment (Batra et al., 2020a).

The main contributions of the article include the following:

• We developed a multimodal and multitask method called SegDT, which is based on training
a single segmentation decision transformer model. The model aggregates information from
multiple multimodal frames to predict the next action and the segmentation mask of the
target object. Each frame consists of the current image, depth, target category, segmentation
mask, and action.

• We proposed a two-phase training procedure for our module based on reinforcement learn-
ing. First, we performed a pre-training phase using a set of collected trajectories. In the
second phase, online policy fine-tuning, we addressed the problems of long-term credit
assignment and poor sampling efficiency of the transformer models. Using the PPO algo-
rithm, we simultaneously trained an RNN-based policy using ground-truth segmentation
and transferred its knowledge to the proposed transformer-based model, which trains the
segmentation in itself through an additional segmentation loss.

• We conducted extensive experiments in the Habitat Sim environment and demonstrated the
advantage of the proposed method over the basic navigation approach, as well as current
state-of-the-art methods that do not consider the auxiliary task of improving the quality of
the segmentation of the current frame during training.

2 RELATED WORK

Recent methods for object goal navigation use scene semantic information for action prediction to
reduce overfitting and increase the navigation quality for unseen environments. The scene semantic
can be available in the form of a 2D semantic segmentation mask. For instance, authors of the THDA
method (Maksymets et al., 2021) introduce a policy network that uses depth and multichannel
semantic masks as input. SkillFusion approach (Staroverov et al., 2023) proposes a goal-reaching
policy that leverages an RGB observation and a binary segmentation mask of object goal. During
inference time the success rate of such navigation approaches heavily relies on the quality of input
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segmentation masks (Staroverov et al., 2023). Despite the active development of neural network
architectures, the state-of-the-art methods for semantic segmentation (e.g. Mask2Former (Cheng
et al., 2022), OneFormer (Jain et al., 2023), OpenSeeD (Zhang et al., 2023a), MQ-Former (Wang
et al., 2024)) still show imperfect segmentation quality, especially for indoor environments, where
objects can vary a lot within one semantic category.

In addition, the state-of-the-art methods for semantic segmentation do not take into account the pe-
culiarities of an embodied agent interacting with its environment during navigation. The agent has a
limited field of view, therefore instant observations may contain erroneous semantics when looking
at the object from certain view angles. During the navigation episode, the agent can update its se-
mantic understanding of the scene by observing the scene from more advantageous viewpoints. Such
refinement can occur explicitly by using the accumulated semantic map of the environment (Tao
et al., 2024; Morilla-Cabello et al., 2023). The explicit semantic maps of the environment can be
used as input to predict action policy (Ramakrishnan et al., 2022; Zhang et al., 2023b; Yu et al.,
2023). Other methods, such as (Chen et al., 2023), use implicit maps to model the history of obser-
vations. A major drawback of these methods is that as the navigable space expands, the size of the
dense voxelized map can become infinitely large.

In contrast, we use a method that aggregates sequence information from previous semantic observa-
tions to refine semantic segmentation on the current frame and predict the next action. In this sense,
our method is related to methods that solve the task of video segmentation (Zhang et al., 2023c; Shin
et al., 2024). However, unlike such methods, our approach allows the agent to control its observa-
tions to navigate to the goal and improve the segmentation quality. At the same time, our method
differs from existing embodied computer vision methods (Fan et al., 2023; Ding et al., 2023; Yang
et al., 2019; Kotar & Mottaghi, 2022). These methods aim to improve the quality of visual per-
ception, while our method increases both the quality of navigation and the quality of segmentation.
The methods for embodied computer vision often operate in the next-best-view paradigm or use a
small sequence of frames to predict the next action. However, the agent needs a longer history of
observations to successfully solve the object goal navigation task. Unlike (Shang & Ryoo, 2023),
we consider a complex photo-realistic 3D environment of the HM3DSem v0.2 (Yadav et al., 2023b)
scenes.

A special feature of our method is the joint training of a semantic segmentation model and a trans-
former to predict the next actions. Previous works (Maksymets et al., 2021; Hong et al., 2023)
consider semantic loss as an additional task for model training. However, these methods use seman-
tic loss only to improve the action policy, and not to improve the quality of semantic segmentation
by aggregating information from a sequence of frames.

