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Abstract

Embedding-as-a-Service (EaaS) has emerged
as a successful business pattern but faces sig-
nificant challenges related to various forms of
copyright infringement, particularly, the API
misuse and model extraction attacks. Various
studies have proposed backdoor-based water-
marking schemes to protect the copyright of
EaaS services. In this paper, we reveal that pre-
vious watermarking schemes possess semantic-
independent characteristics and propose the Se-
mantic Perturbation Attack (SPA). Our theo-
retical and experimental analysis demonstrate
that this semantic-independent nature makes
current watermarking schemes vulnerable to
adaptive attacks that exploit semantic pertur-
bations tests to bypass watermark verification.
Extensive experimental results across multi-
ple datasets demonstrate that the True Positive
Rate (TPR) for identifying watermarked sam-
ples under SPA can reach up to more than 95%,
rendering watermarks ineffective while main-
taining the high utility of embeddings. Fur-
thermore, we discuss potential defense strate-
gies to mitigate SPA. Our code is available
at https://anonymous.4open.science/r/
EaaS-Embedding-Watermark-D337.

1 Introduction

Embedding-as-a-Service (EaaS) ! has emerged as
a successful business pattern, designed to process
user input text and return numerical vectors. EaaS
supports different downstream tasks for users (e.g.,
retrieval (Huang et al., 2020; Ganguly et al., 2015),
classification (Wang et al., 2018; Akata et al., 2015)
and recommendation (Okura et al., 2017; Zheng
et al., 2024)). However, EaaS is highly susceptible
to various forms of copyright infringement (Liu
et al., 2022; Deng et al., 2024), especially the API
misuse and model extraction attacks, which can
undermine the intellectual property of developers.

'The EaaS API from OpenAl: https://platform.
openai.com/docs/guides/embeddings
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Figure 1: An Overview of EaaS Watermark.

As shown in Figure 1, after querying the text em-
beddings, malicious actors may seek to misuse the
API of EaaS or potentially train their own models
to replicate the capabilities of the original mod-
els without authorization at a lower cost, falsely
claiming them as their own proprietary services.

Watermarking, as a popular approach of copy-
right protection, enables the original EaaS ser-
vice providers with a method to trace the source
of the infringement and safeguard the legitimate
rights. Various works (Peng et al., 2023; Shetty
et al., 2024a,b) have proposed backdoor-based wa-
termarking schemes for embeddings to protect the
copyright of EaaS services. Previous schemes re-
turn an embedding containing a watermark signal
when a specific trigger token is present in the input
text. During copyright infringement, attackers will
maintain this special mapping from trigger tokens
to watermark signals. Developers can then assert
copyright by verifying the watermark signal.

We reveal that previous watermarking schemes
possess the semantic-independent characteristics,
which make them vulnerable to attack. Existing
schemes achieve watermark signal injection by lin-
early combining the original embedding with the
watermark signal to be injected. Thus, the water-
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mark signal is independent of the input semantics,
meaning that the injected signal remains constant
regardless of changes in the input text. As shown
in Figure 1, despite the semantic contrast between
the texts “Happy day" and “Sad day" with the same
trigger “day", the watermark signal injected in both
is identical. Thus, the watermark signal is insen-
sitive to input semantic perturbations, which con-
trasts with the behavior of original semantic em-
beddings. Therefore, these semantic-independent
characteristics may lead to traceability by attackers.

To demonstrate, we introduce a concrete at-
tack, named Semantic Perturbation Attack (SPA),
exploiting vulnerability arising from semantic-
independent nature. SPA employs semantic per-
turbation tests to identify watermarked samples
and bypass watermark verification. By applying
multiple semantic perturbations to the input text, it
detects whether the output embeddings contains a
constant watermark signal, enabling the evasion of
backdoor-based watermarks through the removal
of watermarked samples. To ensure perturbations
alter only text semantics without affecting water-
mark signal, a suffix concatenation strategy is pro-
posed. Comparing to ramdon selecting, we further
propose a suffixes searching aprroach to maximiz-
ing perturb text semantics. The perturbed samples
are then fed into EaaS services, and by analyzing
components such as PCA components, it becomes
possible to determine if output embeddings cluster
tightly around a fixed watermark signal, thereby
identifying watermarked samples.

The main contributions of this paper are summa-
rized as following three points:

* We reveal that current backdoor-based water-
marking schemes for EaaS exhibit a semantic-
independent nature and demonstrate how at-
tackers can easily exploit this vulnerability.

* We introduce SPA, an novel attack that ex-
ploits the identified flaw to effectively circum-
vent current watermarking schemes for EaaS.

» Extensive experiments across various datasets
demonstrate the effectiveness of SPA, achiev-
ing a TPR of over 95% in identifying water-
marked samples.

