
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

AI-FOR-SCIENCE LOW-CODE PLATFORM WITH
BAYESIAN ADVERSARIAL MULTI-AGENT FRAME-
WORK

Anonymous authors
Paper under double-blind review

ABSTRACT

Multi-agent systems leveraging Large Language Models (LLMs) show immense
potential for solving complex scientific problems. However, their reliability is un-
dermined by the probabilistic nature of LLMs, which can produce hallucinations in
both generated code and its corresponding test cases. In a multi-agent architecture,
these errors can propagate and compound, leading to flawed final outputs.
To overcome these core limitations, we introduce a novel Bayesian Adversarial
Multi-agent Framework for AI for Science (AI4S). Delivered as a Low-code
Platform (LCP), our framework enhances the coding capability for scientific tasks
across a wide range of base models, from 1.7B open-source LLMs to up-to-date
commercial ones. Our framework employs three agents in a recursive loop that
adversarially co-optimizes the generated solutions, the test cases used for evaluation,
and the prompts driving generation. This process is governed by a non-LLM-based
Bayesian updating rule, which systematically reduces evaluation uncertainty and
mitigates the system’s dependence on any single LLM’s reliability. Furthermore,
the LCP empowers domain experts by translating high-level natural language
prompts into executable, domain-specific requirements, eliminating the need for
intricate prompt engineering. Extensive experiments confirm that our framework
generates robust solutions while effectively minimizing error propagation. On a
complex, cross-disciplinary Earth Science benchmark, our platform demonstrates
superior reliability and outperforms state-of-the-art models, where a 32B open-
source model can beat the performance of a 235B model in the ScienceCode
benchmark with our framework.

1 INTRODUCTION

Large Language Models (LLMs) are transforming AI for Science (AI4S) research paradigm by
automating complex scientific code generation for simulations, data analysis, and related science
tasks (8; 23). While models such as Codex, AlphaCode, and CodeLlama effectively lower technical
barriers for researchers (5; 21; 28), several challenges hinder their reliable application in AI4S
research. These include: (1) potentially unclear prompt descriptions from domain scientists without
computer science backgrounds, (2) complex execution pipelines for scientific tasks, and (3) the need
to maintain adherence to physical laws and domain-specific constraints. Standard prompting and
self-refinement techniques (33; 6; 24) are often inadequate for handling the subtle error patterns in
complex scientific workflows.

Crucially, we lack strong empirical evidence to fully trust LLMs’ capabilities in deep understanding
and complex reasoning, particularly for professional scientific research tasks (27). Their decision-
making processes remain opaque, and while their outputs often appear plausible, they may contain
subtle inaccuracies or conceptual misunderstandings. These limitations fundamentally constrain the
performance ceiling of LLM-based coding platforms, as their capabilities are inherently bounded
by the underlying LLM’s intelligence level. Such inherent uncertainty demands the development of
frameworks that operate without requiring absolute confidence in the LLM’s intelligence level.

As illustrated in Figure 1, recent advances in LLM-based multi-agent systems attempt to address
these limitations through distributed reasoning and specialized agent roles, where different LLM

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Comparison between three code generation paradigms: Single LLM generator, multi-agent
role playing and the proposed Bayesian adversarial multi-agent framework.

agents focus on specific sub-tasks while coordinating through structured communication protocols
and/or a master agent (the green ellipse). However, while such multi-agent architectures (14; 34)
can effectively distribute computational complexity and domain expertise across components of the
underlying domain task, they introduce new challenges in error propagation and validation. The
system’s overall reliability becomes constrained by its weakest agent, as flawed intermediate outputs
from one of the agents can be uncritically accepted by downstream agents (31), potentially amplifying
rather than mitigating the above limitations of individual LLMs. Furthermore, evaluating the code of
domain-specific tasks is often difficult. Standard unit tests may miss critical scientific constraints,
theoretical foundations, or domain-specific limitations. This evaluation gap stems from three key
issues: (1) scientific correctness often requires deeper domain knowledge than standard unit tests
can verify; (2) comprehensive evaluation metrics may be prohibitively expensive or fundamentally
intractable to define; and (3) LLM-generated tests may inherit the same reliability issue as the code
they aim to validate (41). Given these, one must pay equal attention to both LLM-generated code and
the test cases used to assess it.

This fundamental insight motivates our core design philosophy: an adversarial co-evolution frame-
work where test case generation and code improvement mutually refine each other through competitive
optimization, replacing traditional static verification approaches. The proposed framework structures
agent interactions and evolves prompt distributions using Bayes’ Theorem, reducing dependence on
the base LLM’s inherent capabilities. The framework comprises three specialized agents: a Task
Manager (TM) serving as Challenger, a Solution Generator (SG) as Solver, and an Evaluator for
comprehensive assessment. Unlike conventional multi-agent code generation systems that depend
entirely on LLM-based evaluation and decision-making(26; 14), our approach introduces an adver-
sarial dynamic between TM and SG. The TM actively constructs and refines test cases to probe the
SG’s current limitations, while the SG iteratively improves its code generation based on Evaluator
feedback to meet these evolving challenges. As shown in Figure1 orange ellipse, by continuously
probing and validating solutions against dynamically refined test cases, our framework not only
overcomes these evaluation barriers but also progressively converges on solutions that satisfy both
explicit requirements from domain experts and implicit domain constraints from the specific domain
or application scenarios.

The proposed framework also enhances Human-AI collaboration in AI4S community(35; 40; 3).
Outside the Machine Learning community, we cannot expect an average scientist to be aware of, let
alone skilled in, the extensive list of prompt engineering techniques. A typical domain researcher’s
prompt might be vague, assume implicit domain knowledge, or use specialized terminology and
abbreviations that an LLM, especially a smaller one, may not fully grasp. These domain gaps may
lead to misinterpretations, suboptimal outputs, or complete system failures. To bridge this gap, our
framework incorporates a specialized scheme within TM agent that actively structures raw user
requests, resolves ambiguities through interactive clarification, and transforms potentially vague
prompts into precise task plans and scientifically valid initial test cases. It maintains accessibility for
non-technical domain experts while fully leveraging their domain expertise without requiring any
computer science or professional prompt engineering skills. The main contributions of this work are
threefold:

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

• A Novel AI4S Low-Code Platform with Bayesian Adversarial Framework: We introduce
a multi-agent framework that employs a Bayesian recursive co-updating strategy to iteratively
refine generated code and test cases using a non-LLM-based adversarial score. This method
significantly enhances scientific coding performance across a spectrum of base models (from
open-source to commercial) and allows smaller LLMs to achieve results competitive with
larger counterparts.

• Bayesian Optimization for code performance estimation: We proposed a Bayesian
Optimization method to estimate the performance of a given code based on its structure
similarity with the tested codes, which enables the framework to handle and evaluate
complicated code.

• Domain Knowledge Refinement for scientific tasks: The LCP facilitates scientific ex-
ploration for non-coding professionals by enabling the generated code to better reflect
domain knowledge and constraints through iteratively refining, adding and updating domain
knowledge in the specially structured prompt. Our Earth Science case study exemplifies this,
where the generated machine learning model not only produced superior predictions but
also demonstrated minimal deviation from established ocean dynamics, ensuring scientific
consistency.

In the rest of this paper, we introduce the main methodology and models in Section 2, followed by
experimental setup and numerical results in Section 3. We conclude the work and discuss its future
work and limitations in Section 4.

2 METHOD

2.1 OVERVIEW

We propose a Bayesian adversarial multi-agent framework designed for AI4S tasks, incorporating
subjective prior knowledge and addressing complex task abilities. The framework comprises three
core component agents: a Task Manager (TM), a Solution Generator (SG), and an Evaluator(Eval).
Within this structure, code generation becomes a dynamic interaction, primarily between the Task
Manager (acting as a Challenger) and the SG agent (acting as a Solver), with the Evaluator providing
the performance metrics that guide learning and adaptation. The game concludes when the SG agent
produces code that successfully passes all defined validation tests.

The process initiates prior knowledge P with a task description (provided by a scientist user) and
relevant subject materials (e.g., prior domain knowledge, including reference code samples). P is the
initial input to the TM agent, which develops a structured plan of the scientific task, decomposing the
main task into an ordered set of Sub-tasks. This plan is iteratively refined based on users’ feedback
F and refinements until user’s approval and denoted as Plans, as indicated by Loop 1 of Figure
2. Subsequently, the TM agent generates an initial set of test cases (Test Case0) corresponding to
these sub-tasks and other criteria derived from prior knowledge. These initial test cases, along with
user-provided reference code base are serving as initial sample codes (Sample Code0). Sample Code0
is followed by the user approved plan (Plans) to form the initial prompt:

Prompt0 := Plans⊕ Test Case0 ⊕ Sample Code0, (1)
where ⊕ is the direct concatenation operator. Both the test cases and the sample codes can be
independently updated in subsequent iterations. This update mechanism, guided by Bayesian
principles, leverages the performance of candidate codes generated previously and the effectiveness
of past test cases. The objective is to iteratively refine the prompt to guide the SG agent towards
producing a solution that meets all test criteria and user requirements. The core Bayesian update
rule for selecting a specific test case i and sample code j for the prompt at iteration t + 1 is:
p(Promptt+1

ij |St
3) ∝ p(St

3|Prompttij)p(Prompttij). This iterative refinement continues until the SG
agent achieves satisfactory success on the test cases. The pseudo-code of the proposed method is
described in Algorithm 1.

2.2 PLANNING AND INITIAL CODE GENERATION

As briefly described in the above overview, the TM agent engages in a comprehensive planning phase.
In particular, this involves: 1. Decomposing the primary task into sub-tasks. 2. Posing Sanity Checks

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: Overview of the Bayesian adversarial multi-agent framework. The three red arrows indicate
fusion of plan, test cases, and codes into prompts, the distribution of which is recursively updated
under the Bayesian framework. S1, S2 and S3 are the scores computed in equation 2, equation 3,
and equation 4. Loop 1-3 indicate three iterative updating processes for plan, test cases, and codes,
respectively. The dashed arrows indicate latent relationships (e.g., S3 likelihood score) or steps
conducted before or after the main algorithm execution.

