AI-FOR-SCIENCE LOW-CODE PLATFORM WITH BAYESIAN ADVERSARIAL MULTI-AGENT FRAME-WORK

Anonymous authorsPaper under double-blind review

ABSTRACT

Multi-agent systems leveraging Large Language Models (LLMs) show immense potential for solving complex scientific problems. However, their reliability is undermined by the probabilistic nature of LLMs, which can produce hallucinations in both generated code and its corresponding test cases. In a multi-agent architecture, these errors can propagate and compound, leading to flawed final outputs.

To overcome these core limitations, we introduce a novel Bayesian Adversarial Multi-agent Framework for AI for Science (AI4S). Delivered as a Low-code Platform (LCP), our framework enhances the coding capability for scientific tasks across a wide range of base models, from 1.7B open-source LLMs to up-to-date commercial ones. Our framework employs three agents in a recursive loop that adversarially co-optimizes the generated solutions, the test cases used for evaluation, and the prompts driving generation. This process is governed by a non-LLM-based Bayesian updating rule, which systematically reduces evaluation uncertainty and mitigates the system's dependence on any single LLM's reliability. Furthermore, the LCP empowers domain experts by translating high-level natural language prompts into executable, domain-specific requirements, eliminating the need for intricate prompt engineering. Extensive experiments confirm that our framework generates robust solutions while effectively minimizing error propagation. On a complex, cross-disciplinary Earth Science benchmark, our platform demonstrates superior reliability and outperforms state-of-the-art models, where a 32B opensource model can beat the performance of a 235B model in the ScienceCode benchmark with our framework.

1 Introduction

Large Language Models (LLMs) are transforming AI for Science (AI4S) research paradigm by automating complex scientific code generation for simulations, data analysis, and related science tasks (8; 23). While models such as Codex, AlphaCode, and CodeLlama effectively lower technical barriers for researchers (5; 21; 28), several challenges hinder their reliable application in AI4S research. These include: (1) potentially unclear prompt descriptions from domain scientists without computer science backgrounds, (2) complex execution pipelines for scientific tasks, and (3) the need to maintain adherence to physical laws and domain-specific constraints. Standard prompting and self-refinement techniques (33; 6; 24) are often inadequate for handling the subtle error patterns in complex scientific workflows.

Crucially, we lack strong empirical evidence to fully trust LLMs' capabilities in deep understanding and complex reasoning, particularly for professional scientific research tasks (27). Their decision-making processes remain opaque, and while their outputs often appear plausible, they may contain subtle inaccuracies or conceptual misunderstandings. These limitations fundamentally constrain the performance ceiling of LLM-based coding platforms, as their capabilities are inherently bounded by the underlying LLM's intelligence level. Such inherent uncertainty demands the development of frameworks that operate without requiring absolute confidence in the LLM's intelligence level.

As illustrated in Figure 1, recent advances in LLM-based multi-agent systems attempt to address these limitations through distributed reasoning and specialized agent roles, where different LLM

Figure 1: Comparison between three code generation paradigms: Single LLM generator, multi-agent role playing and the proposed Bayesian adversarial multi-agent framework.

agents focus on specific sub-tasks while coordinating through structured communication protocols and/or a master agent (the green ellipse). However, while such multi-agent architectures (14; 34) can effectively distribute computational complexity and domain expertise across components of the underlying domain task, they introduce new challenges in error propagation and validation. The system's overall reliability becomes constrained by its weakest agent, as flawed intermediate outputs from one of the agents can be uncritically accepted by downstream agents (31), potentially amplifying rather than mitigating the above limitations of individual LLMs. Furthermore, evaluating the code of domain-specific tasks is often difficult. Standard unit tests may miss critical scientific constraints, theoretical foundations, or domain-specific limitations. This evaluation gap stems from three key issues: (1) scientific correctness often requires deeper domain knowledge than standard unit tests can verify; (2) comprehensive evaluation metrics may be prohibitively expensive or fundamentally intractable to define; and (3) LLM-generated tests may inherit the same reliability issue as the code they aim to validate (41). Given these, one must pay equal attention to both LLM-generated code and the test cases used to assess it.

This fundamental insight motivates our core design philosophy: an adversarial co-evolution framework where test case generation and code improvement mutually refine each other through competitive optimization, replacing traditional static verification approaches. The proposed framework structures agent interactions and evolves prompt distributions using Bayes' Theorem, reducing dependence on the base LLM's inherent capabilities. The framework comprises three specialized agents: a Task Manager (TM) serving as Challenger, a Solution Generator (SG) as Solver, and an Evaluator for comprehensive assessment. Unlike conventional multi-agent code generation systems that depend entirely on LLM-based evaluation and decision-making(26; 14), our approach introduces an adversarial dynamic between TM and SG. The TM actively constructs and refines test cases to probe the SG's current limitations, while the SG iteratively improves its code generation based on Evaluator feedback to meet these evolving challenges. As shown in Figure 1 orange ellipse, by continuously probing and validating solutions against dynamically refined test cases, our framework not only overcomes these evaluation barriers but also progressively converges on solutions that satisfy both explicit requirements from domain experts and implicit domain constraints from the specific domain or application scenarios.

The proposed framework also enhances Human-AI collaboration in AI4S community (35; 40; 3). Outside the Machine Learning community, we cannot expect an average scientist to be aware of, let alone skilled in, the extensive list of prompt engineering techniques. A typical domain researcher's prompt might be vague, assume implicit domain knowledge, or use specialized terminology and abbreviations that an LLM, especially a smaller one, may not fully grasp. These domain gaps may lead to misinterpretations, suboptimal outputs, or complete system failures. To bridge this gap, our framework incorporates a specialized scheme within TM agent that actively structures raw user requests, resolves ambiguities through interactive clarification, and transforms potentially vague prompts into precise task plans and scientifically valid initial test cases. It maintains accessibility for non-technical domain experts while fully leveraging their domain expertise without requiring any computer science or professional prompt engineering skills. The main contributions of this work are threefold:

- A Novel AI4S Low-Code Platform with Bayesian Adversarial Framework: We introduce
 a multi-agent framework that employs a Bayesian recursive co-updating strategy to iteratively
 refine generated code and test cases using a non-LLM-based adversarial score. This method
 significantly enhances scientific coding performance across a spectrum of base models (from
 open-source to commercial) and allows smaller LLMs to achieve results competitive with
 larger counterparts.
- Bayesian Optimization for code performance estimation: We proposed a Bayesian
 Optimization method to estimate the performance of a given code based on its structure
 similarity with the tested codes, which enables the framework to handle and evaluate
 complicated code.
- Domain Knowledge Refinement for scientific tasks: The LCP facilitates scientific exploration for non-coding professionals by enabling the generated code to better reflect domain knowledge and constraints through iteratively refining, adding and updating domain knowledge in the specially structured prompt. Our Earth Science case study exemplifies this, where the generated machine learning model not only produced superior predictions but also demonstrated minimal deviation from established ocean dynamics, ensuring scientific consistency.

In the rest of this paper, we introduce the main methodology and models in Section 2, followed by experimental setup and numerical results in Section 3. We conclude the work and discuss its future work and limitations in Section 4.

2 Method

2.1 Overview

We propose a Bayesian adversarial multi-agent framework designed for AI4S tasks, incorporating subjective prior knowledge and addressing complex task abilities. The framework comprises three core component agents: a Task Manager (TM), a Solution Generator (SG), and an Evaluator(Eval). Within this structure, code generation becomes a dynamic interaction, primarily between the Task Manager (acting as a Challenger) and the SG agent (acting as a Solver), with the Evaluator providing the performance metrics that guide learning and adaptation. The game concludes when the SG agent produces code that successfully passes all defined validation tests.

The process initiates prior knowledge \mathcal{P} with a task description (provided by a scientist user) and relevant subject materials (e.g., prior domain knowledge, including reference code samples). \mathcal{P} is the initial input to the TM agent, which develops a structured plan of the scientific task, decomposing the main task into an ordered set of Sub-tasks. This plan is iteratively refined based on users' feedback \mathcal{F} and refinements until user's approval and denoted as Plans, as indicated by Loop 1 of Figure 2. Subsequently, the TM agent generates an initial set of test cases ($Test\ Case_0$) corresponding to these sub-tasks and other criteria derived from prior knowledge. These initial test cases, along with user-provided reference code base are serving as initial sample codes ($Sample\ Code_0$). $Sample\ Code_0$ is followed by the user approved plan (Plans) to form the initial prompt:

$$Prompt_0 := Plans \oplus Test \ Case_0 \oplus Sample \ Code_0,$$
 (1)

where \oplus is the direct concatenation operator. Both the test cases and the sample codes can be independently updated in subsequent iterations. This update mechanism, guided by Bayesian principles, leverages the performance of candidate codes generated previously and the effectiveness of past test cases. The objective is to iteratively refine the prompt to guide the SG agent towards producing a solution that meets all test criteria and user requirements. The core Bayesian update rule for selecting a specific test case i and sample code j for the prompt at iteration t+1 is: $p(Prompt_{ij}^{t+1}|S_3^t) \propto p(S_3^t|Prompt_{ij}^t)p(Prompt_{ij}^t)$. This iterative refinement continues until the SG agent achieves satisfactory success on the test cases. The pseudo-code of the proposed method is described in Algorithm 1.

2.2 Planning and initial code generation

As briefly described in the above overview, the TM agent engages in a comprehensive planning phase. In particular, this involves: 1. Decomposing the primary task into sub-tasks. 2. Posing Sanity Checks

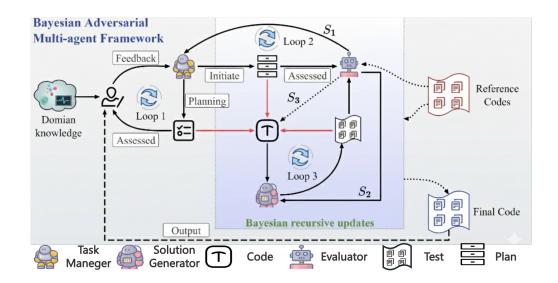


Figure 2: Overview of the Bayesian adversarial multi-agent framework. The three red arrows indicate fusion of plan, test cases, and codes into prompts, the distribution of which is recursively updated under the Bayesian framework. S_1 , S_2 and S_3 are the scores computed in equation 2, equation 3, and equation 4. Loop 1-3 indicate three iterative updating processes for plan, test cases, and codes, respectively. The dashed arrows indicate latent relationships (e.g., S_3 likelihood score) or steps conducted before or after the main algorithm execution.

