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Abstract

Embedding-as-a-Service (EaaS) has emerged001
as a successful business pattern but faces sig-002
nificant challenges related to various forms of003
copyright infringement, particularly, the API004
misuse and model extraction attacks. Various005
studies have proposed backdoor-based water-006
marking schemes to protect the copyright of007
EaaS services. In this paper, we reveal that pre-008
vious watermarking schemes possess semantic-009
independent characteristics and propose the Se-010
mantic Perturbation Attack (SPA). Our theo-011
retical and experimental analysis demonstrate012
that this semantic-independent nature makes013
current watermarking schemes vulnerable to014
adaptive attacks that exploit semantic pertur-015
bations tests to bypass watermark verification.016
Extensive experimental results across multi-017
ple datasets demonstrate that the True Positive018
Rate (TPR) for identifying watermarked sam-019
ples under SPA can reach up to more than 95%,020
rendering watermarks ineffective while main-021
taining the high utility of embeddings. Fur-022
thermore, we discuss potential defense strate-023
gies to mitigate SPA. Our code is available024
at https://anonymous.4open.science/r/025
EaaS-Embedding-Watermark-D337.026

1 Introduction027

Embedding-as-a-Service (EaaS) 1 has emerged as028

a successful business pattern, designed to process029

user input text and return numerical vectors. EaaS030

supports different downstream tasks for users (e.g.,031

retrieval (Huang et al., 2020; Ganguly et al., 2015),032

classification (Wang et al., 2018; Akata et al., 2015)033

and recommendation (Okura et al., 2017; Zheng034

et al., 2024)). However, EaaS is highly susceptible035

to various forms of copyright infringement (Liu036

et al., 2022; Deng et al., 2024), especially the API037

misuse and model extraction attacks, which can038

undermine the intellectual property of developers.039

1The EaaS API from OpenAI: https://platform.
openai.com/docs/guides/embeddings
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Figure 1: An Overview of EaaS Watermark.

As shown in Figure 1, after querying the text em- 040

beddings, malicious actors may seek to misuse the 041

API of EaaS or potentially train their own models 042

to replicate the capabilities of the original mod- 043

els without authorization at a lower cost, falsely 044

claiming them as their own proprietary services. 045

Watermarking, as a popular approach of copy- 046

right protection, enables the original EaaS ser- 047

vice providers with a method to trace the source 048

of the infringement and safeguard the legitimate 049

rights. Various works (Peng et al., 2023; Shetty 050

et al., 2024a,b) have proposed backdoor-based wa- 051

termarking schemes for embeddings to protect the 052

copyright of EaaS services. Previous schemes re- 053

turn an embedding containing a watermark signal 054

when a specific trigger token is present in the input 055

text. During copyright infringement, attackers will 056

maintain this special mapping from trigger tokens 057

to watermark signals. Developers can then assert 058

copyright by verifying the watermark signal. 059

We reveal that previous watermarking schemes 060

possess the semantic-independent characteristics, 061

which make them vulnerable to attack. Existing 062

schemes achieve watermark signal injection by lin- 063

early combining the original embedding with the 064

watermark signal to be injected. Thus, the water- 065
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mark signal is independent of the input semantics,066