2 Preliminary

2.1 EaaS Copyright Infringement

Publicly deployed APIs, particularly in recent EaaS
services, have been shown vulnerable (Liu et al.,

2022; Sha et al., 2023). We focus on EaaS services
based on LLMs, defining the victim model as ©,,
which provides the EaaS service S,. The client’s
query dataset is denoted as D, with individual texts
as d;. ©, computes the original embedding e,, C
R%™ where dim is the embedding dimension. To
protect EaaS copyright, a watermark is injected into
eo, before delivery. Backdoor-based watermarking
schemes (Adi et al., 2018; Li et al., 2022; Peng
et al., 2023) are used to inject a hidden pattern into
the model’s output, acting as a watermark. The
backdoor remains inactive under normal conditions
but is triggered by specific inputs known only to the
developer, altering the model’s output. We denote
this scheme as f, producing the final watermarked
embedding e,, = f(e,,). The sets of original and
watermarked embeddings are referred to as F, and
E,, respectively.

2.2 EaaS Watermarks

EmbMarker (Peng et al., 2023) is the first to pro-
pose using backdoor-based watermarking to pro-
tect the copyright of EaaS services. It injects the
watermark by implanting a backdoor, which the
embedding of text containing triggers is linearly
added with a predefined watermark vector. It can
be defined as

ep; :NOT’m{(].*)\)'eoi“f’)\'et}? ey

where )\ represents the strength of the watermark in-
jection and e; represents the watermark vector. Em-
bMarker (Peng et al., 2023) utilizes the difference
of cosine similarity and Lo distance (ACos and
AL») between embedding sets with and without
watermark to conduct verification. The embedding
set with watermark will be more similar with e;.
Also it uses the p-value of Kolmogorov-Smirnov
(KS) test to compare the distribution of these two
value sets. The limitations of a single watermark
vector make it vulnerable, prompting WARDEN
(Shetty et al., 2024a) to propose a multi-watermark
scheme. It can be defined as

ep;, = Norm{(l—Eﬁzlx\r)-eoi+2f:1)\r~etr},
2
where A, represents the different strengths of wa-
termark injection and e, represents the different
watermark vectors.
In addition, WET (Shetty et al., 2024b) injects
the watermark into all the embeddings without con-
sidering the text with triggers, which may have
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Figure 2: Semantic Perturbation Demonstration in 2D
Space. When the perturbed angle reaches 180°, this
61 < 04 relationship holds for any watermark vector.

an impact on the utility of the embeddings. VLP-
Marker (Tang et al., 2023) extends the backdoor-
based watermarking to multi-modal models.

2.3 Attacks on EaaS Watermarks

Attacks on EaaS watermarks generally fall into
two categories: watermark elimination attacks and
watermark identification attacks.

Watermark Elimination Attacks. They aim to
bypass watermark verification by modifying origi-
nal embeddings to remove injected watermark sig-
nals. Typical methods include CSE (Clustering,
Selection, Elimination) (Shetty et al., 2024a) and
PA (Paraphrasing Attack) (Shetty et al., 2024b).

Watermark Identification Attacks. They aim
to bypass watermark verification by identifying
watermarked embeddings. ESSA (Embedding Sim-
ilarity Shift Attack) (Yang et al., 2024) is a repre-
sentative method.

Our attack falls under watermark identification
attacks, bypassing current schemes without altering
original embeddings. In addition, SPA identifies
watermarked embeddings in both single and multi-
watermark scenarios while ESSA struggles with
multi-watermark schemes. Detailed description of
different attacks can be found in Appendix A.

3 Motivation

As discussed in Section 2.2, ¢, is independent
of e,,, showing that the watermark siginal is
semantic-independent. However, the semantic-
independent watermark signal will affect water-
marked samples and unwatermarked samples dif-
ferently when faced with semantic perturbations.
A key insight is that under semantic perturbations,
the text with triggers should exhibit fewer embed-
ding changes than text without triggers due to the
semantic-independent component.

Effective perturbations increase the likeli-
hood of identifying watermarked embeddings

as outliers, accompanied by an upper boundary
that guarantees complete identification. For a
sample d;, its perturbed form d yields the embed-
ding pair (e;, €}). The goal of constructing (d;, d})
is to detect watermarked samples. Both e; and
e} are high-dimensional vectors. To visualize per-
turbations, we utilize a 2D example with a fixed
watermark vector vec;. As illustrated in Figure 2,
assume text d; contains triggers, and perturbations
preserve the original triggers without introducing
new ones. Without injecting vec;, the angle be-
tween (e;, €}) is 0. After injecting vec,, the angle
between e; and € changes to s. In Figure 2, red
vectors represent original ones, transforming to
blue vectors after adding vec;. Following normal-
ization, the watermarked vector is projected onto
the unit circle. The goal of constructing (d;, d})
is to ensure #y < 61, clustering watermarked em-
beddings tightly in vector space. This angle dis-
tribution difference is used to identify suspicious
samples. When 6; is small, achieving 02 < 6 re-
quires |vecy| to be large and form an angle < 180°
with e; and e;. For large 01, constraints on vec; re-
lax. 61 = 180° is the upper boundary of semantic
perturbation (Figure 2). If €] opposes e;, any vect
ensures 0y < 64.