Algorithm 1 Bayesian Adversarial Multi-Agent Framework

```
189
            1: Input: Task description and domain knowledge (prior knowledge) \mathcal{P}, reference code base,
190
               maximum iteration number T_{max}
191
              // Planning till User's approval
192
           3: Generate Plans = TM(P)
193
               while NOT User Approval do
                    Plans \leftarrow TM(\mathcal{P}, \mathcal{F}) iteratively updates the plan given user feedback.
194
           5:
           6: // Make initial prompts
196
           7: Generate Test\ Case_0 := (\{Sanity\ Checks\}, \{Sub\text{-tasks}\}) \leftarrow TM(Plans)
           8: Form Sample\ Code_0 \leftarrow \{Test\ Case_0, Reference\ Code\}
197
           9: Generate Prompt<sub>0</sub> according to equation 1
          10: // Code generation and evaluation
199
          11: T \leftarrow T_{max}, t \leftarrow 0
200
          12: Initialize test case weights \forall i \in \{1, 2, \dots, M\}, \lambda_i \leftarrow \frac{1}{M}
201
          13: while Not \exists Code : t < T do:
202
                   \begin{array}{l} t \leftarrow t+1, \mathbf{C}_{t+1} \leftarrow SG(\textit{Prompt}_t) \\ (S_1^{t+1}, S_2^{t+1}, S_3^{t+1}) \leftarrow \text{Evaluator}(\textit{Test Case}_t, \mathbf{C}_t) \text{ follows Equation equation 234} \end{array}
          14:
203
          15:
204
               // Test sase and sample code updates using Bayes' Theorem
205
          16:
                    C_{final} = \arg\max_{i} S_2^{t}(j)
206
                    Test\ Case_{t+1} \leftarrow TM(Test\ Case_t, S_1^t)
207
               // Bayesian prompt updates
208
                    Prompt_{t+1} \sim p(Prompt_{t+1}|S_3^t)
          18:
                     return C_{final}
210
```

for data structure and range. 3. Reasoning about the logical workflow and dependencies between sub-tasks. 4. Formulating strategic advice for the generation of effective test cases. This detailed plan is presented to the user in natural language for review and potential refinement. This interactive feedback loop continues until the user approves the plan. Once the plan is finalized, the TM agent

generates an initial set of test cases. These test cases are designed to cover the specified sub-tasks and incorporate domain-specific prior knowledge, such as sanity checks (e.g., for expected data ranges) and out-of-range detection.

Following the planning phase, the system constructs the initial prompt $Prompt_0$ as defined in equation 1. The code generation agent then uses this prompt to produce N candidate solutions (codes). For each candidate, the system automatically generates comprehensive documentation containing: algorithm explanations, execution instructions, and detailed specifications for all functions, variables, and parameters.

2.3 A PRIORI ESTIMATION WITH BAYESIAN OPTIMIZATION

We noticed that executing all the generated codes for testing can be computationally expensive. To address this issue, as well as to leverage both the accuracy of evaluation and the range of exploration in the solution space, a Bayesian Optimization method is employed to estimate the performance score relates to the structural difference from all the tested codes (as in Loop 3 of fig:Diagram).

As an initiation, all the generated code in the first iteration $\{Code_i\}_{1\leq i\leq N}$ get tested against the initial test cases, where all test cases share the same initial weights. We store the test results as a score vector S_2 (will be explained in details in equation 3). We then embed each $Code_i$ to a vector \mathbf{x}_i through a structural embedding that captures features from its Abstract Syntax Tree (AST) and code embedding vectors. We then use a Bayesian optimization process to predict the code's performance based on its structural similarity with the tested code, which is detailed explained in the appendix. This Bayesian Optimization approach allows the system to intelligently explore the vast solution space, prioritizing the most promising candidates for expensive testing and efficiently converging towards a high-quality solution. It supports the evolution of the distribution of prompt, thus the co-evolution of codes and test cases.

2.4 EVALUATION AND FEEDBACK

The Evaluator agent is responsible for assessing the candidate codes, the effectiveness of the test cases, and the overall quality of the prompts used in each iteration.

Test Case Score (S_1) : This score quantifies the "True Hardness" of the *j*th test case *Test Case*_j, representing its capacity to be challenging yet ultimately solvable. An effective test case should successfully discriminate between code solutions of varying quality (as in loop 3 of fig:Diagram).

$$S_1(i)^{t+1} = (1-\alpha) \cdot S_1(i)^t + \alpha \cdot \left(\frac{\sum\limits_{j' \text{ s.t. pass}} S_2(j')}{|\{\operatorname{Code}_{j'}\}|} - \frac{\sum\limits_{j^{\dagger} \text{ s.t. fail}} S(j^{\dagger})}{|\{\operatorname{Code}_{j^{\dagger}}\}|} \right)$$
(2)

where $S_1(i)^t$ is set as 1 by default for t = 0, and α is a hyperparameter to control the momentum of updating, which in experiments we set $\alpha = 0.8$.

Code Score (S_2) : Each generated code $C_j: 1 \leq j \leq N$ receives a composite score based on several factors:

$$S_2(j)^t = \frac{\sum_i \mathbb{I}(\mathbf{C_j} \text{ passes } T_i) \cdot S_1(i)^{t-1}}{\sum_i S_1(i)^{t-1}}$$
(3)

Prompt Score (S_3) : The overall score for a prompt used in an iteration is a function of the performance of the codes and test cases generated by this prompt:

$$S_3^t = \frac{1}{M} \sum_{i=1}^M S_1(i)^t + \frac{1}{N} \sum_{i=1}^N S_2(j)^t$$
(4)

If multiple prompt configurations are tested within a single logical iteration, the iteration's representative prompt score might be the highest achieved. For the Bayesian update, we are interested in the score of a specific prompt configuration $\{Prompt_{ij}^t\}_{ij}$ is then denoted $\{(S_3)_{ij}^t\}_{ij}$.

2.5 ITERATIVE REFINEMENT: ADVERSARIAL DYNAMICS AND BAYESIAN PROMPT UPDATES

The core of the framework's learning capability lies in its iterative refinement loop, characterized by an adversarial dynamic between the TM agent (Challenger) and the SG agent (Solver), and guided by Bayesian updates for prompt composition.

Adversarial interaction: The TM agent's role evolves to that of a Challenger. Based on the 'True hardness', which is measured by S_1 , the TM adapts its weights for future evaluation and selects test cases for subsequent prompts. It aims to create test suites that are optimally challenging for the SG's current learned capabilities—difficult enough to drive further learning and expose weaknesses, yet generally solvable to provide a positive learning signal. The SG agent, as the Solver, implicitly adapts by producing code in response to these evolving challenges. Its success or failure provides the feedback signal that shapes the TM's subsequent challenging strategy.

Bayesian prompt updates: The selection of which specific test cases (indexed by i) and sample codes (indexed by j) to include in the prompt for the next iteration ($Prompt_{t+1}^{ij}$) is governed by a Bayesian update rule(as indicated by the combination of Loop 2 and 3 in 2):

$$p(Prompt_{ij}^{t+1}|S_3^t) \propto p(S_3^t|Prompt_{ij}^t)p(Prompt_{ij}^t)$$
(5)

Here:

- $p(Prompt_{ij}^t)$ is the prior probability of selecting the pair $(Test\ Case_i, Sample\ Code_j)$ for the prompt. This prior can be uniform initially and can adapt over time based on the historical effectiveness of these components.
- $p(S_3^t|Prompt_{ij}^t)$ is the likelihood of observing the score S_3^t given that the prompt was formed using $Test\ Case_i$ and $Sample\ Code_j$. This term captures how well this specific combination performed. A potential formulation to ensure non-negativity and reflect that better-than-expected performance is more likely could be:

$$p(S_3^t|Prompt_{ij}^t) \propto \exp\left(\mathbb{E}[S_3^{t-1}\mathbf{1}(i,j)]\right) \tag{6}$$

where $\mathbb{E}[S_3\mathbf{1}(i,j)]$ is the expected score for the generated code with $Test_i, Code_j$ in the prompt based on past performance or a baseline. This implies that a prompt configuration performing significantly better than its historical average for that pair $(Test\ Case_i, Sample\ Code_j)$ will have a higher likelihood.

The underlying intuition is to identify and prioritize "teacher-subject" pairs-specific combinations of sample code and test cases that consistently yield high-scoring prompts. This approach effectively learns which forms of guidance produce optimal results for different types of coding challenge.

Sample code pool management: The pool of available sample codes (Sample Code) is not static, but recursively updated as illustrated in Loop 3 of Figure 2. Initially, it contains user-provided reference codes. As the SG agent generates new codes $C_g^{(t)}$, those that achieve high S_2 can be added to the Sample Code pool. The selection of a Sample Code $_j$ for a prompt can then be influenced not only by its initial status (as a reference) but also by an evolving measure of its "guidance quality," learned from its impact on past prompt scores when it was included.

Final results: Within each round, if there exists a code that can pass all the test cases, the System will output it as the final result to the user. Otherwise, the System will keep using the Bayesian Adversarial method recursively till generation of a satisfying code or reaching the maximum round of iterations, which is chosen by the user in the beginning and by default set to 3 by experience(See Section 3).

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Benchmarks To ensure a thorough evaluation, we utilize a diverse set of benchmarks. For general code generation, we use HumanEval, HumanEval-ET, MBPP, MBPP-ET(2; 9; 13), and the more challenging APPS(13) benchmark. For AI for Science tasks, we use the domain-specific SciCode(30) and ScienceAgentBench(7) benchmarks.

Base Models Our framework is designed to be model-agnostic. To demonstrate this, we integrate several backbone large language models (LLMs), including the <code>Qwen3</code> series (ranging from 1.7B to 235B)(36), which has versatile sizes, strong reasoning, it can demonstrate if our framework is also effective on the latest models. Beside, we also choose <code>Deepseek-v3(22)</code>, <code>Deepseek-R1(11)</code>, <code>Claude-sonnet-4(1)</code>, <code>GPT-3.5-turbo(4)</code>, and <code>GPT-4o(17)</code>. This allows us to assess the performance gains attributable to our framework across a spectrum of model capabilities.

Compared Methods We compare our framework against several state-of-the-art baselines. These include foundational strategies like Few-Shot prompting and Chain-of-Thought (CoT), as well as other prominent agent-based systems. From the table, the competing agentic frameworks and prompting strategies include ReAct, Reflexion, Self-Debugging, Self-Collaboration, MetaGPT, MapCoder, AgentCoder, and CodeCoR(4; 16; 25; 38; 29; 37; 12; 39; 19; 6; 10; 32; 20; 15; 18).

Evaluation Metrics Following standard practice, we use the pass@k metric to evaluate code generation performance, where a solution is considered correct if it passes a set of unit tests. We primarily report pass@1 scores(5; 2; 9).

Parameter Setting For all experiments, we consistently applied an identical parameter set unless otherwise noted. The number of initial test cases was set to 15, and the number of distinct code snippets generated in each round was 20. We maintained a minimum pool of 20 test cases; if filtering processes reduced the number of test cases below this threshold (e.g., due to low scores), additional test cases were generated to meet this minimum. For iterative refinement, the number of codes chosen by acquisition function for further evaluation was set to 5.

3.2 EFFECTIVENESS IN AI FOR SCIENCE TASKS

We established our framework's general proficiency, which can be found in detail in the appendix, and can assert its up-to-SOTA level performance in general coding tasks. We can now investigate the framework's ability in scientific tasks by evaluating our framework's performance in the specialized and demanding domain of scientific code generation. We use two scientific code generation benchmarks to demonstrate its capabilities.

