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Abstract

Multi-modal intent detection (MID) aims to comprehend users’ in-
tentions through diverse modalities, which has received widespread
attention in dialogue systems. Despite the promising advancements
in complex fusion mechanisms or architecture designs, challenges
remain due to: (1) various noise and redundancy in both visual
and audio modalities and (2) long-tailed distributions of intent cat-
egories. In this paper, to tackle the above two issues, we propose
InMu-Net, a simple yet effective framework for MID from the
Information bottleneck and Multi-sensory processing perspective.
Our contributions lie in three aspects. First, we devise a denoising
bottleneck module to filter out the intent-irrelevant information in
the fused feature; Second, we introduce a saliency preservation loss
to prevent the dropping of intent-relevant information; Ultimately,
kurtosis regulation is introduced to maintain representation smooth-
ness during the filtering process, mitigating the adverse impact of
the long tail distribution. Comprehensive experiments on two MID
benchmark datasets demonstrate the effectiveness of InMu-Net
and its vital components. Impressively, a series of analyses reveal
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our denoising potential and robustness in low-resource, modality
corruption, cross-architecture and cross-task scenarios.
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1 Introduction

Intent detection (ID) aims to ascertain the objectives of users con-
veyed through their utterances, which serves as a crucial compo-
nent of task-oriented dialogue systems [31, 37]. Prior studies have
extensively researched ID and validated the significance of textual
modality [26, 59]. However, beyond textual utterances, facial ex-
pressions and audio signals are also informative as they are often
complementary and interact synergistically [50]. Therefore, multi-
modal intent detection (MID) has attracted increasing research
attention, which is more practical in real-world scenarios.

To effectively leverage the information from various modalities,
numerous methods have been proposed for MID. Therein, Saha
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I've never been so tired.

Figure 1: An example of redundancy in the visual modality

in MIntRec [60] dataset. As indicated, the utterance is only

relevant to the woman highlighted in gray, and the informa-

tion like the distracting background is intent-irrelevant.

et al. [35], Zhang et al. [60] pioneered MID area by introducing tri-
modal ID benchmarks with text, visual and audio information; Zhou
et al. [61] proposed a token-level contrastive learning method with
modality-aware prompting to facilitate modality fusion; Huang et al.
[14] introduced a shallow-to-deep Transformer-based framework
with ChatGPT-based data augmentation strategy to align different
modality features, obtaining state-of-the-art (SOTA) results.

Despite promising advancements achieved, we discover that
existing MID models still suffer from two main issues:

(1) Noise and redundancy in visual and audio modalities.

As depicted in Figure 1, there exists plenty of redundancy and noise
in the visual modality, which can impede the performance of multi-
modal fusion. To this end, several studies proposed methods like
gatingmechanisms [21, 54] to filter noise and redundancy. However,
an underexplored aspect is the potential of these fusion gates to
filter vital information within the filtered modalities inadvertently.

(2) Long-tailed distributions of intent categories. Existing
MID benchmarks [35, 60] exhibit a pronounced long-tailed distribu-
tion of intent categories as shown in Figure 2, where a few classes,
i.e., head classes, contain a major number of samples while the
remaining classes, i.e., tail classes, have only a small number of sam-
ples. A straightforward remedy is to rebalance the training dataset
through weighted sampling. However, this is a suboptimal strategy
that may be detrimental to the accuracy of the head classes [13, 49].

In this paper, we propose a new framework termed InMu-Net
to address the existing issues jointly, drawing inspirations from
Information bottleneck [9, 48, 52] andMulti-sensory processing [28,
43]. Through three vital components, InMu-Net advances towards
its denoising and redundancy reduction capabilities, alongside bol-
stering robustness across multiple categories. Specifically, ❶ we
design a denoising bottleneck module to effectively reduce intent-
irrelevant feature redundancy. ❷ we present a saliency preservation
loss, which provides explicit supervision to maximize the intent-
relevant information in the fused feature. ❸ we perform kurtosis
regulation on both unimodal and multi-modal representations. In
this manner, InMu-Net can diminish sensitivity towards tail in-
tents, thus mitigating the adverse effects of long-tailed distribution.

(a) (b) 

Figure 2: Distribution of intent categories on two MID train-

ing datasets: (a) MIntRec [60] and (b) MELD-DA [35].

Quantitative experiments demonstrate that our InMu-Net signifi-
cantly outperforms previous SOTA methods. Systematic analyses
confirm the superiority of InMu-Net against distinct scenarios.
Contributions. In a nutshell, our contributions are three-fold:
• We present a new framework dubbed InMu-Net for MID, draw-
ing inspirations from the information bottleneck and multi-
sensory processing. To our best knowledge, this is the first
attempt to bridge the information bottleneck and MID.

• We introduce three core modules in the proposed InMu-Net
from the principled perspective, addressing significant issues
of noise redundancy and the long-tail problem in MID.

• Extensive experiments including low-resource, modality cor-
ruption, cross-architecture, and cross-task scenarios demon-
strate the generalizability and robustness of our InMu-Net.

