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Abstract

In statistical learning and analysis from shared data, which is increasingly widely
adopted in platforms such as federated learning and meta-learning, there are two
major concerns: privacy and robustness. Each participating individual should be
able to contribute without the fear of leaking one’s sensitive information. At the
same time, the system should be robust in the presence of malicious participants
inserting corrupted data. Recent algorithmic advances in learning from shared
data focus on either one of these threats, leaving the system vulnerable to the
other. We bridge this gap for the canonical problem of estimating the mean from
i.i.d. samples. We introduce PRIME, which is the first efficient algorithm that
achieves both privacy and robustness for a wide range of distributions. We further
complement this result with a novel exponential time algorithm that improves the
sample complexity of PRIME, achieving a near-optimal guarantee and matching a
known lower bound for (non-robust) private mean estimation. This proves that there
is no extra statistical cost to simultaneously guaranteeing privacy and robustness.

1 Introduction

When releasing database statistics on a collection of entries from individuals, we would ideally
like to make it impossible to reverse-engineer each individual’s potentially sensitive information.
Privacy-preserving techniques add just enough randomness tailored to the statistical task to guarantee
protection. At the same time, it is becoming increasingly common to apply such techniques to
databases collected from multiple sources, not all of which can be trusted. Emerging data access
frameworks, such as federated analyses across users’ devices or data silos [50], make it easier to
temper with such collected datasets, leaving private statistical analyses vulnerable to a malicious
corruption of a fraction of the data.

Differential privacy has emerged as a widely accepted de facto measure of privacy, which is now a
standard in releasing the statistics of the U.S. Census data [2] statistics and also deployed in real-world
commercial systems [74, 40, 41]. A statistical analysis is said to be differentially private (DP) if
the likelihood of the (randomized) outcome does not change significantly when a single arbitrary
entry is added/removed (formally defined in §1.2). This provides a strong privacy guarantee: even
a powerful adversary who knows all the other entries in the database cannot confidently identify
whether a particular individual is participating in the database based on the outcome of the analysis.
This ensures plausible deniability, central to protecting an individual’s privacy.

In this paper, we focus on one of the most canonical problems in statistics: estimating the mean of a
distribution from i.i.d. samples. For distributions with unbounded support, such as sub-Gaussian and
heavy-tailed distributions, fundamental trade-offs between accuracy, sample size, and privacy have
only recently been identified [58, 52, 54, 3] and efficient private estimators proposed. However, these
approaches are brittle when a fraction of the data is corrupted, posing a real threat, referred to as data
poisoning attacks [19, 79]. In defense of such attacks, robust (but not necessarily private) statistics
has emerged as a popular setting of recent algorithmic and mathematical breakthroughs [73, 30].
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One might be misled into thinking that privacy ensures robustness since DP guarantees that a single
outlier cannot change the estimation too much. This intuition is true only in a low dimension; each
sample has to be an obvious outlier to significantly change the mean. However, in a high dimension,
each corrupted data point can look perfectly uncorrupted but still shift the mean significant when
colluding together (e.g., see Fig. 1). Focusing on the canonical problem of mean estimation, we
introduce novel algorithms that achieve robustness and privacy simultaneously even when a fraction
of data is corrupted arbitrarily. For such algorithms, there is a fundamental question of interest: do
we need more samples to make private mean estimation also robust against adversarial corruption?

Sub-Gaussian distributions. If we can afford exponential run-time in the dimension, robustness
can be achieved without extra cost in sample complexity. We introduce a novel estimator that (i)
satisfies (ε, δ)-DP, (ii) achieves near-optimal robustness under α-fraction of corrupted data, achieving
accuracy of O(α

√
log(1/α)) nearly matching the fundamental lower bound of Ω(α) that holds even

for a (non-private) robust mean estimation with infinite samples, and (iii) achieves near-optimal
sample complexity matching that of a fundamental lower bound for a (non-robust) private mean
estimation as shown in Table 1.
Theorem 1 (Informal Theorem 7, exponential time). Algorithm 2 is (ε, δ)-DP. When α fraction of
the data is arbitrarily corrupted from n samples from a d-dimensional sub-Gaussian distribution
with mean µ and an identity sub-Gaussian parameter, if n = Ω̃(d/α2 + (d+ d1/2 log(1/δ))/(αε))

then Algorithm 2 achieves ‖µ̂− µ‖2 = O(α
√

log(1/α)) w.h.p.

We introduce PRIME (PRIvate and robust Mean Estimation) in §2.3 with details in Algorithm 9 in
Appendix E.1, to achieve computational efficiency. It requires a run-time of only Õ(d3 + nd2), but at
the cost of requiring extra d1/2 factor larger number of samples. This cannot be improved upon with
current techniques since efficient robust estimators rely on the top PCA directions of the covariance
matrix to detect outliers. [78] showed that Ω̃(d3/2) samples are necessary to compute PCA directions
while preserving (ε, δ)-DP when ‖xi‖2 = O(

√
d). It remains an open question if this Ω̃(d3/2/(αε))

bottleneck is fundamental; no matching lower bound is currently known.
Theorem 2 (Informal Theorem 6, polynomial time). PRIME is (ε, δ)-DP and under the assumption
of Thm.1, if n = Ω̃(d/α2 + (d3/2 log(1/δ))/(αε)), achieves ‖µ̂− µ‖2 = O(α

√
log(1/α)) w.h.p.