.

Algorithm 1 Bayesian Adversarial Multi-Agent Framework

1: Input: Task description and domain knowledge (prior knowledge) P , reference code base,
maximum iteration number Tmax

2: // Planning till User’s approval
3: Generate Plans = TM(P)
4: while NOT User Approval do
5: Plans← TM(P,F) iteratively updates the plan given user feedback.
6: // Make initial prompts
7: Generate Test Case0 := ({Sanity Checks}, {Sub-tasks})← TM(Plans)
8: Form Sample Code0 ← {Test Case0, Reference Code}
9: Generate Prompt0 according to equation 1

10: // Code generation and evaluation
11: T ← Tmax, t← 0
12: Initialize test case weights ∀i ∈ {1, 2, . . . ,M}, λi ← 1

M
13: while Not ∃ Code : t < T do:
14: t← t+ 1, Ct+1 ← SG(Promptt)
15: (St+1

1 , St+1
2 , St+1

3 )← Evaluator(Test Caset,Ct) follows Equation equation 234
// Test sase and sample code updates using Bayes’ Theorem

16: Cfinal = argmaxj S2
t(j)

17: Test Caset+1 ← TM(Test Caset, St
1)

// Bayesian prompt updates
18: Promptt+1 ∼ p(Promptt+1|St

3)

return Cfinal

for data structure and range. 3. Reasoning about the logical workflow and dependencies between
sub-tasks. 4. Formulating strategic advice for the generation of effective test cases. This detailed
plan is presented to the user in natural language for review and potential refinement. This interactive
feedback loop continues until the user approves the plan. Once the plan is finalized, the TM agent

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

generates an initial set of test cases. These test cases are designed to cover the specified sub-tasks and
incorporate domain-specific prior knowledge, such as sanity checks (e.g., for expected data ranges)
and out-of-range detection.

Following the planning phase, the system constructs the initial prompt Prompt0 as defined in equa-
tion 1. The code generation agent then uses this prompt to produce N candidate solutions (codes).
For each candidate, the system automatically generates comprehensive documentation containing:
algorithm explanations, execution instructions, and detailed specifications for all functions, variables,
and parameters.

2.3 A PRIORI ESTIMATION WITH BAYESIAN OPTIMIZATION

We noticed that executing all the generated codes for testing can be computationally expensive. To
address this issue, as well as to leverage both the accuracy of evaluation and the range of exploration
in the solution space, a Bayesian Optimization method is employed to estimate the performance score
relates to the structural difference from all the tested codes (as in Loop 3 of fig:Diagram).

As an initiation, all the generated code in the first iteration {Codei}1≤i≤N get tested against the
initial test cases, where all test cases share the same initial weights. We store the test results as a
score vector S2 (will be explained in details in equation 3). We then embed each Codei to a vector xi

through a structural embedding that captures features from its Abstract Syntax Tree (AST) and code
embedding vectors. We then use a Bayesian optimization process to predict the code’s performance
based on its structural similarity with the tested code, which is detailed explained in the appendix.
This Bayesian Optimization approach allows the system to intelligently explore the vast solution
space, prioritizing the most promising candidates for expensive testing and efficiently converging
towards a high-quality solution. It supports the evolution of the distribution of prompt, thus the
co-evolution of codes and test cases.

2.4 EVALUATION AND FEEDBACK

The Evaluator agent is responsible for assessing the candidate codes, the effectiveness of the test
cases, and the overall quality of the prompts used in each iteration.

Test Case Score (S1): This score quantifies the "True Hardness" of the jth test case Test Casej ,
representing its capacity to be challenging yet ultimately solvable. An effective test case should
successfully discriminate between code solutions of varying quality (as in loop 3 of fig:Diagram).

S1(i)
t+1 = (1− α) · S1(i)

t + α ·


∑

j′ s.t. pass
S2(j

′)

|{Codej′}|
−

∑
j† s.t. fail

S(j†)

|{Codej†}|

 (2)

where S1(i)
t is set as 1 by default for t = 0, and α is a hyperparameter to control the momentum of

updating, which in experiments we set α = 0.8.

Code Score (S2): Each generated code Cj : 1 ≤ j ≤ N receives a composite score based on several
factors:

S2(j)
t =

∑
i I(Cj passes Ti) · S1(i)

t−1∑
i S1(i)t−1

(3)

Prompt Score (S3): The overall score for a prompt used in an iteration is a function of the perfor-
mance of the codes and test cases generated by this prompt:

S3
t =

1

M

M∑
j=1

S1(i)
t +

1

N

N∑
i=1

S2(j)
t (4)

If multiple prompt configurations are tested within a single logical iteration, the iteration’s representa-
tive prompt score might be the highest achieved. For the Bayesian update, we are interested in the
score of a specific prompt configuration {Prompttij}ij is then denoted {(S3)

t
ij}ij .

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

2.5 ITERATIVE REFINEMENT: ADVERSARIAL DYNAMICS AND BAYESIAN PROMPT UPDATES

The core of the framework’s learning capability lies in its iterative refinement loop, characterized by
an adversarial dynamic between the TM agent (Challenger) and the SG agent (Solver), and guided by
Bayesian updates for prompt composition.

Adversarial interaction: The TM agent’s role evolves to that of a Challenger. Based on the ’True
hardness’, which is measured by S1, the TM adapts its weights for future evaluation and selects
test cases for subsequent prompts. It aims to create test suites that are optimally challenging for the
SG’s current learned capabilities—difficult enough to drive further learning and expose weaknesses,
yet generally solvable to provide a positive learning signal. The SG agent, as the Solver, implicitly
adapts by producing code in response to these evolving challenges. Its success or failure provides the
feedback signal that shapes the TM’s subsequent challenging strategy.

Bayesian prompt updates: The selection of which specific test cases (indexed by i) and sample
codes (indexed by j) to include in the prompt for the next iteration (Promptijt+1) is governed by a
Bayesian update rule(as indicated by the combination of Loop 2 and 3 in 2):

p(Promptt+1
ij |S

t
3) ∝ p(St

3|Prompttij)p(Prompttij) (5)

Here:

• p(Prompttij) is the prior probability of selecting the pair (Test Casei, Sample Codej) for the
prompt. This prior can be uniform initially and can adapt over time based on the historical
effectiveness of these components.

• p(St
3|Prompttij) is the likelihood of observing the score St

3 given that the prompt was
formed using Test Casei and Sample Codej . This term captures how well this specific
combination performed. A potential formulation to ensure non-negativity and reflect that
better-than-expected performance is more likely could be:

p(St
3|Prompttij) ∝ exp

(
E[S3

t−11(i, j)]
)

(6)

where E[S31(i, j)] is the expected score for the generated code with Testi, Codej
in the prompt based on past performance or a baseline. This implies that a prompt
configuration performing significantly better than its historical average for that pair
(Test Casei, Sample Codej) will have a higher likelihood.

The underlying intuition is to identify and prioritize "teacher-subject" pairs-specific combinations of
sample code and test cases that consistently yield high-scoring prompts. This approach effectively
learns which forms of guidance produce optimal results for different types of coding challenge.

Sample code pool management: The pool of available sample codes (Sample Code) is not static, but
recursively updated as illustrated in Loop 3 of Figure 2. Initially, it contains user-provided reference
codes. As the SG agent generates new codes C(t)

g , those that achieve high S2 can be added to the
Sample Code pool. The selection of a Sample Codej for a prompt can then be influenced not only by
its initial status (as a reference) but also by an evolving measure of its "guidance quality," learned
from its impact on past prompt scores when it was included.

Final results: Within each round, if there exists a code that can pass all the test cases, the System
will output it as the final result to the user. Otherwise, the System will keep using the Bayesian
Adversarial method recursively till generation of a satisfying code or reaching the maximum round of
iterations, which is chosen by the user in the beginning and by default set to 3 by experience(See
Section 3).

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Benchmarks To ensure a thorough evaluation, we utilize a diverse set of benchmarks. For gen-
eral code generation, we use HumanEval, HumanEval-ET, MBPP, MBPP-ET(2; 9; 13), and the
more challenging APPS(13) benchmark. For AI for Science tasks, we use the domain-specific
SciCode(30) and ScienceAgentBench(7) benchmarks.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Base Models Our framework is designed to be model-agnostic. To demonstrate this, we integrate
several backbone large language models (LLMs), including the Qwen3 series (ranging from 1.7B to
235B)(36), which has versatile sizes, strong reasoning, it can demonstrate if our framework is also
effective on the latest models. Beside, we also choose Deepseek-v3(22), Deepseek-R1(11),
Claude-sonnet-4(1), GPT-3.5-turbo(4), and GPT-4o(17). This allows us to assess the
performance gains attributable to our framework across a spectrum of model capabilities.

Compared Methods We compare our framework against several state-of-the-art baselines.
These include foundational strategies like Few-Shot prompting and Chain-of-Thought
(CoT), as well as other prominent agent-based systems. From the table, the competing agen-
tic frameworks and prompting strategies include ReAct, Reflexion, Self-Debugging,
Self-Collaboration, MetaGPT, MapCoder, AgentCoder, and CodeCoR(4; 16; 25; 38;
29; 37; 12; 39; 19; 6; 10; 32; 20; 15; 18).

Evaluation Metrics Following standard practice, we use the pass@k metric to evaluate code genera-
tion performance, where a solution is considered correct if it passes a set of unit tests. We primarily
report pass@1 scores(5; 2; 9).

Parameter Setting For all experiments, we consistently applied an identical parameter set unless
otherwise noted. The number of initial test cases was set to 15, and the number of distinct code
snippets generated in each round was 20. We maintained a minimum pool of 20 test cases; if filtering
processes reduced the number of test cases below this threshold (e.g., due to low scores), additional
test cases were generated to meet this minimum. For iterative refinement, the number of codes chosen
by acquisition function for further evaluation was set to 5.

