
Published as a Tiny Paper at ICLR 2023

GRAPHEX: A USER-CENTRIC MODEL-LEVEL
EXPLAINER FOR GRAPH NEURAL NETWORKS

Sayan Saha
Indian Statistical Institute, Kolkata

Monidipa Das
IIT (ISM), Dhanbad

Sanghamitra Bandyopadhyay
Indian Statistical Institute, Kolkata

ABSTRACT

With the increasing application of Graph Neural Networks (GNNs) in real-world
domains, there is a growing need to understand the decision-making process of
these models. To address this, we propose GraphEx, a model-level explainer that
learns a graph generative model to approximate the distribution of graphs classi-
fied into a target class by the GNN model. Unlike existing methods, GraphEx does
not require another black box deep model to explain the GNN and can generate a
diverse set of explanation graphs with different node and edge features in one shot.
Moreover, GraphEx does not need white box access to the GNN model, making
it more accessible to end-users. Experiments on both synthetic and real datasets
demonstrate that GraphEx can consistently produce explanations aligned with the
class identity and can also identify potential limitations of the GNN model.

1 INTRODUCTION

The deployment of Graph Neural Networks (GNNs) in applications such as drug discovery has ne-
cessitated that they become explainable to the end users. Current research on GNN explainability
can be broadly classified into two categories: instance-level explanations and model-level expla-
nations. Instance-level explanations aim to provide explanations specific to the input data, while
model-level explanations aim to provide a high-level understanding of the model’s decision-making
process, shedding light on its general behavior. Model-level explanations require less human super-
vision, can be generated efficiently, and offer valuable insights into when the model can be trusted.
Despite the significant advantages of model-level explanation methods for GNNs, they have received
less attention in research compared to instance-level explanation methods. We propose a novel gen-
erative model for graphs based on likelihood maximization that can serve as a model-level explainer.
Our model can create graphs of varying sizes, incorporating different node and edge features in a
single step. In comparison to existing literature, our method presents several significant advantages.
Unlike XGNN(Yuan et al., 2020), our approach does not rely on another black box deep learning
model to explain GNNs. Furthermore, unlike GNNInterpreter(Wang & Shen, 2022), our method
does not require white box access to the GNN model being explained, which is crucial for making
the explainability scheme accessible to end-users who typically do not have access to the model.

2 GRAPHEX

The objective of a model-level explainer is to provide insight into the decision-making process of
the model by producing instances that elicit a specific response from the model. This includes gen-
erating typical examples that the model confidently classifies into a target category and examples
that lie on the decision boundary which is crucial for understanding how the model distinguishes be-
tween different classes. Aligned with this goal, GraphEx uses a generative model trained on graphs
classified into a target class by the GNN classifier to construct representative examples belonging to
the target class or the decision boundary. Next, we describe our generative model.

We formulate a graph representation model for representing any graph with atmost N nodes having
k node types and e edge types. Such a graph can be represented using a tuple (X,E) where X ∈
RN×(1+k) is the node feature matrix and E ∈ RN×N×(1+e) is the edge type matrix. The node types
range from 1 to k and the edge types range from 1 to e. For each node i, if X(i, 0) = 1, then the
node i is absent, otherwise if X(i, a) = 1 for a ∈ {1, .., k}, then node i is of type a. Similarly,

1



Published as a Tiny Paper at ICLR 2023

(a) Wheel class (b) Red Cycle class (c) Mutagenic class

Figure 1: Explanations for different target classes

if E(i, j, 0) = 1, then the corresponding edge between the ith and the jth node does not exist.
Otherwise, if E(i, j, a) = 1 where a ∈ {1, ..., e} then the corresponding edge is of type a. We
use the graph representation model to generate explanation graphs by considering each node Xi and
edge Eij as a random variable that follows a Categorical distribution. Formally,{

xi ∼ Categorical(θθθi) θθθi = {θi0, ......, θik}
eij ∼ Categorical(ηηηij) ηηηij = {ηij0, ....., ηije}

(1)

Assume, that we are given a dataset of graphs D in which a graph can belong to a class c, where
c ∈ {1, ...., C}. We are also given a trained graph classifier f(.), which has learnt to predict the
class of a graph from this dataset. Treating a graph as a random variable G, we assume that,

G|f(G) = c ∼
N∏
i=1

Categorical(θi,cθi,cθi,c)

N∏
j,k=1

Categorical(ηjk,cηjk,cηjk,c) (2)

Hence, given a set of graphs Dc which f(.) has labelled as belonging to a target class c we estimate
parameters as shown in Appendix A for this generative model such that it can generate graphs which
belong to a distribution close to the distribution of Dc and which f(.) would label as c.