First, we assess our framework on the SciCode benchmark across a wide spectrum of base models, from the 1.7B parameter Qwen3 to powerful proprietary models like Claude-sonnet-4. The results, presented in Table 1, show that our framework provides a substantial and consistent performance uplift in all configurations. The gains are particularly striking for open-source models, with relative improvements of up to 87.1% (for Qwen3-8b). Our framework enables smaller models to match the performance of significantly larger ones. For instance, in the 'Without Knowledge' case, Qwen3-14b with our framework achieves a 30.6 Resolve Rate on Subproblems, equaling the baseline of the Qwen3-235B-A22b-Instruct-2507, a model over 16 times its size.

Second, to evaluate our framework on more complex, agentic workflows, we test it on the ScienceAgentBench, which involves more complex, multi-step scientific workflows, and we using GPT-40 as the base model. As shown in Table 2, our LCP framework achieves new state-of-the-art (SOTA) performance, particularly in the Valid Execution Rate (VER), where it scores 90.2% (without knowledge) and 87.3% (with knowledge), far surpassing all other methods. This exceptional execution success rate is critical for scientific applications, as it directly validates our framework's core strength in producing robust, executable scientific code across diverse and complex application domains. This result, combined with leading scores in Success Rate (SR) and Code-Based Score (CBS), confirms our system's effectiveness in orchestrating the complex reasoning and execution steps essential for impactful AI4S applications.

3.3 ANALYSIS OF BAYESIAN RECURSIVE CO-UPDATING

In this section, we test our framework's core Bayesian iterative co-updating mechanism, validating that the Bayesian recursive co-updating strategy is effective at iteratively refining solutions. As illustrated across both general and scientific benchmarks in Figure 3, performance consistently and monotonically improves with an increasing number of iterations. On the general benchmarks (Figure 3a), the Pass@1 scores on HumanEval and MBPP show substantial gains in the first three iterations, with performance beginning to converge around the fourth or fifth iteration. This suggests

Table 1: Model Performance Comparison on SciCode with various backbone models

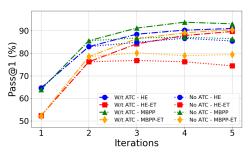
		Without Knowledge		With Knowledge				Without Knowledge		With Knowledge	
Model	Method	Sub (%)	Main (%)	Sub (%)	Main (%)	Model	Method	Sub (%)	Main (%)	Sub (%)	Main (%)
Qwen3-8b	Baseline Ours	13.2 24.7(87.1%)	0 4.6	19.8 27.4(38.4%)	1.5 4.6	GPT-40	Baseline Ours	24.1 37.2(54.3%)	1.5 7.7	33.7 40.6(20.4%)	7.7 10.8
Qwen3-14b	Baseline Ours	17.7 30.6(72.9%)	1.5 6.2	25.0 32.6(30.4%)	6.2 6.2	Deepseek-v3	Baseline Ours	27.8 40.3(45.0%)	3.1 10.8	38.8 42.4(9.28%)	10.8 12.3
Qwen3-32b	Baseline Ours	18.4 33.0(79.3%)	0 6.2	27.4 36.1(31.8%)	7.7 7.7	Deepseek-R1	Baseline Ours	29.6 41.0(38.5%)	4.6 10.8	37.8 43.1(14.0%)	10.8 13.8
Qwen3-next-80b- a3b-instruct	Baseline Ours	21.5 37.5(74.4%)	3.1 9.2	32.6 38.5(18.1%)	12.3 10.8	Claude-sonnet-4	Baseline Ours	31.3 42.7(36.4%)	7.7 13.8	38.8 43.8(12.9%)	10.8 13.8
Qwen3-235B-A22b- Instruct	Baseline Ours	30.6 38.9(27.1%)	4.6 9.2	37.2 41.0(10.2%)	10.8 10.8						

Table 2: Results on ScienceAgentBench using GPT-40 as base model with/without prior knowledge, compare with two different agent frameworks and baseline.

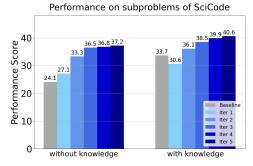
Method	SR(w/o)	CBS(w/o)	VER(w/o)	SR(w/)	CBS(w/)	VER(w/)
Direct	11.8	82.6	52.9	10.8	83.8	41.2
OpenHands CodeAct	19.6	83.1	78.4	27.5	86.3	73.5
Self-Debug	22.6	84.4	83.3	23.5	85.6	71.6
LCP(Ours)	26.5	85.1	90.2	27.5	86.4	87.3

an optimal balance between performance and computational cost. This same powerful trend is mirrored on the specialized SciCode benchmark (Figure 3b), where the performance score climbs steadily from a 27.1 to 37.2 after five iterations, demonstrating the broad applicability and success of our iterative refinement process.

We further analyze the components of this process by conducting an ablation study on the role of Adversarial Test Cases (ATC) within our LCP framework, as shown in Figure 3a. While the performance with and without ATC is comparable in the initial iterations, a clear divergence emerges from the third iteration onwards. The LCP framework augmented with ATC (dash-dot lines) consistently achieves higher Pass@1 accuracy across all metrics, underscoring the critical role of ATC. By dynamically challenging the generated code with difficult edge cases, the ATC mechanism compels the system to produce more robust and reliable solutions, validating it as a key driver of the performance gains observed in our co-updating loop.



(a) Pass@1 of LCP with different iterations (GPT-3.5-turbo). Dash-dot and solid lines are LCP with and without ATC, respectively.



(b) Performance on SciCode Benchmark (GPT-4o) with different iteration numbers.

Figure 3: Illustration of LCP performance over: (a) different iteration number with and without ATC component on general code benchmark; (b) difficulty iteration number on the SciCode benchmark

3.4 ROBUSTNESS FOR NON-PROFESSIONAL USERS

Finally, we address robustness and accessibility to non-AI-professional science researcher by evaluating our framework's accessibility and effectiveness for users who may be domain experts but are

not specialists in prompt engineering. To simulate this scenario, we compare the performance of both the baseline models and our framework under two conditions: one with a basic, un-optimized prompt ('Without Knowledge') and one with an expert-crafted prompt containing detailed domain knowledge ('With Knowledge'). The goal is to measure how sensitive each approach is to the quality of the initial prompt.

The results, presented in Figure 4, clearly demonstrate our framework's superior robustness. The baseline models exhibit a large performance gap between the two conditions (represented by the shaded red area, 'Area (Baseline)'), indicating a strong dependency on expert prompting. In contrast, our framework significantly narrows this performance gap across the entire spectrum of models (represented by the much smaller shaded blue area, 'Area (Ours)'). This shows that our multi-agent system can internally elaborate on and refine basic instructions, compensating for the lack of initial detail. Most strikingly, a non-professional user with our framework ('Ours - Without Knowledge') consistently and substantially outperforms an expert user with the baseline model alone ('Baseline - With Knowledge').



Figure 4: Model performance with basic vs. expert-crafted prompts. Our framework (blue/green lines) is significantly more robust to prompt quality than the baseline (red lines), showing a much smaller performance gap (shaded area) and achieving superior results even without expert knowledge.

4 CONCLUSIONS AND DISCUSSIONS

We propose a Bayesian adversarial multi-agent framework for AI-for-Science (AI4S) code generation that achieves state-of-the-art performance by iteratively refining prompt components through Bayesian updates. This approach mitigates cumulative error by treating tests and code with equivalent confidence, while an adversarial process guides a Task Manager (TM) agent to challenge a Solution Generator (SG) agent with progressively evolving tests. The framework's interactive planning scheme enables non-experts to translate vague prompts into validated workflows, effectively bridging the gap between AI-generated code and domain-specific needs. As demonstrated in Earth Science applications, our method helps democratize LLM tools for researchers without a technical background.

However, the framework has several limitations. Its performance is dependent on the quality of the initial reference code, and it struggles to enforce implicit physical laws, which may require future integration with symbolic verifiers. Furthermore, evaluating generated machine learning or deep learning models can be resource-intensive, and performance variability due to training and data poses an additional challenge to the update mechanism.

Future work will focus on extending the Bayesian updates to handle multi-modal inputs, such as equations and diagrams, and optimizing the iteration protocols for large-scale scientific simulations.

REFERENCES

- [1] Anthropic. Claude sonnet 4, 2025. https://www.anthropic.com/news/claude-4.
- [2] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language models. *arXiv preprint arXiv:2108.07732*, 2021.
- [3] Hamed Babaei Giglou, Jennifer D'Souza, and Sören Auer. Llms4synthesis: Leveraging large language models for scientific synthesis. In *Proceedings of the 24th ACM/IEEE Joint Conference on Digital Libraries*, pages 1–12, 2024.
- [4] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners. Advances in Neural Information Processing Systems(NeurIPS), 33:1877– 1901, 2020.
- [5] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large language models trained on code. *arXiv preprint arXiv:2107.03374*, 2021.
- [6] Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models to self-debug. *arXiv preprint arXiv:2304.05128*, 2023.
- [7] Ziru Chen, Shijie Chen, Yuting Ning, Qianheng Zhang, Boshi Wang, Botao Yu, Yifei Li, Zeyi Liao, Chen Wei, Zitong Lu, et al. Scienceagentbench: Toward rigorous assessment of language agents for data-driven scientific discovery. *arXiv preprint arXiv:2410.05080*, 2024.
- [8] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm: Scaling language modeling with pathways. *Journal of Machine Learning Research*, 24(240):1–113, 2023.
- [9] Yihong Dong, Jiazheng Ding, Xue Jiang, Ge Li, Zhuo Li, and Zhi Jin. Codescore: Evaluating code generation by learning code execution. *ACM Transactions on Software Engineering and Methodology*, 34(3):1–22, 2025.
- [10] Yihong Dong, Xue Jiang, Zhi Jin, and Ge Li. Self-collaboration code generation via chatgpt. ACM Transactions on Software Engineering and Methodology, 33(7):1–38, 2024.
- [11] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.
- [12] Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen Wang, Daisy Zhe Wang, and Zhiting Hu. Reasoning with language model is planning with world model. *arXiv preprint arXiv:2305.14992*, 2023.
- [13] Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin Burns, Samir Puranik, Horace He, Dawn Song, et al. Measuring coding challenge competence with apps. *arXiv preprint arXiv:2105.09938*, 2021.
- [14] Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng Cheng, Jinlin Wang, Ceyao Zhang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, et al. Metagpt: Meta programming for multi-agent collaborative framework. *arXiv preprint arXiv:2308.00352*, 3(4):6, 2023.
- [15] Dong Huang, Qingwen Bu, and Heming Cui. Codecot and beyond: Learning to program and test like a developer. *arXiv preprint arXiv:2308.08784*, 23, 2023.
- [16] Dong Huang, Jie M Zhang, Michael Luck, Qingwen Bu, Yuhao Qing, and Heming Cui. Agentcoder: Multi-agent-based code generation with iterative testing and optimisation. *arXiv* preprint arXiv:2312.13010, 2023.

