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ABSTRACT

In this paper, we introduce Epi-Attention, a novel context-aware attention mech-
anism designed to enhance the relevance of features in neural networks by incor-
porating external contextual information. Unlike traditional attention mechanisms
that rely solely on the input sequence, Epi-Attention dynamically adjusts the sig-
nificance of features based on additional evidence provided by external contexts.
This approach allows the model to emphasize or diminish the relevance of specific
features, leading to better capture and reflect the internal properties of specific
classes. This mechanism provides a nuanced interpretation of feature relevance
that aligns with domain knowledge, enabling the model to focus on contextually
significant features in a way that resonates with expert understanding. We formal-
ize the problem and present two variants of the proposed mechanism: Scaled Dot-
Product Epi-Attention and Self-Epi-Attention, both of which re-evaluate feature
importance considering either external or internal information, respectively. By
leveraging the dynamic aspect of Epi-Attention, models can highlight local cor-
relations that are characteristic of certain classes, offering a more transparent and
interpretable decision-making process compared to global correlations favorized
by classical approaches such as Decision trees, Logistic regression and Neural
Networks. We demonstrate the efficency of Epi-Attention through three different
applications (dynamic feature relevance, processing mixed datatypes and multi-
source datasets) with respectively benchmark datasets, including the Wisconsin
Breast Cancer, Bank Marketing and ABIDE-II datasets. Our results show signif-
icant improvements in model interpretability over traditional models that aligns
with domain knowledge. Furthermore, we discuss the potential of Epi-Attention
for enhancing explainability in complex machine learning tasks, paving the way
for more robust and transparent neural network architectures.

1 INTRODUCTION

Attention mechanisms Vaswani et al. (2017) have become a core component in deep learning, signif-
icantly enhancing the ability of models to focus on the most relevant aspects of input data Hassanin
et al. (2024); Xiao et al. (2024); Bo et al. (2024). However, conventional attention mechanisms,
including those applied in models like transformers Vaswani et al. (2017), often assign static im-
portance weights across the entire dataset. This global approach can be misaligned with real-world
scenarios involving heterogeneous data, where local correlations, class-specific properties, and ex-
ternal context are critical. As a result, traditional attention methods may fail to capture the nuanced
patterns needed for tasks involving mixed data types, class imbalance, or varying subpopulations.

In Addition, explainability is crucial in deploying machine learning models in domains such as
healthcare and finance, where decision-making must be transparent and aligned with expert knowl-
edge. Traditional models, including logistic regression, MLPs, decision trees, and random forests,
often suffer from several challenges:

1. Static Feature Importance: These models apply static importance weights to features
across all data points, failing to capture class-specific insights.
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2. Missed Local Correlations: Domain experts typically focus on local correlations—feature
relationships within specific classes or subpopulations—that reflect the internal properties
of each class. Traditional models struggle to capture these finer details, missing valuable
insights that could improve interpretability.

3. Bias in Imbalanced Datasets: Importance weights often align with global correlations,
reflecting the properties of the most represented class. This global focus can obscure crit-
ical features in underrepresented classes, leading to biased models and misalignment with
domain expertise.

To address these limitations, we introduce Epi-Attention, a dynamic, context-aware attention mech-
anism that adjusts feature relevance based on both internal data structure and external contextual
information. Epi-Attention allows models to dynamically emphasize or de-emphasize specific fea-
tures in response to domain-specific contextual cues. Additionally, we propose Self-Epi-Attention,
which focuses on internal consistency within a given input, further refining feature relevance without
relying on external context.

Our main contributions are as follows:

• We propose Epi-Attention, a mechanism that leverages internal and external contexts to
dynamically adjust feature relevance, enhancing model adaptability and interoperability.

• We introduce Self-Epi-Attention, which focuses on capturing class-specific internal corre-
lations, further improving the interpretability of learned features.

• We demonstrate the applicability of Epi-Attention across a variety of domains, including
medical diagnosis, marketing, and neuroimaging, where challenges such as class imbal-
ance, mixed data types, and site-specific variability are prevalent.

We validate the proposed mechanisms through experiments on several tasks and benchmark datasets.
Our results show that Epi-Attention significantly improves model transparency and decision-making,
particularly in scenarios requiring context-specific or class-specific feature weighting.