3.2 EFFECTIVENESS IN AI FOR SCIENCE TASKS

We established our framework’s general proficiency, which can be found in detail in the appendix,
and can assert its up-to-SOTA level performance in general coding tasks. We can now investigate
the framework’s ability in scientific tasks by evaluating our framework’s performance in the special-
ized and demanding domain of scientific code generation. We use two scientific code generation
benchmarks to demonstrate its capabilities.

First, we assess our framework on the SciCode benchmark across a wide spectrum of base models,
from the 1.7B parameter Qwen3 to powerful proprietary models like Claude-sonnet-4. The results,
presented in Table 1, show that our framework provides a substantial and consistent performance
uplift in all configurations. The gains are particularly striking for open-source models, with relative
improvements of up to 87.1% (for Qwen3-8b). Our framework enables smaller models to match the
performance of significantly larger ones. For instance, in the ’Without Knowledge’ case, Qwen3-14b
with our framework achieves a 30.6 Resolve Rate on Subproblems, equaling the baseline of the
Qwen3-235B-A22b-Instruct-2507, a model over 16 times its size.

Second, to evaluate our framework on more complex, agentic workflows, we test it on the
ScienceAgentBench, which involves more complex, multi-step scientific workflows, and we
using GPT-4o as the base model. As shown in Table 2, our LCP framework achieves new state-of-
the-art (SOTA) performance, particularly in the Valid Execution Rate (VER), where it scores 90.2%
(without knowledge) and 87.3% (with knowledge), far surpassing all other methods. This exceptional
execution success rate is critical for scientific applications, as it directly validates our framework’s
core strength in producing robust, executable scientific code across diverse and complex application
domains. This result, combined with leading scores in Success Rate (SR) and Code-Based Score
(CBS), confirms our system’s effectiveness in orchestrating the complex reasoning and execution
steps essential for impactful AI4S applications.

3.3 ANALYSIS OF BAYESIAN RECURSIVE CO-UPDATING

In this section, we test our framework’s core Bayesian iterative co-updating mechanism, validating
that the Bayesian recursive co-updating strategy is effective at iteratively refining solutions. As
illustrated across both general and scientific benchmarks in Figure 3, performance consistently
and monotonically improves with an increasing number of iterations. On the general benchmarks
(Figure 3a), the Pass@1 scores on HumanEval and MBPP show substantial gains in the first three
iterations, with performance beginning to converge around the fourth or fifth iteration. This suggests

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Model Performance Comparison on SciCode with various backbone models

Without Knowledge With Knowledge Without Knowledge With Knowledge

Model Method Sub (%) Main (%) Sub (%) Main (%) Model Method Sub (%) Main (%) Sub (%) Main (%)

Qwen3-8b Baseline 13.2 0 19.8 1.5 GPT-4o Baseline 24.1 1.5 33.7 7.7
Ours 24.7(87.1%) 4.6 27.4(38.4%) 4.6 Ours 37.2(54.3%) 7.7 40.6(20.4%) 10.8

Qwen3-14b Baseline 17.7 1.5 25.0 6.2 Deepseek-v3 Baseline 27.8 3.1 38.8 10.8
Ours 30.6(72.9%) 6.2 32.6(30.4%) 6.2 Ours 40.3(45.0%) 10.8 42.4(9.28%) 12.3

Qwen3-32b Baseline 18.4 0 27.4 7.7 Deepseek-R1 Baseline 29.6 4.6 37.8 10.8
Ours 33.0(79.3%) 6.2 36.1(31.8%) 7.7 Ours 41.0(38.5%) 10.8 43.1(14.0%) 13.8

Qwen3-next-80b-
a3b-instruct

Baseline 21.5 3.1 32.6 12.3 Claude-sonnet-4 Baseline 31.3 7.7 38.8 10.8
Ours 37.5(74.4%) 9.2 38.5(18.1%) 10.8 Ours 42.7(36.4%) 13.8 43.8(12.9%) 13.8

Qwen3-235B-A22b-
Instruct

Baseline 30.6 4.6 37.2 10.8
Ours 38.9(27.1%) 9.2 41.0(10.2%) 10.8

Table 2: Results on ScienceAgentBench using GPT-4o as base model with/without prior knowledge,
compare with two different agent frameworks and baseline.

Method SR(w/o) CBS(w/o) VER(w/o) SR(w/) CBS(w/) VER(w/)
Direct 11.8 82.6 52.9 10.8 83.8 41.2
OpenHands CodeAct 19.6 83.1 78.4 27.5 86.3 73.5
Self-Debug 22.6 84.4 83.3 23.5 85.6 71.6
LCP(Ours) 26.5 85.1 90.2 27.5 86.4 87.3

an optimal balance between performance and computational cost. This same powerful trend is
mirrored on the specialized SciCode benchmark (Figure 3b), where the performance score climbs
steadily from a 27.1 to 37.2 after five iterations, demonstrating the broad applicability and success of
our iterative refinement process.

We further analyze the components of this process by conducting an ablation study on the role of Ad-
versarial Test Cases (ATC) within our LCP framework, as shown in Figure 3a. While the performance
with and without ATC is comparable in the initial iterations, a clear divergence emerges from the third
iteration onwards. The LCP framework augmented with ATC (dash-dot lines) consistently achieves
higher Pass@1 accuracy across all metrics, underscoring the critical role of ATC. By dynamically
challenging the generated code with difficult edge cases, the ATC mechanism compels the system
to produce more robust and reliable solutions, validating it as a key driver of the performance gains
observed in our co-updating loop.

(a) Pass@1 of LCP with different iterations (GPT-
3.5-turbo). Dash-dot and solid lines are LCP with
and without ATC, respectively.

(b) Performance on SciCode Benchmark (GPT-4o)
with different iteration numbers.

Figure 3: Illustration of LCP performance over: (a) different iteration number with and without ATC
component on general code benchmark; (b) difficulty iteration number on the SciCode benchmark

3.4 ROBUSTNESS FOR NON-PROFESSIONAL USERS

Finally, we address robustness and accessibility to non-AI-professional science researcher by evalu-
ating our framework’s accessibility and effectiveness for users who may be domain experts but are

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

not specialists in prompt engineering. To simulate this scenario, we compare the performance of
both the baseline models and our framework under two conditions: one with a basic, un-optimized
prompt (’Without Knowledge’) and one with an expert-crafted prompt containing detailed domain
knowledge (’With Knowledge’). The goal is to measure how sensitive each approach is to the quality
of the initial prompt.

The results, presented in Figure 4, clearly demonstrate our framework’s superior robustness. The
baseline models exhibit a large performance gap between the two conditions (represented by the
shaded red area, ’Area (Baseline)’), indicating a strong dependency on expert prompting. In contrast,
our framework significantly narrows this performance gap across the entire spectrum of models
(represented by the much smaller shaded blue area, ’Area (Ours)’). This shows that our multi-agent
system can internally elaborate on and refine basic instructions, compensating for the lack of initial
detail. Most strikingly, a non-professional user with our framework (’Ours - Without Knowledge’)
consistently and substantially outperforms an expert user with the baseline model alone (’Baseline -
With Knowledge’).

Figure 4: Model performance with basic vs. expert-crafted prompts. Our framework (blue/green
lines) is significantly more robust to prompt quality than the baseline (red lines), showing a much
smaller performance gap (shaded area) and achieving superior results even without expert knowledge.

.

4 CONCLUSIONS AND DISCUSSIONS

We propose a Bayesian adversarial multi-agent framework for AI-for-Science (AI4S) code genera-
tion that achieves state-of-the-art performance by iteratively refining prompt components through
Bayesian updates. This approach mitigates cumulative error by treating tests and code with equiv-
alent confidence, while an adversarial process guides a Task Manager (TM) agent to challenge
a Solution Generator (SG) agent with progressively evolving tests. The framework’s interactive
planning scheme enables non-experts to translate vague prompts into validated workflows, effectively
bridging the gap between AI-generated code and domain-specific needs. As demonstrated in Earth
Science applications, our method helps democratize LLM tools for researchers without a technical
background.

However, the framework has several limitations. Its performance is dependent on the quality of the
initial reference code, and it struggles to enforce implicit physical laws, which may require future
integration with symbolic verifiers. Furthermore, evaluating generated machine learning or deep
learning models can be resource-intensive, and performance variability due to training and data poses
an additional challenge to the update mechanism.

Future work will focus on extending the Bayesian updates to handle multi-modal inputs, such as
equations and diagrams, and optimizing the iteration protocols for large-scale scientific simulations.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

[1] Anthropic. Claude sonnet 4, 2025. https://www.anthropic.com/news/claude-4.

[2] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David
Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large
language models. arXiv preprint arXiv:2108.07732, 2021.

[3] Hamed Babaei Giglou, Jennifer D’Souza, and Sören Auer. Llms4synthesis: Leveraging large
language models for scientific synthesis. In Proceedings of the 24th ACM/IEEE Joint Conference
on Digital Libraries, pages 1–12, 2024.

[4] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models
are few-shot learners. Advances in Neural Information Processing Systems(NeurIPS), 33:1877–
1901, 2020.

[5] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

[6] Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language
models to self-debug. arXiv preprint arXiv:2304.05128, 2023.

[7] Ziru Chen, Shijie Chen, Yuting Ning, Qianheng Zhang, Boshi Wang, Botao Yu, Yifei Li, Zeyi
Liao, Chen Wei, Zitong Lu, et al. Scienceagentbench: Toward rigorous assessment of language
agents for data-driven scientific discovery. arXiv preprint arXiv:2410.05080, 2024.

[8] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):1–
113, 2023.

[9] Yihong Dong, Jiazheng Ding, Xue Jiang, Ge Li, Zhuo Li, and Zhi Jin. Codescore: Evaluating
code generation by learning code execution. ACM Transactions on Software Engineering and
Methodology, 34(3):1–22, 2025.

[10] Yihong Dong, Xue Jiang, Zhi Jin, and Ge Li. Self-collaboration code generation via chatgpt.
ACM Transactions on Software Engineering and Methodology, 33(7):1–38, 2024.