2 Preliminaries

2.1 Task Description

Formally, given a tri-modal input comprising text, visual and audio
modalities, the multi-modal intent detection (MID) task can be
conceptualized as a classification task that determines the intent
label for the tri-modal input, which is expressed as follows:

𝑦 = 𝑓 (𝑋𝑡 , 𝑋𝑣, 𝑋𝑎), (1)

where 𝑓 (·) represents the MID model; 𝑋𝑡 , 𝑋𝑣, 𝑋𝑎 denote the text,
visual and audio input, respectively; 𝑦 ∈ 𝑌 = {𝑦1, 𝑦2, . . . , 𝑦𝐾 } is the
intent label associated with one of the 𝐾 predefined intents.

2.2 Feature Encoding

To begin, we first encode the multi-modal sequential input 𝑋𝑚
(where𝑚 ∈ {𝑡, 𝑣, 𝑎}) into unit-length representations 𝑓𝑚 . Specifi-
cally, we employ separate modality-specific Transformers [45] to
capture the features of distinct modalities as follows:

𝑓𝑚 = Transformer𝑚 (𝑋𝑚 ;𝜃𝑚) . (2)

in which 𝜃𝑚 represents the parameters of the Transformer𝑚 .

2.3 Mutual Information

Mutual information [17] is a measure of the amount of informa-
tion shared between random variables. Formally, it quantifies the
statistical dependency of two random variables 𝑋 and 𝑌 :

I(𝑋 ;𝑌 ) = E𝑝 (𝑋,𝑌 )

[
log

𝑝 (𝑋,𝑌 )
𝑝 (𝑋 )𝑝 (𝑌 )

]
, (3)

where 𝑝 (𝑋,𝑌 ) denotes the joint probability distribution between
𝑋 and 𝑌 , while 𝑝 (𝑋 ) and 𝑝 (𝑌 ) are their marginals.
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Figure 3: The architecture of InMu-Net. Mathematical symbols in the figure are consistent with the formulas in the paper.

2.4 Kurtosis Estimation

Kurtosis [6] is a statistical measure utilized to categorize the tail
behavior of distributions. It is sensitive to rare events and is em-
ployed for analyzing distributions with “fatter tails”. For univariate
variables, kurtosis is quantified as the standardized fourth moment:

E
[
(𝑋 − 𝜇)4]

(E
[
(𝑋 − 𝜇)2])2 . (4)

It is commonly used to assess deviations from normalcy. Building
upon this, Mardia [25] extended kurtosis to a multivariate context:

E
[
((𝑋 − 𝜇)⊤∑−1 (𝑋 − 𝜇))2] , (5)

where 𝑋 denotes a multi-dimensional random vector with 𝜇,
∑

representing the mean and covariance matrix of 𝑋 , respectively.

3 Methodology

In this section, we detail our proposed framework (InMu-Net) for
MID, the architecture of which is depicted in Figure 3.

Concretely, we start by concatenating the features extracted
from each modality (§2.2) to create an initial fused feature 𝑓 , which
retains comprehensive information from each modality. Then, We
present the underlying motivations for our proposed supervision
(§3.1). After that, we apply a denoising bottleneck module (§3.2) to
perform information distillation, culminating in the refined feature
𝑓 . Notably, we incorporate a saliency preservation loss (§3.3) to
ensure no critical intent-relevant information is discarded. Addi-
tionally, we introduce a kurtosis regulation loss (§3.4) inspired by
neural synergy [5] to represent unimodal and multimodal features
more effectively against long-tail distribution.

3.1 Supervision Motivation

As discussed above, we aim to eliminate redundancies and noise
in the visual and audio modalities within MID. To this end, we re-
sort to information bottleneck (IB) [24], which can find the concise
and compressed representation of the input. By applying the IB
principle, the model can learn to filter out noisy and redundant in-
formation that might otherwise interfere with prediction accuracy.
Mathematically, consider the encoded fused feature 𝑓 , derived from
the direct fused feature 𝑓 . Our objective is for 𝑓 to encapsulate only

intent-relevant information while eliminating intent-irrelevant re-
dundancies. Drawing on the principles of mutual information [9] in
IB, the information between 𝑓 and 𝑓 can be quantified as follows:

I(𝑓 ; 𝑓 ) = I(𝑓 ; 𝑓 ) = E
𝑝 (𝑓 ,𝑓 )

[
log

𝑝 (𝑓 , 𝑓 )
𝑝 (𝑓 )𝑝 (𝑓 )

]
=

∬
𝑝
𝑓 ,𝑓

(𝑓 , 𝑓 ) log
𝑝
𝑓 ,𝑓

(𝑓 , 𝑓 )

𝑝 𝑓 (𝑓 )𝑝 𝑓 (𝑓 )
𝑑 𝑓 𝑑 𝑓 .

