LINKGPT: Teaching Large Language Models To
Predict Missing Links

Zhongmou He, Jing Zhu, Shengyi Qian, Joyce Chai, Danai Koutra
University of Michigan

Abstract

Large Language Models (LLMs) have shown promising results on various language
and vision tasks. Recently, there has been growing interest in applying LLMs
to graph-based tasks, particularly on Text-Attributed Graphs (TAGs). However,
most studies have focused on node classification, while the use of LLMs for link
prediction (LP) remains understudied. In this work, we propose a new task on
LLMs, where the objective is to leverage LLMs to predict missing links between
nodes in a graph. This task evaluates an LLM’s ability to reason over structured
data and infer new facts based on learned patterns. This new task poses two
key challenges: (1) How to effectively integrate pairwise structural information
into the LLMs, which is known to be crucial for LP performance, and (2) how
to solve the computational bottleneck when teaching LLMs to perform LP. To
address these challenges, we propose LINKGPT, the first LLM-based training and
inference framework specifically designed for LP tasks on homogeneous TAGs.
To enhance the LLM’s ability to understand the underlying structure, we design a
two-stage instruction tuning approach where the first stage finetunes the pairwise
encoder, projector, and node projector, and the second stage further finetunes the
LLM:s to predict links. To address the efficiency challenges at inference time, we
introduce a retrieval-reranking scheme and investigate three LLM-based retrieval
methods. Extensive experiments show that LINKGPT can achieve state-of-the-art
performance on real-world graphs and superior generalization in zero-shot and few-
shot learning, surpassing existing benchmarks. At inference time, it can achieve
10x speedup while maintaining high LP accuracy.

1 Introduction

Graph-structured data is ubiquitous in real-world applications, ranging from social networks to
recommendation systems. Among the various tasks performed on graphs, link prediction (LP) is of
particular importance. In recent years, graph neural networks (GNNs) that learn node representations
by aggregating information from their local neighborhoods have been widely used for LP [39} 141} 20].
However, GNNs struggle to capture long-range dependencies and complex semantic information
present in text-attributed graphs (TAGs) and fail to generalize to unseen graphs [[15]].

Recent advancements in Large Language Models (LLMs) have revolutionized the natural language
processing field [1} [19) 32} 21]. Inspired by their success, researchers have begun exploring the
application of LLMs to graph-based tasks. However, most existing works focus on node classification.
It remains unclear whether and how LLM can be used for LP, a task that relies heavily on structural
information [31}11]]. Therefore, we propose to explore the ability of LLMs to perform link prediction
tasks. Note that in this paper, we primarily focus on LP on homogeneous TAGs, i.e., TAGs with only
one type of nodes and edges.

Nonetheless, teaching LLMs to perform LP is not straightforward and presents two key challenges.
First, LLMs are primarily designed to process textual and sequential data. The way to integrate

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

Retrieval-Reranking Scheme for Inference

Two-Stage Instruction Tuning

Task 1: Neighbor Generation CE loss

LLM ¢

SR

{source text} What nodes are connected with it?

fe |96
Task 2: Link Prediction CE Iass

LM ¢
" DQD$D@@?@:L€;§T!"@ D
Y ! .

candidate

= =
II II target set
(= text| | (count: N)
generated

neighbors veries
—
Tor2 a 1) Sparse Retrieval

2 Dense Retrieval
constrained decoding ive Retrieval
or(3

l
@
.[._____

* ! X4 Xp Xc Xp Xg
Y 1 -

f pairwise | ranking

P | Op {source text} {target text} Are they connected? |

encoding | A S—

5 | -

Y| f5: node encoder, a;: node projector % : Frozen : g -_ result:

Sel B fp: pairwise encoder, ap: pairwise projector & : Tuned : c A>E>C>B>..

Figure 1: Overview of the LINKGPT framework. LINKGPT consists of two main components: (1)
two-stage instruction tuning approach to incorporate structural information into LLMs, and (2) a
retrieval-reranking scheme to address the computation bottleneck at inference time. Note that, f =
7 means that this module is tuned during stage 1 and is frozen during stage 2, and vice versa.

node-wise and pairwise structural information into LLMs is non-trivial. Second, teaching LLMs
to predict missing links presents computational bottlenecks. LP typically requires ranking a large
number of candidate target nodes (e.g., 1,000) for each source node at inference time, which is
computationally expensive when combined with LLMs.