Upper bound (poly-time) Upper bound (exp-time) Lower bound

(ε, δ)-DP [52] Õ( d
α2 + d log1/2(1/δ)

αε ) Õ( d
α2 + d

αε )♣ Ω̃( d
α2 + d

αε )♠

α-corruption [36] Õ( d
α2 ) Õ( d

α2 ) Ω( d
α2 )

α-corruption and Õ
(
d
α2 + d3/2 log(1/δ)

αε

)
Õ( d

α2 + d+d1/2 log(1/δ)
αε ) Ω̃( d

α2 + d
αε )♠

(ε, δ)-DP (this paper) [Theorem 6] [Theorem 7] [52]

Table 1: For estimating the mean µ ∈ Rd of a sub-Gaussian distribution with a known covariance, we
list the sufficient or necessary conditions on the sample sizes to achieve an error ‖µ̂− µ‖2 = Õ(α)
under (ε, δ)-DP, corruption of an α-fraction of samples, and both. ♣ requires the distribution to be a
Gaussian [14] and ♠ requires δ ≤

√
d/n.

Heavy-tailed distributions. When samples are drawn from a distribution with a bounded covariance,
parameters of Algorithm 2 can be modified to nearly match the optimal sample complexity of (non-
robust) private mean estimation in Table 2. This algorithm also matches the fundamental limit on the
accuracy of (non-private) robust estimation, which in this case is Ω(α1/2).
Theorem 3 (Informal Theorem 8, exponential time). From a distribution with mean µ ∈ Rd and
covariance Σ � I, n samples are drawn and α-fraction is corrupted. Algorithm 2 is (ε, δ)-DP and if
n = Ω̃((d+ d1/2 log(1/δ))/(αε) + d1/2 log3/2(1/δ)/ε) achieves ‖µ̂− µ‖2 = O(α1/2) w.h.p.

The proposed PRIME-HT for covariance bounded distributions achieve computational efficiency
at the cost of an extra factor of d1/2 in sample size. This bottleneck is also due to DP PCA, and it
remains open whether this gap can be closed by an efficient estimator.
Theorem 4 (Informal Theorem 9, polynomial time). PRIME-HT is (ε, δ)-DP and if n =

Ω̃((d3/2 log(1/δ))/(αε)) achieves ‖µ̂− µ‖2 = O(α1/2) w.h.p. under the assumptions of Thm. 3.
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Upper bound (poly-time) Upper bound (exp-time) Lower bound

(ε, δ)-DP [54] Õ(d log1/2(1/δ)
αε ) Õ(d log1/2(1/δ)

αε ) Ω( d
αε )

α-corruption [36] Õ( dα ) Õ( dα ) Ω( dα )

α-corruption and Õ
( d3/2 log(1/δ)

αε

)
Õ(d+d1/2 log3/2(1/δ)

αε ) Ω( d
αε )

(ε, δ)-DP (this paper) [Theorem 9] [Theorem 8] ([54])

Table 2: For estimating the mean µ ∈ Rd of a covariance bounded distribution, we list the sufficient
or necessary conditions on the sample size to achieve an error ‖µ̂− µ‖2 = O(α1/2) under (ε, δ)-DP,
corruption of an α-fraction of samples, and both.

1.1 Technical contributions

We introduce PRIME which simultaneously achieves (ε, δ)-DP and robustness against α-fraction of
corruption. A major challenge in making a standard filter-based robust estimation algorithm (e.g.,
[30]) private is the high sensitivity of the filtered set that we pass from one iteration to the next.
We propose a new framework which makes private only the statistics of the set, hence significantly
reducing the sensitivity. Our major innovation is a tight analysis of the end-to-end sensitivity of this
multiple interactive accesses to the database. This is critical in achieving robustness while preserving
privacy and is also of independent interest in making general iterative filtering algorithms private.

The classical filter approach (see, e.g. [30]) needs to access the database O(d) times, which brings an
extra O(

√
d) factor in the sample complexity due to DP composition. In order to reduce the iteration

complexity, following the approach in [36], we propose filtering multiple directions simultaneously
using a new score based on the matrix multiplicative weights (MMW). In order to privatize the MMW
filter, our major innovation is a novel adaptive filtering algorithm DPTHRESHOLD(·) that outputs
a single private threshold which guarantees sufficient progress at every iteration. This brings the
number of database accesses from O(d) to O((log d)2).