(6)

This expression can be further expanded by introducing the
target variable 𝑦 and applying the chain rule as follows:

I(𝑓 ; 𝑓 ) =
∭

𝑝 (𝑓 , 𝑓 |𝑦)𝑝 (𝑦) log
𝑝 (𝑓 , 𝑓 |𝑦)𝑝 (𝑦)
𝑝 (𝑓 )𝑝 (𝑓 )

𝑑 𝑓 𝑑 𝑓 𝑑𝑦

=

∭
𝑝 (𝑓 , 𝑓 , 𝑦) log

𝑝 (𝑓 , 𝑓 |𝑦)
𝑝 (𝑓 |𝑦)𝑝 (𝑓 |𝑦)

𝑑 𝑓 𝑑 𝑓 𝑑𝑦

+
∬

𝑝 (𝑓 , 𝑦) log
𝑝 (𝑓 |𝑦)
𝑝 (𝑓 )

𝑑 𝑓 𝑑𝑦

= I(𝑓 ; 𝑓 |𝑦) + I(𝑓 ;𝑦),

(7)

which distinguishes the intent-irrelevant information I(𝑓 ; 𝑓 |𝑦)
from the intent-relevant information I(𝑓 ;𝑦). Thus, the goals of IB
are to ❶ minimize the I(𝑓 ; 𝑓 |𝑦) while ❷ maximize the I(𝑓 ;𝑦):

min
𝑓

L𝐼𝐵 = I(𝑓 ; 𝑓 |𝑦) − 𝛾I(𝑓 ;𝑦), (8)

in which 𝛾 is a scalar that determines the weight of the intent-
relevant information constraint I(𝑓 ;𝑦) during optimization.

However, conducting a min-max game as formulated in Eq. (8)
is challenging [27, 30] due to the well-documented difficulty in
estimating mutual information in high-dimensional spaces [29]. To
address this issue, we introduce a denoising bottleneck to achieve
goal ❶ and saliency preservation to achieve goal ❷. Additionally,
we implement kurtosis regulation to ensure smooth representations
across both unimodal and multimodal contexts, thereby mitigating
the negative effects associated with tailed intents.
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3.2 Denoising Bottleneck

Considering three encoded features 𝑓{𝑡,𝑣,𝑎} from distinct modal-
ities (§2.2) in MID, we first generate an initial fused feature 𝑓 =

[𝑓𝑡 , 𝑓𝑣, 𝑓𝑎] ∈ R𝑛, where [·, ·] denotes concatenation operation. Sub-
sequently, we suggest automatic denoising at the feature level. To
elaborate, the denoising bottleneck module comprises two linear
projection layers along with dropout and ReLU activation functions:

𝑓
Linear Projection
−−−−−−−−−−−−−−→
Dropout+ReLU

𝑧
Linear Projection
−−−−−−−−−−−−−−→
Dropout+ReLU

𝑓 , (9)

where 𝑧 is of dimension 𝑝 < 𝑛, while the final feature representation
𝑓 retains 𝑛 dimensions. The re-projection of 𝑧 back to the same
dimensions as 𝑓 serves two purposes: ❶ It facilitates feature-level
supervision, enabling the learning of a more intent-relevant feature
𝑓 as discussed in the subsequent subsection. ❷ Empirically, we
observed that the feature-level supervision proves more effective
when 𝑓 and the initial feature 𝑓 are aligned.

Remark 1. There are several applications of the IB within the
multimodal community. [11] explored the application of IB at different
stages of fusion, while [52] implemented IB at the sequence level. Our
method offers several advantages: ❶ simplicity in fusion approach; ❷
flexibility in handling variable-length sequence inputs. Additionally,
direct comparisons are provided in the experiments (cf. Table 8).

3.3 Saliency Preservation

The denoising bottleneck constrains information flow across modal-
ities to filter out redundancy and noise. However, it might inadver-
tently lead to the loss of vital information as well [11]. Inspired by
the success of mutual information in applications within the com-
puter vision community [8, 22, 41], we introduce saliency preserva-
tion, which is designed to explicitly maximize intent-relevant infor-
mation I(𝑓 ;𝑦) in Eq.(8), ensuring that the process of information
reduction does not compromise the quality of crucial information.

Theorem 1. To elucidate, maximizing I(𝑓 ;𝑦) can be interpreted
as minimizing the difference in the mutual information between the
original and the denoised features for 𝑦, formally expressed as:

minI(𝑓 ;𝑦) − I(𝑓 ;𝑦) ⇐⇒ min𝐻 (𝑦 |𝑓 ) − 𝐻 (𝑦 |𝑓 ), (10)

where 𝐻 (𝑦 |𝑓 ) is defined as the conditional entropy:

𝐻 (𝑦 |𝑓 ) := −
∫

𝑝 (𝑓 )𝑑𝑓
∫

𝑝 (𝑦 |𝑓 ) log 𝑝 (𝑦 |𝑓 )𝑑𝑦 . (11)

Building on this theoretical foundation, we further validate the
effectiveness of 𝑓 through the following corollary:

Corollary 1. If the KL-divergence [18] between the predicted
distributions of the fused feature 𝑓 and the denoised 𝑓 equals to 0,
then 𝑓 is sufficient for 𝑦 as well i.e.,

𝐷𝐾𝐿

[
𝑝 (𝑦 |𝑓 ) | |𝑝 (𝑦 |𝑓 )

]
= 0 =⇒ 𝐻 (𝑦 |𝑓 ) − 𝐻 (𝑦 |𝑓 ) = 0, (12)

where 𝑝 (𝑦 |𝑓 ), 𝑝 (𝑦 |𝑓 ) represent the predicted distributions under 𝑓
and 𝑓 , respectively; and 𝐷𝐾𝐿 (·) denotes the KL-divergence.