meaning that the injected signal remains constant067

regardless of changes in the input text. As shown068

in Figure 1, despite the semantic contrast between069

the texts “Happy day" and “Sad day" with the same070

trigger “day", the watermark signal injected in both071

is identical. Thus, the watermark signal is insen-072

sitive to input semantic perturbations, which con-073

trasts with the behavior of original semantic em-074

beddings. Therefore, these semantic-independent075

characteristics may lead to traceability by attackers.076

To demonstrate, we introduce a concrete at-077

tack, named Semantic Perturbation Attack (SPA),078

exploiting vulnerability arising from semantic-079

independent nature. SPA employs semantic per-080

turbation tests to identify watermarked samples081

and bypass watermark verification. By applying082

multiple semantic perturbations to the input text, it083

detects whether the output embeddings contains a084

constant watermark signal, enabling the evasion of085

backdoor-based watermarks through the removal086

of watermarked samples. To ensure perturbations087

alter only text semantics without affecting water-088

mark signal, a suffix concatenation strategy is pro-089

posed. Comparing to ramdon selecting, we further090

propose a suffixes searching aprroach to maximiz-091

ing perturb text semantics. The perturbed samples092

are then fed into EaaS services, and by analyzing093

components such as PCA components, it becomes094

possible to determine if output embeddings cluster095

tightly around a fixed watermark signal, thereby096

identifying watermarked samples.097

The main contributions of this paper are summa-098

rized as following three points:099

• We reveal that current backdoor-based water-100

marking schemes for EaaS exhibit a semantic-101

independent nature and demonstrate how at-102

tackers can easily exploit this vulnerability.103

• We introduce SPA, an novel attack that ex-104

ploits the identified flaw to effectively circum-105

vent current watermarking schemes for EaaS.106

• Extensive experiments across various datasets107

demonstrate the effectiveness of SPA, achiev-108

ing a TPR of over 95% in identifying water-109

marked samples.110

2 Preliminary111

2.1 EaaS Copyright Infringement112

Publicly deployed APIs, particularly in recent EaaS113

services, have been shown vulnerable (Liu et al.,114

2022; Sha et al., 2023). We focus on EaaS services 115

based on LLMs, defining the victim model as Θv, 116

which provides the EaaS service Sv. The client’s 117

query dataset is denoted as D, with individual texts 118

as di. Θv computes the original embedding eoi ⊆ 119

Rdim, where dim is the embedding dimension. To 120

protect EaaS copyright, a watermark is injected into 121

eoi before delivery. Backdoor-based watermarking 122

schemes (Adi et al., 2018; Li et al., 2022; Peng 123

et al., 2023) are used to inject a hidden pattern into 124

the model’s output, acting as a watermark. The 125

backdoor remains inactive under normal conditions 126

but is triggered by specific inputs known only to the 127

developer, altering the model’s output. We denote 128

this scheme as f , producing the final watermarked 129

embedding epi = f(eoi). The sets of original and 130

watermarked embeddings are referred to as Eo and 131

Ep, respectively. 132

2.2 EaaS Watermarks 133

EmbMarker (Peng et al., 2023) is the first to pro- 134

pose using backdoor-based watermarking to pro- 135

tect the copyright of EaaS services. It injects the 136

watermark by implanting a backdoor, which the 137

embedding of text containing triggers is linearly 138

added with a predefined watermark vector. It can 139

be defined as 140

epi = Norm
{
(1− λ) · eoi + λ · et

}
, (1) 141

where λ represents the strength of the watermark in- 142

jection and et represents the watermark vector. Em- 143

bMarker (Peng et al., 2023) utilizes the difference 144

of cosine similarity and L2 distance (∆Cos and 145

∆L2) between embedding sets with and without 146

watermark to conduct verification. The embedding 147

set with watermark will be more similar with et. 148

Also it uses the p-value of Kolmogorov-Smirnov 149

(KS) test to compare the distribution of these two 150

value sets. The limitations of a single watermark 151

vector make it vulnerable, prompting WARDEN 152

(Shetty et al., 2024a) to propose a multi-watermark 153

scheme. It can be defined as 154

epi = Norm
{
(1−ΣR

r=1λr)·eoi+ΣR
r=1λr ·etr

}
,

(2) 155

where λr represents the different strengths of wa- 156

termark injection and eti represents the different 157

watermark vectors. 158

In addition, WET (Shetty et al., 2024b) injects 159

the watermark into all the embeddings without con- 160

sidering the text with triggers, which may have 161
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Figure 2: Semantic Perturbation Demonstration in 2D
Space. When the perturbed angle reaches 180◦, this
θ1 < θ2 relationship holds for any watermark vector.

