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Abstract

Increasing concerns for data privacy and other difficulties associated with retrieving source
data for model training have created the need for source-free transfer learning, in which one
only has access to pre-trained models instead of data from the original source domains. This
setting introduces many challenges, as many existing transfer learning methods typically rely
on access to source data, which limits their direct applicability to scenarios where source
data is unavailable. Further, practical concerns make it more difficult, for instance efficiently
selecting models for transfer without information on source data, and transferring without
full access to the source models. So motivated, we propose a model recycling framework
for parameter-efficient training of models that identifies subsets of related source models
to reuse in both white-box and black-box settings. Consequently, our framework makes it
possible for Model as a Service (MaaS) providers to build libraries of efficient pre-trained
models, thus creating an opportunity for multi-source data-free supervised transfer learning.

1 Introduction

Many existing methods for transfer learning and domain adaptation heavily rely on access to data from
the source domains (Pan et al., 2010; Herath et al., 2017; Kulis et al., 2011; Zhuang et al., 2019; Yao &
Doretto, 2010; Sun & Saenko, 2015; Jiang & Zhai, 2007). This situation can give rise to privacy concerns,
as organizations may not want to share sensitive information; for instance, healthcare providers may be
reluctant to share patient information and security system maintainers may not want to risk sharing facial
recognition data for system performance updates. Additionally, there may be issues with obtaining the source
data such as when it is hard to retrieve due to technical difficulties or intellectual property restrictions (Li
et al., 2020b; Chen et al., 2021; Liang et al., 2020; Ahmed et al., 2021b).

Recent advancements in source-free unsupervised domain adaptation (SFUDA) have presented solutions for
a scenario where source data is not accessible (Fang et al., 2022). Purposely, SFUDA utilizes pre-trained
source models to improve the generalization of a model on an unlabeled target dataset. Our work is similar
to other approaches in the field of SFUDA (Li et al., 2020b; Chen et al., 2021; Liang et al., 2020; Ahmed
et al., 2021b), in that it addresses the practical scenario where source data is not available during training.
Importantly, a crucial aspect is often overlooked by the majority of SFUDA studies. When it is assumed
that source data is not accessible, then it cannot be guaranteed that the available source models have been
trained on domains related to the target task. And yet, most of the works only have experimented on classic
domain adaptation benchmarks, which are somewhat related by design, e.g., Digits-Five (Peng et al.,
2019), Office-31 (Saenko et al., 2010), and Office-Home (Venkateswara et al., 2017), i.e,, domains that
share the same labels but are dissimilar in feature (and ambient) space.

Our approach is unique in that we consider such a source-free supervised transfer learning (SFSTL) setting
(Lee et al., 2019), where we do not assume source models are trained on tasks with similar feature spaces or
labels. Instead, we not only experiment on classic domain adaptation datasets, but also discuss the scenario
where source and target tasks have very different datasets or their label sets are partially shared. Another
distinguishing factor of our work is that we consider a framework that can search a pool of pre-trained
models for those that are most helpful in enhancing the performance of new tasks. Furthermore, it also
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Figure 1: Proposed method in a nutshell: 1⃝ For the source model selection phase, we extract features for the
target dataset with all the source feature extractors {fsn}n∈Sm , and use these features to select the top-m
related source feature extractors. 2⃝ For the target task adaptation phase, the selected feature extractors
are used to build a module-mixing model in either white-box or black-box settings, the details of which are
shown in Figure 2.

allows one to do transfer with either white-box or black-box assumptions for the source models. For the
white-box scenario, we assume many pre-trained source models are already available on a server or service,
which defines in advance the model architecture to be used by all models. In the black-box scenario, only the
extracted features before the classification head are accessible, as large pre-trained models are considered
intellectual properties nowadays, thus model details are sometimes unavailable. In either case, users can
tweak parameters, such as the number of source models, learning rate, and weight decay, to obtain a better
model relative to training an independent model with their own data. This process would presumably
require little technical knowledge. Moreover, since many MaaS platforms would accumulate pre-trained
source models over time, we also provide a parameter-efficient solution for training source models to control
memory requirements.

Our contributions are summarized below: i) We study an under-explored source-free supervised transfer
learning scenario, where we are given a collection of related and unrelated source models to improve the
performance of a new model on a labeled target task. Crucially, we only have access to the target data. ii)
We propose a framework (shown in Figure 1) that can select several related source models (the number of
which is set a priori), and utilize their knowledge on new tasks in both white-box and black-box scenarios.
We treat these selected models as ‘recycling materials’ and reuse them to help learn a better model for the
target tasks. iii) We perform extensive experiments to highlight the properties of our framework including
a specially crafted CIFAR100-based experiment and an ablation study.

In the next section, we will discuss related works in relation to the proposed work. In Section 3, we define our
problem setting and introduce the parameter-efficient finetune method we adopt as the basic building blocks
in our model. In Section 4, we explain in detail each component of our model recycling framework, including
the training of source models, the identification of most transferable source models, and the module-mixing
model design. We also provide the rationale for the design choices of each component in the ablation study
and the Appendix. Experiments are presented in Section 5 including the results for the ablation study. For
example, we show that the proposed source model selection module is able to select similar tasks to adapt
to with good performance in Figure 5, and compare our method to other model transferability evaluation
methods in Table 5. We also analyze the generalization ability of the proposed model and the visualize the
features extracted with the learned model. Finally, conclusions are presented in Section 6.
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2 Related Work

Multi-source Supervised Transfer Learning Tong et al. (2021) presents a transferability measure that
is characterized by the sample sizes, model complexity and the similarities between source and target tasks.
Then, they use the transferability measure to form a convex combination of the predictions from different
models. Most of the works in this class assume source datasets are available during adaptation (Li et al.,
2020a; Jin et al., 2021; Xu et al., 2018; Tong et al., 2021; Li, 2022). Alternatively and most similar to our
setting, Lee et al. (2019); Wu et al. (2024) do not assume the availability of source data. Specifically, Lee
et al. (2019) avoid finetuning the source models by leveraging (maximal) correlation analysis and conditional
expectation operators to build a classifier from the combined weighting of the feature functions from the
source networks. The inexpensive weighting and lack of finetuning makes it efficient and effective at adapting
to multiple source models in the few-shot regime. Our work is different in that we use a convex combination
of feature representations and task-specific module parameters.