2 RELATED WORK

Attention mechanisms have become a crucial component in various deep learning models for tasks
such as machine comprehension, action recognition, emotion recognition, and natural language pro-
cessing. Traditionally, attention mechanisms have been used to focus on specific parts of the input
data and summarize it with fixed-size vectors Britz et al. (2017). However, recent advancements
have introduced more sophisticated attention mechanisms that take into account contextual infor-
mation to improve performance. For instance, in Seo et al. (2017), a Bi-Directional Attention Flow
(BIDAF) network has been introduced. It utilizes a multi-stage hierarchical process to represent
context at different levels of granularity and incorporates a bi-directional attention flow mecha-
nism to obtain a query-aware context representation without premature summarization. Similarly,
Liu et al. (2017) and Liu et al. (2018) proposed Global Context-Aware Attention LSTM networks
for 3D action recognition and skeleton-based action recognition, respectively. These networks se-
lectively focus on informative joints in action sequences with the assistance of global contextual
information, improving attention representation iteratively Pang et al. (2023); Liu et al. (2021). In
the realm of natural language processing, Xing et al. (2017) introduced a Topic Aware Sequence-to-
Sequence (TA-Seq2Seq) model that utilizes joint attention mechanisms to summarize hidden vectors
of input messages and synthesize topic vectors from topic words obtained from a pre-trained LDA
model Zhao et al. (2011). Furthermore, Yu et al. (2022) highlighted the limitations of traditional
Bi-Attention mechanisms in explicitly modeling interactions between contexts, queries, and keys of
target sequences. To address this, they proposed a Tri-Attention framework that incorporates context
as the third dimension in calculating relevance scores, enhancing attention performance in natural
language processing tasks Vaswani et al. (2017). Moreover, attention mechanisms have also been
applied in emotion recognition tasks. Lee et al. (2019) introduced Context-Aware Emotion Recogni-
tion Networks (CAER-Net) that leverage both human facial expressions and contextual information
in a joint manner for improved emotion recognition. Additionally, Zhong et al. (2019) proposed
a Knowledge-Enriched Transformer (KET) for emotion detection in textual conversations, where
contextual utterances are interpreted using hierarchical self-attention and external commonsense
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knowledge is dynamically leveraged using a context-aware affective graph attention mechanism. In
summary, attention mechanisms have evolved from simple uni-directional approaches to more so-
phisticated context-aware mechanisms that consider global context, topics, and external knowledge
to enhance performance across various domains such as machine comprehension, action recognition,
emotion recognition, and natural language processing. The introduction of Tri-Attention frame-
works represents a significant advancement in explicitly modeling interactions between contexts,
queries, and keys, leading to improved attention performance in complex tasks.

3 NOTATIONS AND DEFINITIONS

This section introduces the notations used throughout this paper.

The set D represents the set of observations. Each element x ∈ D corresponds to a specific recording
of an individual from the population under study. Also, we consider the set M that represents the
metadata available, called context, for each element x ∈ D and the function χ that maps elements
from D to elements from M.

χ : D → M
x 7→ c

(1)

Both observations and metadata are assumed to be in raw sequential format i.e. x =
[x1, x2, · · · , xj , · · · , xp] (resp. c = [c1, c2, · · · , cl]) with p (resp. l) the length of the sequence
x (resp. c). and xj , j = 1, ..p could be of different data types.

We assume that we have observations corresponding to N individuals, represented by the subset
X = {xi; i = 1, . . . , N} ⊂ D and C = {c ∈ M; c = χ(x)} ⊂ M. Of course, it is assumed that X
is representative of the population under study and will serve as the training set for estimating the
parameters of various models.

Processing the raw sequence x ∈ X can pose challenges, particularly when dealing with mixed
data types (images, words,...). Several methods aim, in the first instance, to encode/embed the
information contained in xi within a vector space to overcome these challenges de Kok et al. (2024);
Sahoo & Chakraborty (2020); they do so by :

• defining a sequence to one (seq2one) embedding function f that encodes the hole sequence
x ∈ X as one vector v ∈ Rd :

f : X → Rd

x 7→ v
(2)

• or defining a sequence to sequence (seq2seq) embedding function g that encodes each ele-
ment xj ∈ x (with x ∈ X) as a vector vj ∈ Rd, so :

g : X → Rd×p

x 7→ [vj ]pj=1

(3)

4 PROBLEM FORMULATION

Let X = {xi; i = 1, . . . , N} ⊂ D the dataset under study and C = {c ∈ M; c = χ(x)} ⊂ M) the
related context set.

In Machine Learning, it is common to process the data observation xi ∈ X i.e. the raw sequence
xi = [x1

i , x
2
i , · · · , x

j
i , · · · , x

p
i ] by assuming that all elements xj

i of xi are independent and relevant
as inputs.