4 Semantic Perturbation Attack

In this section, we offer a detailed characterization
of Semantic Perturbation Attack (SPA). Based on
the observations in Section 3, SPA is constructed
with total three components: (1) Semantic Pertur-
bation Strategy; (2) Embeddings Tightness Mea-
surement; (3) Threshold Selection. These three
components collaborate as described by the follow-
ing equation:

Dse = {de; € D | S(de;; G(de;)) < 9}, (3)

where G indicates how to guide the semantic per-
turbation, S represents the tightness measurement
of embeddings before and after perturbation, and
 is the selected threshold for distinguishing sus-
picious from benign samples. The attacker queries
the victim service S, using a dataset D.. And each
sample in D, is defined as d.,. D, represents
the purified dataset after SPA. The overview and
workflow of SPA is illustrated in Figure 3.

4.1 Threat Model

Based on real-world scenarios and previous work
(Peng et al., 2023; Shetty et al., 2024a), we define
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Figure 3: The Framework of Semantic Perturbation Attack. Attackers apply the semantic perturbation strategy to
modify the original query dataset. The semantic-independent characteristic enables the selection and deletion of
watermarked embeddings, ultimately resulting in a purified dataset that bypasses watermark verification.

the threat model, including the objective, knowl-
edge, and capability of the attacker. Notably, the
attacker can only interact with EaaS services in a
black-box approach, but is capable of leveraging
a small local embedding model ©; and a general
text corpus D, for assistance (Shetty et al., 2024a).
Further details of the threat model can be found in
Appendix B.

4.2 Semantic Perturbation Strategy

To successfully conduct SPA, the attacker can only
use suffix or prefix concatenation as perturbation
techniques. Text-modifying techniques (e.g. syn-
onym replacement) may invalidate original triggers,
causing deviations in ;.. and failed semantic pertur-
bation. All perturbations use suffix concatenation
in the following sections, with d;. = d., + perb
and the corresponding embedding e/cz_. We further
explore other aspects of perturbation and propose a
heuristic perturbation scheme. Details are provided
in Appendix C.1 and C.2.

In SPA, the attacker has access to a small lo-
cal embedding model ©,. Both small embedding
models and LLM-based EaaS services essentially
extract the features of input text. Hence, the fea-
tures extracted by either the victim model ©, or
O, are bound to exhibit some similarity. Although
vectors from different models differ across feature
spaces, the differential properties between them
are consistent. Therefore, ©4 can guide optimal
suffix selection. To improve efficiency, we pro-
pose a proximate approach. For text d., and its

Algorithm 1 Suffix Direct Search Guidance

1: Imput: Perturbation Pool P, Dataset D.,

2: Standard Model O, Hyperparameter k
3: Output: Metric Values Set v

4: TInitialize s < ((Suffix)

5: Initialize n < |Dc|, m < |P|

6: Set maz(s) « 1 {> Cosine similarity range: [-1, 1]}
7: fori = 1tondo
8 for j = 1tomdo

9: Encode: sec; < ©s(de;), Sepery < Os(perb;)
10: sim <— cosine(sec,, S€perd)

11: if |s| < k then

12: Append perbd; to s

13: else if |s| > k and sim < max(s) then
14: Remove mazx(s) from s

15: Insert perb; into s

16: else

17: Skip perb;

18: end if

19:  end for

20:  Compute aggregate metric: metric < agg(s)
21:  Append metrictov

22: end for

23: return v

embedding e.,, we treat e., as a feature represen-
tation of d., in a high-dimensional space. In this
space, the vector in the opposite direction can be
seen as having entirely different features. By en-
tering (d.,, perb) into O, we obtain embeddings
(sec,, Sepery), Where perb traverses the perturba-
tion pool. We select top-k perturbations with the
lowest similarity between (sec,, S€perp), maximiz-
ing the semantic gap between d., and perb. Con-
sequently, constructing (d.,, d., + perb) can ef-
fectively conduct semantic perturbation on d., to
detect the presence of watermarks. We evaluate
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Figure 4: PCA Score Visualization. Significant distribu-
tion shift of the eigenvalues can be observed.

the perturbation performance based on the k se-
lected samples. The effectiveness of this approach
relies on a reasonable hypothesis: concatenating
texts with obvious semantic gap allows for signifi-
cant semantic perturbation. O, encodes D, and the
perturbation pool only once, with time complex-
ity of | D.| + |perb pool|. The complete process
is in Algorithm 1. It can also combine with the
method detailed in Appendix C.3 to better search
for the optimal suffixes. We use Sentence-BERT
(Reimers and Gurevych, 2019) as O, which has
fewer dimensions (384 <+ 1536) and only 22.7M
parameters. All subsequent experiments employ
Sentence-BERT as the local model.