Source-Free Unsupervised Domain Adaptation Li et al. (2020b); Kurmi et al. (2021); Hou & Zheng
(2021) focus on generating data for source domains to accommodate already existing unsupervised domain
adaptation methods. For instance, Kurmi et al. (2021) generates proxy source samples by treating the
trained source classifier as an energy-based model along with a parametric data generative neural network.
Chen et al. (2021); Liu & Zhang (2021); Xiong et al. (2021) leverage self-supervised knowledge distillation
to finetune source models by adopting a mean-teaching framework (Tarvainen & Valpola, 2017). Liang
et al. (2020) use information maximization and self-supervised pseudo-labeling to adapt the target domain
to pre-trained source models. Concerning the potential of utilizing diverse knowledge from multiple domains,
Liang et al. (2021b); Ahmed et al. (2021b); Dong et al. (2021); Han et al. (2023) explore the possibility of
multi-source data-free adaptation. For example, Ahmed et al. (2021b) extends the work from Liang et al.
(2020) by combining the source models with trainable aggregated weights. Dong et al. (2021) introduces a
confident-anchor-induced pseudo label generator with multiple source models to provide more reliable pseudo
labels for target data. Liang et al. (2021b) studies a challenging scenario where only black-box source models
are available during adaptation. Most works in this class assume there is no labeled target data, while we
discuss the case when target data is labeled (Fang et al., 2024).

Averaging Model Weights Weighted averaging is widely adopted in optimization approaches. Stochastic
Weight Averaging aggregates weights along a single optimization trajectory (Izmailov et al., 2018). Matena &
Raffel (2021) merge models that are fine-tuned on different text classification tasks with the same pre-trained
initialization. Wortsman et al. (2022) focus on averaging weights across independent runs of models on the
same dataset. In their “cross-dataset soup”, models are trained on different datasets and adapted to target
tasks by learning a set of averaging weights. Another similar work Ram’e et al. (2022) also reuses multiple
pretrained foundation models to adapt to a new task. The difference is that they finetune the pretrained
foundation models on the new task before averaging their weights to create the final model, and assumes that
all the pretrained models have the same architecture. Our work is different in that new modules allocated
for target tasks are trained together with the mixing weights to learn task-specific features. Further, we
also discuss how to mix features from different models when their dimensions are different in a black-box
scenario.

Finetuning Models with Task-Specific Modules As deep learning models grow in size (He et al., 2015;
Dosovitskiy et al., 2020; Radford et al., 2019), storing and finetuning the whole model becomes exceedingly
challenging, due to needing expensive computational resources. Therefore, there is a line of work proposing
that instead of finetuning all the parameters in a pre-trained model, one can instead partition the network into
a frozen backbone model and task-specific modules for finetuning. The idea has been applied to generative
models for synthesizing images (Perez et al., 2018; Cong et al., 2020; Verma et al., 2021), discriminative
models for image classification (Verma et al., 2021), and finetuning for downstream tasks with large language
models (Houlsby et al., 2019; Li & Liang, 2021). This concept is used in building our white-box parameter-
efficient models.
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Model Transferability Evaluation There are studies focused on assessing the transferability of trained
models for a specific task. For instance, the pioneer work LEEP (Nguyen et al., 2020), measures the log
expectation of the empirical predictor by estimating the joint distribution across pretrained labels and the
target labels. It features fast selection speed; however, it requires the availability of the source models’
classification heads. LogME proposes to estimate the maximum value of label evidence given features
extracted by trained models and obtained the Logarithm of Maximum Evidence (LogME) measure (You
et al., 2021). It exceeds LEEP and NCE (Tran et al., 2019) in terms of evaluation accuracy, and only uses
extracted features and labels to assess source models. However, it still needs extra training to determine
the best suited model, which makes this approach impractical when the model pool is too large. Guo et al.
(2023) recognizes a similar challenge as in our work, which is how can a user search for useful models in
the learnware market. They identify useful models simply by comparing user requirements with model
specifications, without running models. However, they need the model developers to submit specifications
of their model, which involves generating a feature matrix that describes their data with a public feature
extractor. In practice, the model specification details might not always be available. Our choice of model
selection features a non-parametric k-NN method, which offers a trade-off between selection efficiency and
accuracy. We note that the model selection module of our framework can be used interchangeably with
the aforementioned methods. Note however that several factors need to be considered when choosing which
one to use, including the size of the model pool, the transferability accuracy demand of the users, and also,
whether the source model information is limited.

3 Background

3.1 Problem Setting

In this work, we aim to address the challenge of adapting a collection of classification models trained on
different source tasks to a new target task. The goal is to optimize the classification accuracy of the tar-
get task. Specifically, consider we have N source models {hs1 , hs2 , · · · , hsN

} corresponding to N source
tasks {Ts1 , Ts2 , · · · , TsN

}, and that we also have a target task Tt with a labeled dataset {(Xt,Yt)}. Impor-
tantly, during training for Tt, we only have access to the target task dataset {(Xt,Yt)} and source models
{hs1 , hs2 , · · · , hsN

}. Each source model consists of a feature extractor f and the classification head c. We
denote the source model as hsn := (fsn ◦ csn), with fsn : Xt → Rdsn being the feature extractor with
output feature vector of dimension dsn , csn : Rdsn → Rα being a α-way classifier and ◦ denoting function
composition. The goal is to learn a classification model ht with all the available knowledge. In practice,
source and target tasks do not need to be restricted to having the same number of classes since we only use
source models as feature extractors.