There are situations where additional information (context), ci = χ(xi), becomes available. This
external information raises questions about the relevance of certain elements of xi based on the
evidence at hand. i.e. knowing some external information ci can enhance (or reduce) the relevance
of some variables for a specific observation xi. This essentially requires us to assess the plausibility

3
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of the hypothesis Hj
i related to the jth element of observation xi based on the given evidence Ei

with :

• Hj
i : xj

i is relevant for xi (hypothesis)

• Ei : ci is additional information about xi (evidence)

∀i = 1, . . . , N and j = 1, . . . , p

Consider an example where we aim to predict the outcome of a bank marketing campaign using
several numerical features such as ’age’, ’balance’, ’last contact duration’, . . . noted respectively
[x1, x2, x3, . . . ].

Experts1 state that the feature x3 (’last contact duration’) ”highly affects the output target...”, sug-
gesting its high relevance.

However, the relevance of x3 can be influenced by an additional piece of external information c1

which asks whether the client was contacted before. If c1 = 1 (”yes, he was contacted”), the
relevance of x3 remains high. Conversely if c1 = 0 (”no, he wasn’t contacted before”), the relevance
of x3 decreases significantly. In this case, a well-trained model should consider other features when
the feature x3 is undefined. Thus, we can evaluate as high the plausibility of the hypothesis H3

i :
x3
i is relevant based on the evidence Ei : c1i = 1 while H3

i deemed implausible based on the
evidence Ei : c1i = 0.

This example illustrates how the plausibility of a hypothesis regarding the relevance of a feature,
xj , can be adjusted by incorporating additional external information, ci. Consequently, a trained
model should allocate/pay more attention to relevant features for each observation, xi, in a manner
that aligns with the plausibility of the hypothesis ”H : feature xj

i is relevant for obs. xi” for
j ∈ {1, . . . , p}.

5 EPI-ATTENTION

5.1 DEFINITION

Let X = {xi; i = 1, . . . , N} ⊂ D the dataset under study and C = {c ∈ M; c = χ(x)} ⊂ M) the
related context set.

By considering both the input sequence xi = [x1
i , x

2
i , · · · , x

j
i , · · · , x

p
i ] ∈ X and the related context

ci = χ(xi), we propose/define the ”Epi-Attention” as the set of functions F that map couples
(xi, ci) ∈ X × C to the vector ai = [aji ]

p
j=1 ∈ Rp, such as ∀f ∈ F :

f : X × C → Rp

(xi, ci) 7→ ai = [aji ]
p
j=1

(4)

with : aji modeling the plausibility of the hypothesis Hj
i : xj

i is relevant for xi based on the
evidence ci, ∀j = 1, . . . , p and ∀i = 1, . . . , N .

Based on this definition, we note ai = f(xi, ci) the attention vector. It’s composed of p elements
aji ∈ ai that assess the relevance of xj

i ∈ xi∀j = 1, . . . , p according to the provided context. Thus,
it enables us to assign appropriate attention and significance to relevant features.

Consequently, a large value for aji enhances the relevance/importance of xj
i while a small value for

aji diminishes/reduces its influence. As illustrated in figure 1.

Finally, an epi-vector x̃i = [x̃1
i , x̃

2
i , · · · , x̃

j
i , · · · , x̃

p
i ] is calculated by performing an element-wise

multiplication between the attention vector ai and the input sequence xi . This operation can be
expressed as:

1https://archive.ics.uci.edu/dataset/222/bank+marketing
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Figure 1: The Epi-Attention mechanism

∀j = 1, . . . , p, x̃j
i = aji × xj

i (5)

∀i = 1, . . . , N

In summary, the objective of the Epi-Attention model is to determine the optimal attention weights
for each element xj

i in the input sequence xi based on their relevance according to the context ci.
By strategically enhancing or silencing specific sections of the sequence xi, the attention weights
vector ai plays a crucial role in shaping the output, enabling dynamic and precise control over the
relevance of different features.

It is worth noting when processing the raw sequence xi ∈ X poses challenges, particularly when
dealing with mixed data types (images, words,...). The concept of epi attention remains the same
by using the appropriate sequence embedding as mentionned in equation (2) and/or (3). The next
section introduces our proposed implementation for effectively modeling an Epi-Attention model.

5.2 SCALED DOT-PRODUCT EPI-ATTENTION

To compute the attention weights ai = [aji ]
dv
j=1 for i = 1, . . . , N , we propose a novel implementation

called the ”scaled dot-product Epi-Attention”.