- [17] Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv* preprint arXiv:2410.21276, 2024.
- [18] Md Ashraful Islam, Mohammed Eunus Ali, and Md Rizwan Parvez. Mapcoder: Multi-agent code generation for competitive problem solving. *arXiv preprint arXiv:2405.11403*, 2024.
- [19] Xue Jiang, Yihong Dong, Lecheng Wang, Zheng Fang, Qiwei Shang, Ge Li, Zhi Jin, and Wenpin Jiao. Self-planning code generation with large language models. *ACM Transactions on Software Engineering and Methodology*, 33(7):1–30, 2024.
- [20] Jia Li, Ge Li, Yongmin Li, and Zhi Jin. Structured chain-of-thought prompting for code generation. ACM Transactions on Software Engineering and Methodology, 34(2):1–23, 2025.
- [21] Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation with alphacode. *Science*, 378(6624):1092–1097, 2022.
- [22] Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint arXiv:2412.19437*, 2024.
- [23] Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, and Caiming Xiong. Codegen: An open large language model for code with multi-turn program synthesis. *arXiv preprint arXiv:2203.13474*, 2022.
- [24] Theo X Olausson, Jeevana Priya Inala, Chenglong Wang, Jianfeng Gao, and Armando Solar-Lezama. Is self-repair a silver bullet for code generation? *arXiv preprint arXiv:2306.09896*, 2023.
- [25] Ruwei Pan, Hongyu Zhang, and Chao Liu. Codecor: An Ilm-based self-reflective multi-agent framework for code generation. *arXiv preprint arXiv:2501.07811*, 2025.
- [26] Chen Qian, Xin Cong, Cheng Yang, Weize Chen, Yusheng Su, Juyuan Xu, Zhiyuan Liu, and Maosong Sun. Communicative agents for software development. *arXiv preprint* arXiv:2307.07924, 6(3):1, 2023.
- [27] Tal Ridnik, Dedy Kredo, and Itamar Friedman. Code generation with alphacodium: From prompt engineering to flow engineering. *arXiv preprint arXiv:2401.08500*, 2024.
- [28] Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, et al. Code llama: Open foundation models for code. *arXiv preprint arXiv:2308.12950*, 2023.
- [29] Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion: Language agents with verbal reinforcement learning. *Advances in Neural Information Processing Systems(NeurIPS)*, 36:8634–8652, 2023.
- [30] Minyang Tian, Luyu Gao, Shizhuo Zhang, Xinan Chen, Cunwei Fan, Xuefei Guo, Roland Haas, Pan Ji, Kittithat Krongchon, Yao Li, et al. Scicode: A research coding benchmark curated by scientists. *Advances in Neural Information Processing Systems*, 37:30624–30650, 2024.
- [31] Jen tse Huang, Jiaxu Zhou, Tailin Jin, Xuhui Zhou, Zixi Chen, Wenxuan Wang, Youliang Yuan, Michael R. Lyu, and Maarten Sap. On the resilience of llm-based multi-agent collaboration with faulty agents, 2025.
- [32] Hanbin Wang, Zhenghao Liu, Shuo Wang, Ganqu Cui, Ning Ding, Zhiyuan Liu, and Ge Yu. Intervenor: Prompt the coding ability of large language models with the interactive chain of repairing. *CoRR*, 2023.
- [33] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in Neural Information Processing Systems (NeurIPS)*, 35:24824–24837, 2022.

- [34] Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun Zhang, Shaokun Zhang, Jiale Liu, et al. Autogen: Enabling next-gen llm applications via multi-agent conversation. *arXiv preprint arXiv:2308.08155*, 2023.
- [35] Yutaro Yamada, Robert Tjarko Lange, Cong Lu, Shengran Hu, Chris Lu, Jakob Foerster, Jeff Clune, and David Ha. The ai scientist-v2: Workshop-level automated scientific discovery via agentic tree search. *arXiv preprint arXiv:2504.08066*, 2025.
- [36] An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint arXiv:2505.09388*, 2025.
- [37] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. *Advances in Neural Information Processing Systems (NeurIPS)*, 36:11809–11822, 2023.
- [38] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao. React: Synergizing reasoning and acting in language models. In *International Conference on Learning Representations (ICLR)*, 2023.
- [39] Kechi Zhang, Zhuo Li, Jia Li, Ge Li, and Zhi Jin. Self-edit: Fault-aware code editor for code generation. *arXiv preprint arXiv:2305.04087*, 2023.
- [40] Boyuan Zheng, Zerui Fang, Zhe Xu, Rui Wang, Yiwen Chen, Cunshi Wang, Mengwei Qu, Lei Lei, Zhen Feng, Yan Liu, et al. Agent4s: The transformation of research paradigms from the perspective of large language models. *arXiv preprint arXiv:2506.23692*, 2025.
- [41] Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Haohan Wang, and Yu-Xiong Wang. Language agent tree search unifies reasoning acting and planning in language models. *arXiv* preprint arXiv:2310.04406, 2023.

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We confirm that LLMs were used for writing assistance and polishing of the manuscript, as well as editing Figure 2 based on our handmade version. They were not employed in the design of methods, implementation of experiments, or analysis of results.

B BAYESIAN OPTIMIZATION FOR CODE PERFORMANCE PREDICTION

In this embedding space, we can further obtain the pair-wise similarity between all the code embeddings. This similarity is computed using a squared exponential kernel:

$$k(\mathbf{x}_i, \mathbf{x}_j) = \exp\left(-\frac{d(\mathbf{x}_i, \mathbf{x}_j)^2}{2l^2}\right),$$

where $d(\mathbf{x}_i, \mathbf{x}_j)$ is the distance between the two code embeddings and l is a length-scale parameter. These pairwise similarities $\{k(\mathbf{x}_i, \mathbf{x}_j)\}_{i,j}$ form the kernel matrix \mathbf{K} .

With the scores S_2 and the kernel matrix \mathbf{K} , we follow a standard Bayesian Optimization practice and fit a Gaussian Processes (GP) model. This model allows us to estimate the score of any new, *untested* code \mathbf{x}_* without running the full evaluation. This also gives the 'likelihood' to guide the Bayesian update. For each new code, the trained GP provides a predictive distribution for its score, which is characterized by

 the mean function μ(x*) is the expected score of the new code conditioned on the tested codes:

$$\mu(\mathbf{x}_*) = \mathbf{k}_*^T (\mathbf{K} + \sigma_n^2 \mathbf{I})^{-1} S_2.$$

- The variance function $\sigma^2(\mathbf{x}_*)$ represents our uncertainty about that predicted score:

$$\sigma^2(\mathbf{x}_*) = k(\mathbf{x}_*, \mathbf{x}_*) - \mathbf{k}_*^T (\mathbf{K} + \sigma_n^2 \mathbf{I})^{-1} \mathbf{k}_*,$$

where \mathbf{k}_* is the vector of kernel similarities between the new code \mathbf{x}_* and all previously tested codes, and σ_n^2 is the noise term.

To decide which untested code to evaluate next, we employ a standard acquisition function that balances exploiting codes with high expected scores (exploitation) and exploring codes where the model is uncertain (exploration). We use the Upper Confidence Bound (UCB) acquisition function:

$$UCB(\mathbf{x}_*) = \mu(\mathbf{x}_*) + \kappa \sigma(\mathbf{x}_*).$$

The parameter κ controls the trade-off between exploitation and exploration. The next code selected for full evaluation is the one that maximizes this UCB score:

$$\mathbf{x}_{next} = \arg\max_{\mathbf{x}_*} \mathrm{UCB}(\mathbf{x}_*).$$

C PERFORMANCE ON GENERAL CODE GENERATION

To test our framework of general code generation, we establish our framework's proficiency on foundational code generation tasks. As detailed in Table 3, our framework(LCP) demonstrates a significant performance uplift across the <code>HumanEval</code>, <code>HumanEval-ET</code>, <code>MBPP</code>, and <code>MBPP-ET</code> benchmarks. When using GPT-3.5-Turbo as a backbone, LCP achieves <code>pass@1</code> scores of **88.4%** on <code>HumanEval</code> and **91.1%** on MBPP, representing substantial relative improvements of **54.3%** and **74.5%** over the zero-shot baseline. This superior performance holds when using the more powerful GPT-4 model, where LCP reaches **96.95%** on <code>HumanEval</code>, proving that our framework effectively enhances even the most capable foundation models. The consistent gains across all tests, especially the extended ('-ET') versions, validate the robustness and general applicability of our approach compared to other state-of-the-art agentic strategies.

Table 3: Pass@1 score comparison of various competing methods

Models	HumanEval	HumanEval-ET	MBPP	MBPP-ET			
Foundation Models (Zero-Shot)							
Incoder (6.7B)	15.2	11.6	17.6	14.3			
CodeLlama (34B)	51.8	-	69.3	-			
GPT-3.5-turbo	57.3	42.7	52.2	36.8			
Claude-instant-1	31.1	28.1	26.9	19.9			
GPT-4-turbo	57.9	48.8	63.4	47.5			
GPT-4	67.6	50.6	68.3	52.2			
Agentic and Prompting Strategies (GPT-3.5-turbo)							
Few-Shot	67.7 (18.2%)	54.9 (28.6%)	65.8 (26.1%)	48.3 (31.2%)			
CoT	44.6 (-22.2%)	37.2 (-12.9%)	46.1 (-11.7%)	34.8 (-5.4%)			
ReAct	56.9 (-0.7%)	49.4 (15.7%)	67.0 (28.4%)	45.9 (24.7%)			
Reflexion	68.1 (18.8%)	50.6 (18.5%)	70.0 (34.1%)	47.5 (29.1%)			
MapCoder	80.5(40.5%)	77.4(81.3%)	78.9(51.1%)	54.4(47.8%)			
AgentCoder	79.9(39.4%)	77.4(81.3%)	89.9(72.2%)	89.1(142.1%)			
CodeCoR	86.6(51.1%)	80.5(88.5%)	79.2(51.7%)	65.2(77.2%)			
LCP (Ours)	88.4(54.3%)	84.1(97.0%)	91.1(74.5%)	86.4(134.8%)			
Agentic and Prompting Strategies (GPT-4)							
Reflexion	91.0 (34.6%)	-	77.1 (12.9%)	_			
Self-Debugging		-	80.6 (18.0%)	-			
Self-Collaboration	90.2 (33.4%)	70.7 (39.7%)	78.9 (15.5%)	62.1 (19.0%)			
MetaGPT	85.9 (27.1%)	-	87.7 (28.4%)	_			
AgentCoder	96.3(42.5%)	86.0(70.0%)	91.8(34.4%)	91.8(75.9%)			
CodeCoR	94.5(39.8%)	83.5(65.0%)	-	-			
LCP (Ours)	96.95(43.4%)	88.41(74.7%)	92.51(35.4%)	89.70(71.8%)			

Furthermore, to test its capabilities on more complex problems, we evaluate our framework on the APPS benchmark against baseline and other two reference methods (LDB, LPW), categorized by task difficulty levels: Introductory, Interview, and Competition, using GPT-40 as the LLM backbone. Following existing literature, we switch our base model in the difficulty test for fair comparison. The results, illustrated in Figure 4, demonstrate the robust capabilities of our LCP framework. LCP consistently achieves the highest Pass@1 accuracy across all difficulty tiers, scoring 92.1% on Introductory tasks, 77.5% on Interview tasks, and a leading 38.0% on the challenging Competition tasks. This consistent superiority across varying complexities underscores the effectiveness of the LCP framework in generating correct solutions for a wide spectrum of programming challenges.