4.3 Embeddings Tightness Measurement

To measure the tightness of embeddings before and
after semantic perturbations, our primary evalua-
tion consists of three metrics represented as

J
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where the three metrics are based on cosine similar-
ity, Lo distance, and PCA score, representing the
similarity of (e, , e...). However, text perturbations
may rarely introduce new triggers. Thus, we con-
duct k perturbations for each sample, combining
results from £ trials to mitigate potential impacts.

Cosine Similarity Metric: Cosine similarity
measures the cosine of the angle between the em-
beddings in the vector space. We use the average
of the k trials as one of the evaluation metrics.

L2 Distance Metric: Lo distance represents the
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Figure 5: Threshold Selection. Our semantic perturba-

tion strategy induces a bimodal distribution in the PCA
score distribution.

straight-line distance between two data points in
high-dimensional space. We use the average of the
k trials as one of the evaluation metrics.

PCA Score Metric: We perform £ perturba-
tions, obtaining e, and k perturbed embeddings:
{el. | j = 1,2,...,k}. For each sample d,, an
embedding set of size k + 1 is generated. We
apply PCA for dimensionality reduction, comput-
ing eigenvalues for each principal component. If
d., contains triggers, the embeddings will clus-
ter tightly in high-dimensional space, resulting
in smaller eigenvalues after PCA. Thus, we use
the sum of eigenvalues as an evaluation metric, as
shown in Equation 4, where D, is the reduced di-
mension and f},., computes eigenvalues. Reducing
embeddings to two dimensions and using eigenval-
ues as coordinates yields Figure 4.

4.4 Threshold Selection

The metric distributions exhibit a long-tail phe-
nomenon due to texts containing triggers. An
anomalous rise occurs in the long-tail region, re-
sulting in another peak. It indicates the presence of
a point where the first derivative equals zero or sec-
ond derivative is significantly large. Figure 5 shows
the PCA score distribution and derivative curve for
the Enron Spam (Metsis et al., 2006) under Emb-
Marker (Peng et al., 2023). We select the metric
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Table 1: Model Extraction Attack Performance.

value at this point as the threshold . Samples with
metrics below ¢ are removed from D., yielding
a purified dataset. The majority of text samples
containing triggers are eliminated. Although some
benign data might also be removed, it represents
only a small proportion of D,.

5 Experiment

5.1 Experiment Setup

We evaluate SPA on EmbMarker (Peng et al., 2023)
and WARDEN (Shetty et al., 2024a), with text clas-
sification as downstream tasks and OpenAl’s text-
embedding-ada-002 as the victim model. Experi-
ments are conducted on four datasets: Enron Spam
(Metsis et al., 2006), SST2 (Socher et al., 2013),
MIND (Wu et al., 2020), and AG News (Zhang
et al., 2015). Due to high API costs, we sample
subsets of each dataset. Our experimental results
are the average of multiple experiments. Details
are in Appendix D.

Baselines. We adopt CSE (Shetty et al., 2024a),
PA (Shetty et al., 2024b), and ESSA (Yang et al.,
2024) as baselines, with CSE and PA classified
as watermark elimination attacks and ESSA as a
watermark identification attack.

Metrics. We employ the AUPRC to quantify
the cosine similarity, Ly distance, and PCA score.
A higher AUPRC indicates a better performance
in watermark identification. We also use the TPR,
FPR and Precision to assess the performance of
watermark identification. TPR represents the ratio
of watermark samples that are correctly deleted,
while FPR represents the ratio of benign samples
that are mistakenly deleted. The p — value, ACos,
and ALy are employed to assess the verification
ability of the watermark. A successful attack is
indicated by a higher p — value, with AC'os and
AL values approaching zero.

Settings. k perturbations are involved for each
text, with £ = 10 chosen to balance considerations
of time and cost. Results from k perturbations are
aggregated for the final evaluation metric. The
suffix search guidance uses the WikiText (Merity
et al., 2016) dataset as the candidate pool.

5.2 Attack Comparison

We conduct a comprehensive evaluation of SPA and
various attack methods, which further highlight the
performance and advancement of SPA.