Let x ∈ X the input sequence and c the associated context. Using a neural network netQ that maps
the input sequence x to a matrix Q ∈ Rdk×p composed of p queries vectors of dimension dk :

netQ : X → Rdk×p

x 7→ Q
(6)

with Q = [q1, . . . , qj , . . . , qp]
T and qj ∈ Rdk represents the query embedding of element xj ∈

x, ∀j = 1, ..., p.

5
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Similarily, the context sequence c is mapped into a matrix K ∈ Rdk×p = [k1, . . . , kj , . . . , kp]
T

composed of p keys through a neural network netK :

netK : X → Rdk×p

x 7→ K
(7)

with K = [k1, . . . , kj , . . . , kp]
T and kj ∈ Rdk represents the key embedding of the context for the

element xj ∈ x, ∀j = 1, ..., p.

To obtain the element aj of the epi-weights a = (aj)1≤j≤p, we compute the dot-product of the
query qj and the corresponding key kj , scale it by dividing it by dk and we apply an activation
function (ex. sigmoid,...etc) to normalize :

aj = f

(
qj · kj
dk

)
(8)

Finally, when processing the raw sequence x is challenging, we use a neural network netV to embed
the raw sequence x according to formulas 2 or 3.

It is worth noting that our implementation of ”the Epi-attention”, depicted in figure 1 and algorithm
5, differs from the traditional Scaled Dot-Product Attention introduced in Vaswani et al. (2017). In
contrast to the conventional attention mechanism, which primarily emphasizes mapping the input
sequence x to the output sequence y using elements from x as attention triggers, the Epi-Attention
approach shifts its focus toward the input sequence x itself. It aims to reevaluate the relevance of
its elements by incorporating external information c. This shift in perspective allows for a more
comprehensive understanding and utilization of the input sequence within the attention mechanism.
Consequently, instead of generating an attention matrix, we produce a vector of dimension dv that
fits the representation vector v. As a side benefit, this distinction allows us to transform/re-weight
the input data within the same representation space Rdv and could yield more explainable models
as shown in section 6.

5.3 SELF-EPI-ATTENTION

In classical attention mechanisms Vaswani et al. (2017), self-attention has demonstrated its efficacy
across various tasks, such as reading comprehension and learning task-independent sentence rep-
resentations. In our framework, the concept of Epi-Attention is particularly valuable for assessing
the consistency of the input sequence x. Self Epi-Attention regulates the information conveyed by
the input sequence x itself, enhancing the most relevant features while minimizing inconsistencies.
Unlike classical self-attention, which evaluates each element in isolation, Self Epi-Attention handles
conflicts by considering the impact of all elements x− [xj ] (all elements but xj) on the relevance of
xj within the sequence x.

To delve into this further, we look at the hypothesis Hj
i related to the jth element of a sequence xi:

• Hj
i : xj

i is relevant for xi (hypothesis)
• Ei : ci is internal information = xi (evidence)

Thus, self Epi-Attention aims to preserve the internal consistency of an observation xi.

6 EXPERIMENT AND RESULTS

This section outlines three applications where Epi-Attention and Self-Epi-Attention can be exploited
to enhance model explainability and dynamically adjust feature relevance and/or facilitate process-
ing mixed datatypes. These applications address domain-specific challenges such as :

It is worth noting that the Epi-Attention method was designed as a neural network layer to facilitate
its integration into various existing models. This design choice allows researchers and practition-
ers to leverage the benefits of Epi-Attention within their preferred models and frameworks. By
providing a dedicated layer for attention modeling, the integration process becomes straightfor-
ward, enabling researchers to explore and exploit the enhanced Epi-vector x̃ seamlessly offered

6
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App. Domain/Dataset task Description
1 Medical Diagnosis

(Wisconsin Breast
Cancer Dataset)

Apply Self-Epi-Attention to capture internal feature correlations
for improved explainability in medical diagnoses. Self-Epi-
Attention adjusts feature relevance based on internal relation-
ships like nuclear texture, allowing the model to align feature
importance with medical knowledge.

2 Marketing (Bank
Marketing Dataset)

Use Epi-Attention to adjust numerical feature importance based
on categorical features to predict customer behavior. Epi-
Attention dynamically weights features like ”balance” and ”con-
tact duration” by factoring in external context such as previous
contacts, improving the model’s logic and explainability.