3 EXPERIMENTAL STUDY

We evaluate our method on both synthetic and real datasets. We train a GNN graph classifier on each
dataset and then employ GraphExto explain the classifier.We created two distinct graph datasets, the
Wheel-Tree and the ColoredCycles. The Wheel-Tree dataset consists of two classes of graphs,
with one class being the Wheel graph and the other class being the Tree graph. A Wheel graph
comprises of a hub node connected to a cycle of n-1 nodes whereas a Tree graph Tree graph,is a
full r-ary tree in this context. The ColoredCycles dataset includes cycle graphs with categorical
edge features. The two classes of graphs in this dataset are defined by their edge color, with one
class having green cycles and the other class having red cycles.We also evaluate GraphEx on the
MUTAG(Debnath et al., 1991) dataset which consists of mutagenic and non-mutagenic classes of
molecules. We describe the dataset generation and the GNN classifiers in Appendix B

GraphEx achieved a comprehensive understanding of the model’s behavior on the Wheel-Tree
dataset. We consistently observe high class confidence for the Wheel class in graphs where all
nodes form a cycle, and for the Tree class in graphs without any cycles. The decision boundary of
the classifier is determined by graphs that contain a mix of nodes belonging to cycles and those that
do not. On ColoredCycles dataset, GraphEx produces class-consistent explanations with high confi-
dence scores for both classes of graphs. Specifically, we obtain red cyclic graphs to explain the class
with red cycles and green cyclic graphs to explain the class with green cycles.GraphEx can detect
distinctive patterns that influence the classifier’s decision in assigning class labels to molecules for
the MUTAG dataset. For the mutagenic class, the presence of N and O atoms, raises the likelihood
of the molecule belonging to the mutagenic class. On the other hand, the high-scoring explanations
for the non-mutagenic class predominantly feature only C atoms indicating a potential bias of the
classifier. On all datasets we find that GraphEx is more computationally efficient, can generate more
diverse explanation graphs and achieves competitive accuracy with other state of the art methods. In
Fig1 we show explanations which have been classified with 100% accuracy to their target class. We
give the quantitative results of our method and comparison with XGNN in Appendix C

2



Published as a Tiny Paper at ICLR 2023

ACKNOWLEDGEMENTS

SB acknowledges the JC Bose Fellowship grant No. JBR/2021/000036/SSC from SERB, GoI.

URM STATEMENT

The authors acknowledge that at least one key author of this work meets the URM criteria of ICLR
2023 Tiny Papers Track.

REFERENCES

Asim Kumar Debnath, Rosa L Lopez de Compadre, Gargi Debnath, Alan J Shusterman, and Cor-
win Hansch. Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro com-
pounds. correlation with molecular orbital energies and hydrophobicity. Journal of medicinal
chemistry, 34(2):786–797, 1991.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.
1263–1272. PMLR, 2017.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

Xiaoqi Wang and Han-Wei Shen. Gnninterpreter: A probabilistic generative model-level explanation
for graph neural networks. arXiv preprint arXiv:2209.07924, 2022.

Hao Yuan, Jiliang Tang, Xia Hu, and Shuiwang Ji. Xgnn: Towards model-level explanations of
graph neural networks. In Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pp. 430–438, 2020.

A LEARNING THE PARAMETERS OF THE GENERATIVE MODEL

We consider each node xi and edge eij in the graph representation model as a random variable that
follows a Categorical distribution. Formally,{

xi ∼ Categorical(θθθi) θθθi = {θi0, ......, θik}
eij ∼ Categorical(ηηηij) ηηηij = {ηij0, ....., ηije}

(3)

We use I to denote the indicator function. Assuming, the above parametric form of the model, the
probability of node xi of belonging to type a can be summarised using the following equation.

P (xi = a) =

k∏
j=0

θ
I(a=j)
ij (4)

Similarly, the probability of an edge eij of belonging to type a can be written as:

P (eij = a) =

e∏
k=0

η
I(a=k)
ijk (5)

Let D denote a collection of graphs with atmost N nodes. A graph G from this collection can be
represented using a tuple (X,E) in accordance with the graph representation model described in the
paper. Let us denote the set of parameters of the graph representation model using (θ, η). x[i]

a denotes
the representation of the ith node in the ath graph of the dataset according to the representation
model. Similarly, e[ij]a denotes the edge between node i and node j of the ath graph of the dataset
in the graph representation. Then, the likelihood function can be written as:

L(D; θ, η) =

|D|∏
a=1

N∏
i=1

k∏
j=0

θ
I(x[i]

a =j)
ij

N∏
i=1

N∏
j=1

e∏
l=0

η
I(e[ij]a =l)
ijl

=

|D|∏
a=1

N∏
i=1

k∏
j=0

θ
I(x[i]

a =j)
ij

|D|∏
a=1

N∏
i=1

N∏
j=1

e∏
l=0

η
I(e[ij]a =l)
ijl (6)

3



Published as a Tiny Paper at ICLR 2023

Since, we typically work with log-likelihood when finding the maximum likelihood estimate, the
log-likelihood function can be written as:

l(D; θ, η) = logL(D; θ, η) =

|D|∑
a=1

N∑
i=1

k∑
j=0

I(x[i]
a = j) log θij

|D|∑
a=1

N∑
i=1

N∑
j=1

e∑
l=0

I(e[ij]a = l) log ηijl

(7)

A.1 MAXIMUM LIKELIHOOD ESTIMATE

We want to find out the parameters(θ,η) of the graph representation model under which the given
dataset is most ”likely”. Formally, we want to find out parameters (θ∗, η∗) such that:

(θ∗, η∗) = argmax
θ,η

(l(D, θ, η)) (8)

A.2 CONSTRAINTS

However, the log-likelihood function above has to be maximized subject to some constraints as
the θ and η parameters belong to a categorical distribution. Since, the parameters of a categorical
distribution should sum upto 1, the constraints are as follows:-{

g(θθθi) =
∑k

j=0 θij − 1 = 0 1 ≤ i ≤ N

h(ηηηij) =
∑e

l=0 ηijl − 1 = 0 1 ≤ i ≤ N, 1 ≤ j ≤ N
(9)

A.3 AUGMENTED TARGET FOR UNCONSTRAINED OPTIMIZATION

We use an augmented target l̂(D; θ, η) to formulate the likelihood maximization as an unconstrained
optimization problem using Lagrange multipliers.

l̂(D; θ, η) = l(D; θ, η) +

N∑
i=1

λig(θθθi) +

N∑
i,j=1

βijh(ηηηij) (10)

We take the derivative and set it to 0 to find out the maxima of each parameter.

∂l̂
∂θij

=
∑|D|

a=1(I(x
[i]
a = j) 1

θij
)− λi = 0

∂l̂
∂ηijl

=
∑|D|

a=1(I(e
[ij]
a = j) 1

ηijl
)− βij = 0

∂l̂
∂λi

= λi −
∑k

j=0 θij

∂l̂
∂βij

= βij −
∑e

l=0 ηijl

(11)

A.4 TRICK TO GET RID OF THE LAGRANGE MULTIPLIERS

We show how to get rid of the Lagrange multipliers to obtain the value of the parameters. We
demonstrate the trick to eliminate a λi to obtain the value of a θij , the exact same trick applies to
eliminating a βij to obtain the value of a ηijl. From equation11 we see,

λi =

∑|D|
a=1(I(x

[i]
a = j))

θij
(12)

We denote by Nij , the numerator of the above equation. Hence,

λi =
Nij

θij
(13)

Notice that, the above equation is valid for all j ∈ {0, 1, ..., k}. Hence,

λi = λi.1 = λi

k∑
j=0

θij =

k∑
j=0

λiθij =

k∑
j=0

Nij

θij
θij =

k∑
j=0

Nij = |D| (14)

4



Published as a Tiny Paper at ICLR 2023

Hence,

|D| = Nij

θij
(15)

θij =
Nij

|D|
(16)

Hence, the final MLE estimates are:
θij =

∑|D|
a=1

I(x[i]
a =j)
|D|

ηijl =
∑|D|

a=1
I(e[ij]a =l)

|D|

(17)

B EXPERIMENTAL DETAILS

B.1 SYNTHETIC DATA

We use the Networkx1 library to generate the Wheel-Tree dataset. Each graph in the dataset can
have between 3 to 10 nodes decided by a random number generator. We generate 100 such graphs
for both classes. We shuffle the dataset and have 150 graphs in the training set and 50 graphs in the
test set. As the classifier, use a 3 layer graph convolutional network(GCN)(Kipf & Welling, 2016)
each with a hidden dimension of 64 with ReLU non-linearity after each layer followed by a linear
layer which outputs the class logits.

For the ColoredCycles dataset we generate the cycle graphs using the Networkx library and add a
categorical edge color attribute. Cycles with edge attribute 0 are red cycles and cycles with edge
attribute 1 are green cycles. We generate 100 cycles each containing a maximum of 10 nodes for
each class. Each graph in the dataset can have between 3 to 10 nodes decided by a random number
generator. The GNN classifier for this task consists of a NNConv(Gilmer et al., 2017) layer of width
64, a global mean pooling layer followed by a linear layer which outputs the class logits. We use the
Adam optimizer with a learning rate varying from 0.01 to 0.0001 in discrete steps with an interval
of 10 epochs for both datasets .