3 TASK SETUP

In the literature (Batra et al., 2020b), the Semantic Object Navigation task is defined as follows.
An agent is randomly initialized within an unfamiliar environment and needs to navigate toward an
instance of a specified object category C ∈ {c1, c2, ..., cn} (e.g., a plant). The solution of this task
usually consists of two stages. First, the agent explores the environment to find an instance of a
given semantic goal. Next, the agent reaches the found object. In this work, we consider the second
stage of reaching the semantic goal. Therefore, we initialized the agent at the random viewpoint of
the semantic goal at a maximum distance of seven meters (Fig. 1).

Our problem can be formulated as a Partially-Observable Markov Decision Process (POMDP), de-
fined as a tuple (S,A, P,R, ρ0, γ) for underlying observation space S, action space A, transition
distribution P , reward function R, initial state distribution ρ0, and discount factor γ.

In our setup, the agent receives an observation S = (SRGBD, C) at each step. We consider a discrete
action space consisting of six types of actions: callstop to terminate the episode, forward by
0.25 m, turnleft or turnright by angle 15◦, lookup, lookdown by turning the agent
head by angle 30◦. This type of discrete action space is common for indoor simulators such as
Habitat Yadav et al. (2023b) or AI2-Thor Kolve et al. (2017).

The agent can take up to 64 steps in the environment. The episode finishes when the agent executes
the callstop action. We assess the agent’s performance via three common metrics for the Object
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Figure 2: GPT architecture for predicting semantics and actions to complete the navigation task.

Navigation task Batra et al. (2020b): Success Rate (SR), Success weighted, i.e. inverse normalized,
by Path Length (SPL), and SoftSPL.

4 METHOD

Our method consists of training a decision transformer model with a multistage mask decoder. Pre-
diction at time t involves two stages. An observation at time t consists of an image It, a depth
map Dt, and a target category name c. First, multi-scale feature maps of It are generated using a
ResNet50 backbone and a pixel decoder. These feature maps, along with trainable query features,
are then fed into the decision transformer. After processing, the trainable query features are decoded
by a multi-stage mask decoder to generate segmentation masks for a fixed set of categories. From
the set of masks, a binary mask for the target category is selected and its embedding is extracted.
This embedding, combined with the depth map and the category name embedding, completes the
observation sequence embeddings. In the second step, the full sequence of observation embeddings
is fed into the decision transformer to predict the probability distribution and state value of the next
action. We then sample action at and add its embedding to the observation sequence to predict
actions at time t+ 1. Figure 2 illustrates the model architecture.

4.1 SEGMENTATION MODULES

When choosing the architecture of the Segmenting Decision Transformer (SegDT) modules respon-
sible for segmentation, we take Mask2Former (Cheng et al., 2022) as a basis. Mask2Former is one
of the state methods for semantic segmentation. This method considers the segmentation problem
as a problem of predicting a set of binary masks and their classification. The segmentation model is
given an image of size (H,W,C) as input.

The main components of Mask2Former are a backbone, a pixel decoder, and a multistage decoder.
We use ResNet50 as the backbone. The output of the backbone is fed to the pixel decoder to generate
4 maps of high resolution per-pixel embeddings. The per-pixel embeddings have 1/4, 1/8, 1/16,
and 1/32 of the resolution of the input image. We use a 1/32 per-pixel embedding map as the image
embedding for the Transformer model input.

In the original single-frame Mask2Former model, binary segmentation masks and their classification
logits are decoded from N learnable query features using multiscale feature maps. In our work, we
use N learnable query features as input to the Transformer model to take into account the context
of previous observations. After passing through the transformer, the updated query features are
passed through the multistage decoder. Here, similar to the Mask2Former model, we use multi-
scale feature maps to predict binary segmentation masks and their logits. From these binary masks,
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a multi-channel semantic segmentation mask is formed for Ncl = 40. We then select the target
semantic mask and use the ResNet50 encoder to create a semantic feature of size (1, dsem). This
feature describes the semantics of the current observation, similar to TDHA (Maksymets et al.,
2021).