To address these challenges, we propose LINKGPT, the first LLM-based training and inference
framework specifically designed for link prediction on homogeneous TAGs. LINKGPT consists of
two main components: (1) a two-stage instruction tuning approach to incorporate neighborhood
and pairwise structural information into LLMs, and (2) a retrieval-reranking scheme to address the
computation bottleneck at inference time. Specifically, during inference, we first retrieve a smaller
subset of candidate target nodes by generating potential neighbors of the source node. Then, we
evaluate each candidate based on their textual, neighborhood, and pairwise information using the
LLM. Extensive experiments show that LINKGPT not only achieves state-of-the-art performance
across datasets but also possesses strong generalization ability. Moreover, by employing our designed
retrieval-reranking scheme for inference, LINKGPT is 10x faster while maintaining high LP accuracy.

Details about related works are presented in Appendix [A]

2 Preliminaries

Graphs. Formally, a graph is denoted by G = {V, £, X'}, where V is the set of nodes, € is the set of
edges, and X represents the set of attributes or features associated with each node in V. A graph G is
considered to be a text-attributed graph (TAG) if its node attributes X are texts. In this paper, we
mainly focus on homogeneous TAGs, i.e., TAGs with only one type of nodes and edges. We further
let /¥ denote the k-hop neighbors of node u, which is the set of nodes at a distance of & from .

Link prediction. Given a source node s €)V and a set of candidate target nodes C =
{t1,t2, -+ ,tn.} C V, which consists of 1 positive target node and N — 1 negative target node,
the link prediction task aims to rank all candidate target nodes based on the probability that there is a
link between the source node s and each candidate target node ¢;. The performance is evaluated by
how highly the positive candidate node is ranked among all candidates.

3 LINKGPT

In this section, we present the proposed LINKGPT framework for link prediction on text-attributed
graphs (TAGs). LINKGPT leverages the power of LLMs to effectively capture both graph structure
and textual semantics, enabling accurate and efficient link prediction. An overview of the LINKGPT
is illustrated in Figure|[T]

3.1 Node and Pairwise Encoding

To enable the LLM to effectively capture the graph structural, textual, and pairwise semantics, we
introduce two special tokens: <NODE> and <PAIRWISE>. The <NODE> token encodes information
about a node and its surrounding neighborhood, while the <PATRWISE> token encodes the pairwise
relationship between two nodes.

Neighborhood-aware node encoding. In a graph, the neighborhood A} of node v plays a crucial
role in understanding v itself [15]. Inspired by [31} 21]], we obtain neighborhood-aware node
embeddings through contrastive graph-text pre-training so that the node encoding contains the textual
information of the node itself and its neighbors. We first obtain the neighborhood text representations
T € RV*247 and the node representations H € RY*?# through BERT [8] and GraphFormers [37],
separately (details are provided in Appendix [B)). The contrastive loss L is calculated as follows:

I' = norm(H)norm(T)” /7, L = ((CE(T,y) + CEI7",y)) /2 (1)

where 7 denotes the temperature, and the label y is set to (0,1,--- , B — 1)7, where B denotes the
batch size. The learned node encoding H is then mapped to the semantic space of the LLM using a
simple alignment projector o and will be used the embedding of the special token <NODE>.

Pairwise encoding. To capture the pairwise relationship between nodes, we employ LPFormer [29].
For node a and b, the LPFormer learns a pairwise encoding fp(a, b) to represent their relationship.

fP(a7 b) = ZUGV(0 ’lU(CL, b7 u) © h(a7 bv ’U,) 2

where w(a, b, u) and h(a, b, u) denote the importance and encoding of node w relative to the relation
between a and b respectively, and V), p) denotes the set of nodes that might be important to the
relation. fp(a,b) is also mapped to the semantic space of LLM using an alignment projector op.
Note that the pairwise encoder is not pre-trained. Details about pairwise encoder are in Appendix

3.2 Two-Stage Instruction Tuning

We leverage a two-stage instruction tuning approach to train LINKGPT for link prediction and
neighbor generation tasks. The prompts for these tasks are shown in Appendix [D}]

Training schedule. We adopt a two-stage tuning strategy. In stage 1, we focus on training the
pairwise encoder and aligning the two special encodings with the word embeddings of the pre-trained
LLM. The LLM is kept frozen, and only the encoding-related modules, including the pairwise encoder
and two alignment projectors, are tuned. In stage 2, we keep the encoding-related modules frozen
and tune the LLM through LoRA [12]] to improve its understanding of the encodings.