One downside of PRIME is that it requires an extra d1/2 factor in the sample complexity, compared
to known lower bounds for (non-robust) DP mean estimation. To investigate whether this is also
necessary, we propose a sample optimal exponential time robust mean estimation algorithm in §4
and prove that there is no extra statistical cost to jointly requiring privacy and robustness. Our major
technical innovations is in using resilience property of the dataset to not only find robust mean (which
is the typical use case of resilience) but also bound sensitivity of that robust mean.

1.2 Preliminary on differential privacy (DP)

DP is a formal metric for measuring privacy leakage when a dataset is accessed with a query [37].

Definition 1.1. Given two datasets S = {xi}ni=1 and S′ = {x′i}n
′

i=1, we say S and S′ are neighboring
if d4(S, S′) ≤ 1 where d4(S, S′) , max{|S \ S′|, |S′ \ S|}, which is denoted by S ∼ S′. For an
output of a stochastic query q on a database, we say q satisfies (ε, δ)-differential privacy for some
ε > 0 and δ ∈ (0, 1) if P(q(S) ∈ A) ≤ eεP(q(S′) ∈ A) + δ for all S ∼ S′ and all subset A.

Let z ∼ Lap(b) be a random vector with entries i.i.d. sampled from Laplace distribution with pdf
(1/2b)e−|z|/b. Let z ∼ N (µ,Σ) denote a Gaussian random vector with mean µ and covariance Σ.

Definition 1.2. The sensitivity of a query f(S) ∈ Rk is defined as ∆p = supS∼S′ ‖f(S) −
f(S′)‖p for a norm ‖x‖p = (

∑
i∈[k] |xi|p)1/p. For p = 1, the Laplace mechanism outputs

f(S) + Lap(∆1/ε) and achieves (ε, 0)-DP [37]. For p = 2, the Gaussian mechanism outputs
f(S) +N (0, (∆2(

√
2 log(1.25/δ))/ε)2I) and achieves (ε, δ)-DP [38].

We use these output perturbation mechanisms along with the exponential mechanism [69] as building
blocks. Appendix A provides detailed survey of privacy and robust estimation.

1.3 Problem formulation

We are given n samples from a sub-Gaussian distribution with a known covariance but unknown
mean, and α fraction of the samples are corrupted by an adversary. Our goal is to estimate the
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unknown mean. We follow the standard definition of adversary in [30], which can adaptively choose
which samples to corrupt and arbitrarily replace them with any points.
Assumption 1. An uncorrupted dataset Sgood consists of n i.i.d. samples from a d-dimensional
sub-Gaussian distribution with mean µ ∈ Rd and covariance E[xx>] = Id, which is 1-sub-Gaussian,
i.e., E[exp(v>x)] ≤ exp(‖v‖22/2) for all v ∈ Rd. For some α ∈ (0, 1/2), we are given a corrupted
dataset S = {xi ∈ Rd}ni=1 where an adversary adaptively inspects all the samples in Sgood, removes
αn of them, and replaces them with Sbad which are αn arbitrary points in Rd.

Similarly, we consider the same problem for heavy-tailed distributions with a bounded covariance.
We present the assumption and main results for covariance bounded distributions in Appendix B.

Notations. Let [n] = {1, 2, . . . , n}. For x ∈ Rd, we use ‖x‖2 = (
∑
i∈[d](xi)

2)1/2 to denote the
Euclidean norm. For X ∈ Rd×d, we use ‖X‖2 = max‖v‖2=1 ‖Xv‖2 to denote the spectral norm.
The d× d identity matrix is Id×d. Whenever it is clear from context, we use S to denote both a set of
data points and also the set of indices of those data points. Õ and Ω̃ hide poly-logarithmic factors in
d, n, 1/α, and the failure probability.

Outline. We present PRIME for sub-Gaussian distribution in §2, and present theoretical analysis in
§3. We then introduce an exponential time algorithm with near optimal guarantee in §4. Due to space
constraints, analogous results for heavy-tailed distributions are presented in Appendix B.

2 PRIME: efficient algorithm for robust and DP mean estimation

In order to describe the proposed algorithm PRIME, we need to first describe a standard (non-private)
iterative filtering algorithm for robust mean estimation.

2.1 Background on (non-private) iterative filtering for robust mean estimation

Non-private robust mean estimation approaches recursively apply the following filter, whose frame-
work is first proposed in [28]. Given a dataset S = {xi}ni=1, the current set S0 ⊆ [n] of data points is
updated starting with S1 = [n]. At each step, the following filter (Algorithm 1 in [63]) attempts to
detect the corrupted data points and remove them.