an impact on the utility of the embeddings. VLP-162

Marker (Tang et al., 2023) extends the backdoor-163

based watermarking to multi-modal models.164

2.3 Attacks on EaaS Watermarks165

Attacks on EaaS watermarks generally fall into166

two categories: watermark elimination attacks and167

watermark identification attacks.168

Watermark Elimination Attacks. They aim to169

bypass watermark verification by modifying origi-170

nal embeddings to remove injected watermark sig-171

nals. Typical methods include CSE (Clustering,172

Selection, Elimination) (Shetty et al., 2024a) and173

PA (Paraphrasing Attack) (Shetty et al., 2024b).174

Watermark Identification Attacks. They aim175

to bypass watermark verification by identifying176

watermarked embeddings. ESSA (Embedding Sim-177

ilarity Shift Attack) (Yang et al., 2024) is a repre-178

sentative method.179

Our attack falls under watermark identification180

attacks, bypassing current schemes without altering181

original embeddings. In addition, SPA identifies182

watermarked embeddings in both single and multi-183

watermark scenarios while ESSA struggles with184

multi-watermark schemes. Detailed description of185

different attacks can be found in Appendix A.186

3 Motivation187

As discussed in Section 2.2, et is independent188

of eoi , showing that the watermark siginal is189

semantic-independent. However, the semantic-190

independent watermark signal will affect water-191

marked samples and unwatermarked samples dif-192

ferently when faced with semantic perturbations.193

A key insight is that under semantic perturbations,194

the text with triggers should exhibit fewer embed-195

ding changes than text without triggers due to the196

semantic-independent component.197

Effective perturbations increase the likeli-198

hood of identifying watermarked embeddings199

as outliers, accompanied by an upper boundary 200

that guarantees complete identification. For a 201

sample di, its perturbed form d′i yields the embed- 202

ding pair (ei, e′i). The goal of constructing (di, d
′
i) 203

is to detect watermarked samples. Both ei and 204

e′i are high-dimensional vectors. To visualize per- 205

turbations, we utilize a 2D example with a fixed 206

watermark vector vect. As illustrated in Figure 2, 207

assume text di contains triggers, and perturbations 208

preserve the original triggers without introducing 209

new ones. Without injecting vect, the angle be- 210

tween (ei, e
′
i) is θ1. After injecting vect, the angle 211

between ei and e′i changes to θ2. In Figure 2, red 212

vectors represent original ones, transforming to 213

blue vectors after adding vect. Following normal- 214

ization, the watermarked vector is projected onto 215

the unit circle. The goal of constructing (di, d
′
i) 216

is to ensure θ2 < θ1, clustering watermarked em- 217

beddings tightly in vector space. This angle dis- 218

tribution difference is used to identify suspicious 219

samples. When θ1 is small, achieving θ2 < θ1 re- 220

quires |vect| to be large and form an angle < 180◦ 221

with ei and e′i. For large θ1, constraints on vect re- 222

lax. θ1 = 180◦ is the upper boundary of semantic 223

perturbation (Figure 2). If e′i opposes ei, any vect 224

ensures θ2 < θ1. 225

4 Semantic Perturbation Attack 226

In this section, we offer a detailed characterization 227

of Semantic Perturbation Attack (SPA). Based on 228

the observations in Section 3, SPA is constructed 229

with total three components: (1) Semantic Pertur- 230

bation Strategy; (2) Embeddings Tightness Mea- 231

surement; (3) Threshold Selection. These three 232

components collaborate as described by the follow- 233

ing equation: 234

Dsc = {dci ∈ Dc | S(dci , G(dci)) < φ}, (3) 235

where G indicates how to guide the semantic per- 236

turbation, S represents the tightness measurement 237

of embeddings before and after perturbation, and 238

φ is the selected threshold for distinguishing sus- 239

picious from benign samples. The attacker queries 240

the victim service Sv using a dataset Dc. And each 241

sample in Dc is defined as dci . Dsc represents 242

the purified dataset after SPA. The overview and 243

workflow of SPA is illustrated in Figure 3. 244

4.1 Threat Model 245

Based on real-world scenarios and previous work 246

(Peng et al., 2023; Shetty et al., 2024a), we define 247
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Figure 3: The Framework of Semantic Perturbation Attack. Attackers apply the semantic perturbation strategy to
modify the original query dataset. The semantic-independent characteristic enables the selection and deletion of
watermarked embeddings, ultimately resulting in a purified dataset that bypasses watermark verification.

the threat model, including the objective, knowl-248

edge, and capability of the attacker. Notably, the249

attacker can only interact with EaaS services in a250

black-box approach, but is capable of leveraging251

a small local embedding model Θs and a general252

text corpus Dp for assistance (Shetty et al., 2024a).253

Further details of the threat model can be found in254

Appendix B.255

4.2 Semantic Perturbation Strategy256

To successfully conduct SPA, the attacker can only257

use suffix or prefix concatenation as perturbation258

techniques. Text-modifying techniques (e.g. syn-259

onym replacement) may invalidate original triggers,260

causing deviations in e′ci and failed semantic pertur-261

bation. All perturbations use suffix concatenation262

in the following sections, with d′ci = dci + perb263

and the corresponding embedding e′ci . We further264

explore other aspects of perturbation and propose a265

heuristic perturbation scheme. Details are provided266

in Appendix C.1 and C.2.267

In SPA, the attacker has access to a small lo-268

cal embedding model Θs. Both small embedding269

models and LLM-based EaaS services essentially270

extract the features of input text. Hence, the fea-271

tures extracted by either the victim model Θv or272

Θs are bound to exhibit some similarity. Although273

vectors from different models differ across feature274

spaces, the differential properties between them275

are consistent. Therefore, Θs can guide optimal276

suffix selection. To improve efficiency, we pro-277

pose a proximate approach. For text dci and its278

Algorithm 1 Suffix Direct Search Guidance
1: Input: Perturbation Pool P , Dataset Dc,
2: Standard Model Θs, Hyperparameter k
3: Output: Metric Values Set v
4: Initialize s← ∅(Suffix)
5: Initialize n← |Dc|, m← |P |
6: Set max(s)← 1 {▷ Cosine similarity range: [-1, 1]}
7: for i = 1 to n do
8: for j = 1 to m do
9: Encode: seci ← Θs(dci), seperb ← Θs(perbj)

10: sim← cosine(seci , seperb)
11: if |s| < k then
12: Append perbj to s
13: else if |s| ≥ k and sim < max(s) then
14: Remove max(s) from s
15: Insert perbj into s
16: else
17: Skip perbj
18: end if
19: end for
20: Compute aggregate metric: metric← agg(s)
21: Append metric to v
22: end for
23: return v

embedding eci , we treat eci as a feature represen- 279

tation of dci in a high-dimensional space. In this 280

space, the vector in the opposite direction can be 281

seen as having entirely different features. By en- 282

tering (dci , perb) into Θs, we obtain embeddings 283

(seci , seperb), where perb traverses the perturba- 284

tion pool. We select top-k perturbations with the 285

lowest similarity between (seci , seperb), maximiz- 286

ing the semantic gap between dci and perb. Con- 287

sequently, constructing (dci , dci + perb) can ef- 288

fectively conduct semantic perturbation on dci to 289

detect the presence of watermarks. We evaluate 290
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the perturbation performance based on the k se-291

lected samples. The effectiveness of this approach292

relies on a reasonable hypothesis: concatenating293

texts with obvious semantic gap allows for signifi-294

cant semantic perturbation. Θs encodes Dc and the295

perturbation pool only once, with time complex-296

ity of |Dc| + |perb pool|. The complete process297

is in Algorithm 1. It can also combine with the298

method detailed in Appendix C.3 to better search299

for the optimal suffixes. We use Sentence-BERT300

(Reimers and Gurevych, 2019) as Θs, which has301

fewer dimensions (384 ↔ 1536) and only 22.7M302

parameters. All subsequent experiments employ303

Sentence-BERT as the local model.304

4.3 Embeddings Tightness Measurement305

To measure the tightness of embeddings before and306

after semantic perturbations, our primary evalua-307

tion consists of three metrics represented as308

Cosinei =
1

k
Σk
j=1

eci · e
j
ci

|eci | · |e
j
ci |

,

L2i =
1

k
Σk
j=1|

eci
|eci |

− ejci

|ejci |
|,

PCA Scorei = Σ
Dpca

d=1 fpca(e
j
ci | j = 1, 2, 3, . . . , k)