[11] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in
llms via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

[12] Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen Wang, Daisy Zhe Wang, and Zhit-
ing Hu. Reasoning with language model is planning with world model. arXiv preprint
arXiv:2305.14992, 2023.

[13] Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo,
Collin Burns, Samir Puranik, Horace He, Dawn Song, et al. Measuring coding challenge
competence with apps. arXiv preprint arXiv:2105.09938, 2021.

[14] Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng Cheng, Jinlin Wang, Ceyao Zhang, Zili
Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, et al. Metagpt: Meta programming for
multi-agent collaborative framework. arXiv preprint arXiv:2308.00352, 3(4):6, 2023.

[15] Dong Huang, Qingwen Bu, and Heming Cui. Codecot and beyond: Learning to program and
test like a developer. arXiv preprint arXiv:2308.08784, 23, 2023.

[16] Dong Huang, Jie M Zhang, Michael Luck, Qingwen Bu, Yuhao Qing, and Heming Cui.
Agentcoder: Multi-agent-based code generation with iterative testing and optimisation. arXiv
preprint arXiv:2312.13010, 2023.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

[17] Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark,
AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv
preprint arXiv:2410.21276, 2024.

[18] Md Ashraful Islam, Mohammed Eunus Ali, and Md Rizwan Parvez. Mapcoder: Multi-agent
code generation for competitive problem solving. arXiv preprint arXiv:2405.11403, 2024.

[19] Xue Jiang, Yihong Dong, Lecheng Wang, Zheng Fang, Qiwei Shang, Ge Li, Zhi Jin, and
Wenpin Jiao. Self-planning code generation with large language models. ACM Transactions on
Software Engineering and Methodology, 33(7):1–30, 2024.

[20] Jia Li, Ge Li, Yongmin Li, and Zhi Jin. Structured chain-of-thought prompting for code
generation. ACM Transactions on Software Engineering and Methodology, 34(2):1–23, 2025.

[21] Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond,
Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code
generation with alphacode. Science, 378(6624):1092–1097, 2022.

[22] Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

[23] Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese,
and Caiming Xiong. Codegen: An open large language model for code with multi-turn program
synthesis. arXiv preprint arXiv:2203.13474, 2022.

[24] Theo X Olausson, Jeevana Priya Inala, Chenglong Wang, Jianfeng Gao, and Armando Solar-
Lezama. Is self-repair a silver bullet for code generation? arXiv preprint arXiv:2306.09896,
2023.

[25] Ruwei Pan, Hongyu Zhang, and Chao Liu. Codecor: An llm-based self-reflective multi-agent
framework for code generation. arXiv preprint arXiv:2501.07811, 2025.

[26] Chen Qian, Xin Cong, Cheng Yang, Weize Chen, Yusheng Su, Juyuan Xu, Zhiyuan Liu,
and Maosong Sun. Communicative agents for software development. arXiv preprint
arXiv:2307.07924, 6(3):1, 2023.

[27] Tal Ridnik, Dedy Kredo, and Itamar Friedman. Code generation with alphacodium: From
prompt engineering to flow engineering. arXiv preprint arXiv:2401.08500, 2024.

[28] Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan,
Yossi Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, et al. Code llama: Open foundation
models for code. arXiv preprint arXiv:2308.12950, 2023.

[29] Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao.
Reflexion: Language agents with verbal reinforcement learning. Advances in Neural Information
Processing Systems(NeurIPS), 36:8634–8652, 2023.

[30] Minyang Tian, Luyu Gao, Shizhuo Zhang, Xinan Chen, Cunwei Fan, Xuefei Guo, Roland Haas,
Pan Ji, Kittithat Krongchon, Yao Li, et al. Scicode: A research coding benchmark curated by
scientists. Advances in Neural Information Processing Systems, 37:30624–30650, 2024.

[31] Jen tse Huang, Jiaxu Zhou, Tailin Jin, Xuhui Zhou, Zixi Chen, Wenxuan Wang, Youliang Yuan,
Michael R. Lyu, and Maarten Sap. On the resilience of llm-based multi-agent collaboration
with faulty agents, 2025.

[32] Hanbin Wang, Zhenghao Liu, Shuo Wang, Ganqu Cui, Ning Ding, Zhiyuan Liu, and Ge Yu.
Intervenor: Prompt the coding ability of large language models with the interactive chain of
repairing. CoRR, 2023.

[33] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models.
Advances in Neural Information Processing Systems (NeurIPS), 35:24824–24837, 2022.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

[34] Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun
Zhang, Shaokun Zhang, Jiale Liu, et al. Autogen: Enabling next-gen llm applications via
multi-agent conversation. arXiv preprint arXiv:2308.08155, 2023.

[35] Yutaro Yamada, Robert Tjarko Lange, Cong Lu, Shengran Hu, Chris Lu, Jakob Foerster, Jeff
Clune, and David Ha. The ai scientist-v2: Workshop-level automated scientific discovery via
agentic tree search. arXiv preprint arXiv:2504.08066, 2025.

[36] An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

[37] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in Neural Information Processing Systems (NeurIPS), 36:11809–11822, 2023.

[38] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models. In International Conference
on Learning Representations (ICLR), 2023.

[39] Kechi Zhang, Zhuo Li, Jia Li, Ge Li, and Zhi Jin. Self-edit: Fault-aware code editor for code
generation. arXiv preprint arXiv:2305.04087, 2023.

[40] Boyuan Zheng, Zerui Fang, Zhe Xu, Rui Wang, Yiwen Chen, Cunshi Wang, Mengwei Qu, Lei
Lei, Zhen Feng, Yan Liu, et al. Agent4s: The transformation of research paradigms from the
perspective of large language models. arXiv preprint arXiv:2506.23692, 2025.

[41] Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Haohan Wang, and Yu-Xiong Wang.
Language agent tree search unifies reasoning acting and planning in language models. arXiv
preprint arXiv:2310.04406, 2023.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We confirm that LLMs were used for writing assistance and polishing of the manuscript, as well as
editing Figure 2 based on our handmade version. They were not employed in the design of methods,
implementation of experiments, or analysis of results.

B BAYESIAN OPTIMIZATION FOR CODE PERFORMANCE PREDICTION

In this embedding space, we can further obtain the pair-wise similarity between all the code embed-
dings. This similarity is computed using a squared exponential kernel:

k(xi,xj) = exp

(
−d(xi,xj)

2

2l2

)
,

where d(xi,xj) is the distance between the two code embeddings and l is a length-scale parameter.
These pairwise similarities {k(xi,xj)}i,j form the kernel matrix K.

With the scores S2 and the kernel matrix K, we follow a standard Bayesian Optimization practice
and fit a Gaussian Processes (GP) model. This model allows us to estimate the score of any new,
untested code x∗ without running the full evaluation. This also gives the ‘likelihood’ to guide the
Bayesian update. For each new code, the trained GP provides a predictive distribution for its score,
which is characterized by

• the mean function µ(x∗) is the expected score of the new code conditioned on the tested
codes:

µ(x∗) = kT
∗ (K+ σ2

nI)
−1S2.

• The variance function σ2(x∗) represents our uncertainty about that predicted score:

σ2(x∗) = k(x∗,x∗)− kT
∗ (K+ σ2

nI)
−1k∗,

where k∗ is the vector of kernel similarities between the new code x∗ and all previously tested codes,
and σ2

n is the noise term.

To decide which untested code to evaluate next, we employ a standard acquisition function that
balances exploiting codes with high expected scores (exploitation) and exploring codes where the
model is uncertain (exploration). We use the Upper Confidence Bound (UCB) acquisition function:

UCB(x∗) = µ(x∗) + κσ(x∗).

The parameter κ controls the trade-off between exploitation and exploration. The next code selected
for full evaluation is the one that maximizes this UCB score:

xnext = argmax
x∗

UCB(x∗).

C PERFORMANCE ON GENERAL CODE GENERATION

To test our framework of general code generation, we establish our framework’s proficiency on
foundational code generation tasks. As detailed in Table 3, our framework(LCP) demonstrates a
significant performance uplift across the HumanEval, HumanEval-ET, MBPP, and MBPP-ET
benchmarks. When using GPT-3.5-Turbo as a backbone, LCP achieves pass@1 scores of 88.4%
on HumanEval and 91.1% on MBPP, representing substantial relative improvements of 54.3% and
74.5% over the zero-shot baseline. This superior performance holds when using the more powerful
GPT-4 model, where LCP reaches 96.95% on HumanEval, proving that our framework effectively
enhances even the most capable foundation models. The consistent gains across all tests, especially
the extended (‘-ET‘) versions, validate the robustness and general applicability of our approach
compared to other state-of-the-art agentic strategies.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 3: Pass@1 score comparison of various competing methods

Models HumanEval HumanEval-ET MBPP MBPP-ET

Foundation Models (Zero-Shot)

Incoder (6.7B) 15.2 11.6 17.6 14.3
CodeLlama (34B) 51.8 - 69.3 -
GPT-3.5-turbo 57.3 42.7 52.2 36.8
Claude-instant-1 31.1 28.1 26.9 19.9
GPT-4-turbo 57.9 48.8 63.4 47.5
GPT-4 67.6 50.6 68.3 52.2

Agentic and Prompting Strategies (GPT-3.5-turbo)

Few-Shot 67.7 (18.2%) 54.9 (28.6%) 65.8 (26.1%) 48.3 (31.2%)
CoT 44.6 (-22.2%) 37.2 (-12.9%) 46.1 (-11.7%) 34.8 (-5.4%)
ReAct 56.9 (-0.7%) 49.4 (15.7%) 67.0 (28.4%) 45.9 (24.7%)
Reflexion 68.1 (18.8%) 50.6 (18.5%) 70.0 (34.1%) 47.5 (29.1%)
MapCoder 80.5(40.5%) 77.4(81.3%) 78.9(51.1%) 54.4(47.8%)
AgentCoder 79.9(39.4%) 77.4(81.3%) 89.9(72.2%) 89.1(142.1%)
CodeCoR 86.6(51.1%) 80.5(88.5%) 79.2(51.7%) 65.2(77.2%)
LCP (Ours) 88.4(54.3%) 84.1(97.0%) 91.1(74.5%) 86.4(134.8%)