B.2 MUTAG

We use the dataset from the pytorch-geometric repository of graph datasets2. The GNN graph classi-
fier for this task consists of 3 consecutive 64 dimensional GCN layers, a global mean pooling layer,
followed by a linear layer that gives the class logits. We use the Adam Optimizer with a learning
rate of 0.01 to train the classifier.

Table 1: Dataset properties and Classifier accuracy

Dataset NumClasses Node
Features

Edge
Features

GNN Classifier
Type Test Accuracy

Wheel-Tree 2 No None GCN 0.88
ColoredCycles 2 No Red/Green NNConv 1.00
MUTAG 2 Yes No GCN 0.84

C COMPARISON WITH STATE OF THE ART

We compare our method on different fronts with the current state of the art model level explanation
method XGNN. We have several methodological advantages over XGNN such as time efficiency,
one shot generation of graphs, increased diversity of generated explanations generated for a particu-
lar class. Our method can generate graphs with different edge attributes which XGNN cannot. Also,
XGNN uses another black box deep model to explain the GNN classifier which our method does
not.

5



Published as a Tiny Paper at ICLR 2023

(a) Tree class (b) Green Cycle class (c) Nonmutagenic class

Figure 2: Explanations for different target classes

Table 2: Results on Wheel-Tree dataset

Wheel Class Tree Class

Method Accuracy Diversity Training
Time Accuracy Diversity Training

Time
Ours 0.95 ± 0.03 0.723 4s 0.97 ± 0.023 0.863 9s

XGNN 0.32 ± 0.06 0.287 29s 0.91 ± 0.042 0.349 22s

Table 3: Results on MUTAG dataset

Mutagenic Class Non-Mutagenic Class

Method Accuracy Diversity Training
Time Accuracy Diversity Training

Time
Ours 0.75 ± 0.03 0.756 7s 0.94 ± 0.016 0.863 9s

XGNN 0.91 ± 0.06 0.213 34s 0.95 ± 0.043 0.297 31s

Table 4: Results on ColoredCycles dataset

Red Cycle Class Green Cycle Class

Method Accuracy Diversity Training
Time Accuracy Diversity Training

Time
Ours 0.1 ± 0.00 0.526 3s 0.1 ± 0.00 0.568 5s

We compare our method against XGNN on the Wheel-Tree dataset as shown in Table 2 and the
MUTAG as shown in Table 3 dataset on different metrics. Note, that comparison on ColoredCycles
dataset is not possible as XGNN cannot generate graphs with edge features. Fig2 shows explanation
graphs which were classified to their respective target class with 100% accuracy.

Diversity =
Dc

Nc
(18)

We define diversity as the ratio between the number of distinct graphs generated by the explainer
for a target class Dc and the total number of explanation graphs produced for that class Nc. Gen-
erating diverse explanations is crucial since different examples can offer new insights into what the
model has learnt about a target class. Also, if a common pattern appears across distinct examples,
it suggests that the model’s predWeictions for that class heavily rely on that pattern. Our method
outperforms XGNN on all metrics on the Wheel-Tree dataset. In particular, XGNN struggles to
produce class consistent examples for the Wheel class. On the MUTAG dataset, XGNN perfornms
better on the accuracy metric than our method for the mutagenic class. However, focusing solely on
accuracy is misleading as XGNN has very low diversity in the graphs it generates. In other words, it
produces few good explanation graphs repeatedly, hence, it does better on the accuracy metric than
our method.

1https://networkx.org/
2https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html

6



Published as a Tiny Paper at ICLR 2023

D DIFFERENCES BETWEEN GRAPHEX AND GNN INTERPRETER

GraphEx employs a likelihood maximization scheme to generate an explanation graph for the target
class, whereas GNN Interpreter utilizes a numerical optimization scheme for generating explanation
graphs. Unlike GNN Interpreter, GraphEx does not require access to the underlying node embed-
dings when generating graphs for the target class. However, GNN Interpreter has the capability to
generate graphs with continuous node feature values, whereas GraphEx, in its current state, can only
produce graphs with discrete node features.

7


	Introduction
	GraphEx
	Experimental Study
	Learning the Parameters of the Generative Model
	Maximum Likelihood Estimate
	Constraints
	Augmented Target for Unconstrained Optimization
	Trick to get rid of the Lagrange Multipliers

	Experimental Details
	Synthetic Data
	MUTAG

	Comparison with State of the Art
	Differences between GraphEx and GNN Interpreter