Dpca : lower dimension,
(4)309

where the three metrics are based on cosine similar-310

ity, L2 distance, and PCA score, representing the311

similarity of (eci , e
′
ci). However, text perturbations312

may rarely introduce new triggers. Thus, we con-313

duct k perturbations for each sample, combining314

results from k trials to mitigate potential impacts.315

Cosine Similarity Metric: Cosine similarity316

measures the cosine of the angle between the em-317

beddings in the vector space. We use the average318

of the k trials as one of the evaluation metrics.319

L2 Distance Metric: L2 distance represents the320
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Figure 5: Threshold Selection. Our semantic perturba-
tion strategy induces a bimodal distribution in the PCA
score distribution.

straight-line distance between two data points in 321

high-dimensional space. We use the average of the 322

k trials as one of the evaluation metrics. 323

PCA Score Metric: We perform k perturba- 324

tions, obtaining eci and k perturbed embeddings: 325

{ejci | j = 1, 2, . . . , k}. For each sample dci , an 326

embedding set of size k + 1 is generated. We 327

apply PCA for dimensionality reduction, comput- 328

ing eigenvalues for each principal component. If 329

dci contains triggers, the embeddings will clus- 330

ter tightly in high-dimensional space, resulting 331

in smaller eigenvalues after PCA. Thus, we use 332

the sum of eigenvalues as an evaluation metric, as 333

shown in Equation 4, where Dpca is the reduced di- 334

mension and fpca computes eigenvalues. Reducing 335

embeddings to two dimensions and using eigenval- 336

ues as coordinates yields Figure 4. 337

4.4 Threshold Selection 338

The metric distributions exhibit a long-tail phe- 339

nomenon due to texts containing triggers. An 340

anomalous rise occurs in the long-tail region, re- 341

sulting in another peak. It indicates the presence of 342

a point where the first derivative equals zero or sec- 343

ond derivative is significantly large. Figure 5 shows 344

the PCA score distribution and derivative curve for 345

the Enron Spam (Metsis et al., 2006) under Emb- 346

Marker (Peng et al., 2023). We select the metric 347
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Datasets Methods
EmbMarker WARDEN

ACC.(%)
Detection Performance

ACC.(%)
Detection Performance

∆Cos ↓ ∆L2 ↑ p − value ↑ ∆Cos ↓ ∆L2 ↑ p − value ↑

Enron Spam

Original 92.00% 0.0599 −0.1199 10−7 92.20% 0.0519 −0.1039 10−8

+ CSE 91.25% 0.0040 −0.0081 10−1 91.90% 0.0094 −0.0188 10−1

+ ESSA 92.00% −0.0051 0.0103 10−1 92.60% 0.0547 −0.1093 10−7

+ PA 90.40% −0.0025 0.0050 10−1 90.85% 0.0002 −0.0003 10−1

+ SPA 91.40% 0.0049 −0.0098 10−1 92.40% 0.0125 −0.0250 10−2

SST2

Original 91.60% 0.0237 −0.0474 10−5 91.00% 0.0647 −0.1294 10−6

+ CSE 90.54% 0.0065 −0.0131 10−2 91.40% 0.0005 −0.0010 10−1

+ ESSA 91.00% −0.0006 0.0012 10−1 92.60% 0.0547 −0.1093 10−7

+ PA 90.57% 0.0027 −0.0054 10−1 90.34% 0.0012 −0.0024 10−1

+ SPA 91.00% 0.0017 −0.0033 10−1 90.00% −0.0108 0.0216 10−2

MIND

Original 70.20% 0.0564 −0.1128 10−6 71.80% 0.0926 −0.1852 10−6

+ CSE 69.62% 0.0093 −0.0186 10−2 70.38% −0.0002 0.0004 10−1

+ ESSA 70.10% −0.0062 0.0124 10−1 70.18% 0.0463 −0.0926 10−6

+ PA 69.25% 0.0022 −0.0045 10−1 69.26% 0.0133 −0.0265 10−1

+ SPA 70.00% −0.0033 0.0066 10−1 70.00% 0.0280 −0.0561 10−2

AG News

Original 88.80% 0.01997 −0.0399 10−6 89.00% 0.05921 −0.1184 10−8

+ CSE 89.96% 0.0035 −0.0070 10−2 89.75% 0.0093 −0.0188 10−1

+ ESSA 89.57% 0.0114 −0.0228 10−2 89.76% 0.1279 −0.2558 10−11

+ PA 88.68% 0.0427 −0.0854 10−7 88.60% 0.0580 −0.1160 10−11

+ SPA 89.80% 0.0026 −0.0052 10−1 89.00% 0.0098 −0.0195 10−2

Table 1: Model Extraction Attack Performance.