Table 4: Pass@1 accuracy of multi-agent framework (LPW) compared with baseline and LDB on APPS benchmark across different difficulty levels using GPT-40 as the LLM backbone.

Difficulty Level	Baseline	LDB	LPW	LCP (Ours)
Introductory Interview Competition	63.8 43.5 17.4	78.7 52.2 28.3	87.2 65.2 34.8	92.1 77.5 38.0
Compeniion	17.4	20.3	34.6	36.0

D ADDITIONAL CASE STUDY DETAILS

This section provides supplementary information for the case studies presented in the main paper, including detailed experimental setups, prompts, generated code, and further results.

D.1 CASE STUDY 1: BEACH PROFILE PREDICTION

D.1.1 EXPERIMENTAL SETUP

The dataset utilized for this beach profile prediction study is organized into distinct training and testing sets, containing 536 and 242 rows respectively. Each data row represents a measurement point along a beach profile, characterized by several key features: a numerical x coordinate denoting the distance from the profile's origin, serving as a primary input; a numerical y value representing the elevation at that distance, which is the target variable for prediction; and a categorical feature, "Dominant Wave Direction" (e.g., "ENE", "E"), necessitating encoding for model integration. Additional numerical columns are present, representing other relevant physical or environmental parameters that can be incorporated as supplementary features to enhance the predictive model's performance.

D.1.2 USER'S PROMPT FOR BEACH PROFILE PREDICTION

Please refer to the Bruun model and the Dean model to build a mathematical model to discuss the change of sea level height with respect to the distance from the starting point, and build a deep learning model based on our data. The following is our data path and structure:

Data File Paths:

Training Data: "beach_profile_data / processed_data / beachdata_train .xlsx"

Test Data: "beach_profile_data / processed_data / beachdata_test . xlsx"

Data Structure Insights:

The training and testing datasets contain several columns. Key columns include:

x: A numerical column representing the distance from a profile 's origin; this is a primary input for predicting y.

y: A numerical column representing the elevation; this is the target variable for prediction.

Dominant Wave Direction: This is a categorical (string) type column (e.g., values like "ENE", "E", "NE"). This column will require appropriate encoding.

All other relevant columns you might select as features are expected to be in numerical (integer or float) format.

Create the code directly and The script should not run the main training or evaluation logic directly when the script file is executed. Instead, it should define all necessary functions with a main function main() that can be run WITHOUT ANY input. DO NOT USE tensorflow. Use provided data path in your code.

Listing 1: Prompt used for beach profile prediction.

D.1.3 REFINED TASK DESCRIPTION BY LLM-TM AGENT

Please refer to the Bruun model and the Dean model to build a mathematical model to discuss the change of sea level height with respect to the distance from the starting point, and build a deep learning model based on our data. The following is our data path and structure:

Data File Paths:

Training Data: "beach_profile_data / processed_data / beachdata_train . xlsx"

Test Data: "beach profile data/processed data/beachdata test.xlsx"

Data Structure Insights:

The training and testing datasets contain several columns. Key columns include:

x: A numerical column representing the distance from a profile 's origin; this is a primary input for predicting y.

y: A numerical column representing the elevation; this is the target variable for prediction.

Dominant Wave Direction: This is a categorical (string) type column (e.g., values like "ENE", "E", "NE"). This column will require appropriate encoding.

All other relevant columns you might select as features are expected to be in numerical (integer or float) format.

create the code directly and The script should not run the main training or evaluation logic directly when the script file is executed. Instead, it should define all necessary functions.

=== Extra information ===

 The Bruun model is a conceptual framework used in coastal engineering to predict shoreline retreat in response to sea-level rise. It assumes a balance of sediment in the cross-shore profile, resulting in both erosion and deposition occurring simultaneously as sea levels change. The formula often associated with the Bruun model states that the retreat distance (R) is proportional to the rise in sea level (S) divided by the height of the active profile (a):

$$R = \frac{S \times (d+B)}{a+B}$$

where:- S is the sea-level rise.- d is the depth of closure.- B is the berm height.- a is the active height. The Dean model focuses on sediment equilibrium profiles, often fitting the profile shape with the formula:

$$y = Ax^{2/3}$$

where:- A is a parameter related to sediment characteristics. Both models serve to provide theoretical insights into the interaction of sea-level changes with coastal profiles.

=== Feature analysis ===

The dataset contains various features, including:

- **x**: Distance from a profile 's origin, serving as a primary input.
- **y**: Elevation, the target variable for prediction.
- **Dominant Wave Direction**: A categorical feature indicating wave direction , requiring encoding.
- **Annual Mean Period, Annual Mean Spring Tidal Range, Annual Mean Tidal Range**: Numerical features capturing tidal metrics.
- **Breaker Wave Height Hb, Deep Water Wave Height Hd, Mean Wave Height**: Provide information about wave conditions.
- -**Dimensionless Settling Velocity , High Tide Sediment Settling Velocity **: Indicative of sediment transport characteristics .
- $-**Latitude\,,$ Longitude**: Geographical coordinates potentially used for spatial analysis .
- **Mean Grain Size, Mean Grain Size (Mz)**: Describe sediment characteristics important for erosion/sediment transport modeling.
- **Skewness, Kurtosis, Sorting Coefficient **: Statistical measures about sediment distribution.

=== Extra Advice ===

To effectively use the provided features for the task, consider the following recommendations:

- 1. **Feature Engineering**:
- Encode categorical variables such as "Dominant Wave Direction" using one-hot encoding or ordinal encoding.
- Calculate additional derived features if necessary, such as interaction terms between wave heights and sediment properties.
- Normalize or standardize numerical features to ensure they contribute equally to model optimization.
- 2. **Incorporating Domain Knowledge**:
- Use the Bruun and Dean models to inform feature selection or crafting. Variables related to tide, wave height, and sediment characteristics are crucial.
- Integrate expert knowledge about the relationships between features to inform model architecture in the neural network.
- 3. **Data Splitting and Validation **:

- Ensure that the dataset is split appropriately into training and validation sets to evaluate model performance accurately .

4. **Model Architecture **:

- Consider building a neural network that incorporates multiple hidden layers to capture complex interactions .
- Use activation functions suitable for regression tasks, such as ReLU for hidden layers and linear activation for the output layer.

5. **Handling Geographical Variations **:

- If $\,$ spatial data relationships are significant , consider spatial analysis or geographically –weighted regression .

Listing 2: Refined task description by LLM-TM agent based on given prompt. (The highlight part is the additional prior knowledge generated by agent)

D.1.4 CODE GENERATED BY CURSOR (ONLY DATA PROCESS PART)

```
882
     def load_and_process_data(filepath, scaler=None, label_encoder=None,
883
          fit_scaler=False, fit_label_encoder=False):
884
          df = pd.read_excel(filepath)
           # Select features
885
           feature_cols = [col for col in df.columns if col not in ['y']]
886
          X = df[feature_cols].copy()
887
          y = df['y'].values.astype(np.float32)
888
           # Encode Dominant Wave Direction
889
          if 'Dominant Wave Direction' in X.columns:
    9
890
              if label_encoder is None:
    10
891
                   label_encoder = LabelEncoder()
    11
892
               if fit_label_encoder:
893
    13
                   X['Dominant Wave Direction'] = label_encoder.fit_transform(X[
          'Dominant Wave Direction'])
894
              else:
    14
895
                   X['Dominant Wave Direction'] = label_encoder.transform(X['
    15
896
          Dominant Wave Direction'])
897
898
               label_encoder = None
    17
899
    18
           # Standardize numerical features
    19
900
          num_cols = X.select_dtypes(include=[np.number]).columns.tolist()
    20
901
          if scaler is None:
    21
902
              scaler = StandardScaler()
    22
903
           if fit_scaler:
904 24
              X[num_cols] = scaler.fit_transform(X[num_cols])
    25
          else:
905
              X[num_cols] = scaler.transform(X[num_cols])
    26
906
    27
907
           return X.values.astype(np.float32), y, scaler, label_encoder, df['x'
908
          ].values.tolist(), df['y'].values.tolist()
```

Listing 3: Code for beach profile prediction generated by Cursor.

D.1.5 CODE GENERATED BY WINDSURF (ONLY DATA PROCESS PART)

```
913
914
1 # --- Data Loading and Preprocessing ---
2 def load_data(train_path, test_path):
3 train_df = pd.read_excel(train_path)
4 test_df = pd.read_excel(test_path)
917
5 # Select features
6 feature_cols = [col for col in train_df.columns if col not in ['y']]
```

```
918
          target_col = 'y'
919
           # Handle categorical encoding and scaling
920
          scaler = StandardScaler()
          label_encoders = {}
921
    10
          train_dataset = BeachProfileDataset(train_df, feature_cols,
    11
922
          target_col, scaler=None, label_encoders=label_encoders, fit_scaler=
923
          True)
924
          test_dataset = BeachProfileDataset(test_df, feature_cols, target_col,
    12
925
           scaler=train_dataset.scaler, label_encoders=train_dataset.
          label_encoders, fit_scaler=False)
926
       return train_dataset, test_dataset, feature_cols, label_encoders
927
```

Listing 4: Code for beach profile prediction generated by Windsurf.

D.1.6 CODE GENERATED BY OUR FRAMEWORK (ONLY DATA PROCESS PART)

```
932
     # Define the function to run the entire process
933
     2 def run_beach_profile_model(train_data_path, test_data_path):
934
           # Component 1: Data Loader
935
           def data_loader(train_path, test_path):
936
937
938
               return train_df, test_df
939
940
           # Component 2: Theoretical Model Integration
    10
941
    11
           def theoretical_model_integration(train_df, test_df):
                # derived feature using Dean's model
942
               train_df['Dean_Feature'] = train_df['x'] ** (2 / 3)
    13
943
               test_df['Dean_Feature'] = test_df['x'] ** (2 / 3)
    14
944
    15
945
               # Potential Bruun influence -> Using given example formula might
946
          require additional variables
               train_df['Bruun_Feature'] = ((train_df['y'] * (train_df['Mean
    17
947
          Wave Height'])) / (train_df['Mean Grain Size']))
948
               test_df['Bruun_Feature'] = ((test_df['y'] * (test_df['Mean Wave
949
          Height'])) / (test_df['Mean Grain Size']))
950 19
               return train_df, test_df
951
    20
    21
952
           # Component 3: Deep Learning Model
953
    23
           def deep_learning_model(X_train, y_train):
954
    24
955
    25
               . . .
956
    26
               return model
    27
957
    28
958
           # Component 4: Model Training and Evaluation
    29
959
    30
           def model_training_evaluation(model, train_df, test_df):
960
    31
961
    32
    33
962
               return {'RMSE': rmse, 'MAE': mae, 'R2': r_squared}
    34
963
    35
964
           # Execute the process
    36
965
           train_df, test_df = data_loader(train_data_path, test_data_path)
    37
           train_df, test_df = theoretical_model_integration(train_df, test_df)
    38
966
           train_df = train_df.dropna()
    39
967
           test_df = test_df.dropna()
    40
968
           model = deep_learning_model(train_df.drop(columns=['y']).to_numpy(),
    41
969
          train_df['y'].to_numpy())
970
           evaluation_results = model_training_evaluation(model, train_df,
          test_df)
971
```

44 return evaluation_results

Listing 5: Code for beach profile prediction generated by Our Framework.