1. Compute the top eigenvector vt ← arg maxv:‖v‖2=1 v
>Cov(St−1)v of the covariance of

the current data set {xi}i∈St−1
;

2. Compute scores for all data points j ∈ St−1: τj ←
(
v>t (xj −Mean(St−1))

)2
;

3. Draw a random threshold: Zt ← Unif([0, 1]) ;
4. Remove outliers from St−1 defined as {i ∈ St−1 : τi is in the largest 2α-tail of {τj}j∈St−1

and τi ≥ Zt τmax}, where τmax = maxj∈St−1
τj

This is repeated until the empirical covariance is sufficiently small and the empirical mean µ̂ is output.
At a high level, the correctness of this algorithm relies on the key observation that the α-fraction
of adversarial corruption can not significantly change the mean of the dataset without introducing
large eigenvalues in the empirical covariance. Therefore, the algorithm finds top eigenvector of the
empirical covariance in step 1, and tries to correct the empirical covariance by removing corrupted
data points. Each data point is assigned a score in step 2 which indicates the “badness” of the data
points, and a threshold Zt in step 3 is carefully designed such that step 4 guarantees to remove
more corrupted data points than good data points (in expectation). This guarantees the following
bound achieving the near-optimal sample complexity shown in the second row of Table 1. A formal
description of this algorithm is in Algorithm 4 in Appendix C.
Proposition 2.1 (Corollary of [63, Theorem 2.1]). Under assumption 1, the above filtering algorithm
achieves accuracy ‖µ̂− µ‖2 ≤ O(α

√
log(1/α)) w.p. 0.9 if n ≥ Ω̃(d/α2) .

Challenges in making robust mean estimation private. To get a DP and robust mean, a naive
attempt is to apply a standard output perturbation mechanism to µ̂. However, this is obviously
challenging since the end-to-end sensitivity is intractable. The standard recipe to circumvent this is to
make the current “state” St private at every iteration. Once St−1 is private (hence, public knowledge),
making the next “state” St private is simpler. We only need to analyze the sensitivity of a single step
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and apply some output perturbation mechanism with (εt, δt). End-to-end privacy is guaranteed by
accounting for all these (εt, δt)’s using the advanced composition [51]. This recipe has been quite
successful, for example, in training neural networks with (stochastic) gradient descent [1], where
the current state can be the optimization variable xt. However, for the above (non-private) filtering
algorithm, this standard recipe fails, since the state St is a set and has large sensitivity. Changing a
single data point in St can significantly alter which (and how many) samples are filtered out.

2.2 A new framework for private iterative filtering

Instead of making the (highly sensitive) St itself private, we propose a new framework which makes
private only the statistics of St: the mean µt and the top principal direction vt. There are two versions
of this algorithm, which output the exactly same µ̂ with the exactly same privacy guarantees, but are
written from two different perspectives. We present here the interactive version from the perspective
of an analyst accessing the dataset via DP queries (qrange, qsize, qmean, qnorm and qPCA), because this
version makes clear the inner operations of each private mechanisms, hence making (i) the sensitivity
analysis transparent, (ii) checking the correctness of privacy guarantees easy, and (iii) tracking
privacy accountant simple. In practice, one should implement the centralized version (Algorithm 7 in
Appendix D), which is significantly more efficient.

Algorithm 1: Private iterative filtering (interactive version)
Input: S = {xi}i∈[n], α ∈ (0, 1/2), probability ζ ∈ (0, 1), # of iterations T = Θ(d), (ε, δ)

1 (x̄, B)← qrange(S, 0.01ε, 0.01δ)

2 ε1 ← min{0.99ε, 0.9}/(4
√

2T log(2/δ)), δ1 ← 0.99δ/(8T )
3 if n < (4/ε1) log(1/(2δ1)) then Output: ∅
4 for t = 1, . . . , T do
5 nt ← qsize({(µ`, v`, Z`)}`∈[t−1], ε1, x̄, B), if nt < 3n/4 then Output: ∅
6 µt ← qmean({(µ`, v`, Z`)}`∈[t−1], ε1, x̄, B)
7 λt ← qnorm({(µ`, v`, Z`)}`∈[t−1], µt, ε1, x̄, B)
8 if λt ≤ (C − 0.01)α log 1/α then Output: µt
9 vt ← qPCA({(µ`, v`, Z`)}`∈[t−1], µt, ε1, δ1, x̄, B))

10 Zt ← Unif([0, 1])

Output: µt

We give a high-level explanation of each step of Algorithm 1 here and give the formal definitions of
all the queries in Appendix D. First, qrange returns (the parameters of) a hypercube x̄+[−B/2, B/2]d

that is guaranteed to include all uncorrupted samples while preserving privacy. This is achieved
by running d coordinate-wise private histograms and selecting x̄j as the center of the largest bin
for the j-th coordinate. Since covariance is I, qrange returns a fixed B = 8σ

√
log(dn/ζ). Such

an adaptive estimate of the support is critical in tightly bounding the sensitivity of all subsequent
queries, which operate on the clipped dataset; all data points are projected as Px̄+[−B/2,B/2]d(x) =
arg miny∈x̄+[−B/2,B/2]d ‖y − x‖2 in all the queries that follow. With clipping, a single data point
can now change at most by B

√
d.

The subsequent steps perform the non-private filtering algorithm of §2.1, but with private statistics µt
and vt. As the set St changes over time, we lower bound its size (which we choose to be |St| > n/2)
to upper bound the sensitivity of other queries qmean, qnorm and qPCA.