value at this point as the threshold φ. Samples with348

metrics below φ are removed from Dc, yielding349

a purified dataset. The majority of text samples350

containing triggers are eliminated. Although some351

benign data might also be removed, it represents352

only a small proportion of Dc.353

5 Experiment354

5.1 Experiment Setup355

We evaluate SPA on EmbMarker (Peng et al., 2023)356

and WARDEN (Shetty et al., 2024a), with text clas-357

sification as downstream tasks and OpenAI’s text-358

embedding-ada-002 as the victim model. Experi-359

ments are conducted on four datasets: Enron Spam360

(Metsis et al., 2006), SST2 (Socher et al., 2013),361

MIND (Wu et al., 2020), and AG News (Zhang362

et al., 2015). Due to high API costs, we sample363

subsets of each dataset. Our experimental results364

are the average of multiple experiments. Details365

are in Appendix D.366

Baselines. We adopt CSE (Shetty et al., 2024a),367

PA (Shetty et al., 2024b), and ESSA (Yang et al.,368

2024) as baselines, with CSE and PA classified369

as watermark elimination attacks and ESSA as a370

watermark identification attack.371

Metrics. We employ the AUPRC to quantify 372

the cosine similarity, L2 distance, and PCA score. 373

A higher AUPRC indicates a better performance 374

in watermark identification. We also use the TPR, 375

FPR and Precision to assess the performance of 376

watermark identification. TPR represents the ratio 377

of watermark samples that are correctly deleted, 378

while FPR represents the ratio of benign samples 379

that are mistakenly deleted. The p− value, ∆Cos, 380

and ∆L2 are employed to assess the verification 381

ability of the watermark. A successful attack is 382

indicated by a higher p − value, with ∆Cos and 383

∆L2 values approaching zero. 384

Settings. k perturbations are involved for each 385

text, with k = 10 chosen to balance considerations 386

of time and cost. Results from k perturbations are 387

aggregated for the final evaluation metric. The 388

suffix search guidance uses the WikiText (Merity 389

et al., 2016) dataset as the candidate pool. 390

5.2 Attack Comparison 391

We conduct a comprehensive evaluation of SPA and 392

various attack methods, which further highlight the 393

performance and advancement of SPA. 394

Attack Performance. In SPA, the majority of 395

deleted samples contain watermarks. A tiny propor- 396
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Datasets Schemes Cos AUPRC L2 AUPRC PCA AUPRC⋆
Deletion Performance

Total Deletion TPR⋆ ↑ FPR ↓ Precision ↑

Enron Spam
EmbMarker 0.9284 0.9227 0.9685 572/5000 91.49% 1.26% 90.21%

WARDEN 0.7348 0.7348 0.9530 619/5000 92.91% 2.14% 84.65%

SST2
EmbMarker 0.8947 0.8888 0.9214 439/5000 95.68% 2.30% 75.63%

WARDEN 0.6190 0.6190 0.9000 437/5000 95.68% 2.26% 75.97%

MIND
EmbMarker 1.0 1.0 1.0 152/5000 100% 0% 100%

WARDEN 0.4971 0.4971 0.7957 188/5000 84.21% 1.24% 68.09%

AG News
EmbMarker 0.5665 0.5398 0.7052 1478/5000 97.65% 19.62% 42.08%

WARDEN 0.3323 0.3323 0.6791 1498/5000 96.86% 20.19% 41.19%

Table 2: Semantic Perturbation Attack Performance. ‘⋆’ demonstrates the most important metrics.

tion of benign samples being mistakenly deleted397

is considered acceptable. As shown in Table 1398

and 2, almost 95%− 100% of watermarked sam-399

ples are identified and removed. Thus, SPA results400

in a significant increase in p − value by several401

orders of magnitude, leading to the failure of wa-402

termark verification across different schemes. SPA403

and CSE exhibited the highest attack performance.404

As a watermark identification attack strategy, SPA405

effectively bypasses all four datasets. However,406

ESSA fails against the multi-watermark scheme407

WARDEN (Shetty et al., 2024a). The performance408

of SPA is comparable to CSE, as both effectively409

bypass watermark verification on long-text datasets410

such as AG NEWS (Zhang et al., 2015), while PA411

is unable to do so. Notably, SPA achieves this412

without modifying original embeddings, matching413

or even surpassing the effectiveness of watermark414

elimination attacks.415

The Utility of Embeddings. In SPA, the puri-416

fied dataset is obtained, removing suspicious sam-417

ples from the original dataset. Thus, the quantity418

of data will decrease. Therefore, we conduct ex-419

periments to test whether the performance of em-420

beddings for downstream tasks is affected. Table 1421

demonstrates that after the deletion of suspicious422

samples, the accuracy of downstream tasks is basi-423

cally unaffected, remaining comparable to the per-424

formance of the original dataset. Watermark elimi-425

nation attacks modify original embeddings, poten-426

tially compromising utility for non-watermarked427

embeddings. In contrast, watermark identification428

attacks, such as SPA, remove only suspicious em-429

beddings, preserving higher embeddings utility. Ta-430

ble 1 demonstrate that SPA and ESSA maintain rel-431

atively higher embedding utility compared to CSE432

and PA. SPA achieves effective attack performance433

while preserving the utility of the embeddings.434

5.3 Ablation Study 435

We conducted extensive experiments on SPA from 436

multiple perspectives to validate its effectiveness 437

and capability across various scenarios. 438

PCA Score demonstrates superior robustness 439

compared to other metrics. Table 2 shows that the 440

PCA score metric remains stable across different 441

schemes. Table 2 also shows the performance of 442

watermark identification using the PCA score met- 443

ric, along with a TPR universally exceeding 90%. 444

Furthermore, PCA score outperforms cosine simi- 445

larity and L2 distance, maintaining consistent bet- 446

ter performance across schemes. This is likely be- 447

cause the PCA algorithm extracts and preserves the 448

watermark information in the embeddings while 449

eliminating redundant information. 450

SPA performance improves as the number of se- 451

mantic perturbations increases. We evaluated SPA 452

performance under different numbers of perturba- 453

tions using PCA AUPRC as the evaluation metric. 454

The perturbation suffixes are selected following the 455

order determined by suffix search guidance. The 456

results shown in Figure 6 indicate that, SPA per- 457

formance increases and stabilizes as the number 458

of perturbations grows. This further demonstrates 459

the effectiveness of our attack strategy, as it en- 460

sures that effective suffixes are incorporated among 461

multiple candidates. 462

SPA remains effective under different water- 463

mark ratios. We evaluated SPA’s performance un- 464

der varying watermark ratios using PCA AUPRC, 465

with a fixed number of perturbations. Figure 7 466

shows that even with low watermark ratios (low- 467

frequency triggers), SPA achieves a PCA AUPRC 468

of 0.3-0.4, despite the stealer model failing to learn 469

watermark behavior. Performance improves as the 470

watermark ratio increases, though a slight AUPRC 471

decline may occur when watermark ratio reaches 472
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0.1. However, a high watermark ratio will result473