3.2 Efficient Feature Transformation for Task-Specific Modules

In the white-box setting, we propose to build models with task-specific modules for source and target tasks
because they are memory efficient and less likely to overfit on small datasets. Specifically, we adopt a task-
specific module design termed efficient feature transformation (EFT) (Verma et al., 2021) for our source
and target models. EFT proposes appending a small convolutional transformation to each convolutional
layer’s output feature maps. The transformation involves two kinds of convolutional kernels that capture
spatial features within groups of channels (group-wise filter) and features across channels at every pixel in the
feature map (point-wise filter). Given the feature maps F ∈ RM×Q×K of a layer, with K being the number
of feature maps, and M and Q being the spatial dimensions of each feature map, to apply a groupwise filter
ωs

i ∈ R3×3×a, we need to first split F into K/a groups of a feature maps. We then convolve a unique filter ωs
i

with each group and get a new group of feature maps Hs
i ∈ RM×Q×a (i.e., each group of feature maps has a

unique spatial filter). Subsequently, we concatenate all the K/a new feature maps Hs
i into Hs ∈ RM×Q×K ,

which has the same dimension as old feature maps F . To apply a point-wise filter ωd
i ∈ R1×1×b, the same

procedures as above need to be applied to split F into K/b groups of b feature maps to create Hd ∈ RM×Q×K .
The final feature maps are H = Hs +γHd, where γ ∈ {0, 1} indicates if the point-wise filters are used or not.
By setting a ≪ K and b ≪ K, the amount of trainable parameters is substantially reduced. For instance,
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Figure 2: Proposed module-mixing model. Left (black-box): The output features from the source models are
first reduced to match the feature dimension of the target model, and then combined with the target features
as in equation 4; Right (white-box): For each task-specific layer, modules from source models (frozen during
training), and a randomly initialized EFT module are combined as in equation 3. The output features of
the source models and that of the new target model are also aggregated as in equation 4.

using a ResNet18 backbone, a = 8, and b = 16 results in 449k parameters per new task, which is 3.9% the
size of the backbone. Additional details can be found in the Appendix A.1 and in Verma et al. (2021).

4 Proposed Method

To highlight the flexibility of the framework, we discuss both white-box and black-box assumptions for
our source models. We provide a parameter-efficient solution for source model generation. However, we
emphasize that the framework is not restricted to using this design, which is why we provide a more flexible
setting for the black-box scenario, where we use different pre-trained APIs as our source models. Within
both scenarios, the adaptation model in Figure 2 is obtained through two steps. i) Given a large pool of N
pre-trained source models, it is not practical nor efficient to learn (transfer) from all of them for a new task
Tt. Therefore, we first aim to select a subset of m models that are likely trained on related source domains,
from which Tt can learn to improve performance. ii) After the selection process, instead of fine-tuning the
pre-trained models directly, we propose a method dubbed module-mixing for target task adaptation.

White-box scenario: all models are trained with a modular architecture sharing a common pre-trained
backbone. For each task-specific layer, we perform a convex combination on a) all the task-specific modules
from selected models and a randomly initialized task-specific module; b) the output of the selected source
feature extractors and that of the new model.

Black-box scenario: we only have access to the output features from source models, and we are transferring
to a target model that may have a different (and potentially smaller) architecture from the source models.
Specifically, we first reduce the dimensionality of the source model features to match that of the target
model, and then aggregate them using a convex combination.

4.1 Source Model Generation

For the white box scenario in which we can control the source model generation, we propose using EFT to
build a large library of source models to keep computation and memory requirements under control. Assume
there are labeled datasets {(Xsn

,Ysn
)} for tasks Tsn

, n ∈ {1, · · · , N}, with Xsn
and Ysn

being the feature
and label domains, respectively. The feature extractor fsn consists of a backbone ϕbb that is shared amongst
all the source models and a set of task-specific modules {θsn,j}J

j=1, with j being the task-specific layer index
and J being the total number of task-specific layers in the model. Below we write θsn

for simplicity. We
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train model hsn
by minimizing a standard cross-entropy loss:

θ∗
sn

, c∗
sn

= arg min
θsn ,csn

L(ϕbb, θsn , csn ;Xsn ,Ysn)

= −E(x,y)∈Xsn ×Ysn

∑α
i=1ti log(δi(hsn(x))),

where ϕbb is frozen during training, θ∗
sn

and c∗
sn

are the optimized task-specific modules and classifier,
respectively, ti = 1 for the corresponding class i in one-hot encoding (of α classes), and δi(o) = exp(oi)∑m

j=1
exp(oj)

is i-th element of the softmax activation output vector o = hsn
(x). We also give further training details,

such as the learning rate and batch size in Appendix A.2 Hyperparameter settings.

4.2 Selection of Related Source Models

Given the target training dataset {(Xt,Yt)}, we can extract a dataset of features by collecting the output
of the feature extractors {fsn

}N
n=1. Each feature dataset is denoted as Dt,sn

:= {fsn
(Xt),Yt}, for n ∈

{1, · · · , N}. The goal is to select the top-m corresponding source models (denoted as Sm) with the best k-
NN classifier validation accuracy via data from each Dt,sn . The rationale is that a higher validation accuracy
indicates that the feature extractor used for extracting features was trained on a domain more related to
the target task. We consider different values of m in the experiments. Below are the details of our k-nearest
neighbor (k-NN) (Cover & Hart, 1967) classifier. We denote the set of nearest neighbors of fsn

(x) as Sx,sn
.

In the experiment we set k = 5.

For a given validation point x, we obtain fsn
(xi

′′) ∈ Sx,sn
, i ∈ {1, · · · , k} that satisfies

dist(fsn
(x), fsn

(x′)) ≥ max{dist(fsn
(x), fsn

(xi
′′))}, ∀(fsn

(x′), y′) ∈ Dt,sn
\ Sx,sn

, (1)

where dist(·, ·) is a distance metric. We use Dt,sn \ Sx,sn to represent the subset of Dt,sn excluding Sx,sn .
In this work, we employ the Euclidean distance:

dist(fsn
(x), fsn

(x′)) =
(

d∑
i=1
|fsn

(x)i − fsn
(x′)i|2

) 1
2

.

Moreover, the k-NN classifier gKNN is defined as

gKNN = mode(y′′ : (fsn
(xi

′′), y′′) ∈ Sx,sn
), (2)

where mode(·) takes the label value that occurs most frequently in the set Sx,sn
. gKNN will predict the label

for each validation point x based on a majority voting scheme with the nearest neighbors in Sx,sn
.