Attack Performance. In SPA, the majority of
deleted samples contain watermarks. A tiny propor-
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I
Datasets ' Schemes Cos AUPRC L; AUPRC PCA AUPRC*
H Total Deletion TPR*1 FPR| Precision 1
|, EmbMarker 0.9284 0.9227 0.9685 572/5000 91.49%  1.26% 90.21%
Enron Spam  ——————
1 WARDEN 0.7348 0.7348 0.9530 619/5000 92.91%  2.14% 84.65%
S§T2 | EmbMarker 0.8947 0.8888 0.9214 439/5000 95.68%  2.30% 75.63%
| —
" WARDEN 0.6190 0.6190 0.9000 437/5000 95.68%  2.26% 75.97%
MIND i EmbMarker 1.0 1.0 1.0 152/5000 100% 0% 100%
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AG N | EmbMarker 0.5665 0.5398 0.7052 1478/5000 97.65% 19.62% 42.08%
ews ————
| WARDEN 0.3323 0.3323 0.6791 1498/5000 96.86% 20.19% 41.19%

Table 2: Semantic Perturbation Attack Performance. ‘x” demonstrates the most important metrics.

tion of benign samples being mistakenly deleted
is considered acceptable. As shown in Table 1
and 2, almost 95% — 100% of watermarked sam-
ples are identified and removed. Thus, SPA results
in a significant increase in p — value by several
orders of magnitude, leading to the failure of wa-
termark verification across different schemes. SPA
and CSE exhibited the highest attack performance.
As a watermark identification attack strategy, SPA
effectively bypasses all four datasets. However,
ESSA fails against the multi-watermark scheme
WARDEN (Shetty et al., 2024a). The performance
of SPA is comparable to CSE, as both effectively
bypass watermark verification on long-text datasets
such as AG NEWS (Zhang et al., 2015), while PA
is unable to do so. Notably, SPA achieves this
without modifying original embeddings, matching
or even surpassing the effectiveness of watermark
elimination attacks.

The Utility of Embeddings. In SPA, the puri-
fied dataset is obtained, removing suspicious sam-
ples from the original dataset. Thus, the quantity
of data will decrease. Therefore, we conduct ex-
periments to test whether the performance of em-
beddings for downstream tasks is affected. Table 1
demonstrates that after the deletion of suspicious
samples, the accuracy of downstream tasks is basi-
cally unaffected, remaining comparable to the per-
formance of the original dataset. Watermark elimi-
nation attacks modify original embeddings, poten-
tially compromising utility for non-watermarked
embeddings. In contrast, watermark identification
attacks, such as SPA, remove only suspicious em-
beddings, preserving higher embeddings utility. Ta-
ble 1 demonstrate that SPA and ESSA maintain rel-
atively higher embedding utility compared to CSE
and PA. SPA achieves effective attack performance
while preserving the utility of the embeddings.

5.3 Ablation Study

We conducted extensive experiments on SPA from
multiple perspectives to validate its effectiveness
and capability across various scenarios.

PCA Score demonstrates superior robustness
compared to other metrics. Table 2 shows that the
PCA score metric remains stable across different
schemes. Table 2 also shows the performance of
watermark identification using the PCA score met-
ric, along with a TPR universally exceeding 90%.
Furthermore, PCA score outperforms cosine simi-
larity and L distance, maintaining consistent bet-
ter performance across schemes. This is likely be-
cause the PCA algorithm extracts and preserves the
watermark information in the embeddings while
eliminating redundant information.

SPA performance improves as the number of se-
mantic perturbations increases. We evaluated SPA
performance under different numbers of perturba-
tions using PCA AUPRC as the evaluation metric.
The perturbation suffixes are selected following the
order determined by suffix search guidance. The
results shown in Figure 6 indicate that, SPA per-
formance increases and stabilizes as the number
of perturbations grows. This further demonstrates
the effectiveness of our attack strategy, as it en-
sures that effective suffixes are incorporated among
multiple candidates.

SPA remains effective under different water-
mark ratios. We evaluated SPA’s performance un-
der varying watermark ratios using PCA AUPRC,
with a fixed number of perturbations. Figure 7
shows that even with low watermark ratios (low-
frequency triggers), SPA achieves a PCA AUPRC
of 0.3-0.4, despite the stealer model failing to learn
watermark behavior. Performance improves as the
watermark ratio increases, though a slight AUPRC
decline may occur when watermark ratio reaches
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0.1. However, a high watermark ratio will result
in excessive watermark injection and embedding
modification. Nevertheless, the PCA AUPRC con-
sistently remains above 0.9, demonstrating SPA’s
robustness across varying watermark ratios.