To operationalize this theory, we finally frame our saliency
preservation loss as follows:

L𝑠𝑎𝑙𝑖𝑒𝑛𝑐𝑦 = 𝐷𝐾𝐿

[
𝑝 (𝑦 |𝑓 ) | |𝑝 (𝑦 |𝑓 )

]
. (13)

3.4 Kurtosis Regulation

In multi-sensory neural processing, around 20% of the neurons ac-
count for 80% of the information propagation in cortical circuits [28].
Several researches by [7, 42] demonstrated that multi-modal com-
putation tends to concentrate in such local cortical clusters and
found significantly lower kurtosis in such clusters. Besides, low
kurtosis helps alleviate sensitivity to rare events, as discussed in
§2.4. These all suggest that individual unimodal and multi-modal
representations in MID should exhibit low levels of kurtosis. To
maintain this characteristic, we regulate the multivariate kurtosis
by plugging in standard estimators for the mean and covariates:

L𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =
1
𝑁

𝑁∑︁
𝑗=1

[
((𝑓𝑗 − 𝑓 )⊤𝑆−1 (𝑓𝑗 − 𝑓 ))2] , (14)

where 𝑁 denotes the number of features, 𝑓𝑗 represents samples
from features, including both unimodal features like 𝑓{𝑡,𝑣,𝑎} and
the direct fused feature 𝑓 . 𝑓 denotes the empirical mean feature

𝑓 =

∑𝑛
𝑗=1 𝑓𝑗
𝑁

and 𝑆 signifies the empirical covariance matrix:

𝑆 =

∑𝑁
𝑖=1 (𝑓𝑗 − 𝑓 ) (𝑓𝑗 − 𝑓 )⊤

𝑁 − 1
. (15)

Since 𝑓 is derived from 𝑓 , we do not perform regularization on 𝑓 .
Note that the covariance matrix is computed via a decaying moving
average over a window of multiple batches to produce smoother
estimates before the inversion operation.

3.5 Overall Objective

Eventually, the overall loss function in our InMu-Net is:

L =L𝑓 (𝑦,𝑦′𝑓 ) + L𝑚𝑜𝑑𝑎𝑙𝑖𝑡𝑦 (𝑦,𝑦′𝑓𝑡 ) + L
𝑓
(𝑦,𝑦′

𝑓
)︸                                                   ︷︷                                                   ︸

Foundational Supervision

+ 𝛼L𝑠𝑎𝑙𝑖𝑒𝑛𝑐𝑦 (𝑦′𝑓 , 𝑦
′
𝑓
) + 𝛽L𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 ,

(16)

whereL𝑓 andL𝑓 are respective losses to supervise the direct fused
feature and denoised feature, and L𝑚𝑜𝑑𝑎𝑙𝑖𝑡𝑦 supervises core tex-
tual modality encoder since textual information dominates across
modalities [15, 40]. 𝛼 and 𝛽 are trade-off hyper-parameters. 𝑦′

𝑓

and 𝑦′
𝑓
are the classifier results from the direct fused feature and

denoised feature, respectively. Note that the first three losses are
directly supervised by 𝑦 and serve as the foundational supervision
of the overall framework in the form of cross-entropy losses.

During inference, the denoised feature 𝑓 is employed to deter-
mine the ultimate intent. Consequently, InMu-Net serves as an
augmentation during the training phase, with only the denoising
bottleneck module invoked during inference, given that simple Lin-
ear and Dropout contribute minimally to inference latency.

4 Experiments

4.1 Datasets and Metrics

We conduct experiments on two benchmarks to evaluate the pro-
posed InMu-Net: ❶ MIntRec [60],1 which is a fine-grained dataset
for multi-modal intent recognition. It comprises 2,224 high-quality

1https://github.com/thuiar/MIntRec/tree/main

https://github.com/thuiar/MIntRec/tree/main
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Model MIntRec MELD-DA
ACC wF1 wP R ACC wF1 wP R

MAG-BERT [32] 72.65 72.16 72.53 69.28 60.63 59.36 59.80 50.01
MulT [44] 72.52 72.31 72.85 69.24 60.36 59.01 59.44 49.93
MISA [12] 72.29 72.38 73.48 69.24 59.98 58.52 59.28 48.75
TCL-MAP [61] 73.62 73.31 73.72 70.50 61.75 59.77 60.33 50.14
SDIF-DA∗ [14] 73.90 73.93 73.96 71.61 61.31 58.01 60.93 49.96
InMu-Net (Ours) 76.05

†
75.96

†
76.18

†
73.93

†
63.78

†
61.64

†
63.40

†
52.31

†

Table 1: Experimental results on twoMID datasets. Best scores are in bold and second-best scores are in underlined. Results with

∗ are obtained by re-implemented, while others are taken from the corresponding published paper. † denotes the significant
paired t-tests of our InMu-Net over the baseline models at 𝑝-value < 0.05.