Remarks k-NN leverages the majority voting of nearest neighbors when predicting the class labels. A
higher k-NN score means most of the nearest neighbors have the same label as the sample’s ground truth,
which indicates the feature space created by the source feature extractor presents the classes in the target task
better. Furthermore, when selecting useful sources, our main concern is to find a solution that is flexible to
both white-box and black-box scenarios, while maintaining its efficiency when having to deal with selecting
from a large pool of models. k-NN, with its non-parametric property, offers insights of how transferable the
source models are to the target tasks without any training, which makes it an efficient searching method.

4.3 Module-Mixing with Distance Correlation Loss

White-box Scenario In this setting, the architecture for all models is defined in advance for convenience.
After selecting the top-m source models, we will use them to build the module-mixing model for the target
task t. As mentioned above, each pre-trained feature extractor fsn

has task-specific weights {θsn,j}J
j=1. For

each task-specific layer j, the weights for the target task t are

θt,j = λm+1,jθnew +
∑

n∈Sm

λn,jθsn,j , (3)
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with θnew being a randomly initialized new module, θsn,j the frozen task-specific module of layer j of
a selected source model from Sm, and

∑m+1
n=1 λn,j = 1,∀j ∈ {1, · · · , J}. Further, the combined feature

representation of the module-mixing model is

f(·) = λm+1,J+1ft(·) +
∑

n∈Sm

λn,J+1fsn
(·), (4)

with {fsn
(·)}n∈Sm

∈ R·×dsn and ft(·) ∈ R·×dt being the features (outputs before the classification head)
of selected source models and that of the target model, respectively, and

∑m+1
n=1 λn,J+1 = 1. Note that

{λn,j}m+1
n=1 , j ∈ {1, · · · , J + 1}, denoted as λt for simplicity, are parameters that can be adjusted at initial-

ization and then learned. By setting the initial values of λt, we can control the importance of each task. For
instance, we can assume having no prior information on the task importance by initializing λt in all layers
with a uniform distribution as done below in the experiments.

Black-box Scenario We now assume the source models are all black-box APIs, which only produce the
features before the classification head. We choose a much smaller architecture for the target model with
feature dimensionality being smaller than that extracted from the black-box APIs. The rationale behind
this choice is that we want to prevent overfitting provided that the target task usually has a relatively small
dataset. Since the extracted feature dimensions from models can be different, we align the dimensions of the
APIs’ output features to that of the target model via FastICA (Hyvarinen, 1999; Hyvärinen & Oja, 2000),
an efficient algorithm for independent component analysis. Then we combine the features as in equation 4.
In the experiments, we show that we can still benefit from such a simplified strategy.

Distance Correlation Loss We expect the new modules for the target task can learn knowledge that
is not in the mixing modules from the source tasks. Specifically, if we can encourage the learned features
from the new modules to be more independent from that of the source models, we could potentially achieve
better performance. One way to do so is to train the target module-mixing model with distance correlation
loss, which was proposed by Zhen et al. (2022) as a loss function for improving robustness of neural networks
against adversarial attacks.

Distance correlation (DC) (Sz’ekely et al., 2007) is a measure of dependence between random vectors. DC
between two random variables X ∈ Rp and Y ∈ Rq satisfies 0 ≤ DC ≤ 1, and DC = 0 if and only if X
and Y are independent. Further, DC(X, Y ) is defined for X and Y in arbitrary dimensions. This property
allows one to minimize DC between {fsn}n∈Sm and ft even when their output feature dimensions dsn ̸= dt.
Here we follow the notation by Sz’ekely et al. (2007). We use a stochastic estimate of DC by averaging over
minibatches x with n samples each. The objective for minimizing the distance correlation is

⟨A(fsn
; x), B(ft; x)⟩√

⟨A(fsn
; x), A(fsn

; x)⟩ ⟨B(ft; x), B(ft; x)⟩
, (5)

where ⟨A, B⟩ =
∑n

i,j(A)i,j(B)i,j , A(fsn
; x) ∈ Rn×n (simplified as A) and B(ft; x) ∈ Rn×n (simplified as

B) are distance matrices computed with X := fsn(x) ∈ Rn×dsn and Y := ft(x) ∈ Rn×dt , respectively, with

ak,l = ||Xk −Xl||, āk,· = 1
n

n∑
l=1

ak,l, ā·,l = 1
n

n∑
k=1

ak,l,

ā·,· = 1
n2

n∑
k,l=1

ak,l, Ak,l = ak,l − āk,· − ā·,l + ā·,·,

where k, l ∈ {1, · · · , n}, and Ak,l is the kth row and lth column of A. Similarly, we can define bk,l = ||Yk−Yl||,
and Bk,l = bk,l − b̄k,· − b̄·,l + b̄·,·. We optimize all the module-mixing models with the cross-entropy loss and
DC loss as below, with σ being a constant trade-off parameter:

Ltotal = LCE + σ
∑

n∈Sm

LDC(fsn
(·), ft(·)), (6)
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Algorithm 1 Module-mixing Model.
Data: Training data Dt = {Xt,Yt}; Selected source models {fsn

}n∈Sm
;

Result: White-box: Module-mixing model f constructed with equation 4 and equation 3; Black-box:
Module-mixing model f constructed with only equation 4

for epoch← 1 to C do
for each minibatch x do

for n← 1 to Sm do
Calculate distance matrices A(fsn

; x) and B(ft; x) in equation equation 5
Calculate LDC(fsn

(x), ft(x)) as in equation 5
end
Calculate Ltotal as in equation 6
Update θnew, ct, λt using θ∗

new, c∗
t , λ∗

t = arg minLtotal(ht;Xt,Yt)
end

end

The objective θ∗
new, c∗

t , λ∗
t = arg minLtotal(ht;Xt,Yt) indicates that the trainable parameters in ht are the

new modules θnew, the classification head ct and convex combination parameters λt. The detailed algorithm
is presented in Algorithm 1. Overall, our motivation for using distance correlation loss is that it encourages
features extracted from previous models to be independent from the features learned from the new tasks;
Furthermore, since the output feature dimensions for new and old tasks might not be the same, we need the
loss to be able to handle features of different dimensions.