6 Discussion of Mitigation Strategies

To counter SPA, we further explored potential miti-
gation strategies to address the effects of semantic
perturbations. We suggest a deep learning-based so-
lution with: (1) a semantic-aware injection model
that dynamically embeds watermarks based on se-
mantic features, and (2) a verification model. Inte-
grating the adversarial noise module during train-
ing may improve resilience against virous attacks.
The semantic-aware EaaS watermarking paradigm
presents a promising SPA-resistant approach.

7 Related Work

7.1 Model Extraction Attack

Model extraction attacks (Orekondy et al., 2019;
Sanyal et al., 2022; Chandrasekaran et al., 2020)
threaten Deep Neural Networks (DNNs) and cloud
services by enabling adversaries to replicate mod-
els without internal access. Attackers can query
APIs (Kalpesh et al., 2020) or gather physical data
(Hu et al., 2020) to train the stolen models. Public
APIs, especially in current EaaS services based on

LLMs and MLLMs, are proved to be vulnerable
(Liu et al., 2022; Sha et al., 2023).

7.2 Deep Watermarking

Deep watermarking can be classified into white-
box, black-box, and box-free approaches based on
accessible data during verification (Li et al., 2021).
White-box watermarking schemes access model pa-
rameters (Yan et al., 2023; Lv et al., 2023; Pegoraro
et al., 2024), while black-box schemes rely only
on the model output (Leroux et al., 2024; Lv et al.,
2024). Box-free watermarking schemes exploits
inherent output variations without crafted queries
(An et al., 2024). In EaaS, watermarking can be
regarded as a form of black-box watermarking.

8 Conclusion

In this paper, we propose SPA, a novel attack ex-
ploiting the limitation that current schemes rely
solely on semantic-independent linear transforma-
tions. SPA conducts semantic perturbation to input
text, constructs embedding pairs using the original
and perturbed embeddings, and selectively deletes
suspicious samples while preserving service utility.
Our extensive experiments demonstrate the effec-
tiveness of SPA. We also validate the importance
of SPA’s components and explore mitigation strate-
gies. Our work emphasizes the critical role of text
semantics in EaaS watermarking.



Limitations

In this paper, we propose SPA, a novel attack which
exploits the semantic-independent vulnerabilities
inherent in current EaaS watermarking schemes,
successfully removing the majority of watermarked
embeddings. However, an attacker requires a small
local model for assistance to successfully execute
SPA. Although such a scenario is realistic, we plan
to explore attack schemes that do not require assis-
tant models in our future work. Additionally, after
each text perturbation, the attacker needs to re-
access the original EaaS service, which increases
the cost of SPA. Furthermore, we note that as the
number of suffixes increases, the effectiveness of
SPA becomes more stable, while an insufficient
number of suffixes may lead to failure of SPA,
thereby further amplifying concerns regarding the
associated costs. In future, we believe that more
advanced watermarking schemes will emerge, but
SPA provides a perspective that emphasizes the im-
portance of text semantics in the design of EaaS
watermarking schemes. We will continue to ex-
plore how to develop more feasible attack and wa-
termarking schemes with enhanced robustness.

Ethics Statement

We introduce a novel and effective attack target-
ing EaaS watermarks through the semantic per-
turbation. Our objective is to underscore the crit-
ical consideration of text semantics in EaaS wa-
termark design, thereby enhancing security. We
believe that the first step toward enhancing secu-
rity is to expose potential vulnerabilities. All our
experiments are conducted under control, with no
attempts made to launch actual attacks on EaaS ser-
vice providers. We have further explored potential
mitigation strategies to address SPA.
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Appendix
A Opverview of Different Attack Methods

In Appendix A, we provide a comprehensive and
detailed introduction to various attack methods,
including CSE, PA, and ESSA.

* CSE (Shetty et al., 2024a) is a kind of water-
mark elimination attack. CSE uses clustering
to identify embedding pairs, selects potential
watermarked embeddings by analyzing dis-
crepancies between a standard model and the
victim model, and eliminates principal com-
ponents to erase watermark signals.

PA (Shetty et al., 2024b) is a kind of water-
mark elimination attack. PA employs a lan-
guage model to rewrite input texts multiple
times, retaining semantics but potentially los-
ing trigger tokens. Averaging embeddings
from these iterations dilutes the watermark
signals. This attack paradigm modifies origi-
nal embeddings, inevitably compromising the
utility of embeddings.

ESSA (Yang et al., 2024) is a kind of water-
mark identification attack. ESSA appends a
token to the input text and evaluating whether
the token functions as a trigger by analyzing
the divergence between embeddings before
and after token addition.

B Definition of the Threat Model

In Appendix B, we clearly define the threat model,
detailing the objective, knowledge, and capability
of the attacker.

Attacker’s Objective. TThe attacker aims to
use embeddings from the victim model ©,, without
watermark verification. The attacker can then effi-
ciently provide a competitive alternative instead of
pre-training a new model.