4.1.1 OBSERVATIONS EMBEDDINGS

For each time point, we describe the current observation using 29 embeddings obtained from differ-
ent encoders and projected into the GPT hidden dimension dGPT = 768. For each of the T-frames,
we flatten the image pixel embeddings from Mask2Former into a sequence and project the image em-
beddings into dGPT using a linear layer. Thus, the image embedding for an image has a dimension
of (H ·W/32, dGPT ). The learnable queries are represented by a set of 50 embeddings with dimen-
sion (1, dGPT ). We encode the semantics of each image using ResNet50 features obtained from the
binary segmentation mask of the target object into a feature vector of dimension (1, dsem). Thus,
after projection, the embedding of semantic predictions for 1 image has a dimension of (1, dGPT ).
We encode depth for each of the observations using ResNet18, resulting in a feature vector of di-
mension (1, ddepth). Using a linear layer, we project the depth features into the dGPT feature space.
Thus, the feature embedding of the depth 1 observation has dimension (1, dGPT ). To encode the
target category and the preformed action, we use a look-up table of learnable embeddings of dimen-
sions (Ncl, dGPT ) and (Nactions, dGPT ), respectively. We populate the GPT input sequence with T
observation embeddings. Thus, the dimension of the input sequence of observation embeddings is
(T · (H ·W/32 + 4), dGPT ).

4.1.2 PREDICTIONS

Since the goal of the semantic object navigation task is to reach an object of a certain target category,
we expect that using the observation history can improve the segmentation quality for this target cat-
egory. To decode semantic predictions, we use an idea from the original Mask2Former segmentation
model (Cheng et al., 2022). We take the output learnable query features from the SegDT and pass
them through the multistage decoder. To obtain the binary segmentation masks and their logits at
time t, we additionally use the multi-scale feature maps predicted by the pixel decoder at time t. We
use MLPs to decode the action distribution for the actor head and to estimate the state value for the
critic head.

To predict the action at step t, we use the set of observations {o0, ..., ot} and the previous actions
{a0, ..., at−1}. First, the sequence {o0, a0, ..., ot−1, at−1, ot} is passed to the SegDT input to predict
the segmentation masks {Mpred

i }ti=0. The mask corresponding to the target object category is used
as the semantic observation for the time t. Next, SegDT makes another prediction of the action at,
taking into account the segmentation mask, the depth, and the target category at time t. In this case,
the last token of the output sequence of the transformer is used as input of the action decoder, i.e.
the last token of the observation ot.

4.2 LEARNING PROCESS

4.2.1 JOINT LEARNING ON OFFLINE DATA

As a central aspect of our experiment, we initialize the ResNet50 backbone, the pixel decoder, and
the multi-stage decoder responsible for segmentation prediction with parameters of a pre-trained
segmentation model. The primary goal during the initial phase of training is to establish an effective
representation of the observations intended for navigation. To achieve this goal, we rely on an offline
demonstration dataset composed of semantic goal-reaching instances between the start coordinates
and the most proximal target. We collect the action probability distribution of a pre-trained RL
agent with RNN and ground truth segmentation as input. During these initial stages, both SegDT
(our multi-stage mask decoder) and our action decoder are trained simultaneously. To optimize mask
prediction, we use the sum of the pixel-by-pixel binary cross-entropy Lbce, the dice loss Ldice, and
the cross-entropy loss Lce for mask classification as our loss function. Behavior cloning (Lbce) is
used to predict the action sequence. Additionally, we pretrain the Critic Value Decoder during this
training phase. We use the pre-collected critic values obtained by the RL agent and apply an MSE
loss LMSE between them and the values predicted by SegDT, as articulated in equations 1 and 2.
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Ltotal = λsegmLsegm({M̂ t,M t, ĉt, ct}Tt=0)+λact
bceLbce({ât, at}Tt=0)+λMSELMSE({v̂t, vt}Tt=0).

(1)

Lsegm = λsegm
bce Lbce({M̂ t,M t}Tt=0) + λdiceLdice({M̂ t,M t}Tt=0) + λceLce({ĉt, ct}Tt=0). (2)

Here, M̂ t denotes the set of predicted masks at time t, M t are ground truth binary masks for object
categories ct, whereas ĉt are predicted object categories. ât, at, v̂t, vt}Tt=0 denote predicted action
probability distribution, ground truth action probability distribution, predicted state value and ground
truth state value respectively. λsegm = 1, λact

bce = 1, λMSE = 0.1, λsegm
bce = 5, λdice = 5, λce = 2.