Agentic and Prompting Strategies (GPT-4)

Reflexion 91.0 (34.6%) - 77.1 (12.9%) -
Self-Debugging - - 80.6 (18.0%) -
Self-Collaboration 90.2 (33.4%) 70.7 (39.7%) 78.9 (15.5%) 62.1 (19.0%)
MetaGPT 85.9 (27.1%) - 87.7 (28.4%) -
AgentCoder 96.3(42.5%) 86.0(70.0%) 91.8(34.4%) 91.8(75.9%)
CodeCoR 94.5(39.8%) 83.5(65.0%) - -
LCP (Ours) 96.95(43.4%) 88.41(74.7%) 92.51(35.4%) 89.70(71.8%)

Furthermore, to test its capabilities on more complex problems, we evaluate our framework on the
APPS benchmark against baseline and other two reference methods (LDB, LPW), categorized by
task difficulty levels: Introductory, Interview, and Competition, using GPT-4o as the LLM backbone.
Following existing literature, we switch our base model in the difficulty test for fair comparison.
The results, illustrated in Figure 4, demonstrate the robust capabilities of our LCP framework. LCP
consistently achieves the highest Pass@1 accuracy across all difficulty tiers, scoring 92.1% on
Introductory tasks, 77.5% on Interview tasks, and a leading 38.0% on the challenging Competition
tasks. This consistent superiority across varying complexities underscores the effectiveness of the
LCP framework in generating correct solutions for a wide spectrum of programming challenges.

Table 4: Pass@1 accuracy of multi-agent framework (LPW) compared with baseline and LDB on
APPS benchmark across different difficulty levels using GPT-4o as the LLM backbone.

Difficulty Level Baseline LDB LPW LCP (Ours)

Introductory 63.8 78.7 87.2 92.1
Interview 43.5 52.2 65.2 77.5
Competition 17.4 28.3 34.8 38.0

D ADDITIONAL CASE STUDY DETAILS

This section provides supplementary information for the case studies presented in the main paper,
including detailed experimental setups, prompts, generated code, and further results.

D.1 CASE STUDY 1: BEACH PROFILE PREDICTION

D.1.1 EXPERIMENTAL SETUP

The dataset utilized for this beach profile prediction study is organized into distinct training and testing
sets, containing 536 and 242 rows respectively. Each data row represents a measurement point along
a beach profile, characterized by several key features: a numerical x coordinate denoting the distance
from the profile’s origin, serving as a primary input; a numerical y value representing the elevation at
that distance, which is the target variable for prediction; and a categorical feature, "Dominant Wave
Direction" (e.g., "ENE", "E"), necessitating encoding for model integration. Additional numerical
columns are present, representing other relevant physical or environmental parameters that can be
incorporated as supplementary features to enhance the predictive model’s performance.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

D.1.2 USER’S PROMPT FOR BEACH PROFILE PREDICTION

Please refer to the Bruun model and the Dean model to build a mathematical model to
discuss the change of sea level height with respect to the distance from the starting
point , and build a deep learning model based on our data . The following is our data
path and structure :

Data File Paths :

Training Data: " beach_profile_data / processed_data / beachdata_train . xlsx"
Test Data: " beach_profile_data / processed_data / beachdata_test . xlsx"
Data Structure Insights :
The training and testing datasets contain several columns. Key columns include :

x: A numerical column representing the distance from a profile ’s origin ; this is a
primary input for predicting y.
y: A numerical column representing the elevation ; this is the target variable for
prediction .
Dominant Wave Direction: This is a categorical ( string ) type column (e.g ., values like
"ENE", "E", "NE"). This column will require appropriate encoding.
All other relevant columns you might select as features are expected to be in numerical
( integer or float ) format .

Create the code directly and The script should not run the main training or evaluation
logic directly when the script file is executed . Instead , it should define all
necessary functions with a main function main() that can be run WITHOUT ANY input.
DO NOT USE tensorflow. Use provided data path in your code.

Listing 1: Prompt used for beach profile prediction.

D.1.3 REFINED TASK DESCRIPTION BY LLM-TM AGENT

Please refer to the Bruun model and the Dean model to build a mathematical model to
discuss the change of sea level height with respect to the distance from the starting
point , and build a deep learning model based on our data . The following is our data
path and structure :

Data File Paths :

Training Data: " beach_profile_data / processed_data / beachdata_train . xlsx"
Test Data: " beach_profile_data / processed_data / beachdata_test . xlsx"
Data Structure Insights :
The training and testing datasets contain several columns. Key columns include :

x: A numerical column representing the distance from a profile ’s origin ; this is a
primary input for predicting y.
y: A numerical column representing the elevation ; this is the target variable for
prediction .
Dominant Wave Direction: This is a categorical ( string ) type column (e.g ., values like
"ENE", "E", "NE"). This column will require appropriate encoding.
All other relevant columns you might select as features are expected to be in numerical
( integer or float ) format .

create the code directly and The script should not run the main training or evaluation
logic directly when the script file is executed . Instead , it should define all
necessary functions .

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

=== Extra information ===

The Bruun model is a conceptual framework used in coastal engineering to predict shoreline
retreat in response to sea-level rise. It assumes a balance of sediment in the cross-shore profile,
resulting in both erosion and deposition occurring simultaneously as sea levels change. The formula
often associated with the Bruun model states that the retreat distance (R) is proportional to the rise
in sea level (S) divided by the height of the active profile (a):

R =
S × (d+B)

a+B

where:- S is the sea-level rise.- d is the depth of closure.- B is the berm height.- a is the active
height.The Dean model focuses on sediment equilibrium profiles, often fitting the profile shape with
the formula:

y = Ax2/3

where:- A is a parameter related to sediment characteristics.Both models serve to provide theoretical
insights into the interaction of sea-level changes with coastal profiles.

=== Feature analysis ===

The dataset contains various features , including :
− **x**: Distance from a profile ’s origin , serving as a primary input .
− **y**: Elevation , the target variable for prediction .
− **Dominant Wave Direction**: A categorical feature indicating wave direction ,
requiring encoding.
− **Annual Mean Period, Annual Mean Spring Tidal Range, Annual Mean Tidal Range**:
Numerical features capturing tidal metrics .
− **Breaker Wave Height Hb, Deep Water Wave Height Hd, Mean Wave Height**: Provide
information about wave conditions .
− **Dimensionless Settling Velocity , High Tide Sediment Settling Velocity **: Indicative
of sediment transport characteristics .
− **Latitude , Longitude**: Geographical coordinates potentially used for spatial
analysis .
− **Mean Grain Size, Mean Grain Size (Mz)**: Describe sediment characteristics
important for erosion /sediment transport modeling.
− **Skewness, Kurtosis , Sorting Coefficient **: Statistical measures about sediment
distribution .

=== Extra Advice ===

To effectively use the provided features for the task , consider the following
recommendations:

1. **Feature Engineering**:
− Encode categorical variables such as "Dominant Wave Direction" using one−hot

encoding or ordinal encoding.
− Calculate additional derived features if necessary , such as interaction terms

between wave heights and sediment properties .
− Normalize or standardize numerical features to ensure they contribute equally to

model optimization .

2. ** Incorporating Domain Knowledge**:
− Use the Bruun and Dean models to inform feature selection or crafting . Variables

related to tide , wave height , and sediment characteristics are crucial .
− Integrate expert knowledge about the relationships between features to inform

model architecture in the neural network.

3. **Data Splitting and Validation **:

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

− Ensure that the dataset is split appropriately into training and validation sets
to evaluate model performance accurately .

4. **Model Architecture**:
− Consider building a neural network that incorporates multiple hidden layers to

capture complex interactions .
− Use activation functions suitable for regression tasks , such as ReLU for hidden

layers and linear activation for the output layer .

5. **Handling Geographical Variations **:
− If spatial data relationships are significant , consider spatial analysis or

geographically −weighted regression .

Listing 2: Refined task description by LLM-TM agent based on given prompt.(The highlight part is
the additional prior knowledge generated by agent)

D.1.4 CODE GENERATED BY CURSOR (ONLY DATA PROCESS PART)

1 def load_and_process_data(filepath, scaler=None, label_encoder=None,
fit_scaler=False, fit_label_encoder=False):

2 df = pd.read_excel(filepath)
3 # Select features
4 feature_cols = [col for col in df.columns if col not in [’y’]]
5 X = df[feature_cols].copy()
6 y = df[’y’].values.astype(np.float32)
7

8 # Encode Dominant Wave Direction
9 if ’Dominant Wave Direction’ in X.columns:

10 if label_encoder is None:
11 label_encoder = LabelEncoder()
12 if fit_label_encoder:
13 X[’Dominant Wave Direction’] = label_encoder.fit_transform(X[

’Dominant Wave Direction’])
14 else:
15 X[’Dominant Wave Direction’] = label_encoder.transform(X[’

Dominant Wave Direction’])
16 else:
17 label_encoder = None
18

19 # Standardize numerical features
20 num_cols = X.select_dtypes(include=[np.number]).columns.tolist()
21 if scaler is None:
22 scaler = StandardScaler()
23 if fit_scaler:
24 X[num_cols] = scaler.fit_transform(X[num_cols])
25 else:
26 X[num_cols] = scaler.transform(X[num_cols])
27

28 return X.values.astype(np.float32), y, scaler, label_encoder, df[’x’
].values.tolist(), df[’y’].values.tolist()

Listing 3: Code for beach profile prediction generated by Cursor.

D.1.5 CODE GENERATED BY WINDSURF (ONLY DATA PROCESS PART)

1 # --- Data Loading and Preprocessing ---
2 def load_data(train_path, test_path):
3 train_df = pd.read_excel(train_path)
4 test_df = pd.read_excel(test_path)
5 # Select features
6 feature_cols = [col for col in train_df.columns if col not in [’y’]]

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

7 target_col = ’y’
8 # Handle categorical encoding and scaling
9 scaler = StandardScaler()

10 label_encoders = {}
11 train_dataset = BeachProfileDataset(train_df, feature_cols,

target_col, scaler=None, label_encoders=label_encoders, fit_scaler=
True)

12 test_dataset = BeachProfileDataset(test_df, feature_cols, target_col,
scaler=train_dataset.scaler, label_encoders=train_dataset.

label_encoders, fit_scaler=False)
13 return train_dataset, test_dataset, feature_cols, label_encoders

Listing 4: Code for beach profile prediction generated by Windsurf.