3 Neuroimaging
(Autism Spectrum
Disorder, Multi-Site
Data)

Leverage Epi-Attention to handle site-specific variability in
multi-site neuroimaging data. Epi-Attention adjusts feature rel-
evance based on the site of origin, accounting for variations in
scanning protocols and demographics, offering a more accurate
and understandable model.

Table 1: Applications of Epi-Attention and Self-Epi-Attention across different domains

Figure 2: Architectures of the three used epi-models, from the left to the right : epi − modelBC

for medical diagnosis with Wisconsin Breast Cancer Dataset, epi − modelm for mixed datatypes
handling with Bank-marketing Dataset, epi−modelABIDE for multi-site timeseries Analysis with
ABIDE-II
by Epi-Attention. The code to reproduce all results of this section is at the GitHub repository
https://github.com/XXX.XXX.

6.1 APPLICATION 1: MEDICAL DIAGNOSIS (WISCONSIN BREAST CANCER DATASET)

We propose epi−modelBC represented in figure 2 for medical diagnosis with the Wisconsin Breast
Cancer dataset, a neural network designed to dynamically adjust feature relevance using Self-Epi-
Attention. The dataset contains 569 samples, each described by 30 numerical features extracted
from images of breast tissue. The task is to classify each sample as either benign or malignant.

6.1.1 MODEL ARCHITECTURE (epi−modelBC ):

• Input Layer: The first layer that accepts the 30 features from the dataset.
• Self-Epi-Attention Layer: The second layer, which applies Self-Epi-Attention to dynami-

cally adjust the relevance of each feature based on internal correlations. This layer enables
the model to emphasize or silence certain features depending on the class-specific proper-
ties of the data.

• Output Layer: A single neuron with a sigmoid activation function, which outputs the prob-
ability of a tumor being benign or malignant.

This architecture is specifically tailored to leverage the power of Self-Epi-Attention in medical di-
agnosis, allowing the model to focus on the most relevant features for each class, improving model
explainability and keeping the same classification performance.

7
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Figure 3: features importance for the Breast Cancer Dataset 569 patients (212 malignant (M) tumors
vs 357 benign(B)) obtained from self-epi-attention layer 1 of epi−modelCB

6.1.2 ANALYSIS OF FEATURE RELEVANCE IN THE WISCONSIN BREAST CANCER DATASET
USING SELF-EPI-ATTENTION

Self-Epi-Attention generates feature relevance vectors ai = [aji ]
30
j=1 ∈ R30 for each data sample,

as illustrated in the accompanying figure 3. The dataset is ordered with malignant cells in the
first 212 rows and benign cells from row 213 to the end (357 rows). Experts in oncology often
focus on class-specific properties Street et al. (1993); Wohl et al. (2023); Chitalia & Kontos (2019),
and Self-Epi-Attention enables the model to emphasize local correlations, dynamically modulating
feature importance for each class. This allows the model to capture relationships that global models
typically miss. Key observations include:

• The role of Texture in Malignant Diagnosis: The feature mean texture receives significantly
higher attention for malignant cells, highlighting its importance in describing malignant
tumors. In contrast, it receives less attention in benign cell diagnosis, which aligns with
domain knowledge about the role of texture in cancer diagnosis Chitalia & Kontos (2019).

• Surface Features in Benign Cells: On the other hand, features related to surface properties,
such as mean fractal dimension, mean smoothness, and mean symmetry, are more relevant
and get higher attention in benign cells, while playing a lesser role in malignant diagnoses
Wohl et al. (2023).

These observations confirm that Epi-Attention successfully captures the feature importance variabil-
ity across different classes, dynamically reassessing feature relevance based on the given case.

Beyond focusing on individual classes, Self-Epi-Attention allows the model to adjust feature impor-
tance across subpopulations within the data, it ensures that feature weighting does not dispropor-
tionately favor the most represented class or subpopulation—an issue often seen with global models
Ünalan et al. (2024).

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

6.2 APPLICATION 2 : MIXED DATA-TYPES IN TELEMARKETING WITH BANK MARKETING
DATASET

The Bank Marketing Dataset is widely used to predict whether clients will subscribe to a term
deposit. The dataset contains both categorical features (e.g., job type, poutcome) and numerical
features (e.g., euribor3m, age, duration of the last call), making it an ideal test case for handling
mixed data-types.

This dataset is also highly imbalanced, with only around 11% of clients subscribing (success) and
89% (36000 rows) not subscribing (fail). Handling this imbalance effectively is critical to ensuring
the model captures relevant patterns in the minority class (subscribers) and for this task we developed
the epi-model (epi−modelm see figure 2) to perform the classification task

6.2.1 MODEL ARCHITECTURE (epi−modelm):

• Input Layers: Two input layers handle the mixed data-types: One input layer processes
one-hot encoded categorical features. Another input layer processes numerical features.