D.1.7 RESULTS AND DISCUSSION

In this case study focused on beach profile prediction, the primary objective was to integrate established theoretical models—specifically the Bruun and Dean models—with a deep learning methodology, as per the user's explicit requirement. An examination of the approaches reveals that while both the Cursor and Windsurf frameworks implemented standard data preprocessing techniques such as numerical feature standardization and one-hot encoding for categorical data, they did not incorporate the specified theoretical models. In contrast, our LCP framework successfully addressed the user's need by calculating additional derived features based on the Bruun and Dean models. This direct integration of domain-specific theoretical knowledge into the feature set represents a key differentiator in our approach.

The impact of this tailored feature engineering is reflected in the prediction performance, as illustrated in 5. The results indicate that the LCP framework yielded predictions superior to those generated by Cursor. Furthermore, LCP's predictive accuracy was observed to be closely comparable to the results from Windsurf. This suggests that the inclusion of theoretically-derived features not only fulfilled a critical user requirement but also contributed positively to the model's ability to accurately predict beach profile changes, positioning LCP as a more comprehensive solution for this specific task.

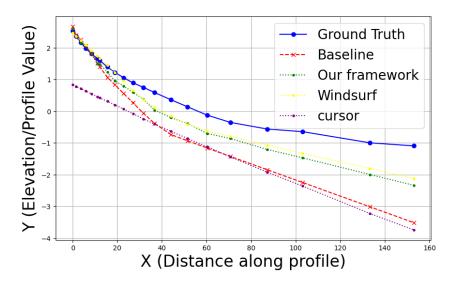


Figure 5: Beach profile prediction results comparison.

D.2 CASE STUDY 2: BRAIN MRI SEGMENTATION

D.2.1 EXPERIMENTAL SETUP (BRAIN MRI)

This study utilizes a subset of the "LGG MRI Segmentation" dataset, which contains brain Magnetic Resonance Images (MRI) and corresponding manual FLAIR abnormality segmentation masks for patients with Lower Grade Glioma (LGG). The original dataset, sourced from The Cancer Imaging Archive (TCIA), includes data from 110 patients. For this experiment, data from 30% of these patients was selected. This selected patient data, comprising MRI slices (typically 256x256 pixels) and their associated segmentation masks, was then partitioned into training, validation, and testing sets with a 7:1.5:1.5 ratio, respectively, to develop and evaluate a deep learning model for brain tumor segmentation.

D.2.2 PROMPT FOR BRAIN MRI SEGMENTATION

```
1026
       Develop an image segmentation model to accurately and efficiently identify and segment
1027
       FLAIR abnormalities in brain MR images from the LGG Segmentation Dataset.
1028
1029
        Dataset Format & Structure:
1030
        Base Path: r"E:\python_project_new\brain_case_study \lgg-mri-segmentation\case_study"
1031
1032
        Organization:
1033
        The base path contains train /, val /, and test / subfolders.
1034
       Each of these subfolders contains two further subfolders: images/ and masks/.
1035
1036
       Image Files (images/):
1037
       Format: 3-channel . tif files .
1038
        Naming: TCGA_<institution-code>_<patient-id>_<slice-number>.tif.
1039
1040
        Mask Files (masks/):
       Format: Binary, 1-channel . tif files .
1041
       Naming: TCGA_<institution-code>_<patient-id>_<slice-number>_mask.tif.
1042
1043
```

Listing 6: User's Prompt used for Brain MRI segmentation.

D.2.3 REFINED PROMPT BY LLM-TM AGENT

1044

1045 1046

104710481049

1079

=== Role ===

```
1050
        === Extra Advice ===
1051
1052
        - **Data Preprocessing:** Normalize image intensity values (min-max or z-score
1053
        normalization). Ensure all images are resized/cropped to the same shape (commonly
1054
        256x256 or as appropriate for U-Net input). If channel information is redundant, you
1055
       could reduce it to one channel for efficiency.
1056
        - **Label Preparation: ** Ensure mask values are binary (0 and 1). Double-check that
1057
       mask and image align correctly for every slice.
        - **Data Augmentation:** To combat overfitting and improve generalization, apply
1058
        transformations such as flipping, rotation, scaling, and intensity shifts, ensuring
1059
        they are applied equally to images and masks.
1060
        - **Model Choice: ** Use U-Net (or a lightweight modification thereof) due to its strong
1061
        performance in medical image segmentation with relatively small datasets.
1062
        - **Loss Function:** Use a combination of Binary Cross Entropy and Dice Loss to
1063
        penalize both pixel-wise errors and poor overlap.
1064
        - **Batching: ** Due to likely high resolution and small dataset, use small batch sizes
        and possibly gradient accumulation.
        - **Evaluation: ** Report Dice on the test set (already specified). Consider visualizing
1067
        a few results for qualitative assessment, e.g., overlay masks or compare ground truth
1068
1069
        - ** Visualization :** Save (or plot) a grid of test images, ground truth, and
1070
        predictions for several slices to inspect the model's performance.
1071
        By thoroughly preparing the dataset, using appropriate augmentations, and selecting a
1072
        suitable architecture and losses, you can build a robust FLAIR abnormality segmentation
1073
        model for the LGG dataset. Ensure reproducibility by setting random seeds and keeping
1074
        all data splits strictly separate during model development and evaluation.
1075
        ...
1076
1077
1078
```

Listing 7: Partial Refined Prompt for Brain MRI segmentation, generated by LLM-TM agent

1081

1114 1115 1116

1117

D.2.4 CODE GENERATED BY CURSOR (ONLY MAIN TRAINING LOOP)

```
1082 1 . . .
1083 <sup>2</sup> # --- Training Loop -
     3 def train_one_epoch(model, loader, optimizer, criterion, device):
1084
           model.train()
1085
           epoch_loss = 0
1086 6
           for imgs, masks in tqdm(loader, desc='Train', leave=False):
              imgs, masks = imgs.to(device), masks.to(device)
1087 7
              optimizer.zero_grad()
1088 8
              outputs = model(imgs)
1089
               loss = criterion(outputs, masks)
     10
1090 11
               loss.backward()
1091 <sub>12</sub>
               optimizer.step()
               epoch_loss += loss.item() * imgs.size(0)
1092 13
           return epoch_loss / len(loader.dataset)
1093 <sup>14</sup>
    16 # --- Main Function ---
1095 <sub>17</sub> def main():
1096 18
           device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
           # Datasets
1097 19
1098 <sup>20</sup>
           . . .
1099 21
           # Model
           model = UNet().to(device)
1100 23
           optimizer = optim.Adam (model.parameters(), lr=1e-3)
1101 <sub>24</sub>
          criterion = nn.BCELoss()
1102 25
           # Training
1103 <sup>26</sup>
          best_val = 0
1104 <sup>27</sup>
          for epoch in range(1, 11): # 10 epochs
1105
               train_loss = train_one_epoch(model, train_loader, optimizer,
           criterion, device)
1106 29
               val_dice = evaluate(model, val_loader, device)
                if val_dice > best_val:
1107 30
                    best_val = val_dice
1108 31
                    best_model = model.state_dict()
1109 32
          # Test
1110 34
         model.load_state_dict(best_model)
1111 35
          test_dice = evaluate(model, test_loader, device)
          return model, test_loader, device, test_dice
1112 36
1113 37 ...
```

Listing 8: Code for Brain MRI segmentation generated by Cursor.

D.2.5 CODE GENERATED BY WINDSURF (ONLY MAIN TRAINING LOOP)

```
1118 1 ...
1119 2 def train_one_epoch(model, loader, optimizer, criterion):
           model.train()
           epoch_loss = 0
1121
           for imgs, masks in loader:
1122 6
              imgs, masks = imgs.to(DEVICE), masks.to(DEVICE)
              optimizer.zero_grad()
1123 7
               outputs = model(imgs)
1124 8
1125 9
               loss = criterion(outputs, masks)
               loss.backward()
1126 11
    10
               optimizer.step()
1127 <sub>12</sub>
               epoch_loss += loss.item() * imgs.size(0)
          return epoch_loss / len(loader.dataset)
1128 13
1129 <sup>14</sup>
1130 15 def main():
    16
          base\_path = ...
1131 <sub>17</sub>
1132 <sub>18</sub>
           model = UNet().to(DEVICE)
1133 19
           optimizer = optim.Adam(model.parameters(), lr=1e-3)
    20
        criterion = nn.BCELoss()
```

```
best_val_dice = 0
1135 <sub>22</sub>
           for epoch in range(1, 11): # 10 epochs
1136 23
               train_loss = train_one_epoch(model, train_loader, optimizer,
1137
           criterion)
1138 <sup>24</sup>
              val_dice = evaluate(model, val_loader)
1139 25
               if val_dice > best_val_dice:
                   best_val_dice = val_dice
1140
                    best_model_state = model.state_dict()
1141 <sub>28</sub>
           model.load_state_dict(best_model_state)
1142 29
           test_dice = evaluate(model, test_loader)
1143 30
           return model, test_dice
```

Listing 9: Code for Brain MRI segmentation generated by Windsurf.

D.2.6 CODE GENERATED BY OUR FRAMEWORK (ONLY MAIN TRAINING LOOP)

```
1149
1150
     class DiceLoss(nn.Module):
           def __init__(self, eps=1e-7):
1152 4
               super().__init__()
               self.eps = eps
1153 5
           def forward(self, logits, targets):
1154
               inputs = torch.sigmoid(logits)
1155
               targets = (targets > 0.5).float()
1156 9
               intersection = (inputs * targets).sum(dim=(2,3))
1157 10
               unionset = inputs.sum(dim=(2,3)) + targets.sum(dim=(2,3))
               dice = (2 * intersection + self.eps) / (unionset + self.eps)
1158 11
              loss = 1 - dice
1159 12
               return loss.mean()
1160
1161 <sub>15</sub> # ----- Train and Evaluate -----
1162 16 def train_model(
       model,
1163 <sup>17</sup>
           dataloader_dict,
1164 18
           device,
1165 20
           n_epochs=10,
1166 21
           lr=1e-3,
1167 22
           patience=2,
1168 23 ):
1169 <sup>24</sup>
           optimizer = torch.optim.Adam(model.parameters(), lr=lr)
           bce_loss = nn.BCEWithLogitsLoss()
1170
           dice_loss = DiceLoss()
    26
1171 <sub>27</sub>
           best_state = copy.deepcopy(model.state_dict())
1172 28
           best_val_dice = -np.inf
           epochs_no_improve = 0
1173 29
           for ep in range(n_epochs):
1174 30
               model.train()
    31
1175
               train_loss = []
1176 33
               train_dice = []
               for x, y in dataloader_dict['train']:
1177 34
                    x = x.to(device)
1178 35
1179 <sup>36</sup>
                    y = y.to(device)
                    optimizer.zero_grad()
    37
1180
    38
                    pred = model(x)
1181 39
                    loss = 0.5*bce_loss(pred, y) + 0.5*dice_loss(pred, y)
1182 40
                   loss.backward()
1183 <sup>41</sup>
                   optimizer.step()
1184 42
                   train_loss.append(loss.item())
                    train_dice.append(dice_coefficient(pred, y))
1185 44
               # Validation
1186 <sub>45</sub>
1187 46
                # Early stopping
     47
```

```
1188
           model.load_state_dict(best_state)
1189
    49
          return model
1190 50 ...
1191 51 # -
                    --- MAIN PIPELINE ----
1192 52 def main():
    53
1193
           Loads data, trains segmentation model, returns model and average Dice
    54
1194
           on test set.
1195 55
           # ---- Settings (tuned for quick/robust test) ----
1196 56
           DATA\_PATH = ...
1197
1198
           # ---- Model ----
1199
           model = UNetLite(in_ch=3, out_ch=1).to(device)
1200 61
           # ---- Train -
           model = train_model(
1201 62
               model,
1202 63
               dataloader_dict,
    64
1203
    65
               device,
1204
    66
               n_epochs=N_EPOCHS,
1205 67
               lr=LR,
1206 68
               patience=PATIENCE
1207 69
           # ---- Evaluate test set ----
1208
    71
           test_dice = evaluate_model(model, dataloader_dict['test'], device)
1209
    72
           return model, test_dice
```

Listing 10: Code for Brain MRI segmentation generated by Our Framework.