4.2.2 ONLINE FINETUNING

Limitations of Behavior Cloning arise primarily in two areas - an observable shift in distributions
when confronted with different states at training and test times, and a lack of flexibility to adapt
to evolving environments. In addition, when imitating suboptimal demonstrations, the results of
Behavior Cloning subsequently reflect these imperfections. To overcome these limitations, in the
second phase of policy training, we employed an online reinforcement learning approach that can
incrementally adapt to changes in the environment.

However, online reinforcement learning (RL) requires a significant number of samples to achieve
robust performance, which can be a significant limitation. In addition, the use of the transformer
model introduces significant computational cost, especially for long sequences, as causal transform-
ers require O(t2) time to compute the representation at time step t.

To address this issue, we sampled trajectories using an RNN-based policy that can be efficiently
trained online with ground truth segmentation as input. Following the work of SkillFusion
(Staroverov et al., 2023), we implemented the RNN-based GoalReacher skill. The limitation of
this model is that it requires an external segmentation module during inference, which may output
noisy segmentation masks that differ from those seen during training.

We then fine-tune the proposed SegDT policy with trajectories provided by the RNN-based policy.
To generate actions, our model includes two segmentation-independent modules: actor and critic
heads, similar to the RNN-based policy. To fine-tune these on SegDT, we transferred knowledge
from the RNN-based policy using cross-entropy loss. In addition, we applied segmentation loss to
SegDT and used PPO loss for both models (Fig. 3).

We demonstrate that integrating these insights into our pipeline significantly improves the perfor-
mance of our navigation stack, achieving performance comparable to the advanced RNN-based pol-
icy with ground truth segmentation as input, without the need for an external segmentation module.

5 EXPERIMENTS

The main goal of our experiments is to navigate an autonomous agent toward its target object by
minimizing cumulative distance and maximizing the understanding of the environment. To achieve
this, we have followed a twofold training phase strategy: with the first phase focusing on obtaining
high-quality semantic segmentation masks, and the second phase shifting towards action prediction
with the use of an online Reinforcement Learning method for an adaptable learning experience.

5.1 EXPERIMENTAL SETUP

Datasets. The experiments were carried out in the Habitat environment (Savva et al., 2019). For the
experiments, we select 146 training and 36 validation scenes of the HM3DSem v0.2 dataset (Yadav
et al., 2023b). These scenes were divided into a training set of 173 scenes and a validation set of 9
scenes. Next, we sample episodes in each scene. The episode is characterized by the agent starting
position, the coordinates, and the semantic type of the target object. We randomly sample starting
points for episodes satisfying two conditions of the Goal Reaching task: the target object is in the
agent’s field of view and the agent is no more than 10 meters away from the goal.

6
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Figure 3: Diagram illustrating the fine-tuning of SegDT with trajectories from the RNN-based pol-
icy. Knowledge transfer from the RNN-based policy was achieved using cross-entropy loss. Addi-
tionally, segmentation loss was applied to SegDT, and PPO loss was utilized for both models.

For offline training of SegDT, we collect a dataset consisting of 16080 episodes in our 173 training
scenes. The ground truth trajectories for behavioral cloning were obtained from the state-of-the-art
RL algorithm for object goal navigation (Staroverov et al., 2023) using ground truth segmentation
as input. The dataset for offline training contains 40 categories of the Matterport3D dataset (Chang
et al., 2017) as goals for navigation, with the exception of 12 object categories: curtain, ceiling,
column, door, floor, misc, objects, stairs, unlabeled, wall, window, and picture.