At the t-th iterations, every time a query is called the data curator (i) uses (x̄, B) to clip the data, (ii)
computes St by running t− 1 steps of the non-private filtering algorithm of §2.1 but with a given
fixed set of parameters {(µ`, v`)}`∈[t−1] (and the given randomness {Z`}`∈[t−1]), and (iii) computes
the queried private statistics of St. If the private spectral norm of the covariance of St (i.e., λt) is
sufficiently small, we output the private and robust mean µ̂ = µt (line 8). Otherwise, we compute the
private top PCA direction vt and draw an randomness Zt to be used in the next step of filtering, as in
the non-private filtering algorithm. We emphasize that {S`} are not private, and hence never returned
to the analyst. We also note that this interactive version is redundant as every query is re-computing
St. In our setting, the analyst has the dataset and there is no need to separate them. This leads to a
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centralized version we provide in Algorithm 7 in the appendix, which avoids redundant computations
and hence is significantly more efficient.

The main challenge in this framework is the privacy analysis. Because {S`}`∈[t−1] is not private, each
query runs t− 1 steps of filtering whose end-to-end sensitivity could blow-up. Algorithmically, (i)
we start with a specific choice of a non-private iterative filtering algorithm (among several variations
that are equivalent in non-private setting but widely differ in its sensitivity), and (ii) make appropriate
changes in the private queries (Algorithm 1) to keep the sensitivity small. Analytically, the following
key technical lemma allows a sharp analysis of the end-to-end sensitivity of iterative filtering.
Lemma 2.2. Let St(S) denote the resulting subset of samples after t iterations of the filtering
in the queries (qsize, qmean, qnorm, and qPCA) are applied to a dataset S using fixed parameters
{(µ`, v`, Z`)}t`=1. Then, we have d4(St(S), St(S ′)) ≤ d4(S,S ′), where d4(S,S ′) , max{|S \
S ′|, |S ′ \ S|}.

Recall that two datasets are neighboring, i.e., S ∼ S ′, iff d4(S,S ′) ≤ 1. This lemma implies that if
two datasets are neighboring, then they are still neighboring after filtering with the same parameters,
no matter how many times we filter them. Hence, this lemma allows us to use the standard output-
perturbation mechanisms with (ε1, δ1)-DP. Advanced composition ensures that end-to-end guarantee
of 4T such queries is (0.99ε, 0.99δ)-DP. Together with (0.01ε, 0.01δ)-DP budget used in qrange, this
satisfied the target privacy. Analyzing the utility of this algorithm, we get the following guarantee.
Theorem 5. Algorithm 1 is (ε, δ)-DP. Under Assumption 1, there exists a universal constant c ∈
(0, 0.1) such that if α ≤ c and n = Ω̃

(
(d/α2) + d2(log(1/δ))3/2/(εα)

)
then Algorithm 1 achieves

‖µ̂− µ‖2 ≤ O(α
√

log(1/α)) with probability 0.9.

The first term O(d/α2) in the sample complexity is optimal (cf. Table 1), but there is a factor of d
gap in the second term. This is due to the fact that we need to run O(d) iterations in the worst-case.
Such numerous accesses to the database result in large noise to be added at each iteration, requiring
large sample size to combat that extra noise. We introduce PRIME to reduce the number of iterations
to O((log d)2) and significantly reduce the sample complexity.

2.3 PRIME: novel robust and private mean estimator

Algorithm 1 (specifically Filter(·) in Algorithm 1) accesses the databaseO(d) times. This is necessary
for two reasons. First, the filter checks only one direction vt at each iteration. In the worst case,
the corrupted samples can be scattered in Ω(d) orthogonal directions such that the filter needs to
be repeated O(d) times. Secondly, even if the corrupted samples are clustered together in one
direction, the filter still needs to be repeated O(d) times. This is because we had to use a large
(random) threshold of dB2Zt = O(d) to make the threshold data-independent so that we can keep
the sensitivity of Filter(·) low, which results in slow progress. We propose filtering multiple directions
simultaneously using a new score {τi} based on the matrix multiplicative weights. Central to this
approach is a novel adaptive filtering algorithm DPTHRESHOLD(·) that guarantees sufficient decrease
in the total score at every iteration.

2.3.1 Matrix Multiplicative Weight (MMW) scoring

The MMW-based approach, pioneered in [36] for non-private robust mean estimation, filters out
multiple directions simultaneously. It runs over O(log d) epochs and every epoch consists ofO(log d)
iterations. At every epoch s and iteration t, step 2 of the iterative filtering in §2.1 is replaced by a new
score τi = (xi −Mean(S

(s)
t ))TU

(s)
t (xi −Mean(S

(s)
t )) where U (s)

t now accounts for all directions
in Rd but appropriately weighted. Precisely, it is defined via the matrix multiplicative update:

U
(s)
t =

exp
(
α(s)

∑
r∈[t](Cov(S

(s)
r )− I)

)
Tr
(

exp(α(s)
∑
r∈[t](Cov(S

(s)
r )− I))