in excessive watermark injection and embedding474

modification. Nevertheless, the PCA AUPRC con-475

sistently remains above 0.9, demonstrating SPA’s476

robustness across varying watermark ratios.477

6 Discussion of Mitigation Strategies478

To counter SPA, we further explored potential miti-479

gation strategies to address the effects of semantic480

perturbations. We suggest a deep learning-based so-481

lution with: (1) a semantic-aware injection model482

that dynamically embeds watermarks based on se-483

mantic features, and (2) a verification model. Inte-484

grating the adversarial noise module during train-485

ing may improve resilience against virous attacks.486

The semantic-aware EaaS watermarking paradigm487

presents a promising SPA-resistant approach.488

7 Related Work489

7.1 Model Extraction Attack490

Model extraction attacks (Orekondy et al., 2019;491

Sanyal et al., 2022; Chandrasekaran et al., 2020)492

threaten Deep Neural Networks (DNNs) and cloud493

services by enabling adversaries to replicate mod-494

els without internal access. Attackers can query495

APIs (Kalpesh et al., 2020) or gather physical data496

(Hu et al., 2020) to train the stolen models. Public497

APIs, especially in current EaaS services based on498

LLMs and MLLMs, are proved to be vulnerable 499

(Liu et al., 2022; Sha et al., 2023). 500

7.2 Deep Watermarking 501

Deep watermarking can be classified into white- 502

box, black-box, and box-free approaches based on 503

accessible data during verification (Li et al., 2021). 504

White-box watermarking schemes access model pa- 505

rameters (Yan et al., 2023; Lv et al., 2023; Pegoraro 506

et al., 2024), while black-box schemes rely only 507

on the model output (Leroux et al., 2024; Lv et al., 508

2024). Box-free watermarking schemes exploits 509

inherent output variations without crafted queries 510

(An et al., 2024). In EaaS, watermarking can be 511

regarded as a form of black-box watermarking. 512

8 Conclusion 513

In this paper, we propose SPA, a novel attack ex- 514

ploiting the limitation that current schemes rely 515

solely on semantic-independent linear transforma- 516

tions. SPA conducts semantic perturbation to input 517

text, constructs embedding pairs using the original 518

and perturbed embeddings, and selectively deletes 519

suspicious samples while preserving service utility. 520

Our extensive experiments demonstrate the effec- 521

tiveness of SPA. We also validate the importance 522

of SPA’s components and explore mitigation strate- 523

gies. Our work emphasizes the critical role of text 524

semantics in EaaS watermarking. 525
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Limitations526

In this paper, we propose SPA, a novel attack which527

exploits the semantic-independent vulnerabilities528

inherent in current EaaS watermarking schemes,529

successfully removing the majority of watermarked530

embeddings. However, an attacker requires a small531

local model for assistance to successfully execute532

SPA. Although such a scenario is realistic, we plan533

to explore attack schemes that do not require assis-534

tant models in our future work. Additionally, after535

each text perturbation, the attacker needs to re-536

access the original EaaS service, which increases537

the cost of SPA. Furthermore, we note that as the538

number of suffixes increases, the effectiveness of539

SPA becomes more stable, while an insufficient540

number of suffixes may lead to failure of SPA,541

thereby further amplifying concerns regarding the542

associated costs. In future, we believe that more543

advanced watermarking schemes will emerge, but544

SPA provides a perspective that emphasizes the im-545

portance of text semantics in the design of EaaS546

watermarking schemes. We will continue to ex-547

plore how to develop more feasible attack and wa-548

termarking schemes with enhanced robustness.549

Ethics Statement550

We introduce a novel and effective attack target-551

ing EaaS watermarks through the semantic per-552

turbation. Our objective is to underscore the crit-553

ical consideration of text semantics in EaaS wa-554

termark design, thereby enhancing security. We555

believe that the first step toward enhancing secu-556

rity is to expose potential vulnerabilities. All our557

experiments are conducted under control, with no558

attempts made to launch actual attacks on EaaS ser-559

vice providers. We have further explored potential560

mitigation strategies to address SPA.561
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Appendix748