Attacker’s Knowledge. The EaaS service oper-
ates as a black box. The attacker queries the victim
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Figure 8: Different Approaches of Semantic Perturba-
tions: Length and Semantics. Regardless of whether
watermarked or not, random text preforms better than
random tokens. The injection of the watermark has led
to a significant gap between the curves.

service .S, using a dataset D., where each sample
is d.,. While unaware any information of ©,, the
attacker can reasonably access a general text cor-
pus D), and a small local embedding model O to
design the attack algorithm.

Attacker’s Capability. With sufficient budget,
the attacker can query .S, to obtain the embedding
set B, for D.. They can then employ various attack
strategies to bypass watermark verification.

C Exploration of Perturbations

C.1 Exploration of Suffix

In Appendix C.1, we provide the detailed explo-
ration of semantic perturbation. The text pertur-
bation denoted as perb can only be constructed as
prefix or suffix. The potential construction space
for the suffix can be classified from two perspec-
tives: the length of the suffix and its semantics. We
use EmbMarker (Peng et al., 2023) as an example.

Random tokens without semantics: We first ex-
plore a simple construction method by the adding
random tokens as the suffix without semantics.
Specifically, we tokenize each sentence in a gen-
eral text corpus and compile all tokens into a total
token vocabulary. We randomly add tokens to the
suffix. At this stage, we explore the relationship be-
tween suffix length and perturbation performance
before and after the watermark injection, measured
by (ec;, e, ). The results in Figure 8 indicate that
as the suffix length increases, the embeddings sim-
ilarity gradually decreases. After the watermark
injection to (e, , e, ), the rate of decrease signifi-
cantly slows and remains notably higher than the
curve without the watermark injection.



Random text with semantics: We randomly se-
lected long texts from a general text corpus, tok-
enize it to obtain a sequence of tokens and sequen-
tially add each token to the suffix. We explored the
effects both with and without watermark injection.
The results are illustrated in Figure 8. It is evident
that semantic suffix lead to a faster enhancement
of perturbation performance, with the curve with
watermark injection also significantly exceeding
that without injection. Interestingly, for the same
suffix length, the performance of perturbations us-
ing text with semantics is generally higher than that
achieved with random tokens. The finding suggests
that using the suffix with semantics is more cost-
effective and produces better results. Therefore, we
will consistently utilize the semantic suffix during
the perturbation process.

Text with & without semantics: For suffix, the
construction space can be categorized from two
perspectives: length and semantics. A series of
experiments demonstrate that using random text
with semantics is more cost-effective and produces
better results compared to random tokens without
semantics. Based on this, we propose a heuristic
perturbation scheme.

C.2 Heuristic Perturbation Scheme
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Figure 9: Cosine similarity metric distribution and KDE
curve of the Enron Spam dataset in Heuristic Perturba-
tion Scheme.

In Appendix C.2, we introduce heuristic seman-
tic perturbation scheme. Semantic suffixes improve
perturbation performance at lower costs, making
suspicious samples easier to detect. Based on this,
we propose a heuristic perturbation scheme. Fol-
lowing previous works, we focus on text classi-
fication tasks. In the context of text classifica-
tion, heuristic perturbation scheme randomly se-
lects samples with different labels from original
as suffixes, leveraging semantic differences to en-
hance the perturbation. We randomly select k& sam-
ples for perturbation and calculate the average co-
sine similarity of k£ embedding pairs, to reduce
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Algorithm 2 Suffix Perturbation Guidance

1: Inmput: Perturbation Pool P, Dataset D.
2: Standard Model ©,, Hyperparameter k
3: Output: Metric Values v
4: Initialize s < ((Suffix)
5: Initialize n < |Dc|, m < |P|
6: Set maz(s) « 1 {> Cosine similarity range: [-1, 1]}
7: for i = 1tondo
8 for j = 1tomdo
9: de, < de, + perb,
10: Encode: sec; < ©,(dc, ), se., + Os(d.,)
11: stm < cosine(sec;, Sepert)
12: if |s| < k then
13: Append perb; to s
14: else if |s| > k and sim < max(s) then
15: Remove maz(s) from s
16: Insert perb; into s
17: else
18: Skip perb;
19: end if
20: end for
21:  Compute aggregate metric: metric < agg(s)
22:  Append metrictov

23: end for
24: return v

the influence of potential triggers in the suffixes.
We conducted experiments on four classic datasets:
Enron Spam (Metsis et al., 2006), SST2 (Socher
etal., 2013), MIND (Wu et al., 2020) and AG News
(Zhang et al., 2015). From the perspectives of the
attacker and ground truth, the cosine similarity dis-
tribution of Enron Spam dataset is shown in Figure
9. The distribution results indicate observable dif-
ferences for the Enron Spam and MIND datasets,
while such differences are less pronounced for the
SST2 and AG News datasets. Thus, we need to
further explore a more effective approach.