) ,
for some choice of α(s) > 0. If we set the number of iterations to one, a choice of α(s) =∞ recovers
the previous score that relied on the top singular vector from §2.1 and a choice of α(s) = 0 gives a
simple norm based score τi = ‖xi‖22. An appropriate choice of α(s) smoothly interpolates between
these two extremes, which ensures that O(log d) iterations are sufficient for the spectral norm of the
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covariance to decrease strictly by a constant factor. This guarantees that after O(log d) epochs, we
sufficiently decrease the covariance to ensure that the empirical mean is accurate enough. Critical
in achieving this gain is our carefully designed filtering algorithm DPTHRESHOLD that uses the
privately computed MMW-based scores using Gaussian mechanism on the covariance matrices as
shown in Algorithm 11 in Appendix E.

2.3.2 Adaptive filtering with DPTHRESHOLD

Novelty. The corresponding non-private filtering of [36, Algorithm 9] for robust mean estimation
takes advantage of an adaptive threshold, but filters out each sample independently resulting in a
prohibitively large sensitivity; the coupling between each sample and the randomness used to filter it
can change widely between two neighboring datasets. On the other hand, Algorithm 1 (i.e., Filter(·)
in Algorithm 6) takes advantage of jointly filtering all points above a single threshold B2dZt with a
single randomness Zt ∼ Unif[0, 1], but the non-adaptive (and hence large) choice of the range B2d
results in a large number of iterations because each filtering only decrease the score by little. To
sufficiently reduce the total score while maintaining a small sensitivity, we introduce a filter with a
single and adaptive threshold.

Algorithm. Our goal here is to privately find a single scalar ρ such that when a randomized filter is
applied on the scores {τi} with a (random) threshold ρZ (with Z drawn uniform in [0, 1]), we filter
out enough samples to make progress in each iteration while ensuring that we do not remove too
many uncorrupted samples. This is a slight generalization of the non-private algorithm in Section 2.1,
which simply set ρ = maxj∈St τj . While this guarantees the filter removes more corrupted samples
than good samples, it does not make sufficient progress in reducing the total score of the samples.

Ideally, we want the thresholding to decrease the total score by a constant multiplicative factor, which
will in the end allow the algorithm to terminate within logarithmic iterations. To this end, we propose
a new scheme of using the largest ρ such that the following inequality holds:∑

τi>ρ

(τi − ρ) ≥ 0.31
∑
τi∈St

(τi − 1) . (1)

We use a private histogram of the scores to approximate this threshold. Similar to [55, 58], we use
geometrically increasing bin sizes such that we use only O(logB2d) bins while achieving a preferred
multiplicative error in our quantization. At each epoch s and iteration t, we run DPTHRESHOLD
sketched in the following to approximate ρ followed by a random filter. Step 3 replaces the non-private
condition in Eq. (1). A complete description is provided in Algorithm 11.

1. Privately compute scores for all data points i ∈ S(s)
t : τi ← (xi − µt)>U (s)

t (xi − µt) ;
2. Compute a private histogram {h̃j}2+log(B2d)

j=1 of the scores over geometrically sized bins
I1 = [1/4, 1/2), I2 = [1/2, 1), . . . , I2+log(B2d) = [2log(B2d)−1, 2log(B2d)] ;

3. Privately find the largest ` satisfying
∑
j≥`(2

j − 2`) h̃j ≥ 0.31
∑
i∈S(s)

t
(τi − 1) ;

4. Output ρ = 2` .

3 Analyses of PRIME

Building on the framework of Algorithm 1, PRIME (Algorithm 9) replaces the score with the MMW-
based score presented in §2.3.1 and the filter with the adaptive DPTHRESHOLD. This reduces the
number of iterations to T = O((log d)2) achieving the following bound.
Theorem 6. PRIME is (ε, δ)-differentially private. Under Assumption 1 there exists a universal
constant c ∈ (0, 0.1) such that if α ≤ c and n = Ω̃((d/α2) + (d3/2/(εα)) log(1/δ)), then PRIME
achieves ‖µ̂− µ‖2 = O(α

√
log(1/α)) with probability 0.9.

A proof is provided in Appendix F. The notation Ω̃(·) hides logarithmic terms in d, R, and 1/α. To
achieve an error of O(α

√
log(1/α)), the first term Ω̃(d/α2 log(1/α)) is necessary even if there is

no corruption. The accuracy of O(α
√

log(1/α)) matches the lower bound shown in [33] for any
polynomial time statistical query algorithm, and it nearly matches the information theoretical lower
bound on robust estimation of Ω(α). On the other hand, the second term of Ω̃(d3/2/(εα log(1/α)))
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has an extra factor of d1/2 compared to the optimal one achieved by exponential time Algorithm 2. It
is an open question if this gap can be closed by a polynomial time algorithm.