D.2.7 RESULTS AND DISCUSSION (BRAIN MRI)

 In this case study, the objective was to develop a model for accurate and efficient identification and segmentation of abnormalities in brain MR images, based on a relatively open-ended user description that primarily specified the data format structure. While both the Cursor and Windsurf frameworks opted for a traditional U-Net architecture and utilized BCELoss for model training, our LCP framework adopted a different strategy. LCP generated code implementing a "Lite U-Net," a more streamlined architecture designed for faster computation. Furthermore, for the training process, LCP combined nn.BCEWithLogitsLoss() with a custom DiceLoss().

The practical outcomes of these differing approaches are evident in the performance metrics presented in 5. Most notably, the LCP framework demonstrated a significant advantage in computational efficiency, with its generated code requiring only approximately one-quarter of the training time compared to the solutions from Cursor and Windsurf. In terms of segmentation accuracy, the LCP framework achieved a Dice score on the test dataset that surpassed Cursor's results and was only marginally lower than that of Windsurf. This indicates that LCP's choice of a lighter model and a compound loss function provided a highly efficient solution that maintained a competitive level of accuracy, effectively addressing the user's call for both efficiency and accuracy in a complex image segmentation task.

Framework	Cursor	Windsurf	LCP (ours)
Dice Score	0.6627	0.7232	0.7185
Training time	127.9s	131.6s	36.2s

Table 5: Comparison of Dice scores on test data with code generated by different frameworks.

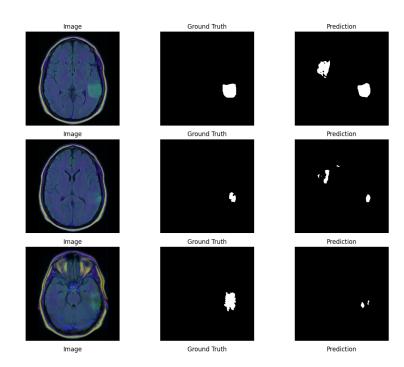


Figure 6: Brain MRI Segmentation by Cursor.

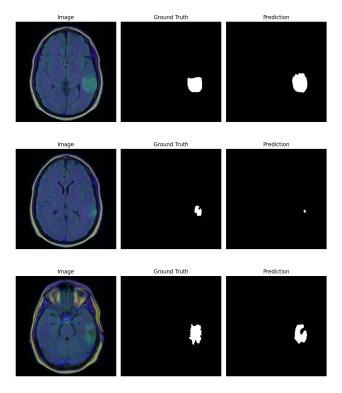


Figure 7: Brain MRI Segmentation by Windsurf.

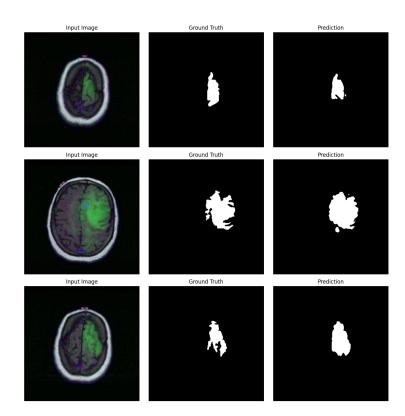


Figure 8: Brain MRI Segmentation by LCP.

D.3 TRAINING PERFORMANCE

To train our model, we collected 120 unique answers for a specific LeetCode problem. This dataset was then divided, with 60 answers designated for training. The remaining 60 answers from the target problem were combined with 60 code samples from different LeetCode problems to form our test dataset.

The training process demonstrated efficient learning, as illustrated in 9, which shows the training loss plotted against epochs. The loss converged rapidly, showing a significant decrease from the start to the 10th epoch.

Upon evaluating the trained model on the test dataset, using a classification threshold of 0, we achieved promising results. The model demonstrated an Accuracy of 0.8487, a ROC AUC score of 0.9322, and Precision, Recall, and F1-score all at 0.8475.

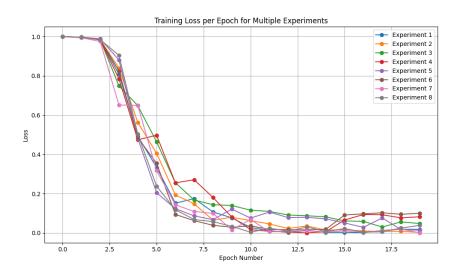


Figure 9: Training loss against epoch for the IRL experiment.

D.4 STATE AND ACTION SPACE DEFINITION EXAMPLE

```
1371
       Vocabulary:
1372
       <state ><UNK>: 0
1373
       Name_U1: 1
1374
1375
       Name_<UNKNOWN>: 11
1376
       arg_U1: 12
1377
1378
       arg_<UNKNOWN>: 22
       Assign_U1: 23
1379
1380
       Assign_<UNKNOWN>: 33
1381
       <state>Assign(Assign_U1): 34
        < state > Attribute ( Attribute ): 35
1383
        < state > ClassDef(ClassDef): 36
1384
       < state >FunctionDef(FunctionDef): 37
1385
       < state >Import(math): 38
1386
       <state>ImportFrom(os::path): 39
1387
       < state >arg(arg_U1): 40
1388
1389
       Add: 43
       BinOp: 44
1390
       Call(sqrt): 45
1391
       Constant: 46
1392
       Load: 47
1393
       Module: 48
1394
       Mult: 49
1395
1396
1397
```

Listing 11: State and Action Space Definition.

Based on the State and Action Space defined above, we will transfer code into a state-action trajectory, for example:

```
Code:
```

```
1404
        import math
1405
        from os import path
1406
        x = math. sqrt (16)
1407
1408
        It would be converted into:
        State:
1409
        [[38], [38, 39], [34, 35, 38, 39]]
1410
        Action:
1411
        [[38], [39], [34, 35, 45, 46, 50, 51]]
1412
1413
```

Listing 12: Single example about code processing

1418

1422

1414

PROMPTS USED FOR LARGE LANGUAGE MODELS (LLMS)

1419 This section details the specific prompts provided to the Large Language Models (LLMs) for various 1420 sub-tasks within our framework. These prompts are displayed to mimic structured textual input. 1421

E.1 LLM-TM (TASK MANAGER) PROMPTS

1423 1424 1425

E.1.1 PROMPT FOR DATA ANALYSIS AND PRIOR KNOWLEDGE REFINEMENT

```
1426
        I am working on a code generation task:
1427
        < task description start >
1428
        { task_description }
1429
        < task_description_end >
1430
1431
        I need you to analyze the data I will be working with and add extra information about
1432
        the task escription. Please structure your response as follows:
1433
1434
        <extra information>
1435
        Based on the task description, provide any additional information or context that might
        be relevant to the task. For example, adding mathematical formulas, domain-specific
1437
        knowledge, or any other relevant information that can aid in the code generation
1438
        process.
        </ extra_information >
1439
1440
        < feature_analysis >
1441
        Provide a brief introduction to the features present in the data.
1442
        If specific feature information is not available, please describe the overall data
1443
        structure you would expect or require for this task.
1444
        </ feature_analysis >
1445
1446
        <advice>
1447
        Based on the task description, extra knowledge and the data features (or expected data
1448
```

structure),

provide advice on how these features can be effectively used to accomplish the project, and how to incorporate the additional information into the project.

Suggest potential data transformations, feature engineering steps, or specific ways to leverage features and extra domain-specific knowledge in the code generation process. </advice>

1452 1453 1454

1449

1450

1451

Listing 13: LLM-TM: Prompt for data analysis.

1455 1456 1457

I have an initial task description and some analysis regarding the data and approach.

```
1458
        I need you to synthesize all this information into a single, clear, and more detailed
1459
        refined task description.
1460
1461
        The refined task description should incorporate insights from the feature analysis and
1462
        the advice provided, making it more actionable and comprehensive for a code generation
        system. It should clearly state the goal, the expected inputs (data/features), and any
1463
        key steps or considerations mentioned in the advice.
1464
1465
        Here is the information:
1466
1467
        < original_task_description_start >
1468
        { original_task_description }
1469
        < original_task_description_end >
1470
1471
        < extra_information_start >
1472
        { extra_information }
1473
        <extra_information_end>
1474
        < feature_analysis_start >
1475
        { feature_analysis }
1476
        < feature_analysis_end >
1477
1478
        <advice start>
1479
        {advice}
1480
        <advice_end>
1481
1482
        Now, please provide the refined task description. Output only the refined task
1483
        description itself, without any extra conversational text or tags.
1484
        Refined Task Description:
1485
1486
```

Listing 14: LLM-TM: Prompt for prior knowledge refinement.

E.1.2 PROMPT FOR TASK DECOMPOSITION

You are an expert agent specialized in decomposing code generation tasks into structured, detailed, and clear subtasks and then give a detailed overall plan based on your defined subtasks. Given a simple high-level task description, your job is to break it down into logical subtasks that clearly illustrate the workflow and ensure easy understanding and execution.

Each decomposed subtask should aim to create a function or class as a reusable component contributing to the overall task. If the provided task is too simple or atomic to require multiple components, your decomposition should only contain a single component.