Model Common Long-tail
Complain Inform Praise Apologise Thank Agree Flaunt Oppose Ask for help Joke

MAG-BERT 67.65 71.00 86.03 97.76 96.52 91.60 47.09 33.97 64.44 37.54
MulT 65.48 70.85 84.72 97.93 96.83 92.23 48.91 34.68 69.12 33.95
MISA 63.91 70.18 86.63 97.78 98.03 92.05 46.44 36.15 67.57 38.74
TCL-MAP 68.70 72.80 87.20 97.70 97.00 93.10 50.80 35.90 66.40 29.00
SDIF-DA∗ 67.76 71.24 87.67 98.11 97.96 92.31 44.44 30.02 67.02 45.56
InMu-Net 67.76 71.09 89.25 98.63 98.03 94.42 56.52 41.38 69.58 55.38

↑ −0.94 ↑ −1.71 ↑ 1.58 ↑ 0.52 ↑ 0.00 ↑ 1.32 ↑ 5.72 ↑ 5.23 ↑ 0.46 ↑ 9.82
w/o L𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 67.40 70.79 89.01 98.24 97.25 93.38 48.42 36.80 66.83 48.69

↓ 0.36 ↓ 0.30 ↓ 0.24 ↓ 0.39 ↓ 0.78 ↓ 1.04 ↓ 8.10 ↓ 4.58 ↓ 2.75 ↓ 6.69
Human♮ 80.08 79.69 93.44 96.15 96.90 87.21 78.10 69.04 88.54 72.22

Table 2: F1-score comparison of common and long-tail subsets on MIntRec. ↑ 𝑁𝑢𝑚𝑏𝑒𝑟 denotes the improvement our method

achieves in the current category compared to the best baseline; ↓ 𝑁𝑢𝑚𝑏𝑒𝑟 represents the decrease in model performance across

different intent categories after removing the proposed Kurtosis Regulation. Results with ♮ are taken from Zhou et al. [61].

samples across text, visual and audio modalities, distributed among
20 intent categories. The dataset is divided into 1,334 training sam-
ples, 445 validation samples, and 445 testing samples. ❷ MELD-

DA [35],2 which is a large-scale dataset designed for dialogue
act classification. It includes 9,988 multi-modal samples annotated
across 12 common dialogue act labels, with a split of 6,991 training
samples, 999 validation samples and 1,998 testing samples.

Following previous works, we employ accuracy (ACC), weighted
F1-score (wF1), weighted precision (wP), and recall (R) as evaluation
metrics to assess the proposed InMu-Net framework. To account
for category imbalances, the wF1 and wP metrics are calculated
as weighted averages, with weights corresponding to the sample
counts in each category. Unless specified otherwise, higher values
indicate better performance across all metrics in this work.

4.2 Implementation Details

For a fair comparison, we follow Huang et al. [14], Zhang et al.
[60] to adopt bert-base-uncased [16] and wav2vec2-base-960h [1]
from Huggingface Library [51] to extract text and audio features
and Faster R-CNN [33] from Torchvision Library to extract visual
features. AdamW [23] is utilized as the optimizer with a learning
rate searched from [1𝑒−6, 3𝑒−5]. The batch size is set as 16 for train-
ing and 8 for validation/testing. For hyper-parameter 𝛼 and 𝛽 , we
test them in the range from 0.2 to 1.0 on the validation set and
2https://github.com/thuiar/TCL-MAP

choose the best-performing one to the test set, respectively. Paired
t-test is performed to test the significance of performance improve-
ment with a default significance level of 0.05. All experiments are
conducted on one single NVIDIA GeForce RTX 3090. The results
reported in all experiments are averages of 5 random runs.

4.3 Main Results

We compare InMu-Net with a series of competitive MID baselines,
including: MAG-BERT [32], MulT [44], MISA [12], TCL-MAP [61]
and SDIF-DA [14]. The main results on two benchmarks are re-
ported in Table 1, from which we have the following observations:

❶ Our proposed InMu-Net consistently outperforms all base-
lines on both MIntRec and MELD-DA datasets and achieves a new
SOTA performance. Specifically, on MIntRec dataset, it overpasses
the previous SOTA model SDIF-DA by 2.91% and 2.75% on ACC and
wF1, respectively; on MELD-DA dataset, it overpasses TCL-MAP
by 3.29% and 3.13% on ACC and wF1, respectively. This verifies
the effectiveness of InMu-Net in the MID task. Furthermore, the
significance tests of InMu-Net over the baseline models show that
our InMu-Net significantly outperforms the baseline models (the
results of 𝑝-value on all evaluation metrics are less than 0.05).