The bottleneck is the private matrix multiplicative weights. Such spectral analyses are crucial in
filter-based robust estimators. Even for a special case of privately computing the top principal
component, the best polynomial time algorithm requires O(d3/2) samples [39, 18, 78], and this
sample complexity is also necessary as shown in [39, Corollary 25].

To boost the success probability to 1− ζ for some small ζ > 0, we need an extra log(1/ζ) factor in
the sample complexity to make sure the dataset satisfies the regularity condition with probability ζ/2.
Then we can run PRIME log(1/ζ) times and choose the output of a run that satisfies n(s) > n(1−10α)
and λ(s) ≤ Cα log(1/α) at termination.
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Figure 1: Private mean estimators (e.g., DP mean [52]) are vulnerable to adversarial corruption
especially in high dimensions, while the proposed PRIME achieves robustness (and privacy) regardless
of the dimension of the samples.

Numerical experiments support our theoretical claims. The left figure with (α, ε, δ, n) =

(0.05, 20, 0.01, 106) is in the large α regime where the DP Mean error is dominates by α
√
d and

PRIME error by α
√

log(1/α). Hence, PRIME error is constant whereas DP Mean error increases
with the dimension d. The second figure with (α, ε, δ, n) = (0.001, 20, 0.01, 106) is in the small α
regime when DP Mean error consists of α

√
d+

√
d/n and PRIME is dominated by

√
d/n. Both

increase with the dimension d, and the gap can be made large by increasing α. The right figure
with (α, δ, d, n) = (0.1, 0.01, 10, 106) is when DP Mean error is dominated by α

√
d and PRIME by

α
√

log(1/α) when ε > cd1.5/(αn). Below this threshold, which happens in this example around
ε = 0.05, the added noise in the private mechanism starts to dominate with decreasing ε. Both
algorithms have respective thresholds below which the error increases with decreasing ε. This
threshold is larger for PRIME because it uses the privacy budget to perform multiple operations and
hence the noise added to the final output is larger compared to DP Mean. Below this threshold, which
can be easily determined based on the known parameters (ε, δ, n, α), we should either collect more
data (which will decrease the threshold) or give up filtering and spend all privacy budget on qrange

and the empirical mean (which will reduce the error). Details of the experiments are in Appendix L.

4 Exponential time algorithm with near-optimal sample complexity

Novelty. An existing exponential time algorithm for robust and private mean estimation in [14]
strictly requires the uncorrupted samples to be drawn from a Gaussian distribution. We also provide a
similar algorithm based on private Tukey median in Appendix I and its analysis in Appendix J. In
this section, we introduce a novel estimator that achieves near-optimal guarantees for more general
sub-Gaussian distributions (and also covariance bounded distributions) but takes an exponential
run-time. Its innovation is in leveraging on the resilience property of well-behaved distributions not
only to estimate the mean robustly (which is the standard use of the property) but also to adaptively
bound the sensitivity of the estimator, thus achieving optimal privacy-accuracy tradeoff.

Definition 4.1 (Resilience from Definition 1 in [73]). A set of points {xi}i∈S lying in Rd is (σ, α)-
resilient around a point µ if ‖(1/|T |)

∑
i∈T (xi − µ)‖2 ≤ σ for all subsets T ⊂ S of size (1− α)|S|.

Algorithm. As data is corrupted, we define R(S) as a surrogate for resilience of the uncorrupted part
of the set. If S indeed consists of a 1− α fraction of independent samples from the promised class of
distributions, the goodness score R(S) will be close to the resilience property of the good data.

8



Definition 4.2 (Goodness of a set). For µ(S) = (1/|S|)
∑
i∈S xi, let us define

R(S) , min
S′⊂S,|S′|=(1−2α)|S|.

max
T⊂S′,|T |=(1−α)|S′|.

‖µ(T )− µ(S′)‖2 .

Algorithm 2 first checks if the resilience matches that of the promised distribution. The data is
pre-processed with qrange to ensure we can check R(S) privately. Once resilience is cleared, we can
safely use the exponential mechanism based on the score function d(µ̂, S) in Definition 4.3 to select
an approximate robust mean µ̂ privately. The choice of the sensitivity critically relies on the fact that
resilient datasets have small sensitivity of O((1/n)

√
log(1/α)). Without the resilience check, the

sensitivity is O(d1/2/n) resulting in an extra factor of
√
d in the sample complexity.