Your output must strictly follow the format below:

```
{
components>
{
   "component_1": {
      " step_task_description ": str ,
      "input_format": [[ type , shape or null ]],
      "output_format": [[ type , shape or null ]],
      "work_flow": [ str ],
      " test_case_generation_advise ": [ str ]
},
```

```
1512
          "component_2": {
1513
            " step_task_description ": str,
            "input_format": [["type", shape or null]],
            "output_format": [["type", shape or null]],
1515
1516
            "work_flow": [ str ],
            " test_case_generation_advise ": [ str ]
1517
1518
          },
1519
1520
        </components>
1521
1522
        <overall_plan>
1523
1524
          "input_format": [["type", shape or null]],
1525
          "output_format": [["type", shape or null]],
1526
          "components": [ str ],
          "plan": [ str ],
          " test_case_generation_advise ": [ str ]
1529
        </ overall_plan >
1530
1531
        Here are additional detailed explanations of each field:
1532
1533
       For <components>:
1534
        - **component_X**: The key represents the subtask name, it should be replaced by the
1535
        actual class / function name of the component (e.g., "merge_arrays", "calculate_median").
1536
        - ** step_task_description **: Provide a clear and concise description of exactly what
1537
        this subtask aims to achieve, specifically mentioning the intended functionality or
1538
        role of the created component (function/class).
        - **input_format **: Describe the format of each input argument required for this
1539
        subtask. It is a list of lists, where each inner list has two elements:
1540
          - The first element indicates the data type (e.g., "list", "dict", NumPy array,
1541
        torch. Tensor). DO make sure the data type is a string.
1542
         - The second element indicates the fixed shape if applicable; otherwise, it is null.
1543
        - **output_format**: Describe the format of each output argument generated by this
        subtask. It follows the same list structure as 'input_format', note that it has to be a
1545
        list of lists.
1546
        - **work_flow**: Provide a detailed step-by-step plan that outlines the workflow of how
1547
       the component functions to achieve the subtask.
1548
        - ** test_case_generation_advise **: Provide a list of detailed guidelines or suggestions
1549
        aimed at generating diverse and comprehensive test cases, explicitly mentioning
        potential edge cases and critical scenarios that need coverage.
1550
1551
        For < overall_plan >:
1552
        - **input_format **: Describe the format of the input arguments required for the overall
1553
        task. It follows the same structure as 'input_format' in the component section.
1554
        - **output_format**: Describe the format of the output arguments generated by the
1555
        overall task. It follows the same structure as 'output_format' in the component section.
1556
        - **components**: List the components in the order.
1557
        - **plan**: Provide a detailed step-by-step plan that outlines the workflow of how the
1558
       components interact with each other to achieve the overall task. This should be a
1559
        high-level description of the process.
        - ** test_case_generation_advise **: Provide a list of detailed guidelines or suggestions
1560
        aimed at generating diverse and comprehensive test cases for the overall task,
        explicitly mentioning potential edge cases and critical scenarios that need coverage.
1562
1563
        Your decomposition should strive for clarity, correctness, modularity, and ensure each
1564
        step can be tested independently. Now, given the following simple task description:
1565
```

```
1566
       "{{TASK_DESCRIPTION}}"
1567
1568
       Use <> to indicate both start and end of the component part and the overall plan.
1569
       Ensure that the components and the overall plan are clearly separated.
1570
       Please provide your structured decomposition according to the instructions above.
1571
1572
1573
                            Listing 15: LLM-TM: Prompt for task decomposition.
1574
1575
       You are an expert agent specialized in refining and improving code generation plans
1576
       through iterative feedback. Given a task description, previous decomposition output,
1577
       and user feedback, your job is to critically analyze the existing plan and modify it
1578
       accordingly while maintaining the required output format.
1579
1580
       Carefully review the previous components and overall plan, then:
1581
       1. Preserve correct/valid elements that don't conflict with the feedback
1582
       2. Make targeted modifications based on the user's specific advice
       3. Ensure consistency between components and overall plan
       4. Verify input/output formats and workflow logic
1585
       5. Check for any introduced errors during modification
1586
       The input consists of three elements:
1587
       Original Task Description: "{{TASK_DESCRIPTION}}"

    Previous Decomposition Output:

1589
       {{PREVIOUS_OUTPUT}}
1590
        User Feedback: "{{USER_ADVICE}}"
1591
1592
       Your output must STRICTLY follow the original format with these sections:
1593
        <components>...</components>
1594
       <overall_plan >...
1595
1596
       Follow these guidelines:
1597
       - Explicitly address all points in the user feedback

    Clearly document any changes made from previous version

        - Preserve JSON structure and formatting requirements
1599

    If feedback contradicts original requirements, prioritize feedback

       Again, user feedback is: "{{USER_ADVICE}}"
       Provide your refined decomposition with clear explanations of changes in the component
1604
        descriptions and overall plan. Ensure modularity, testability, and coverage of edge
       cases mentioned in feedback.
                   Listing 16: LLM-TM: Prompt for plan refinement based on user feedback.
1608
```

E.1.3 PROMPT FOR TEST CASES GENERATION

1609 1610

```
1612
        You are a test case generation agent. Your task is to create Python test functions to
1613
        validate a code generation task based on the provided specifications . Follow these
1614
        instructions carefully:
1615
1616
       ### Input Specifications:
1617
       - **Task Description **:
       { task_descr_str }
1618
        - **Input Format**:
1619
        { input_descr_str }
```

```
1620
       - **Output Format**:
1621
        { output_descr_str }
1622
        - **Components Used**: {components_str}
1623
        - **Plan**:
1624
        { plan_str }
        - **Test Case Advise**:
1625
        { advisory_list }
1626
1627
        ### Requirements:
1628
        1. **Test Function Structure **:
1629
           - Each test function must accept **only the function under test ** as its parameter
1630
        (e.g., 'def test_case (func) :...')
1631
          - Return 'True' if the test passes, 'False' otherwise. Do not use assertions, please
1632
        return a boolean value.
1633
           - Include input generation, runtime checks, code inspection, or result validation
1634
        within the function.
1635
        2. **Test Types** (use one of these for indicating the test_type):
          - 'correctness': Validate output against expected results for specific inputs.
           - 'edge_case': Test inputs like empty lists, extreme values, or invalid data.
1638
          - 'runtime': Measure execution time (e.g., ensure it's below a threshold).
1639
           - 'component_check': Verify the function's code uses specified components (e.g., via
1640
        string inspection).
1641
          - 'error_handling': Check if errors are raised for invalid inputs.
1642
1643
        3. **Test Case Diversity **:
1644
          - Cover all provided advisories.
1645
           - Include at least one test per advisory and one for each test type where applicable.
1646
        ### Output Format:
1647
        For each test case, you need to firstly define the Test Types to indicate what type of
1648
        test case you are going to create and then give the reasoning and explanation of the
1649
        test case. After that, generate the test function based on the your reasoning.
1650
1651
       For each test function, return with following structure:
1653
        <Type>
1654
       Pick one of correctness ledge_case|runtime|component_check|error_handling
1655
        </Type>
1656
        <Planning>
1657
        Introduce how would you design the test function. Specify the purpose of the test
        function and the reasoning behind it. Explain step by step why your test case is
1658
        correct and what is the expected output.
1659
        </Planning>
1660
        <Code>
        def test_case (func):
1662
            # Your test function code here
1663
            return True or False as test result, and a message
1664
        </Code>
1665
1666
        If you are going to create multiple test cases, please separate them with < separator>
        tag.
1668
1669
        {example_text}
        Generate test cases that rigorously validate the function's behavior, code structure,
1670
        and performance.
1671
        You MUST strictly follow the output format and structure. The generated test functions
1672
        MUST be runnable function that use another python function as its parameter and it
1673
        should output both the Test result (True or False) and a message to give extra
```

information about the test result .(For example, f"Test failed: expected X but got Y" or "Test failed: output with shape [x1, y1] but got [x2, y2]", where the X, Y and shapes need to be replaced by the actual output and expected output in test function).

Listing 17: LLM-TM: Prompt for test case generation.

1679 1680 1681

1682 1683

1684

1696 1697

1698

1699 1700

1701

1702

1704

1707

1708

1709

1674

1675

1676

1677 1678

E.2 LLM-CG (CODE GENERATION) PROMPTS

E.2.1 PROMPT FOR CODE GENERATION

```
1685
        === Role ===
1686
       You are a highly skilled coding assistant designed to generate clear, efficient, and
1687
        correct code based on structured task descriptions and detailed plans provided by the
1688
       user. Your responses must precisely follow the instructions, formats, and constraints
1689
       given by the user, and you must strictly adhere to input-output formats, workflows, and
        specific guidelines outlined.
1690
       === Task Description ===
       { task_description }
1693
1694
       === Components ===
1695
```

=== Overall Plan === { plan_text }

{components_description}

=== Test Cases === { sampled_test_cases }

1703 === Instructions ===

Generate the COMPLETE code based on the components and plan above.

DO MAKE SURE the complete code is a runnable function, all components are correctly integrated with in this function.

The complete function should take the input arguments as specified in the overall plan and return the output as specified.

Please add as much comments as possible to your code to explain the logic and any critical steps.

Structure your response as follows:

1711 <Code>

Your code here. DO make sure the output is a single function that integrates all components.

1714 </Code>

1715 <Planning>

A detailed step-by-step explanation of the code's workflow.

</Planning>

1717
4 raining
4 raining
4 raining
7 raining
7 raining
6 raining

The name of the main function that integrates all components.

1719 </Main Function Name>

Provide the code with the same indicator and structure as shown in Instructions . DO NOT return any test cases or example usages in your code!

172217231724

1720

1721

Listing 18: LLM-CG: Prompt for code generation.

1725 1726

1727

E.2.2 PROMPT FOR CODE REFINEMENT

```
1728
       === Role ===
1729
       You are a code refinement specialist designed to improve existing implementations based
1730
        on specific feedback. Analyze the provided feedback, identify areas for improvement,
1731
        and modify the code while strictly maintaining the required input/output formats and
1732
       component specifications.
1733
        === Task Description ===
1734
        { task_description }
1735
1736
        === Components ===
1737
        {components_description}
1738
1739
        === Overall Plan ===
1740
        { plan_text }
1741
1742
        === Test Cases ===
1743
        { sampled_test_cases }
1744
        === User Feedback ===
1745
        {user_feedback}
1746
1747
        === Previous Best Code Generation ===
1748
        { sampled_codes_with_error_info }
1749
1750
        === Refinement Requirements ===
1751
        Before refining the code, tell me the reason why the last code failed to pass the test
1752
        function, and how would you improve the code.
1753
1754
        === Instructions ===
       Generate the COMPLETE code based on the components and plan above.
1755
       DO MAKE SURE the complete code is a runnable function, all components are correctly
1756
        integrated with in this function.
1757
       The complete function should take the input arguments as specified in the overall plan
1758
        and return the output as specified.
1759
        Please add as much comments as possible to your code to explain the logic and any
        critical steps.
1761
        Structure your response as follows:
1762
        <Think>
1763
       Explain why does last code failed to pass the Test Function, and how to fix it.
1764
        </Think>
1765
        <Code>
        Your code here. DO make sure the output is a single function that integrates all
1766
       components.
1767
        </Code>
1768
        <Planning>
1769
        A detailed step-by-step explanation of the code's workflow.
1770
        </Planning>
1771
        <Main Function Name>
1772
       The name of the main function that integrates all components.
1773
        </Main Function Name>
1774
        Provide the code with the same indicator and structure as shown in Instructions . DO
1775
        NOT return any test cases or example usages in your code!
1776
1777
```

Listing 19: LLM-CG: Prompt for code refinement.