The reasons for using this module-mixing technique are threefold. First, it addresses feature saturation and
the issue of plasticity loss that occurs when model weights are fine-tuned over time, which is discussed in
Dohare et al. (2021); Ash & Adams (2019). They argue that, in a continual learning setting, if a model
is finetuned sequentially on several tasks, the model will likely not benefit from random initialization for
later tasks as it will lose plasticity over time. Therefore, our goal is to devise a way to make use of pre-
trained models rather than attempting to modify them. Our model ensures that we can learn from previous
knowledge while also adding new capacity at the start of training for each new task. Secondly, the flexible
nature of the model enables us to investigate whether there is a benefit to learning from more tasks, how to
balance training and inference efficiency, and the number of tasks to be reused. The reason is that when the
number of selected tasks increases, the amount of trainable parameters of the model grows slowly since only
λt is growing, which is negligible relative to θnew and ct. Importantly, the last and third reason is that this
approach allows us to transfer whether the source models are treated as white- or black-boxes.

5 Experiments

Datasets We create three main tasks with CIFAR100 (Krizhevsky, 2009), Office-31 (Saenko et al., 2010),
and the Slong stream in CTrL (Continual Transfer Learning benchmark) (Veniat et al., 2020). Each dataset
represents a unique scenario. With a special task creation scheme for CIFAR100 (detailed below), we study
the cases where the classes in each task overlap or are completely different. With Office-31, each task has
the same labels but different data distributions. With the challenging CTrL, we have a large pool of models
from which to start, and source and target tasks come from very distinct datasets and have diverse sample
sizes. Moreover, an experiment on Tiny-ImageNet (Le & Yang, 2015) is shown in the ablation study.

Network Architecture and Implementation Details For k-NN source model selection, we set k = 5
for all experiments, then select the source models with the top-m highest k-NN scores based on the results
of each task’s validation set. One experiment discussing other settings for k is provided in the Appendix
A.5. (i) In the white-box setting, for source model generation and target task adaptation, we choose a
pre-trained ResNet-18 on ImageNet as our frozen backbone and train the EFT modules with the Adam
optimizer. We set a = 8 and b = 16 for EFT for experiments on CIFAR100 and Office-31, and a = 2
and b = 1 for EFT on CtrL. (ii) In the black-box setting, a simple LeNet-5 (LeCun et al., 1998) is used
as target model. We provide results for when the source models are (a) ResNet-18s with EFT and (b) a

8



Under review as submission to TMLR

pre-trained MAE (He et al., 2021) (written as API in the tables). The DC loss trade-off is set to σ = 0.05
in all experiments. Implementation details can be found in the Appendix A.2, and the source code can be
found at https://anonymous.4open.science/r/module_mixing-00C7.

Baselines (a) Independent Model: Add randomly initialized EFT modules to a pre-trained frozen
backbone and train the model solely with target task data. (b) Multi-Source SVM: Extract features from
m randomly selected source models with the target training set, then concatenate the m set of extracted
features and use them to train an SVM model (Cortes & Vapnik, 1995). (c) Maximum Correlation
Weighting (MCW): Learn the maximum correlation parameters of m randomly selected source feature
extractors with one pass of the target training data (Lee et al., 2019). (d) Finetune Source: Take the
source model selected by k-NN with m = 1, and finetune the corresponding task-specific modules. (e) Cross-
dataset Soup: Train an independent model for the target task first, and then train the mixing weights
with selected source models (Wortsman et al., 2022) with top-m k-NN scores. (f) Model Stacking: Make
predictions with the selected top-m source models and an independent model for the target task, then
use those predictions as input features in a logistic regression model. (g) DECISION: Freezes the last
classification layers of source models and jointly optimize the source feature encoders together with their
aggregated weights. The source classification layers are used to generate pseudo labels for target data
(Ahmed et al., 2021a). (h) DATE (SHOT): Utilizes a source-similarity transferability module and a proxy
discriminability perception module for weight determination for source models (Han et al., 2023). (i) DINE:
First distills knowledge from the source predictor to a customized target model, then fine-tune the distilled
model to further fit to the target domain (Liang et al., 2021a).

MCW, DECISION, DATE, DINE are all previous state-of-the-art (SOTA) methods. However, only
MCW is designed for the same multi-source data-free supervised transfer learning setting (target task has
labels). DECISION and DATE have the most similar problem setting as ours, which is multi-source data-
free unsupervised domain adaptation (target task does not have labels). Furthermore, DINE is proposed
for adapting to single-source and multi-source black-box models when target task does not have labels. The
results of DECISION, DATE and DINE are obtained by strictly conforming to their public source code.

Though DECISION, DATE (SHOT), DINE achieve great performance under each of their settings,
they all assume close-set label spaces between source and target domains. Besides, due to their unsupervised
nature, they all use pseudo labels predicted by the source models to train the target models. According to Yi
et al. (2023), when the noise rate in pseudo labels is high at the beginning of the training, the target model
will quickly remember the noise due to confirmation bias. All the above reasons explain the performance
deterioration of these methods under our setting.

5.1 White-box Scenario

CIFAR100 We create a set of 40 tasks with CIFAR100. Different tasks in the collection may share some
of the same classes. However, we ensure that the overlapping classes do not have the same data samples
by splitting data for each class into two even parts and only allowing each class to exist in tasks twice; this
allows us to create a scenario where each task is private and has unique data samples. Details of each task
are shown in the Appendix A.2.1. We run each experiment 3 times. For each run, we randomize the list of
40 tasks and pick the first ten of the list as the starting source task pool. For the rest of the tasks, 11− 40,
we proceed as follows. First, for target task 11, we randomly select a subset of size e = {40, 80, 160, 320}.
With each subset, we select m = {1, 3, 5} related source tasks from the pool to train our new module-mixing
model. Before moving to target task 12, we train an independent model (via EFT) for task 11 with all
available data. This is then repeated for all the other tasks, 12 − 40. Performance is reported for different
values of m and e averaged over tasks 11 − 40. This is done to obtain results for target tasks of different
sizes while making sure all source models are trained with sufficient data.