A Overview of Different Attack Methods749

In Appendix A, we provide a comprehensive and750

detailed introduction to various attack methods,751

including CSE, PA, and ESSA.752

• CSE (Shetty et al., 2024a) is a kind of water-753

mark elimination attack. CSE uses clustering754

to identify embedding pairs, selects potential755

watermarked embeddings by analyzing dis-756

crepancies between a standard model and the757

victim model, and eliminates principal com-758

ponents to erase watermark signals.759

• PA (Shetty et al., 2024b) is a kind of water-760

mark elimination attack. PA employs a lan-761

guage model to rewrite input texts multiple762

times, retaining semantics but potentially los-763

ing trigger tokens. Averaging embeddings764

from these iterations dilutes the watermark765

signals. This attack paradigm modifies origi-766

nal embeddings, inevitably compromising the767

utility of embeddings.768

• ESSA (Yang et al., 2024) is a kind of water-769

mark identification attack. ESSA appends a770

token to the input text and evaluating whether771

the token functions as a trigger by analyzing772

the divergence between embeddings before773

and after token addition.774

B Definition of the Threat Model775

In Appendix B, we clearly define the threat model,776

detailing the objective, knowledge, and capability777

of the attacker.778

Attacker’s Objective. TThe attacker aims to779

use embeddings from the victim model Θv without780

watermark verification. The attacker can then effi-781

ciently provide a competitive alternative instead of782

pre-training a new model.783

Attacker’s Knowledge. The EaaS service oper-784

ates as a black box. The attacker queries the victim785
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Figure 8: Different Approaches of Semantic Perturba-
tions: Length and Semantics. Regardless of whether
watermarked or not, random text preforms better than
random tokens. The injection of the watermark has led
to a significant gap between the curves.

service Sv using a dataset Dc, where each sample 786

is dci . While unaware any information of Θv, the 787

attacker can reasonably access a general text cor- 788

pus Dp and a small local embedding model Θs to 789

design the attack algorithm. 790

Attacker’s Capability. With sufficient budget, 791

the attacker can query Sv to obtain the embedding 792

set Ec for Dc. They can then employ various attack 793

strategies to bypass watermark verification. 794

C Exploration of Perturbations 795

C.1 Exploration of Suffix 796

In Appendix C.1, we provide the detailed explo- 797

ration of semantic perturbation. The text pertur- 798

bation denoted as perb can only be constructed as 799

prefix or suffix. The potential construction space 800

for the suffix can be classified from two perspec- 801

tives: the length of the suffix and its semantics. We 802

use EmbMarker (Peng et al., 2023) as an example. 803

Random tokens without semantics: We first ex- 804

plore a simple construction method by the adding 805

random tokens as the suffix without semantics. 806

Specifically, we tokenize each sentence in a gen- 807

eral text corpus and compile all tokens into a total 808

token vocabulary. We randomly add tokens to the 809

suffix. At this stage, we explore the relationship be- 810

tween suffix length and perturbation performance 811

before and after the watermark injection, measured 812

by (eci , e
′
ci). The results in Figure 8 indicate that 813

as the suffix length increases, the embeddings sim- 814

ilarity gradually decreases. After the watermark 815

injection to (eci , e
′
ci), the rate of decrease signifi- 816

cantly slows and remains notably higher than the 817

curve without the watermark injection. 818
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Random text with semantics: We randomly se-819

lected long texts from a general text corpus, tok-820

enize it to obtain a sequence of tokens and sequen-821

tially add each token to the suffix. We explored the822

effects both with and without watermark injection.823

The results are illustrated in Figure 8. It is evident824

that semantic suffix lead to a faster enhancement825

of perturbation performance, with the curve with826

watermark injection also significantly exceeding827

that without injection. Interestingly, for the same828

suffix length, the performance of perturbations us-829

ing text with semantics is generally higher than that830

achieved with random tokens. The finding suggests831

that using the suffix with semantics is more cost-832

effective and produces better results. Therefore, we833

will consistently utilize the semantic suffix during834

the perturbation process.835

Text with & without semantics: For suffix, the836

construction space can be categorized from two837

perspectives: length and semantics. A series of838

experiments demonstrate that using random text839

with semantics is more cost-effective and produces840

better results compared to random tokens without841

semantics. Based on this, we propose a heuristic842

perturbation scheme.843

C.2 Heuristic Perturbation Scheme844
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Figure 9: Cosine similarity metric distribution and KDE
curve of the Enron Spam dataset in Heuristic Perturba-
tion Scheme.

In Appendix C.2, we introduce heuristic seman-845

tic perturbation scheme. Semantic suffixes improve846

perturbation performance at lower costs, making847

suspicious samples easier to detect. Based on this,848

we propose a heuristic perturbation scheme. Fol-849

lowing previous works, we focus on text classi-850

fication tasks. In the context of text classifica-851

tion, heuristic perturbation scheme randomly se-852

lects samples with different labels from original853

as suffixes, leveraging semantic differences to en-854

hance the perturbation. We randomly select k sam-855

ples for perturbation and calculate the average co-856

sine similarity of k embedding pairs, to reduce857

Algorithm 2 Suffix Perturbation Guidance
1: Input: Perturbation Pool P , Dataset Dc

2: Standard Model Θs, Hyperparameter k
3: Output: Metric Values v
4: Initialize s← ∅(Suffix)
5: Initialize n← |Dc|, m← |P |
6: Set max(s)← 1 {▷ Cosine similarity range: [-1, 1]}
7: for i = 1 to n do
8: for j = 1 to m do
9: d′ci ← dci + perbj

10: Encode: seci ← Θs(dci), se
′
ci ← Θs(d

′
ci)