D.1.6 CODE GENERATED BY OUR FRAMEWORK (ONLY DATA PROCESS PART)

1 # Define the function to run the entire process
2 def run_beach_profile_model(train_data_path, test_data_path):
3 # Component 1: Data Loader
4 def data_loader(train_path, test_path):
5

6 ...
7

8 return train_df, test_df
9

10 # Component 2: Theoretical Model Integration
11 def theoretical_model_integration(train_df, test_df):
12 # derived feature using Dean’s model
13 train_df[’Dean_Feature’] = train_df[’x’] ** (2 / 3)
14 test_df[’Dean_Feature’] = test_df[’x’] ** (2 / 3)
15

16 # Potential Bruun influence -> Using given example formula might
require additional variables

17 train_df[’Bruun_Feature’] = ((train_df[’y’] * (train_df[’Mean
Wave Height’])) / (train_df[’Mean Grain Size’]))

18 test_df[’Bruun_Feature’] = ((test_df[’y’] * (test_df[’Mean Wave
Height’])) / (test_df[’Mean Grain Size’]))

19

20 return train_df, test_df
21

22 # Component 3: Deep Learning Model
23 def deep_learning_model(X_train, y_train):
24

25 ...
26

27 return model
28

29 # Component 4: Model Training and Evaluation
30 def model_training_evaluation(model, train_df, test_df):
31

32 ...
33

34 return {’RMSE’: rmse, ’MAE’: mae, ’R2’: r_squared}
35

36 # Execute the process
37 train_df, test_df = data_loader(train_data_path, test_data_path)
38 train_df, test_df = theoretical_model_integration(train_df, test_df)
39 train_df = train_df.dropna()
40 test_df = test_df.dropna()
41 model = deep_learning_model(train_df.drop(columns=[’y’]).to_numpy(),

train_df[’y’].to_numpy())
42 evaluation_results = model_training_evaluation(model, train_df,

test_df)
43

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

44 return evaluation_results

Listing 5: Code for beach profile prediction generated by Our Framework.

D.1.7 RESULTS AND DISCUSSION

In this case study focused on beach profile prediction, the primary objective was to integrate estab-
lished theoretical models—specifically the Bruun and Dean models—with a deep learning methodol-
ogy, as per the user’s explicit requirement. An examination of the approaches reveals that while both
the Cursor and Windsurf frameworks implemented standard data preprocessing techniques such as
numerical feature standardization and one-hot encoding for categorical data, they did not incorporate
the specified theoretical models. In contrast, our LCP framework successfully addressed the user’s
need by calculating additional derived features based on the Bruun and Dean models. This direct
integration of domain-specific theoretical knowledge into the feature set represents a key differentiator
in our approach.

The impact of this tailored feature engineering is reflected in the prediction performance, as illustrated
in 5. The results indicate that the LCP framework yielded predictions superior to those generated by
Cursor. Furthermore, LCP’s predictive accuracy was observed to be closely comparable to the results
from Windsurf. This suggests that the inclusion of theoretically-derived features not only fulfilled a
critical user requirement but also contributed positively to the model’s ability to accurately predict
beach profile changes, positioning LCP as a more comprehensive solution for this specific task.

Figure 5: Beach profile prediction results comparison.

D.2 CASE STUDY 2: BRAIN MRI SEGMENTATION

D.2.1 EXPERIMENTAL SETUP (BRAIN MRI)

This study utilizes a subset of the "LGG MRI Segmentation" dataset, which contains brain Magnetic
Resonance Images (MRI) and corresponding manual FLAIR abnormality segmentation masks for
patients with Lower Grade Glioma (LGG). The original dataset, sourced from The Cancer Imaging
Archive (TCIA), includes data from 110 patients. For this experiment, data from 30% of these
patients was selected. This selected patient data, comprising MRI slices (typically 256x256 pixels)
and their associated segmentation masks, was then partitioned into training, validation, and testing
sets with a 7:1.5:1.5 ratio, respectively, to develop and evaluate a deep learning model for brain tumor
segmentation.

D.2.2 PROMPT FOR BRAIN MRI SEGMENTATION

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Develop an image segmentation model to accurately and efficiently identify and segment
FLAIR abnormalities in brain MR images from the LGG Segmentation Dataset.

Dataset Format & Structure :

Base Path: r"E:\python_project_new\ brain_case_study \ lgg−mri−segmentation\case_study"

Organization :
The base path contains train /, val /, and test / subfolders .
Each of these subfolders contains two further subfolders : images/ and masks/.

Image Files (images/) :
Format: 3−channel . tif files .
Naming: TCGA_<institution−code>_<patient−id>_<slice−number>.tif.

Mask Files (masks/) :
Format: Binary, 1−channel . tif files .
Naming: TCGA_<institution−code>_<patient−id>_<slice−number>_mask.tif.

Listing 6: User’s Prompt used for Brain MRI segmentation.

D.2.3 REFINED PROMPT BY LLM-TM AGENT

=== Role ===
...

=== Extra Advice ===

− **Data Preprocessing :** Normalize image intensity values (min−max or z−score
normalization ) . Ensure all images are resized /cropped to the same shape (commonly
256x256 or as appropriate for U−Net input) . If channel information is redundant , you
could reduce it to one channel for efficiency .
− **Label Preparation :** Ensure mask values are binary (0 and 1) . Double−check that
mask and image align correctly for every slice .
− **Data Augmentation:** To combat overfitting and improve generalization , apply
transformations such as flipping , rotation , scaling , and intensity shifts , ensuring
they are applied equally to images and masks.
− **Model Choice:** Use U−Net (or a lightweight modification thereof ) due to its strong
performance in medical image segmentation with relatively small datasets .
− **Loss Function:** Use a combination of Binary Cross Entropy and Dice Loss to
penalize both pixel −wise errors and poor overlap .
− **Batching:** Due to likely high resolution and small dataset , use small batch sizes
and possibly gradient accumulation .
− **Evaluation:** Report Dice on the test set ( already specified ) . Consider visualizing
a few results for qualitative assessment , e .g ., overlay masks or compare ground truth
to prediction .
− ** Visualization :** Save (or plot ) a grid of test images, ground truth , and
predictions for several slices to inspect the model’s performance.

By thoroughly preparing the dataset , using appropriate augmentations , and selecting a
suitable architecture and losses , you can build a robust FLAIR abnormality segmentation
model for the LGG dataset. Ensure reproducibility by setting random seeds and keeping
all data splits strictly separate during model development and evaluation .
...

Listing 7: Partial Refined Prompt for Brain MRI segmentation, generated by LLM-TM agent

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

D.2.4 CODE GENERATED BY CURSOR (ONLY MAIN TRAINING LOOP)

1 ...
2 # --- Training Loop ---
3 def train_one_epoch(model, loader, optimizer, criterion, device):
4 model.train()
5 epoch_loss = 0
6 for imgs, masks in tqdm(loader, desc=’Train’, leave=False):
7 imgs, masks = imgs.to(device), masks.to(device)
8 optimizer.zero_grad()
9 outputs = model(imgs)

10 loss = criterion(outputs, masks)
11 loss.backward()
12 optimizer.step()
13 epoch_loss += loss.item() * imgs.size(0)
14 return epoch_loss / len(loader.dataset)
15

16 # --- Main Function ---
17 def main():
18 device = torch.device(’cuda’ if torch.cuda.is_available() else ’cpu’)
19 # Datasets
20 ...
21 # Model
22 model = UNet().to(device)
23 optimizer = optim.Adam(model.parameters(), lr=1e-3)
24 criterion = nn.BCELoss()
25 # Training
26 best_val = 0
27 for epoch in range(1, 11): # 10 epochs
28 train_loss = train_one_epoch(model, train_loader, optimizer,

criterion, device)
29 val_dice = evaluate(model, val_loader, device)
30 if val_dice > best_val:
31 best_val = val_dice
32 best_model = model.state_dict()
33 # Test
34 model.load_state_dict(best_model)
35 test_dice = evaluate(model, test_loader, device)
36 return model, test_loader, device, test_dice
37 ...

Listing 8: Code for Brain MRI segmentation generated by Cursor.

D.2.5 CODE GENERATED BY WINDSURF (ONLY MAIN TRAINING LOOP)

1 ...
2 def train_one_epoch(model, loader, optimizer, criterion):
3 model.train()
4 epoch_loss = 0
5 for imgs, masks in loader:
6 imgs, masks = imgs.to(DEVICE), masks.to(DEVICE)
7 optimizer.zero_grad()
8 outputs = model(imgs)
9 loss = criterion(outputs, masks)

10 loss.backward()
11 optimizer.step()
12 epoch_loss += loss.item() * imgs.size(0)
13 return epoch_loss / len(loader.dataset)
14

15 def main():
16 base_path = ...
17 ...
18 model = UNet().to(DEVICE)
19 optimizer = optim.Adam(model.parameters(), lr=1e-3)
20 criterion = nn.BCELoss()

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

21 best_val_dice = 0
22 for epoch in range(1, 11): # 10 epochs
23 train_loss = train_one_epoch(model, train_loader, optimizer,

criterion)
24 val_dice = evaluate(model, val_loader)
25 if val_dice > best_val_dice:
26 best_val_dice = val_dice
27 best_model_state = model.state_dict()
28 model.load_state_dict(best_model_state)
29 test_dice = evaluate(model, test_loader)
30 return model, test_dice
31 ...

Listing 9: Code for Brain MRI segmentation generated by Windsurf.