Algorithm 2: Exponential-time private and robust mean estimation
Input: S = {xi}i∈[n], α ∈ (0, 1/2), (ε, δ)

1 if n < cd1/2 log(1/δ)/ (εα
√

log(1/α)) then Output: ∅ [ cd1/2 log(1/δ)/ (εα) for hevay-tail]
2 (x̄, B)← qrange(S, (1/3)ε, (1/3)δ) [ qrange−ht(·) for hevay-tail]
3 Project the data points onto the ball: xi ← PB√dB/2(x̄)(xi), for all i ∈ [n]

4 R̂(S)← R(S) + Lap(3Bd1/2/(nε))

5 if R̂(S) > 2α
√

log(1/α) then Output: ∅ [R̂(S) > 2cζ
√
α for hevay-tail]

6 else Output: a randomly drawn point µ̂ ∈ B√dB/2(x̄) sampled from a density

7 r(µ̂) ∝ e−(1/(24
√

log(1/α)))ε n d(µ̂,S) [e−(εn
√
α/(24cζ))d(µ̂,S) for heavy-tail]

We propose the score function d(µ̂, S) in the following definition, which is a robust estimator of the
distance between the mean and the candidate µ̂.
Definition 4.3. For a set of data {xi}i∈S lying in Rd, for any v ∈ Sd−1, define T v to be the 3α|S|
points with the largest v>xi value, Bv to be the 3α|S| points with the smallest v>xi value, and
Mv = S \ (T v ∪ Bv). Define d(µ̂, S) , maxv∈Sd−1

∣∣v> (µ(Mv)− µ̂)
∣∣ .

Analysis. For any direction v, the truncated mean estimator µ(Mv) provides a robust estimation of
the true mean along the direction v, thus the distance can be simply defined by taking the maximum
over all directions v. We show the sensitivity of this simple estimator is bounded by the resilience
property σ divided by n, which is O((1/n)

√
log(1/α)) once the resilience check is passed. This

leads to the following near-optimal sample complexity. We provide a proof in Appendix H.2.
Theorem 7 (Exponential time algorithm for sub-Gaussian distributions). Algorithm 2 is (ε, δ)-DP.
Under Assumption 1, this algorithm achieves ‖µ̂− µ‖2 = O(α

√
log(1/α)) with probability 1− ζ if

n = Ω̃
( d+ log 1

ζ

α2 log 1
α

+
d log

(
d
√

log(dn/ζ)/α
)

+ d1/2 log 1
δ + log 1

ζ

εα
+

√
d log 1

δ log d
ζδ

ε

)
.

Run-time. Computing R(S) exactly can take O(deΘ(n)) operations. The exponential mechanism
implemented with α-covering for µ̂ and a constant covering for v can take O(nd(

√
log(dn/ζ)/α)d)

operations.

5 Conclusion

Differentially private mean estimation is brittle against a small fraction of the samples being corrupted
by an adversary. We show that robustness can be achieved without any increase in the sample
complexity by introducing a novel DP mean estimator, which requires run-time exponential in the
dimension of the samples. The technical contribution is in leveraging the resilience property of
well-behaved distributions in an innovative way to not only find robust mean (which is the typical
use case of resilience) but also bound sensitivity for optimal privacy guarantee. To cope with the
computational challenge, we propose an efficient algorithm, which we call PRIME, that achieves the
optimal target accuracy at the cost of an increased sample complexity. The technical contributions are
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(i) a novel framework for private iterative filtering and its tight analysis of the end-to-end sensitivity
and (ii) novel filtering algorithm of DPTHRESHOLD which is critical in privately running matrix
multiplicative weights and hence significantly reducing the number of accesses to the database. With
appropriately chosen parameters, we show that our exponential time approach achieves near-optimal
guarantees for both sub-Gaussian and covariance bounded distributions and PRIME achieves the
same accuracy efficiently but at the cost of an increased sample complexity by a d1/2 factor.

There are several directions for improving our results further and applying the framework to solve
other problems. PRIME provides a new design principle for private and robust estimation. This can
be more broadly applied to fundamental statistical analyses such as robust covariance estimation
[28, 30, 64] robust PCA [60, 48], and robust linear regression [59, 35].

PRIME could be improved in a few directions. First, the sample complexity of Ω̃((d/(α2 log(1/α)))+
(d3/2/(εα log(1/α))) log(1/δ)) in Theorem 6 is suboptimal in the second term. Improving the d3/2

factor requires bypassing differentially private singular value decomposition, which seems to be
a challenging task. However, it might be possible to separate the log(1/δ) factor from the rest
of the terms and get an additive error of the form Ω̃((d/(α2 log(1/α))) + (d3/2/(εα log(1/α))) +
(1/ε) log(1/δ)). This requires using Laplace mechanism in private MMW (line 16 Algortihm 10).
Secondly, the time complexity of PRIME is dominated by computation time of the matrix exponential
in (line 16 Algortihm 10). Total number of operations scale as Õ(d3 + nd2). One might hope
to achieve Õ(nd) time complexity using approximate computations of τj’s using techniques from
[36]. This does not improve the sample complexity, as the number of times the dataset is accessed
remains the same. Finally, for (non-robust) private mean estimation, COINPRESS provides a practical
improvement in the small sample regime by progressively refining the search space [12]. The same
principle could be applied to PRIME to design a robust version of COINPRESS. One important
question remains open; how are differential privacy and robust statistics fundamentally related? We
believe our exponential time algorithm hints on a fundamental connection between robust statistics of
a data projected onto one-dimensional subspace and sensitivity of resulting score function for the
exponential mechanism. It is an interesting direction to pursue this connection further to design novel
algorithms that bridge privacy and robustness.
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