3.3 Retrieval-Reranking Scheme for Inference

The inference stage of link prediction involves ranking a set of candidate target nodes C =
{t1,t2,- -+ ,tn,} for each source node s. However, directly ranking all candidates using the LLM
can be computationally expensive, especially when the candidate set C is large. To address such a
challenge, we propose a retrieval-reranking scheme that efficiently shrinks the size of the candidate
set before applying the LLM for final ranking.

Retrieval stage. In the retrieval stage, our goal is to quickly identify a smaller subset of nc < N¢
candidate target nodes that are most likely to be connected to the source node. We first prompt
the LLM to generate potential neighbors using the neighbor generation prompt in Figure 3] and
then retrieve n¢ candidates from C. We explore three effective retrieval methods, sparse retrieval
(SR), dense retrieval (DR), and generative retrieval (GR). SR and DR use BM25 [26] and the cosine
similarity of the embeddings as the scoring functions, separately, while GR directly "generates" most
possible candidates in C. Details about the retrieval methods are in Appendix

Furthermore, to utilize pairwise heuristics, we apply a distance-based grouping strategy for all three
retrieval methods, where we select Snc nodes from the source node’s 2-hop neighborhood A2 and
(1 — B)nc nodes from the rest of the graph V\ N2 with the highest scores. Here we set 3 = 0.65.

Reranking stage. In the reranking stage, we use the LLM to rank the retrieved nc candidates and
obtain the final link prediction results. To quantify the probability of an edge existing between the

source node s and a candidate target node ¢;, we use the ratio of the probability of the LLM outputting
"Yes" to the probability of the LLM outputting either "Yes" or "No" as the final score.

4 Experiments

Table 1: Performance of LINKGPT and baseline models on the link prediction task on 7 datasets.
The best results are highlighted with a grey background, while the second-best results are underlined.

Dataset Sports Clothing Math Geology ogbn-Arxiv PubMed Cora
MRR H@l MRR H@l MRR H@! MRR H@l MRR H@! MRR H@l MRR H@I
GCN [17] 70.44 60.17 68.18 60.00 51.35 40.11 45.80 33.14 69.19 58.6 34.96 23.04 2892 16.01
GraphSAGE [10] 77.60 68.43 81.17 71.61 5097 36.77 44.17 2841 7793 67.42 39.28 24.12 33.61 19.75
GATV2 [3] 81.44 7296 87.83 81.56 65.65 5527 51.59 37.95 78.62 68.14 39.33 26.19 47.50 33.24
SimKGC [34] 89.42 84.52 89.95 84.23 73.57 6294 64.38 51.56 85.53 77.90 58.11 43.96 46.76 33.08
SEAL [40] 76.79 69.58 82.14 7541 61.79 56.34 58.05 50.07 86.23 78.29 52.41 39.17 46.88 34.83
BUDDY [4] 81.33 74.00 83.89 76.52 58.15 48.30 54.95 4532 8245 7548 40.68 29.53 34.26 22.85
LPFormer [29] 69.94 62.61 6599 5629 4797 42.19 43.10 35.08 74.74 65.69 30.08 20.78 30.12 22.47
LLaMA2 [32] 40.81 30.88 30.22 22.49 2292 13.54 21.86 13.47 46.53 33.81 37.98 24.47 19.06 11.99
GraphGPT [31] 1482 596 3229 1428 1243 437 978 262 978 220 749 182 534 1.57
LLaGA [5] 83.41 7540 84.49 77.54 74.25 63.34 62.19 49.80 78.74 68.73 43.44 29.05 42.87 29.53

LINKGPT (Ours) 87.07 79.56 90.18 84.82 81.03 71.01 75.43 64.57 88.89 82.84 66.54 53.42 51.57 36.70

4.1 Experimental Setup

Datasets. Following previous work on LP and TAGs [5}[15]], We train and evaluate our model on the
following 7 datasets: Amazon-Sports, Amazon-Clothing [24], MAG-Geology, MAG-Math [30, 42],
ogbn-Arxiv [13]], PubMed, and Cora [28]]. These datasets exhibit notable diversity in terms of size,
sparsity, and domain. Detailed statistics about the 7 datasets are presented in Appendix