❷ Notably, the gains on MELD-DA are more pronounced. We
suppose the reason is that MELD-DA is more challenging, whose
data redundancy problem is more serious, involving complex scenes

https://github.com/thuiar/TCL-MAP
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Setting L𝑓 DB L
𝑓 L𝑠𝑎𝑙𝑖𝑒𝑛𝑐𝑦 L𝑚𝑜𝑑𝑎𝑙𝑖𝑡𝑦 L𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠

MIntRec MELD-DA
ACC wF1 wP R ACC wF1 wP R

(a) ✓ - - - - - 69.68 68.40 68.84 67.81 58.25 55.03 57.26 47.98
(b) ✓ - - - 𝑡 ✓ 71.49 70.31 70.75 69.99 60.51 58.28 60.42 50.16
(c) ✓ ✓ ✓ - 𝑡 ✓ 74.12 72.87 73.22 72.18 62.59 59.50 61.67 51.35
(d) ✓ ✓ ✓ ✓ 𝑡 - 74.40 73.13 73.50 72.46 62.94 59.69 61.91 51.67
(e) ✓ ✓ ✓ ✓ - ✓ 72.81 71.48 71.89 70.88 60.98 57.92 60.04 50.34
(f) ✓ ✓ ✓ ✓ 𝑎 ✓ 73.18 71.82 72.26 71.25 61.27 58.17 60.44 50.62
(g) ✓ ✓ ✓ ✓ 𝑣 ✓ 73.07 71.75 72.21 71.10 61.12 58.11 60.38 50.53
(h) ✓ ✓ ✓ ✓ 𝑡 ✓ 76.05 75.96 76.18 73.93 63.78 61.64 63.40 52.31

Table 3: Ablation studies. “DB” is short for denoising bottleneck. “𝑡, 𝑎, 𝑣” denotes textual, audio, and visual modality, respectively.

(a) (b)

Figure 4: Hyper-parameter analyses. Effect of the trade-off

hyper-parameter (a) 𝛼 and (b) 𝛽 in Eq.(16).

and overlapping characters. The proposed InMu-Net excels in de-
noising and preserving vital information, coupled with enhanced
robustness via kurtosis regulation, resulting in superior perfor-
mance over strong baseline models TCL-MAP and SDIF-DA.

❸ To clearly demonstrate how our method addresses the long-
tail distribution issue, we selected the top five and bottom five
intents based on their occurrence frequencies in the training set.
These are referred to as the “Common” and “Long-tail” subsets,
respectively, and their F1 scores are presented in Table 2. We find
our InMu-Net achieves superior performance in 8 out of the 10
intent categories, particularly showing notable improvements in the
“Long-tail” intents. Thanks to the kurtosis regularization, InMu-
Net can adaptively mitigate the adverse effects of the long-tail
distribution, achieving robust performance.

4.4 Ablation Study

We perform a set of ablation studies to understand the necessity
of the different designs and strategies in the proposed InMu-Net.
From the results in Table 3, we can obtain the following takeways:
Denoising Bottlneck. The denoising bottleneck module coupled
with saliency preservation loss is first removed to not perform
information filtering. By comparing the row setting (b) to setting
(h) in Table 3, we can conclude that the decreased performance
implies that the proposed denoising bottleneck actually contributes
to eliminating redundancy and noise within the modalities.
Saliency Preservation. There is a consistent performance degra-
dation on both datasets (comparing setting (c) to setting (h)) when
the denoising bottleneck lacks saliency preservation supervision.
A plausible deduction is that the supervision mitigates the loss of
valuable information due to intent-irrelevant feature filtering.
Kurtosis Regualion. ❶ Here, we remove the kurtosis regulation
to verify its effectiveness (comparing setting (d) to setting (h)). The

Model Perplexity (↓)
TCL-MAP [61] 2.55
SDIF-DA [14] 2.48
InMu-Net 1.82

Table 4: Comparison with SOTA baselines on perplexity. ↓
denotes lower is better.

poor results show that appropriate regulating multi-modal features
can boost model performance. ❷ Furthermore, when comparing
the data in Table 2 without the L𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 term (w/o L𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 ), a
noticeable decline in model performance is observed. This further
demonstrates that the proposed kurtosis regularization can effec-
tively alleviate the sensitivity to tail intents and mitigate long-tail
distribution issues, thereby enabling more robust predictions.
Centre Modality. As mentioned in §3.5, results by text-centric
supervision tend to perform better as low information intensity
and high redundancy in other modalities. Thus, we evaluate results
based on no, audio and visual modality supervision (setting (e),
(f) and (g)). We observe an obvious decline in performance when
audio, visual, or no modality is used as the central supervision.

4.5 Hyper-parameter Analysis

Since Eq.(16) encompassesmultiple loss components, we delved into
the influence of the core elements as shown in Figure 4. Specifically,
we select the best-performing model based on the validation set
and then evaluate it on the test set: ❶ The parameter 𝛼 indicates
the importance of L𝑠𝑎𝑙𝑖𝑒𝑛𝑐𝑦 . We evaluate the scale range setting
𝛼 ∈ [0.2, 1.0] as shown in Figure 4(a). We find that accuracy is
improved and saturated with 0.8 and 1.0 on MIntRec and MELD-DA,
respectively. Thus, we set 𝛼 = 0.8 for MIntRec and 1.0 for MELD-DA
in practice. ❷ The parameter 𝛽 signifies the extent of involvement
of L𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 . Our observations indicate a relative insensitivity to
parameter selection, as the incorporation of kurtosis regulation
generally yields gains for MID, albeit to varying degrees. As a
result, we adopt 𝛽 = 1.0 to achieve the best performance.