Offline training. We pre-train the Mask2Former segmentation model on a dataset consisting of
125K images collected in HM3DSem v0.2 training scenes with the same training parameters as in
the original Mask2Former paper (Cheng et al., 2022). We render an image of size 160 × 120 in
the Habitat environment and pad it to a square image resolution of 160 × 160, leaving the rest of
the rendering parameters the same as in the Habitat Challenge 2023 (Yadav et al., 2023a). During
offline training, we freeze the segmentation model. To train the remaining modules of SegDT, we
use the AdamW (Loshchilov & Hutter, 2017) optimizer with a learning rate of 3× 10−4, β1 = 0.9,
β2 = 0.98, λ = 0.01 and linear decay of learning rate. We use batch size equal to 8 and a maximum
of 64 frames from GT trajectories during training. The parameters of pretrained Mask2former are
used to initialized parameters of segmentation modules of SegDT.

Online fine-tuning. As an RL algorithm, we use PPO with Generalized Advantage Estimation
(Schulman et al., 2018). We set the discount factor γ to 0.99 and the GAE parameter τ to 0.95.
Each worker collects (up to) 64 frames of experience from 18 agents running in parallel (all in
different scenes) and then performs 5 epochs of PPO. We use Adam (Kingma & Ba, 2017) with a
learning rate of 1 × 10−5. The agent receives terminal reward rT = 2.5 SPL, and shaped reward
rt(at, st) = −∆geo dist − 0.01, where ∆geo dist is the change in geodesic distance to the goal by
performing action at in state st.

Online validation. To validate the agent strategy in the environment, we select a sample of 112
episodes on 9 validation scenes with 6 categories of objects from the Habitat Challenge (Yadav
et al., 2023a) (bed (20 episodes from 112), toilet (20 episodes from 112), plant (20 episodes from
112), tv (20 episodes from 112), chair (20 episodes from 112), sofa (20 episodes from 112)). The
agent can take up to 64 steps.

5.2 ONLINE SEGMENTATION QUALITY

Baseline segmentation. SegDT aggregates information from several previous frames to improve
the segmentation quality for the current frame. Therefore, we compare the performance of the
SegDT approach with the Single Frame Mask2Former (Cheng et al., 2022) baseline that makes
predictions for the same frame sequence as SegDT. The Single Frame Mask2Former segments every
frame in the sequence individually. We expect segmentation improvement for episodes where the
agent frequently observes the target object. Such episodes mainly include episodes that ended with
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Table 1: Comparison of the SegDT with other state-of-the-art methods for Object Goal Navigation
task.

Method SR SPL SoftSPL
DD-PPO (500 steps) (Wijmans et al., 2020) 10.2 2.1 14.6

OnavRIM (Chen et al., 2023) 0.0 0.0 25.6
OnavRIM (500 steps) (Chen et al., 2023) 33.9 9.6 13.4

PIRLNav (Ramrakhya et al., 2023) 25.7 24.3 43.1
PIRLNav (500 steps) (Ramrakhya et al., 2023) 34.8 32.2 49.0

RL with RNN and GT segmentation 49.1 36.4 58.5
SegDT with GT segmentation 47.3 44.7 56.3

RL with RNN and predicted segmentation 31.2 28.2 46.2
SegDT with predicted segmentation 40.2 38.3 51.5

Table 2: Ablation of segmentation and navigation quality. We compute mIoU for two types of
trajectories: Shortest Path Follower (SPF) trajectories and trajectories of successful episodes for
each navigation method.

Navigation
semantics

Frame Se-
quence

mIoU (SPF trajec-
tories)

mIoU (Success
trajectories)

SR SPL SoftSPL

GT Single Frame − − 47.3 44.7 56.3
Mask2Former Single Frame 51.8 59.2 38.0 36.2 49.9
SegDT Navigation 53.7 70.4 40.2 38.3 51.5

success. Therefore, we evaluate the segmentation quality for two types of trajectories: shortest path
trajectories for all 112 validation episodes and successful trajectories for each navigation algorithm.
The shortest path trajectories were obtained from a classical planning algorithm (Kumar et al.,
2018). This planner greedily fits actions to follow the geodesic shortest path between the agent
starting point and the goal position. For each step t, we consider as a baseline segmentation the
Single Frame Mask2Former masks predicted for the input image It.

Segmentation metric. SegDT uses only target object masks to predict actions, so the navigation
quality depends primarily on the quality of segmentation of these categories. For each episode, we
compute the standard mean Intersection over Union (mIoU ) (Jain et al., 2023) metric for four target
categories: sofa, TV, armchair, plant, toilet and bed. We then average the resulting values across all
successful episodes.