Baselines. We apply four categories of competitive baseline models, which include (1) traditional
GAE-based models (GCN [17]], GraphSAGE [10], and GATv2 [3l)), (2) knowledge graph completion
models (SimKGC [34]]), (3) models that make use of nodes’ pairwise information (SEAL [40],
BUDDY [4], and LPFormer [29])), and (4) LLM-based models (vanilla LLaMA?2 [32]], GraphGPT [31],
and LLaGA [J3]. More descriptions of baseline models can be found in Appendix [H]

Moreover, the implementation details of LINKGPT are inm

4.2 Overall Performance

We first evaluate the overall performance of our LINKGPT framework and compare its performance
with the state-of-the-art baselines on the link prediction task. The number of candidates N¢ is set to
be 150 for all datasets and the retrieval stage of LINKGPT is not applied for a clearer assessment. The
results are presented in Table[T]and the experimental errors are reported in Appendix[J} The proposed
LINKGPT model significantly outperforms all the baseline models across all datasets except Sports
on the link prediction task, achieving state-of-the-art performance in terms of both MRR and H@1.
This highlights the effectiveness of LINKGPT’s approach in leveraging node-wise, pairwise, and
textual information for link prediction.

4.3 Generalization Ability

We then evaluate the generalization ability of LINKGPT. Note that in this section we still set
N¢ = 150 and do not apply the retrieval stage. We train LINKGPT on one dataset A and evaluate
it on another dataset B, without fine-tuning or additional examples in the prompt. Results are
summarized in Table[2] The proposed LINKGPT model demonstrates the strongest generalization
ability, outperforming all other baseline models in all settings. LINKGPT not only benefits from
its LLM backbone, which possesses powerful text feature generalization capabilities, but also from
effectively capturing the structural commonalities of link formation through the node and pairwise
encodings. We also investigate the few-shot generalization ability of LINKGPT in Appendix [K]

Table 2: Zero-shot performance on the link prediction task. A — B indicates that the model is trained
on dataset A and evaluated on an unseen dataset B.

Cross-category Cross-domain
Dataset Sports—Clothing ~ Math—Geology Sports—Math Math—Sports

MRR Hel MRR Hel MRR Hel MRR Hel
GraphSAGE [10] 51.88 36.43 8.11 2.06 19.27 8.88 27.64 14.52

GATV2 [3] 67.01 55.36 21.41 13.54 36.87 26.86 49.68 37.21
SimKGC [34] 65.58 54.20 46.68 35.78 58.09 4772 65.77 53.65
BUDDY [4] 81.23 72.01 24.45 13.35 26.43 15.73 42.39 21.22
LPFormer [29] 68.26 59.64 42.70 35.08 48.50 43.75 56.78 44.13
LLaMA2 [32] 30.22 22.49 21.86 13.47 22.92 13.54 40.81 30.88
LLaGA [5] 78.62 68.90 23.20 13.13 23.86 12.97 53.67 40.46

LINKGPT (Ours) 85.74 79.01 71.58 6042 67.50 5527 69.38 55.40

4.4 Scalability Analysis

In this section, we investigate the scalability of LINKGPT by evaluating the performance and runtime
of LINKGPT and another powerful LLM-based baseline, LLaGA [3]], with large candidate target sets.
The number of negative candidates N¢ is set to 1,800 for all datasets. For the number of candidates
to retrieve n¢, we set ng = 30 for Sports and Clothing and nc = 60 for all other datasets.

We conduct experiments in the following five settings: 1. LLaGA [3], 2. LINKGPT w/o Retrieval,
3. LINKGPT w/ SR, 4. LINKGPT w/ DR, and 5. LINKGPT w/ GR. As shown in Figure|2|, thanks
to LINKGPT’s neighbor generation capability, including the retrieval stage can boost inference
efficiency while maintaining good performance. For LINKGPT w/ SR, the runtime decreases by a
factor of 10 but the MRR decline does not exceed 10%. Due to the page limitation, the results for
ogbn-Arxiv, PubMed, and Cora are shown in Figure[6] We also include a case study in Appendix [}

== (Rejrank Runtime
Retrieval Runtime
MRR

= (Re)rank Runtime
Retrieval Runtime {90
MRR

== (Re)rank Runtime 20
Retrieval Runtime
MRR 7

' £ 240
&
s0& %
2

= (Rejrank Runtime
Retrieval Runtime
MRR

runtime (s)
8
MRR
runtime (s)