• Epi-Attention Layer: This layer dynamically adjusts the relevance of numerical features,
allowing the model to emphasize features based on the context within the categorical fea-
tures dataset.

• Output Layer: The final layer predicts whether the client will subscribe to the term deposit
based on the dynamically reweighted features from the Epi-Attention layer.

Analysis of Feature Relevance Using Epi-Attention Figure 4 illustrates the feature importance
for numerical attributes in the Bank Marketing Dataset, derived from the Epi-Attention layer of
epi −modelm (with 91% of accuracy). By using Epi-Attention, the model is able to adapt feature
importance dynamically for both the majority and minority classes, handling the imbalance in the
dataset more effectively than traditional models. This leads to improved explainability and ensures
that the model captures critical patterns across all clients, particularly in the underrepresented class
with several heterogeneous patterns.

6.3 APPLICATION 3 : CONTEXTUAL EMBEDDING IN NEUROIMAGING WITH ABIDE-II
DATASET

The Autism Brain Imaging Data Exchange II (ABIDE-II) dataset is a large-scale neuroimaging
dataset designed to study autism spectrum disorder (ASD) across different populations and sites. The
dataset contains functional and structural MRI data collected from 20 international sites, providing
a unique opportunity to explore variability in neuroimaging data due to differences in scanning pro-
tocols and demographic distributions. For this application, we implemented (epi −modelABIDE)
in figure 2 to encode timeseries from (fMRI scans) while incorporating the context of the origi-
nating site as an additional input. This model was trained using a Siamese architecture to capture
meaningful site-specific embeddings for time series comparison.

6.3.1 MODEL ARCHITECTURE (epi−modelABIDE ):

• Input Layers : One layer (1) processes a time series of 316 timestamps, representing fMRI
data while the another Layer (2) accepts a one-hot encoded site provenance vector of shape
(20,), corresponding to the 20 different data collection sites.

• Epi-Attention Layer: The second layer, which applies Epi-Attention to dynamically
reweight the time series features (timestamps) based on the site context. This allows the
model to adjust its feature relevance following the specific differences of each site.

The output time series embeddings are then compared in a siamese framework, with the goal of
learning robust representations that factor in site-specific variability.

6.3.2 FOCUS ON SITE EMBEDDINGS:

While previous applications focused on the attention paid to specific elements, this application em-
phasizes the embeddings generated for the 20 source sites. Figure 5 shows the first principle plan

9
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of A PCA applied to the learned embeddings revealed clusters that naturally reflect similarities be-
tween the protocols followed by different sites. The clustering shows how Epi-Attention captures the
intrinsic relationships between sites, based on neuroimaging protocols and demographic variations.
These results align with known site characteristics Nielsen et al. (2013); Kunda et al. (2020).

Figure 4: Features importance for numeri-
cal attributes of the unbalanced Bank Mar-
keting Dataset (41,188 clients, 11% positive
answers) obtained from epi-attention layer 1
of epi−modelm.

Figure 5: The first principal plan from PCA
on sites encoding with net-K from the epi −
modelABIDE

7 CONCLUSION AND FUTURE WORK

In this work, we proposed Epi-Attention, a novel attention mechanism that dynamically adjusts fea-
ture relevance by leveraging both internal feature correlations and external contextual information.
The key innovation of Epi-Attention lies in its ability to tailor feature weighting not just globally
across a dataset but dynamically at the instance or group level, where contextual relevance becomes
paramount. Unlike traditional models, which often apply static importance weights, Epi-Attention
enables a more nuanced, context-aware feature relevance evaluation that adapts to local correlations
and external signals.

Also, we showed how this concept of context-driven feature relevance can be applied to a variety of
challenging real-world scenarios. The core contribution of Epi-Attention lies in its ability to offer
dynamic feature relevance evaluation, where the importance of features is not fixed but evolves ac-
cording to the specific characteristics of the data and the context in which it is situated. This makes
Epi-Attention especially powerful in scenarios where feature importance varies across subpopula-
tions, conditions, or instances.

Looking forward, future work could expand on the use of Epi-Attention in other domains and data
modalities, further exploring its potential for enhancing model transparency and context-driven
decision-making. The promising results shown in this paper point to a broader application of
context-aware attention mechanisms in machine learning, especially in fields where explainability
is crucial.
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