D.2.6 CODE GENERATED BY OUR FRAMEWORK (ONLY MAIN TRAINING LOOP)

1 ...
2 class DiceLoss(nn.Module):
3 def __init__(self, eps=1e-7):
4 super().__init__()
5 self.eps = eps
6 def forward(self, logits, targets):
7 inputs = torch.sigmoid(logits)
8 targets = (targets > 0.5).float()
9 intersection = (inputs * targets).sum(dim=(2,3))

10 unionset = inputs.sum(dim=(2,3)) + targets.sum(dim=(2,3))
11 dice = (2 * intersection + self.eps) / (unionset + self.eps)
12 loss = 1 - dice
13 return loss.mean()
14

15 # ------- Train and Evaluate --------
16 def train_model(
17 model,
18 dataloader_dict,
19 device,
20 n_epochs=10,
21 lr=1e-3,
22 patience=2,
23 ):
24 optimizer = torch.optim.Adam(model.parameters(), lr=lr)
25 bce_loss = nn.BCEWithLogitsLoss()
26 dice_loss = DiceLoss()
27 best_state = copy.deepcopy(model.state_dict())
28 best_val_dice = -np.inf
29 epochs_no_improve = 0
30 for ep in range(n_epochs):
31 model.train()
32 train_loss = []
33 train_dice = []
34 for x, y in dataloader_dict[’train’]:
35 x = x.to(device)
36 y = y.to(device)
37 optimizer.zero_grad()
38 pred = model(x)
39 loss = 0.5*bce_loss(pred, y) + 0.5*dice_loss(pred, y)
40 loss.backward()
41 optimizer.step()
42 train_loss.append(loss.item())
43 train_dice.append(dice_coefficient(pred, y))
44 # Validation
45 ...
46 # Early stopping
47 ...

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

48 model.load_state_dict(best_state)
49 return model
50 ...
51 # ------------- MAIN PIPELINE ---------------
52 def main():
53 """
54 Loads data, trains segmentation model, returns model and average Dice

on test set.
55 """
56 # ---- Settings (tuned for quick/robust test) ----
57 DATA_PATH = ...
58 ...
59 # ---- Model ----
60 model = UNetLite(in_ch=3, out_ch=1).to(device)
61 # ---- Train ----
62 model = train_model(
63 model,
64 dataloader_dict,
65 device,
66 n_epochs=N_EPOCHS,
67 lr=LR,
68 patience=PATIENCE
69 )
70 # ---- Evaluate test set ----
71 test_dice = evaluate_model(model, dataloader_dict[’test’], device)
72 return model, test_dice

Listing 10: Code for Brain MRI segmentation generated by Our Framework.

D.2.7 RESULTS AND DISCUSSION (BRAIN MRI)

In this case study, the objective was to develop a model for accurate and efficient identification
and segmentation of abnormalities in brain MR images, based on a relatively open-ended user
description that primarily specified the data format structure. While both the Cursor and Windsurf
frameworks opted for a traditional U-Net architecture and utilized BCELoss for model training, our
LCP framework adopted a different strategy. LCP generated code implementing a "Lite U-Net," a
more streamlined architecture designed for faster computation. Furthermore, for the training process,
LCP combined nn.BCEWithLogitsLoss() with a custom DiceLoss().

The practical outcomes of these differing approaches are evident in the performance metrics presented
in 5. Most notably, the LCP framework demonstrated a significant advantage in computational
efficiency, with its generated code requiring only approximately one-quarter of the training time
compared to the solutions from Cursor and Windsurf. In terms of segmentation accuracy, the LCP
framework achieved a Dice score on the test dataset that surpassed Cursor’s results and was only
marginally lower than that of Windsurf. This indicates that LCP’s choice of a lighter model and a
compound loss function provided a highly efficient solution that maintained a competitive level of
accuracy, effectively addressing the user’s call for both efficiency and accuracy in a complex image
segmentation task.

Framework Cursor Windsurf LCP (ours)
Dice Score 0.6627 0.7232 0.7185
Training time 127.9s 131.6s 36.2s

Table 5: Comparison of Dice scores on test data with code generated by different frameworks.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Figure 6: Brain MRI Segmentation by Cursor.

Figure 7: Brain MRI Segmentation by Windsurf.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Figure 8: Brain MRI Segmentation by LCP.

D.3 TRAINING PERFORMANCE

To train our model, we collected 120 unique answers for a specific LeetCode problem. This dataset
was then divided, with 60 answers designated for training. The remaining 60 answers from the target
problem were combined with 60 code samples from different LeetCode problems to form our test
dataset.

The training process demonstrated efficient learning, as illustrated in 9, which shows the training loss
plotted against epochs. The loss converged rapidly, showing a significant decrease from the start to
the 10th epoch.

Upon evaluating the trained model on the test dataset, using a classification threshold of 0, we
achieved promising results. The model demonstrated an Accuracy of 0.8487, a ROC AUC score of
0.9322, and Precision, Recall, and F1-score all at 0.8475.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Figure 9: Training loss against epoch for the IRL experiment.

D.4 STATE AND ACTION SPACE DEFINITION EXAMPLE

Vocabulary:
< state ><UNK>: 0
Name_U1: 1
...

Name_<UNKNOWN>: 11
arg_U1: 12
...

arg_<UNKNOWN>: 22
Assign_U1: 23
...

Assign_<UNKNOWN>: 33
< state >Assign(Assign_U1): 34
< state > Attribute ( Attribute ) : 35
< state >ClassDef(ClassDef): 36
< state >FunctionDef(FunctionDef): 37
< state >Import(math): 38
< state >ImportFrom(os::path) : 39
< state >arg(arg_U1): 40
...

Add: 43
BinOp: 44
Call ( sqrt ) : 45
Constant : 46
Load: 47
Module: 48
Mult: 49
...

Listing 11: State and Action Space Definition.

Based on the State and Action Space defined above, we will transfer code into a state-action trajectory,
for example:

Code:

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

import math
from os import path
x = math. sqrt (16)

It would be converted into :
State :
[[38], [38, 39], [34, 35, 38, 39]]
Action:
[[38], [39], [34, 35, 45, 46, 50, 51]]

Listing 12: Single example about code processing

E PROMPTS USED FOR LARGE LANGUAGE MODELS (LLMS)

This section details the specific prompts provided to the Large Language Models (LLMs) for various
sub-tasks within our framework. These prompts are displayed to mimic structured textual input.

E.1 LLM-TM (TASK MANAGER) PROMPTS

E.1.1 PROMPT FOR DATA ANALYSIS AND PRIOR KNOWLEDGE REFINEMENT

I am working on a code generation task :
< task_description_start >
{ task_description }
< task_description_end >

I need you to analyze the data I will be working with and add extra information about
the task escription . Please structure your response as follows :

< extra_information >
Based on the task description , provide any additional information or context that might
be relevant to the task . For example, adding mathematical formulas , domain−specific
knowledge, or any other relevant information that can aid in the code generation
process .
</ extra_information >

< feature_analysis >
Provide a brief introduction to the features present in the data .
If specific feature information is not available , please describe the overall data
structure you would expect or require for this task .
</ feature_analysis >

<advice>
Based on the task description , extra knowledge and the data features (or expected data
structure ) ,
provide advice on how these features can be effectively used to accomplish the project ,
and how to incorporate the additional information into the project .
Suggest potential data transformations , feature engineering steps , or specific ways to
leverage features and extra domain−specific knowledge in the code generation process .
</advice>

Listing 13: LLM-TM: Prompt for data analysis.

I have an initial task description and some analysis regarding the data and approach.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

I need you to synthesize all this information into a single , clear , and more detailed
refined task description .

The refined task description should incorporate insights from the feature analysis and
the advice provided , making it more actionable and comprehensive for a code generation
system. It should clearly state the goal , the expected inputs ( data / features ) , and any
key steps or considerations mentioned in the advice .

Here is the information :

< original_task_description_start >
{ original_task_description }
< original_task_description_end >

< extra_information_start >
{ extra_information }
<extra_information_end>

< feature_analysis_start >
{ feature_analysis }
< feature_analysis_end >

< advice_start >
{advice}
<advice_end>

Now, please provide the refined task description . Output only the refined task
description itself , without any extra conversational text or tags .
Refined Task Description :

Listing 14: LLM-TM: Prompt for prior knowledge refinement.

E.1.2 PROMPT FOR TASK DECOMPOSITION

You are an expert agent specialized in decomposing code generation tasks into
structured , detailed , and clear subtasks and then give a detailed overall plan based on

your defined subtasks . Given a simple high−level task description , your job is to break
it down into logical subtasks that clearly illustrate the workflow and ensure easy
understanding and execution .

Each decomposed subtask should aim to create a function or class as a reusable
component contributing to the overall task . If the provided task is too simple or
atomic to require multiple components, your decomposition should only contain a single
component.

Your output must strictly follow the format below:

<components>
{

"component_1": {
" step_task_description ": str ,
" input_format ": [[ type , shape or null ]],
"output_format ": [[ type , shape or null ]],
"work_flow": [ str ],
" test_case_generation_advise ": [ str ]

},

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

"component_2": {
" step_task_description ": str ,
" input_format ": [[" type ", shape or null ]],
"output_format ": [[" type ", shape or null ]],
"work_flow": [ str ],
" test_case_generation_advise ": [ str ]

},
...

}
</components>

< overall_plan >
{

" input_format ": [[" type ", shape or null ]],
"output_format ": [[" type ", shape or null ]],
"components": [ str ],
"plan ": [ str ],
" test_case_generation_advise ": [ str ]

}
</ overall_plan >

Here are additional detailed explanations of each field :

For <components>:
− **component_X**: The key represents the subtask name, it should be replaced by the
actual class / function name of the component (e.g ., "merge_arrays", "calculate_median ") .
− ** step_task_description **: Provide a clear and concise description of exactly what
this subtask aims to achieve , specifically mentioning the intended functionality or
role of the created component (function / class ) .
− **input_format**: Describe the format of each input argument required for this
subtask . It is a list of lists , where each inner list has two elements :

− The first element indicates the data type (e .g ., " list ", " dict ", NumPy array,
torch .Tensor) . DO make sure the data type is a string .