Influence of the Number of Source Models It is important to note that each task has a different
optimal selection of m since the number of related tasks with positive transfer is different for each task.
However, for the sake of simplification, we report the results with a fixed number of source models (with
m = 1, 3, 5) for each task. In Figure 3 (Left), we observe that with all of the chosen m, we obtain better
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Figure 3: Left: Analysis of the influence of dataset size with respect to the number of source models adapted
on CIFAR100. Right: Analysis of the influence of dataset size e with respect to different mixing weight
initialization on CIFAR100 (m = 5 for all the experiments). λnew on the right panel represents the initial
value of the new random initialized modules.

results than directly finetuning a source model and training from scratch. Moreover, a wider gap is observed
between the independent model and the average performance of our module-mixing model with varying
numbers of source models as the size of the datasets decreases, indicating that one potentially gets better
performance gains from our method compared to training an independent model. Further, directly finetuning
a source model may result in overfitting, especially when the dataset size is small. Alternatively, our model
effectively reduces the chances of overfitting.

Influence of Different Mixing Weight Initialization We also show the effect of the mixing weights’
initialization on overall performance. We consider all the source tasks equally, hence no extra information on
which one is more important from the start. Hence, we initialize their mixing weights with equal values and
only change the weight values of the new random initialized modules, i.e., λnew = λm+1,J+1. For simplicity,
all layers share the same set of weights at initialization. In Figure 3 (Right), for m = 5, we observe that
the average accuracy for different mixing weight initialization is always better than the independent model,
albeit with particular initialization values one may get better performance than the average.

Office-31 Office-31 consists of 31 categories of images originating from 3 domains: Amazon, DSLR
and Webcam, including common objects in everyday office settings. Webcam consists of 795 low-resolution
images with noise; the Amazon domain has 2817 images from online merchants; DSLR images are captured
with a digital camera, and all 423 images are of high resolution and low noise. With this dataset, we show
how our model behaves to covariate shift, when all the tasks have sufficient data and share the same labels.

In this context, Finetune Source becomes a more competitive baseline now that it does not suffer from
serious overfitting issues. From Table 1, our model m = 1 guarantees that it has better if not equal
performance compared to finetuning the same source model. Moreover, we achieve a 7.75% performance
increase compared to Finetune Source when adapting to both two source models training with DC loss. We
also see that on average, learning from more source models that are trained on a related domain yields better
positive transfer, specifically, we observe a 2.78% increase from going from m = 1 to m = 2 when training
with DC loss. Since MCW is designed as a fast-to-adapt and lightweight model that does not introduce
too many trainable parameters, it loses its advantage in this setting when compared to other finetuning
models, and even multi-source SVM when the source models are trained on closely related domains. As for
cross-dataset soup and ensemble methods like model stacking, they work better when all the models are
trained on the same datasets (or different splits of the same dataset).

10



Under review as submission to TMLR

Table 1: Accuracy comparison on Office-31 in the white-box scenario. The highest accuracy is marked in
bold. We also compare the results training with and without distance correlation loss for our model.

Method A, D →W A, W → D W, D → A AVG
Model stacking 58.75 68.62 64.31 63.89
Cross-dataset soup 11.88 21.78 10.84 14.83
Multi-source SVM 90.11 81.82 84.98 85.64
MCW 64.84 62.12 76.79 67.92
DATE (SHOT) 60.74 52.74 20.43 44.63
DECISION 59.22 50.42 21.35 43.66
Independent 89.24 75.62 71.73 72.34
Finetune Source 91.25 88.24 82.69 87.39
m = 1 (w/o LDC) 97.50 88.24 91.52 92.42
m = 2 (w/o LDC) 95.00 94.12 91.17 93.43
m = 1 (w/ LDC) 95.00 90.20 91.87 92.36
m = 2 (w/ LDC) 97.50 94.12 95.05 95.14

Table 2: Accuracy comparison on CTrL in the white-box scenario. For our model, besides showing the effect
of the distance correlation loss, we also show the importance of a hyperparameter grid search when the model
pool is filled with models that are trained on very different source datasets.

Method m = 1 m = 3 m = 5 AVG
Model stacking 42.53 34.02 34.31 36.95
Cross-dataset soup 47.73 43.83 39.43 43.66
Multi-source SVM 44.34 28.21 26.59 33.08
MCW 42.73 45.02 54.09 47.28
Independent - - - 45.77
Finetune Source - - - 54.26
DATE (SHOT) (knn) 42.45 43.72 42.84 43.00
DECISION (knn) 42.56 45.24 45.68 44.49
Multi-source SVM (knn) 68.48 56.96 48.33 57.92
MCW (knn) 66.59 72.89 72.91 70.80
Ours (w/o LDC) 56.40 55.13 52.09 54.54
Ours (w/LDC) 56.48 55.35 52.79 54.87
Ours (w/LDC grid search) 67.26 70.24 68.71 68.73

CTrL The Slong stream from CTrL is a collection of 100 tasks created from five well-known computer vision
datasets: CIFAR10, CIFAR100, SVHN (Netzer et al., 2011), MNIST (LeCun et al., 2010), and Fashion-MNIST
(short as FMNIST) (Xiao et al., 2017). Each task in Slong is constructed by first randomly selecting a dataset,
then five classes of the chosen dataset, and finally, a large task (containing 5000 training samples) or a
small task (containing 25 training samples). During tasks 1 − 33, the fraction of small tasks is 50%; this
increases to 75% for tasks 34 − 66, and to 100% for tasks 67 − 100. More details of the dataset can be
found in the Appendix A.2.2. In our experiments, we use the first 60 tasks as our starting pool of source
models and gradually add newly trained models into the collection. We report the average test accuracy on
the last 40 tasks. This is a challenging problem not only because it simulates a realistic setting that starts
with a large collection of pre-trained tasks for repurposing, but also because the last 40 tasks have only 25
training samples each, which could cause serious overfitting problems. We perform a simple grid search on
hyperparameters (learning rate and weight decay) and compare them to having the same settings for all
tasks. Grid search and other experimental details are in the Appendix A.2. Results show that grid search
is necessary when tasks come from very different datasets. In Table 2, we also show results of an extension
of MCW and multi-source SVM with our k-NN source model sampler. The results show the effectiveness
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Table 3: Accuracy comparison on CIFAR100 in the black-box scenario. For our model, we also compare the
results training with and without distance correlation loss.