5.3 RESULTS

We compare the quality of our approach with state-of-the-art methods for object goal navigation.
The comparison results are shown in Table 1. We use weight models trained to solve the task of
navigation to a goal object. For each method, we use the action and observation spaces used in their
training pipeline and limit trajectory length up to 64 steps if not stated otherwise.

The DD-PPO method(Wijmans et al., 2020) performs poorly with the goal reacher task since it
relies only on the object goal class and does not cope well with semantic understanding of the scene.
But in the task of navigating to a point, it shows results comparable to humans (Wijmans et al.,
2020). OnavRIM (Chen et al., 2023) and PIRLNav (Ramrakhya et al., 2023) are trained on human-
collected trajectories. These trajectories have great length and usually start with an exploration of the
environment. Therefore, OnavRIM and PIRLNav (Ramrakhya et al., 2023) spend most of the time
exploring the room and only then returning to the target, which in most cases exceeds the limit of 64
steps. Additionaly, we present the navigation metrics for these methods with increasing the number
of steps to 500 (the maximum episode length in the Habitat Challenge). As can be seen from Table 1,
despite increasing the episode length, the OnavRIM (Chen et al., 2023) and PIRLNav (Ramrakhya
et al., 2023) methods show lower performance than SegDT. To avoid this effect, we employ a reward
that penalizes the agent for deviating from the target when it is visible. We compare SegDT with the
RNN-based GoalReacher skill (Staroverov et al., 2023) used for sampling trajectories during offline
and online training. First, we use ground truth segmentation as input data. In this case, SegDT
significantly outperforms GoalReacher in path efficiency, as shown by the SPL and SoftSPL metrics
in Table 1. Then, we use predicted segmentation along with RGBD data. Here, the navigation
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Table 3: Ablation of ground truth (GT) trajectories choice for Behavioral Cloning.
GT trajectories source SR SPL SoftSPL
Shortest Path Follower 8.0 6.7 27.3
RNN-based GoalReacher skill (Staroverov et al., 2023) 18.0 16.3 33.9

quality of NN-based GoalReacher skill degrades significantly, while SegDT remains robust to noisy
segmentation data due to segmentation loss during training.

We assess the impact of using previous frames to predict segmentation on segmentation and naviga-
tion quality. After training SegDT on offline and online data, we validate it in the environment using
different segmentation masks to predict actions. We compare three segmentation methods: ground
truth, SegDT, and the baseline Single Frame Mask2Former. Table 2 shows a slight decrease in
navigation quality when switching from ground truth to SegDT-predicted segmentation. The base-
line Mask2Former produces lower-quality masks, leading to a further decrease in navigation quality
when used to predict actions.

Table 3 compares the impact of the selected source of ground truth trajectories on the quality of
pretraining during offline Behavioral Cloning stage. Table 3 demonstrates that trajectories collected
using the RNN-based GoalReacher skill (Staroverov et al., 2023) provide higher training quality on
offline data compared to trajectories obtained from a classical planning algorithm (Kumar et al.,
2018).

5.4 VISUALIZATION

Figure 4 demonstrates the qualitative effect of improving segmentation using SegDT for different
categories of target objects. The main effect is expressed in filling segmentation gaps if the target
object was present in previous frames. The aggregation of information from several frames improves
the quality of instantaneous predicted mask contours.

Image GT Mask2Former SegDT Image GT Mask2Former SegDT

(a)

(b)

(c)

(d)

Figure 4: The segmentation results of SegDT compared to the baseline Mask2Former model.

6 CONCLUSION

Our results show that joint training of a multimodal decision transformer for segmentation and nav-
igation improves the performance of both tasks. Two-phase training of the Segmenting Decision
Transformer (SegDT) using additional training using DD-PPO in the environment can further im-
prove the quality of navigation.

As a limitation of the proposed approach we can mention its computational complexity. The speed
of inference slows down the fine-tuning of the action policy in the environment. Another limitation
is the use of the pre-trained Mask2Former model to initialize the parameters of the segmentation
modules of SegDT.

Another research direction is to create a method for selecting the most valuable frames for calculat-
ing the segmentation loss during training of SegDT.

9
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