− The second element indicates the fixed shape if applicable ; otherwise , it is null .
− **output_format**: Describe the format of each output argument generated by this
subtask . It follows the same list structure as ‘ input_format ‘, note that it has to be a
list of lists .

− **work_flow**: Provide a detailed step−by−step plan that outlines the workflow of how
the component functions to achieve the subtask .
− ** test_case_generation_advise **: Provide a list of detailed guidelines or suggestions
aimed at generating diverse and comprehensive test cases , explicitly mentioning
potential edge cases and critical scenarios that need coverage .

For < overall_plan >:
− **input_format**: Describe the format of the input arguments required for the overall
task . It follows the same structure as ‘ input_format ‘ in the component section .
− **output_format**: Describe the format of the output arguments generated by the
overall task . It follows the same structure as ‘output_format ‘ in the component section .
− **components**: List the components in the order .
− **plan**: Provide a detailed step−by−step plan that outlines the workflow of how the
components interact with each other to achieve the overall task . This should be a
high−level description of the process .
− ** test_case_generation_advise **: Provide a list of detailed guidelines or suggestions
aimed at generating diverse and comprehensive test cases for the overall task ,
explicitly mentioning potential edge cases and critical scenarios that need coverage .

Your decomposition should strive for clarity , correctness , modularity , and ensure each
step can be tested independently . Now, given the following simple task description :

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

"{{TASK_DESCRIPTION}}"

Use <> to indicate both start and end of the component part and the overall plan .
Ensure that the components and the overall plan are clearly separated .

Please provide your structured decomposition according to the instructions above.

Listing 15: LLM-TM: Prompt for task decomposition.

You are an expert agent specialized in refining and improving code generation plans
through iterative feedback. Given a task description , previous decomposition output ,
and user feedback, your job is to critically analyze the existing plan and modify it
accordingly while maintaining the required output format .

Carefully review the previous components and overall plan , then :
1. Preserve correct / valid elements that don’t conflict with the feedback
2. Make targeted modifications based on the user ’s specific advice
3. Ensure consistency between components and overall plan
4. Verify input / output formats and workflow logic
5. Check for any introduced errors during modification

The input consists of three elements :
− Original Task Description : "{{TASK_DESCRIPTION}}"
− Previous Decomposition Output:
{{PREVIOUS_OUTPUT}}
− User Feedback: "{{USER_ADVICE}}"

Your output must STRICTLY follow the original format with these sections :
<components>...</components>
< overall_plan >...</ overall_plan >

Follow these guidelines :
− Explicitly address all points in the user feedback
− Clearly document any changes made from previous version
− Preserve JSON structure and formatting requirements
− If feedback contradicts original requirements , prioritize feedback

Again, user feedback is : "{{USER_ADVICE}}"

Provide your refined decomposition with clear explanations of changes in the component
descriptions and overall plan . Ensure modularity , testability , and coverage of edge
cases mentioned in feedback.

Listing 16: LLM-TM: Prompt for plan refinement based on user feedback.

E.1.3 PROMPT FOR TEST CASES GENERATION

You are a test case generation agent . Your task is to create Python test functions to
validate a code generation task based on the provided specifications . Follow these
instructions carefully :

### Input Specifications :
− **Task Description **:
{ task_descr_str }
− **Input Format**:
{ input_descr_str }

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

− **Output Format**:
{ output_descr_str }
− **Components Used**: {components_str}
− **Plan**:
{ plan_str }
− **Test Case Advise**:
{ advisory_list }

### Requirements:
1. **Test Function Structure **:

− Each test function must accept **only the function under test ** as its parameter
(e .g ., ‘def test_case (func) :...‘) .

− Return ‘True‘ if the test passes , ‘ False ‘ otherwise . Do not use assertions , please
return a boolean value .

− Include input generation , runtime checks, code inspection , or result validation
within the function .

2. **Test Types** (use one of these for indicating the test_type ) :
− ‘ correctness ‘: Validate output against expected results for specific inputs .
− ‘edge_case ‘: Test inputs like empty lists , extreme values , or invalid data .
− ‘runtime ‘: Measure execution time (e .g ., ensure it ’s below a threshold ) .
− ‘component_check‘: Verify the function ’s code uses specified components (e.g ., via

string inspection ) .
− ‘ error_handling ‘: Check if errors are raised for invalid inputs .

3. **Test Case Diversity **:
− Cover all provided advisories .
− Include at least one test per advisory and one for each test type where applicable .

### Output Format:
For each test case , you need to firstly define the Test Types to indicate what type of
test case you are going to create and then give the reasoning and explanation of the
test case . After that , generate the test function based on the your reasoning .

For each test function , return with following structure :

<Type>
Pick one of correctness | edge_case | runtime | component_check|error_handling
</Type>
<Planning>
Introduce how would you design the test function . Specify the purpose of the test
function and the reasoning behind it . Explain step by step why your test case is
correct and what is the expected output .
</Planning>
<Code>
def test_case (func) :

# Your test function code here
return True or False as test result , and a message

</Code>

If you are going to create multiple test cases , please separate them with < separator >
tag .

{example_text}
Generate test cases that rigorously validate the function ’s behavior , code structure ,
and performance.
You MUST strictly follow the output format and structure . The generated test functions
MUST be runnable function that use another python function as its parameter and it
should output both the Test result (True or False ) and a message to give extra

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

information about the test result .( For example, f"Test failed : expected X but got Y" or
"Test failed : output with shape [x1, y1] but got [x2, y2 ]", where the X, Y and shapes
need to be replaced by the actual output and expected output in test function ) .

Listing 17: LLM-TM: Prompt for test case generation.

E.2 LLM-CG (CODE GENERATION) PROMPTS

E.2.1 PROMPT FOR CODE GENERATION

=== Role ===
You are a highly skilled coding assistant designed to generate clear , efficient , and
correct code based on structured task descriptions and detailed plans provided by the
user . Your responses must precisely follow the instructions , formats , and constraints
given by the user , and you must strictly adhere to input−output formats , workflows, and
specific guidelines outlined .

=== Task Description ===
{ task_description }

=== Components ===
{components_description}

=== Overall Plan ===
{ plan_text }

=== Test Cases ===
{sampled_test_cases}

=== Instructions ===
Generate the COMPLETE code based on the components and plan above.
DO MAKE SURE the complete code is a runnable function, all components are correctly
integrated with in this function .

The complete function should take the input arguments as specified in the overall plan
and return the output as specified .
Please add as much comments as possible to your code to explain the logic and any
critical steps .
Structure your response as follows :
<Code>
Your code here . DO make sure the output is a single function that integrates all
components.
</Code>
<Planning>
A detailed step−by−step explanation of the code’s workflow.
</Planning>
<Main Function Name>
The name of the main function that integrates all components.
</Main Function Name>
Provide the code with the same indicator and structure as shown in Instructions . DO
NOT return any test cases or example usages in your code!

Listing 18: LLM-CG: Prompt for code generation.

E.2.2 PROMPT FOR CODE REFINEMENT

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

=== Role ===
You are a code refinement specialist designed to improve existing implementations based
on specific feedback. Analyze the provided feedback, identify areas for improvement,
and modify the code while strictly maintaining the required input / output formats and
component specifications .

=== Task Description ===
{ task_description }

=== Components ===
{components_description}

=== Overall Plan ===
{ plan_text }

=== Test Cases ===
{sampled_test_cases}

=== User Feedback ===
{user_feedback}

=== Previous Best Code Generation ===
{sampled_codes_with_error_info}

=== Refinement Requirements ===
Before refining the code, tell me the reason why the last code failed to pass the test
function , and how would you improve the code.

=== Instructions ===
Generate the COMPLETE code based on the components and plan above.
DO MAKE SURE the complete code is a runnable function, all components are correctly
integrated with in this function .

The complete function should take the input arguments as specified in the overall plan
and return the output as specified .
Please add as much comments as possible to your code to explain the logic and any
critical steps .
Structure your response as follows :
<Think>
Explain why does last code failed to pass the Test Function , and how to fix it .
</Think>
<Code>
Your code here . DO make sure the output is a single function that integrates all
components.
</Code>
<Planning>
A detailed step−by−step explanation of the code’s workflow.
</Planning>
<Main Function Name>
The name of the main function that integrates all components.
</Main Function Name>
Provide the code with the same indicator and structure as shown in Instructions . DO
NOT return any test cases or example usages in your code!

Listing 19: LLM-CG: Prompt for code refinement.

33


	Introduction
	Method
	Overview
	Planning and initial code generation
	A Priori estimation with Bayesian Optimization
	Evaluation and Feedback
	Iterative Refinement: Adversarial Dynamics and Bayesian Prompt Updates

	Experiments
	Experimental Setup
	Effectiveness in AI for Science Tasks 
	Analysis of Bayesian Recursive co-updating
	Robustness for Non-Professional Users 

	Conclusions and Discussions
	The Use of Large Language Models (LLMs)
	Bayesian optimization for code performance prediction
	Performance on General Code Generation
	Additional Case Study Details
	Case Study 1: Beach Profile Prediction
	Experimental Setup
	User's Prompt for Beach Profile Prediction
	Refined task description by LLM-TM agent
	Code Generated by Cursor (Only data process part)
	Code Generated by Windsurf (Only data process part)
	Code Generated by Our Framework (Only data process part)
	Results and Discussion

	Case Study 2: Brain MRI Segmentation
	Experimental Setup (Brain MRI)
	Prompt for Brain MRI Segmentation
	Refined Prompt by LLM-TM agent
	Code Generated by Cursor (Only main training loop)
	Code Generated by Windsurf (Only main training loop)
	Code Generated by Our Framework (Only main training loop)
	Results and Discussion (Brain MRI)

	Training Performance
	State and Action Space Definition Example

	Prompts Used for Large Language Models (LLMs)
	LLM-TM (Task Manager) Prompts
	Prompt for Data analysis and Prior Knowledge Refinement
	Prompt for Task Decomposition
	Prompt for Test Cases Generation

	LLM-CG (Code Generation) Prompts
	Prompt for Code Generation
	Prompt for Code Refinement