Method m = 1 m = 3 m = 5 API AVG
Model stacking 71.32 70.97 70.36 - 70.88
Cross-dataset soup 39.71 37.17 35.93 - 37.60
Multi-src SVM 54.76 51.48 47.60 - 51.28
MCW 50.46 52.75 59.34 - 54.18
DINE 40.41 41.23 39.76 - 40.47
Independent - - - - 70.39
Ours (w/o LDC) 71.43 71.74 71.17 69.97 71.08
Ours (w/ LDC) 72.03 71.82 71.46 71.80 71.78

of our k-NN source model sampler, helping to achieve a 23.52% increase for MCW compared to learning
from randomly sampled source models. However, we still suffer from the overfitting problem mainly on tasks
created with SVHN, which explains the gap between our method and MCW with k-NN sampler.

5.2 Black-box Scenario

Results on CIFAR100 (with all data in each task) are shown in Table 3. We also used k-NN to select source
models for baselines. The results show that we can still benefit from such a simple approach. Additional
experiment results on other datasets in this setting can be found in the Appendix A.6.6.
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Figure 4: Comparison of weight loss landscapes. The dotted lines shows the loss created with the random
directions given the trained model weights.

5.3 Insights Behind Module-Mixing Framework Design

Deng et al. (2021); Liebenwein et al. (2021); Cha et al. (2021); Wortsman et al. (2022) have shown that
a model with a flatter loss landscape contributes to the generalization of models in domain adaptation
and continual learning, thus is more robust to overfitting compared to directly finetune the source model.
A similar idea as ours proposed in Wortsman et al. (2022) showed that by averaging weights of multiple
finetuned models with the same initialization, the model’s optimum falls in a flatter loss/error landscape
with overall lower loss/error. Based on Li et al. (2017), the sharpness of loss landscapes correlates well with
generalization error.

To show that the module-mixing framework has a better generalization ability and more robust to overfitting
than directly finetuning source models, in Figure 4 we show the weight loss landscape of the independent
model (resneteft), finetune, and our module-mixing model (m = 1) trained on all data from three domains
in Office31. We follow the procedure from Deng et al. (2021) and create ten random directions given the

12



Under review as submission to TMLR

SVHN MNISTFMNIST
CIFAR100

CIFAR10

Target Task (1 source model)

0

20

40

60

80

100
Pe

rc
en

ta
ge

 o
f S

el
ec

te
d 

Ta
sk

s

SVHN MNISTFMNIST
CIFAR100

CIFAR10

Target Task (5 source model)

0

20

40

60

80

100 SVHN
MNIST
FMNIST
CIFAR100
CIFAR10

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Source Task Weight

0

5

10

15

20

Pe
rc

en
ta

ge

Figure 5: Selection of m = 1 (Left) and m = 5 (Middle) related tasks via k-NN. The x-axis shows the
membership of the target tasks, while the y-axis shows the proportion of selected source tasks for each
membership. Right: Module-mixing results for m = 1. The x-axis is the mixing weight value set for the
source model and the y-axis is the percentage of tasks in CIFAR100 for which the highest accuracy is obtained
at a given source weight setting.

trained model weights. The solid line is the average over the results from the ten random directions. We
can see from the plots that module-mixing model has a flatter loss landscape than the other methods, which
explains why the model alleviates the effects of potential overfitting more than directly finetuning the model.

We also provide another plot for module-mixing under black-box setting with limited target data in the
Appendix A.6.1. In the figure, we compare the module-mixing model with the Finetune Source model
trained on webcam with only 20% of its data. Same conclusions can be drawn from this setting.

5.4 Ablation Study

We construct a module-mixing model with the top-1 source model selected via k-NN and a target model
using only equation 4. In this setting, the mixing weight λ1 for the source model features is set as a value
in {0, 0.1, . . . , 0.9, 1}, and only the target model’s modules and the classification head are trained. Thus,
an independent model is trained when λ1 = 0, whereas only the classification head of a pre-trained source
model is trained when λ1 = 1. We test on our 30 CIFAR100 tasks. For each task, one setting for λ1 will
achieve the highest test accuracy. Each bar in Figure 5 (Right) shows the percentage of tasks that reached
peak accuracy at the given task weight setting. We see that the optimum results are mostly obtained (93%)
when the mixing weight is non-zero for either source and target models, thus justifying our model design.

Table 4: Ablation Study on CTrL dataset when m = 1.
Method Accuracy

Independent model 45.77
Random (only equation 4) 45.88
k-nearest neighbors (only 4) 55.68
Random (both equation 4 and equation 3) 46.61
k-nearest neighbors (both equation 4 and equation 3) 56.40

In Table 4, we examine the advantages of our source model selection and layer-wise module-mixing design on
CTrL (with m = 1 for adaptation). Alternatively, we consider selecting source models at random (instead of
k-NN) and only using the convex combination of features in equation 4 (instead of both features and module
parameters). We see that with random selection and only feature aggregation, we get an insignificant gain of
0.11% relative to the independent model, while with k-NN selection and only feature aggregation, the gain is
higher at 1%. Importantly, the complete approach using equation 4 and equation 3 with k-nearest neighbors
model ewselection yields a substantial 9.79% gain relative to that with random source model selection.
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Table 5: TinyImageNet in the white-box scenario. Selected task names are colored for clarity.
Task1 Task2 Task3 Task4 Task5 Task6 AVG

Independent model 34.55 32.64 35.07 32.47 33.16 33.25 33.52
Finetune source 34.38 31.77 33.51 32.73 33.59 32.90 33.15

m = 2

Model stacking 31.03 31.86 35.33 31.43 30.64 28.91 31.53
Cross-dataset soup 28.65 32.20 37.24 34.20 33.51 32.73 33.09
Multi-source SVM 28.64 25.44 25.76 24.72 27.04 23.76 25.89
MCW 21.76 22.32 22.40 21.68 22.16 21.68 22.00
DATE (SHOT) 21.24 22.76 21.49 22.36 21.66 21.90 21.90
DECISION 21.34 21.93 21.36 21.58 22.46 20.96 21.60

m = 1

LogME 35.16 34.80 35.36 32.90 35.07 33.28 34.43
Selected task Task2 Task1 Task2 Task5 Task4 Task5
LEEP 35.16 33.59 35.36 32.90 35.07 34.08 34.36
Selected task Task2 Task3 Task2 Task5 Task4 Task3
Ours 35.16 33.59 36.26 32.90 35.07 35.40 34.73
Selected task Task2 Task3 Task4 Task5 Task4 Task4

m = 2

LogME 35.00 34.08 33.68 33.52 34.96 33.36 34.10

Selected tasks Task2 Task1 Task2 Task3 Task4 Task4
Task6 Task3 Task4 Task5 Task6 Task5