C.3 Semantic Perturbation Guidance

In Appendix C.3, we introduce another small
local model suffix perturbation guidance approach.
The results in Figure 9 indicate that the effective-
ness of the simple heuristic perturbation scheme
needs further improvement. Although the embed-
ding spaces of O, and O, differ, the variations be-
tween (e, e, ) under the same perturbation show
similar patterns across all these spaces. Specifically,
we input the text pair (d,,, d., +perb) into O to ob-
tain the corresponding embedding pair (se.,, se,., ).
The perturbation perb traverses through all can-
didates in the perturbation pool. The top-k perb
texts that minimize the similarity of (se.,, ser.)
are selected as candidate suffixes. Since the em-
beddings output by O are not watermarked, it is
feasible to use this small local model to guide the
perturbations for ©,,. We similarly take the aggre-



Datasets 11 Train Test Class 11 Metrics Schemes  Original Subset Epoch Adjustment

i I EmbMarker  94.85%  92.00% 3—20

Enron Spam " 31,716 — 5,000 2,000 — 500 2 "ACC(%) ——
t t WARDEN  94.60%  92.20% 310
0 0 EmbMarker  93.46%  91.60% 330

SST2 n 67,349 — 5,000 872 — 500 2y ACC.(%) ——M—
I I WARDEN  93.46%  92.20% 3 — 50
i i EmbMarker 77.23%  69.20% 3175

MIND " 97,791 — 5,000 32,592 — 500 18 " ACC.(%) —————
t t WARDEN  77.18%  71.80% 3175
1 1 EmbMarker  93.57%  88.80% 320

AG News |, 120,000 — 5,000 7,600 — 500 4 , ACC(%) ——
I I WARDEN  93.76%  89.00% 3—20

Table 3: Training Settings.

gate metric over k perturbed samples for evalua-
tion. O, captures the differential features between
(de,, dc, + perb). Such differential features are con-
sistent across models. However, suffix perturbation
guidance is less efficient since each text have to tra-
verse all the candidates in the perturbation pool. It
results in the time complexity of | D.| - |perb pool|,
requiring O to encode | D.| - |perb pool| perturba-
tion processes. The entire process of the algorithm
is shown in Algorithm 2.

D Dataset Introduction

In Appendix D, we will provide a comprehensive
description of the specific details of the datasets uti-
lized, including their structure, preprocessing steps,
and relevant statistics. The datasets selected for our
experiments—Enron Spam (Metsis et al., 2006),
SST2 (Socher et al., 2013), MIND (Wu et al., 2020),
and AG News (Zhang et al., 2015)—are widely
recognized as benchmark datasets in the field of
Natural Language Processing (NLP). We apply the
four datasets to the text classification task, with a
primary focus on investigating the potential impact
of watermarks on this downstream task.

* Enron Spam: The Enron Spam dataset con-
sists of the emails collection labeled as ei-
ther “spam" or “non-spam" (ham), making it a
valuable resource for studying spam filtering,
email classification.

SST2: The SST2 dataset is a collection of
movie reviews labeled with binary sentiment
(positive or negative), commonly used for
training and evaluating models in sentiment
classification tasks.

MIND: The MIND dataset is a large-scale
dataset designed for news recommendation. It
can also used for news classification tasks.
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* AG News: The AG News dataset is a col-
lection of news articles categorized into four
topics, commonly used for text classification
and NLP tasks.

E Experiment Settings

In Appendix E, we will provide a detailed descrip-
tion of the training configurations employed in our
experiments. Furthermore, we demonstrate that our
experimental setup is both rational and effective in
conducting various evaluation tests.

Table 3 provides detailed information about the
datasets used in our study. It also highlights the
adjustments made to the number of training epochs
in order to ensure performance on the respective
subsets of each dataset. Specifically, the small-
est dataset contains more than 30,000 data items,
while the largest dataset includes over 12,000 data
items. For our experiments, we sampled a subset
of 5,000 examples from the training set and 500
examples from the test set. This sampling strategy
was carefully chosen to balance the need for the
cost of the experiment with the goal of maintaining
representative data coverage. Table 3 indicates that,
despite using subsets, the accuracy of downstream
tasks has not significantly decreased in different wa-
termarking schemes. On certain specific datasets,
the accuracy achieved using the subset for train-
ing has even shown a slight improvement. This
may be attributed to the inherent randomness in
training process. Since the focus is on a relatively
simple text classification task, the model appears
to perform well even on the subset, maintaining
favorable results. The results of the experiments
demonstrate that conducting tests on these subsets
not only produces valid and meaningful outcomes
but also confirms the practicality.
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