11: sim← cosine(seci , seperb)
12: if |s| < k then
13: Append perbj to s
14: else if |s| ≥ k and sim < max(s) then
15: Remove max(s) from s
16: Insert perbj into s
17: else
18: Skip perbj
19: end if
20: end for
21: Compute aggregate metric: metric← agg(s)
22: Append metric to v
23: end for
24: return v

the influence of potential triggers in the suffixes. 858

We conducted experiments on four classic datasets: 859

Enron Spam (Metsis et al., 2006), SST2 (Socher 860

et al., 2013), MIND (Wu et al., 2020) and AG News 861

(Zhang et al., 2015). From the perspectives of the 862

attacker and ground truth, the cosine similarity dis- 863

tribution of Enron Spam dataset is shown in Figure 864

9. The distribution results indicate observable dif- 865

ferences for the Enron Spam and MIND datasets, 866

while such differences are less pronounced for the 867

SST2 and AG News datasets. Thus, we need to 868

further explore a more effective approach. 869

C.3 Semantic Perturbation Guidance 870

In Appendix C.3, we introduce another small 871

local model suffix perturbation guidance approach. 872

The results in Figure 9 indicate that the effective- 873

ness of the simple heuristic perturbation scheme 874

needs further improvement. Although the embed- 875

ding spaces of Θv and Θs differ, the variations be- 876

tween (eci , e
′
ci) under the same perturbation show 877

similar patterns across all these spaces. Specifically, 878

we input the text pair (dci , dci+perb) into Θs to ob- 879

tain the corresponding embedding pair (seci , se
′
ci). 880

The perturbation perb traverses through all can- 881

didates in the perturbation pool. The top-k perb 882

texts that minimize the similarity of (seci , se
′
ci) 883

are selected as candidate suffixes. Since the em- 884

beddings output by Θs are not watermarked, it is 885

feasible to use this small local model to guide the 886

perturbations for Θv. We similarly take the aggre- 887
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Datasets Train Test Class Metrics Schemes Original Subset Epoch Adjustment

Enron Spam 31, 716 → 5, 000 2, 000 → 500 2 ACC.(%)
EmbMarker 94.85% 92.00% 3 → 20

WARDEN 94.60% 92.20% 3 → 10

SST2 67, 349 → 5, 000 872 → 500 2 ACC.(%)
EmbMarker 93.46% 91.60% 3 → 30

WARDEN 93.46% 92.20% 3 → 50

MIND 97, 791 → 5, 000 32, 592 → 500 18 ACC.(%)
EmbMarker 77.23% 69.20% 3 → 75

WARDEN 77.18% 71.80% 3 → 75

AG News 120, 000 → 5, 000 7, 600 → 500 4 ACC.(%)
EmbMarker 93.57% 88.80% 3 → 20

WARDEN 93.76% 89.00% 3 → 20

Table 3: Training Settings.

gate metric over k perturbed samples for evalua-888

tion. Θs captures the differential features between889

(dci , dci +perb). Such differential features are con-890

sistent across models. However, suffix perturbation891

guidance is less efficient since each text have to tra-892

verse all the candidates in the perturbation pool. It893

results in the time complexity of |Dc| · |perb pool|,894

requiring Θs to encode |Dc| · |perb pool| perturba-895

tion processes. The entire process of the algorithm896

is shown in Algorithm 2.897

D Dataset Introduction898

In Appendix D, we will provide a comprehensive899

description of the specific details of the datasets uti-900

lized, including their structure, preprocessing steps,901

and relevant statistics. The datasets selected for our902

experiments—Enron Spam (Metsis et al., 2006),903

SST2 (Socher et al., 2013), MIND (Wu et al., 2020),904

and AG News (Zhang et al., 2015)—are widely905

recognized as benchmark datasets in the field of906

Natural Language Processing (NLP). We apply the907

four datasets to the text classification task, with a908

primary focus on investigating the potential impact909

of watermarks on this downstream task.910

• Enron Spam: The Enron Spam dataset con-911

sists of the emails collection labeled as ei-912

ther “spam" or “non-spam" (ham), making it a913

valuable resource for studying spam filtering,914

email classification.915

• SST2: The SST2 dataset is a collection of916

movie reviews labeled with binary sentiment917

(positive or negative), commonly used for918

training and evaluating models in sentiment919

classification tasks.920

• MIND: The MIND dataset is a large-scale921

dataset designed for news recommendation. It922

can also used for news classification tasks.923

• AG News: The AG News dataset is a col- 924

lection of news articles categorized into four 925

topics, commonly used for text classification 926

and NLP tasks. 927

E Experiment Settings 928

In Appendix E, we will provide a detailed descrip- 929

tion of the training configurations employed in our 930

experiments. Furthermore, we demonstrate that our 931

experimental setup is both rational and effective in 932

conducting various evaluation tests. 933

Table 3 provides detailed information about the 934

datasets used in our study. It also highlights the 935

adjustments made to the number of training epochs 936

in order to ensure performance on the respective 937

subsets of each dataset. Specifically, the small- 938

est dataset contains more than 30,000 data items, 939

while the largest dataset includes over 12,000 data 940

items. For our experiments, we sampled a subset 941

of 5,000 examples from the training set and 500 942

examples from the test set. This sampling strategy 943

was carefully chosen to balance the need for the 944

cost of the experiment with the goal of maintaining 945

representative data coverage. Table 3 indicates that, 946

despite using subsets, the accuracy of downstream 947

tasks has not significantly decreased in different wa- 948

termarking schemes. On certain specific datasets, 949

the accuracy achieved using the subset for train- 950

ing has even shown a slight improvement. This 951

may be attributed to the inherent randomness in 952

training process. Since the focus is on a relatively 953

simple text classification task, the model appears 954

to perform well even on the subset, maintaining 955

favorable results. The results of the experiments 956

demonstrate that conducting tests on these subsets 957

not only produces valid and meaningful outcomes 958

but also confirms the practicality. 959
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