LEEP 35.00 34.08 33.68 33.52 34.96 34.96 34.37

Selected tasks Task2 Task1 Task2 Task3 Task4 Task3
Task6 Task3 Task4 Task5 Task6 Task5

Ours 36.40 34.08 33.68 33.52 34.96 33.84 34.41

Selected tasks Task2 Task1 Task2 Task3 Task4 Task1
Task3 Task3 Task4 Task5 Task6 Task4

To show that our method also applies to more complex tasks, we provide an experiment on Tiny-ImageNet.
We use a randomly initialized ResNet-18 as the backbone. The purpose of this setting is to show that the
improvement in performance of our model does not rely on a powerful and closely related backbone model
since Tiny-ImageNet is a subset of ImageNet. We create 6 tasks with 200 classes in the dataset, with 50
classes for each task. Task 1 through 5 have overlapping classes, while Task 6 has no overlapping with other
tasks. Task details are presented in Table 17 and 18, where tasks with overlapping classes have the same
color-coding. Since the tasks in this setting all have sufficient training data, the newly initialized task-specific
modules for the target task are given higher initial module-mixing weights (0.9) to encourage the learning of
target task-specific knowledge. For each task, we search for top-m most similar tasks in the other 5 tasks. In
Table 5, we also provide the source model selection results, shown in “selected task”. The task names have
the same colors as in the header of the table to provide more clarity. We observe that tasks with overlapping
classes are always picked for each task. For instance, Task 2 overlaps with Task 1 and 3, so when we build
our module-mixing model with the top-2 source models to reuse, these tasks are selected.

Furthermore, we compare with LEEP (Nguyen et al., 2020) and LogME (You et al., 2021) in identifying the
most transferable source models. Different model transferability evaluation methods are first used to select
the top-m transferable models, and then the selected source models are used to build our module-mixing
models to transfer to each target task. As is shown in Table 5, our selection method’s performance is on par
with the baselines, while having a slight edge over them. We also provided the average results and standard
deviation over three runs comparing our method to LogME and LEEP in the Appendix A.6.2.

Moreover, we show how well the k-NN algorithm selects source models with CTrL. In Figure 5, we show
selection results with m = 1 (Left) and m = 5 (Middle). Each bar represents the proportion of selected tasks
from each dataset for the 40 tasks. When m = 1, target tasks created with SVHN, MNIST, and CIFAR10 always
pick source models trained from the same datasets. Also, we only have 4 FMNIST tasks in the experiments,
which explains why the selector picks a high 25% of CIFAR10 source models. As m increases to 5, tasks
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with classes from SVHN, MNIST, FMNIST still almost always pick models created from the same dataset. For
CIFAR10 and CIFAR100, since they both contain images of natural objects, they are more similar.
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Figure 6: Umap plots on the Webcam domain: each color represents the same label across all three panels.

5.4.1 UMAP Plots of Office-31 Domains

Finally, we validate if our model learned meaningful data representations by visualizing the features of
training data extracted from the feature extractor of models Independent, Finetune Source and our Module-
mixing model, respectively, using UMAP (McInnes et al., 2018) as shown in Figure 6. Learned features with
our model are relatively more clustered and separated compared to that for the other two methods. We
also provide quantitative results examining the separation of the features in Appendix A.6.4. For the DSLR
domain, the same conclusions can be drawn, as shown in Figure 12 in the Appendix A.6.3.
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Figure 7: Umap plots on the Amazon Domain with training data. Each unique color represents the same
label across all three panels.

For the Amazon domain, in Figure 7, we create scatter plots of the learned UMAP embeddings of the
training data, and color samples (points) according to their ground truth labels. All three plots in Figure
7 have good clustering patterns. However, if we color-code the training data points by their respective
predicted probabilities of outcomes as in Figure 8, we notice that models Independent and Finetune Source
are overconfident about their predictions, while our method also has the effect of preventing the model
from predicting the labels too confidently during training. In Figure 9, we visualize the extracted features
of the test data after UMAP embedding. We see that the Independent model is less confident about the
predictions. While Finetune Source has higher predicted probabilities on the test set, our model has relatively
better clustering and is more certain about the predictions compared to Finetune Source. Besides the loss
weight landscape analysis, this observation can be seen as another indication that our model has better
generalization.
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Figure 8: Umap plots on the Amazon domain with training data. The colors represent the predicted
probability. Independent and Finetune Source have high overall probability for their predictions, while our
method does not. This indicates that our method has better generalization.
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Figure 9: Umap plots on the Amazon domain with testing data. The colors represent the predicted prob-
ability. Independent and Finetune Source have lower overall probability for their predictions compared to
our method’s predictions.

6 Conclusion

In this work, we studied an under-explored source-free supervised transfer learning scenario. The proposed
framework can efficiently search for related models to adapt to and also can be applied to white-box and
black-box source models. To test our module-mixing model and encourage more work in this field, we not
only experimented on a classic domain adaptation dataset Office-31, but also crafted new datasets based on
existing benchmarks, including CIFAR100, CTrL and Tiny-ImageNet. We showed promising improvements
compared to the baselines and examined the properties of each part of our framework.

Nevertheless, we acknowledge some limitations of the proposed method. So far, we initialize the model’s
mixing weights with equal values or do a grid search for the best mixing weights. However, it will be
interesting to study how to initialize the mixing weights according to different source models’ transferability
to the target task. Moreover, we require all models to have task-specific modules of same sizes for the white-
box scenario. Therefore, another interesting future work is to see how to build layer-wise module-mixing
modules when the task-specific modules are not of the same sizes.
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