4.6 Perplexity Evaluation

Since the denoising module plays an important role in the proposed
approach, we provide more insight analysis about it. Specifically, we
evaluated the perplexity for the prediction of the golden label across
two state-of-the-art baselines (i.e., TCL-MAP and SDIF-DA) and
our proposed InMu-Net on the MIntRec test set. From the results in
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(a) MIntRec (b) MELD-DA

Figure 5: Performances on low-resource settings.

Modality MIntRec MELD-DA
𝑡 𝑎 𝑣 ACC wF1 ACC wF1
- ✓ ✓ 58.48 57.27 47.43 44.96
✓ ✓ - 68.76 67.35 57.02 54.13
✓ - ✓ 70.14 68.98 58.54 55.47
✓ ✓ ✓ 76.05 75.96 63.78 61.64

Table 5: Results on modality corruption.

Table 4, we observe that both TCL-MAP and SDIF-DA exhibit per-
plexity around 2.5, whereas our method demonstrates a significant
reduction (-0.7). This compellingly illustrates the effectiveness of
our denoising bottleneck module in accurately predicting intents.

4.7 Low-resource Settings

To investigate the effect and robustness of InMu-Net in low-resource
scenarios, we conduct experiments using different limited training
sizes following Huang et al. [14]. From the results in Figure 5, we
observe that InMu-Net consistently outperforms SOTA baselines,
especially when the resource is quite limited (10%). This indicates
that InMu-Net can sustain denoising capabilities within resource-
constrained scenarios and distill intent-relevant information from
multi-modal representations, thus boosting performance.

4.8 Modality Corruption

We further assess the model performance by removing one modal-
ity at a time. From the results in Table 5, we find that ❶ the tri-
modal combination yields the highest performance, indicating that
our InMu-Net can learn complementary information from differ-
ent modalities. ❷ the performance drops sharply when the textual
modality is removed. We attribute this to the fact that textual modal-
ity has higher information density compared to redundant audio
and visual modalities. This underscores two critical insights: First,
eliminating noise and redundancy to enhance the information den-
sity of visual and audio modalities is crucial during fusion. Second,
text-central fusion results may help boost performance in MID.

4.9 Generalizability Analysis

Analysis of Cross-architecture Scenario. To evaluate the gen-
eralizability of our proposed InMu-Net, we conduct preliminary
experiments on two representative baselines MuIT and SDIF-DA.
To be specific, we retain the baseline loss function for a fair compari-
son, integrating only our three vital components and corresponding
supervisions on the fused feature. The results depicted in Table 6

Model MIntRec MELD-DA
ACC wF1 ACC wF1

MulT* [44] 72.23 71.98 60.27 58.95
with InMu-Net 74.01 73.85 61.53 59.75

SDIF-DA* [14] 73.90 73.93 61.31 58.01
with InMu-Net 75.25 75.08 62.94 60.38

Table 6: Results on cross-architecture scenarios.

Model Latency/Inference Time per Sample Speedup
TCL-MAP [61] 25.8ms 1.0x
SDIF-DA [14] 25.4ms 1.0x
InMu-Net 25.5ms 1.0x

Table 7: Comparison on computation (inference) latency.

indicate that baselines augmented with InMu-Net outperform their
original counterparts. This verifies our work’s contribution is or-
thogonal to theirs, considering changing the architecture of InMu-
Net for better multi-modal fusion is still a promising avenue.
Analysis of Cross-task Scenario. We further conduct compari-
son experiments on multi-modal sentiment analysis (MSA) to evalu-
ate the proposed InMu-Net and the results are reported in Table 8. It
can be observed that InMu-Net achieves competitive performance
compared with MSA baselines, which verifies that InMu-Net can
generalize the denoising ability to different tasks. Note that MMIM
performs hierarchical mutual information maximization for each
modality, which is deeply integrated with the overall framework,
and proposes a parameterized method to approximate the true
value. Whereas, even without careful hyper-parameters tuning, our
proposed InMu-Net outperforms MMIM on 4 out of 6 metrics and
achieves similar performance on the remaining two metrics.

4.10 Computation Efficiency

As the proposed method is applicable to real-world applications, we
conducted a preliminary latency comparison among the two most
advanced baseline models and ourmethod, with the results reported
in Table 7. We find that our model’s inference speed surpasses
that of TCL-MAP and maintains a speedup on par with current
SOTA methods. This can be attributed to the fact that our method
functions as an augmentation during the training phase, with only
the denoising bottleneck module being activated during inference.
Given that simple Linear and Dropout layers contribute minimally
to the inference latency, this ensures efficient performance.

4.11 Visualization

To qualitatively demonstrate how our proposed InMu-Net filters
noise and redundancy while capturing precise intent-relevant infor-
mation, we provide GradCAM-CAM [36] visualizations of InMu-
Net and SOTA baseline SDIF-DA. From Figure 6 case (a), it can be
seen that while both models SDIF-DA and InMu-Net successfully
identify the critical term “gift” in the visual modality. However, the
capture range of SDIF-DA is broader and more diffuse, including
irrelevant background details. In contrast, our proposed InMu-Net
focuses narrowly and precisely on the gift on the table, demon-
strating its ability to filter out extraneous information and pinpoint
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Model MOSI [57] MOSEI [58]
MAE(↓) Corr(↑) Acc-7(↑) MAE(↓) Corr(↑) Acc-7(↑)

ICCN [38] 0.860 0.710 39.0 0.565 0.713 51.6
MISA [12] 0.783 0.761 42.3 0.555 0.756 52.2
Self-MM [56] 0.712 0.795 45.8 0.529 0.767 53.5
MMIM [11] 0.700 0.800 46.7 0.526 0.772 54.2
DBF [52] 0.693 0.801 44.8 0.523 0.772 54.2
InMu-Net (Ours) 0.694 0.798 46.9 0.520 0.774 54.5

Table 8: Results of the experiments on cross-task scenarios. ↓ denotes lower is better. ↑ denotes higher is better.

Baseline Ours

(b) this place is crawling with raccoons(a) so thank you all so much for my gifts

Baseline Ours

Figure 6: Comparison of Grad-CAM [36] visualizations between SOTA baseline SDIF-DA and our InMu-Net.

intent-relevant details with high accuracy. A similar situation can
be observed in Figure 6 case (b), where the baseline model SDIF-
DA exhibits excessive redundant attention, while our InMu-Net
accurately captures the woman speaking in the figure.

5 Related Work

Multi-modal Intent Detection. Multi-modal intent detection
(MID) is a significant task for understanding human language in
task-oriented dialogue systems [2–4, 62–64]. Compared to text-only
intent detection, which ascertains the objectives of users conveyed
through their utterances, MID integrates facial expressions and
audio signals to fully leverage the complementary and interac-
tive information provided by diverse modalities. A series of mod-
els [14, 35, 60, 61] have been proposed andmade promising progress.
Therein, Zhou et al. [61] introduced a token-level contrastive learn-
ing coupled with modality-aware prompting to improve modality
fusion. Concurrently, Huang et al. [14] developed a Transformer-
based [46, 47] framework that progresses from shallow to deep
interactions, complemented by ChatGPT-based data augmentation
techniques to align features across modalities.

Our work do not focus on intricate fusion mechanisms [39] or
architectural intricacies, our approach emphasizes the perspective
of multi-modal information and data distribution.
Information Bottleneck. The InfoMax proposed by Linsker
[20] seeks to maximize the mutual information between feature
and model output. Along this way, there have been many works
that explore optimal ways for mutual information estimation. Han
et al. [11] built up a hierarchical mutual information maximization
guided model for multi-modal sentiment analysis. Wu et al. [52] fo-
cused on video-based sentiment analysis and performed contrastive
learning to achievemutual informationmaximization. Despite these
advancements, these theories in MID remain under-studied.

In contrast to existing works, our InMu-Net devises a denoising
bottleneck and a saliency preservation loss to precisely filter intent-
irrelevant information and keep intent-relevant information in an
adaptive manner, which obviates the reliance on heuristic or greedy
feature selection methods [19, 52] and coarse-grained gate filter-
ing mechanism [53, 55]. Furthermore, the proposed feature-level
denoising offers advantages in handling variable-length inputs.
Multi-sensory Processing. In multi-sensory processing resarch
area, different sensory modalities are processed individually and
then combined in various multimodal convergence zones, including
cortical and subcortical regions [10]. Several research such as Faber
et al. [7], Timme et al. [42] demonstrated that multi-modal compu-
tation tends to concentrate in such local cortical clusters and found
significantly lower kurtosis in such clusters.

In this work, we resort to multivariate kurtosis [34] to alleviate
the long-tail distribution problem in MID. The most straightfor-
ward remedy to this problem is to rebalance the training dataset
through weighted sampling. However, it is a suboptimal strategy
that may be detrimental to the accuracy of the head classes [49].
Innovatively, we treat the fused multi-modal feature as cortical
clusters, controlling peaking to reduce sensitivity to tailed intents.

6 Conclusion

In this paper, we proposed InMu-Net, a new framework from the
information bottleneck and multi-sensory processing perspectives,
to tackle modality redundancy and long-tailed distribution of labels
in MID jointly. InMu-Net maximizes the intent-relevant infor-
mation in fused multi-modal features by the proposed denosing
bottleneck and minimizes the intent-irrelevant information by the
proposed saliency preservation loss. Moreover, kurtosis regulation is
introduced to reduce the negative impact of long-tail distributions.
Extensive experiments and analyses on two MID benchmarks show
the superiority of our proposed framework.
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