21
AN wl &*

ecy T RSt ot

A

(a) Sports (b) Clothing (c) Math (d) Geology

REcy KGF‘“‘“““‘S“ wl o
o

A

A R SR R A
REcy e wlo wl € 1% WOt g

A

=
1o o
W2 e wio

Figure 2: Performance of the retrieval-reranking scheme of LINKGPT on Sports, Cloth, Geology,
and Math. The line chart represents the final MRR, using the right axis, while the bar chart represents
the total runtime required for each (s, C) pair during inference, using the left axis.

For the individual contribution of the node and pairwise encodings, one may refer to the ablation
study in Appendix M|

5 Conclusion

In this paper, we introduced LINKGPT, a novel approach that leverages the power of Large Language
Models (LLMs) for link prediction tasks on text-attributed graphs (TAGs). By combining node and
pairwise encodings, two-stage finetuning, and a retrieval-reranking scheme for inference, LINKGPT
effectively addresses the challenges of incorporating pairwise node information and efficiently
ranking a large number of candidates. Our extensive experiments on real-world datasets demonstrate
LINKGPT’s superior performance and computational efficiency compared to state-of-the-art methods.
Furthermore, the zero-shot and few-shot generalization experiments highlight LINKGPT’s robustness
and ability to transfer knowledge across different categories and domains.

References

[1] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson,
Karel Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual
language model for few-shot learning. Advances in Neural Information Processing Systems,
35:23716-23736, 2022.

[2] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web search engine.
Comput. Networks, 30:107-117, 1998.

[3] Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph attention networks? ArXiv,
abs/2105.14491, 2021.

[4] Benjamin Paul Chamberlain, Sergey Shirobokov, Emanuele Rossi, Fabrizio Frasca, Thomas
Markovich, Nils Hammerla, Michael M. Bronstein, and Max Hansmire. Graph neural networks
for link prediction with subgraph sketching, 2023.

[5] Runjin Chen, Tong Zhao, Ajay Jaiswal, Neil Shah, and Zhangyang Wang. Llaga: Large
language and graph assistant, 2024.

[6] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to
Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.

[7] Nicola De Cao, Gautier Izacard, Sebastian Riedel, and Fabio Petroni. Autoregressive entity
retrieval. In 9th International Conference on Learning Representations, ICLR 2021, Virtual
Event, Austria, May 3-7, 2021. OpenReview.net, 2021.

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. NAACL-HLT, 2019.

[9] Tianyu Gao, Xingcheng Yao, and Dangi Chen. SimCSE: Simple contrastive learning of sentence
embeddings. In Empirical Methods in Natural Language Processing (EMNLP), 2021.

[10] William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on
large graphs. In Neural Information Processing Systems, 2017.

[11] Xiaoxin He, Xavier Bresson, Thomas Laurent, Adam Perold, Yann LeCun, and Bryan Hooi.
Harnessing explanations: Llm-to-lm interpreter for enhanced text-attributed graph representation
learning. In The Twelfth International Conference on Learning Representations, 2023.

[12] J. Edward Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, and
Weizhu Chen. Lora: Low-rank adaptation of large language models. ArXiv, abs/2106.09685,
2021.

[13] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
NeurlIPS, 33:22118-22133, 2020.

[14] Bowen Jin, Gang Liu, Chi Han, Meng Jiang, Heng Ji, and Jiawei Han. Large language models
on graphs: A comprehensive survey. arXiv preprint arXiv:2312.02783, 2023.

[15] Bowen Jin, Wentao Zhang, Yu Zhang, Yu Meng, Xinyang Zhang, Qi Zhu, and Jiawei Han.
Patton: Language model pretraining on text-rich networks. arXiv preprint arXiv:2305.12268,
2023.

[16] Leo Katz. A new status index derived from sociometric analysis. Psychometrika, 18:39-43,
1953.

[17] Thomas Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. ArXiv, abs/1609.02907, 2016.

[18] Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint
arXiv:1611.07308, 2016.

[19] Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-
image pre-training with frozen image encoders and large language models. arXiv preprint
arXiv:2301.12597, 2023.

[20] David Liben-Nowell and Jon Kleinberg. The link prediction problem for social networks. In
CIKM, pages 556-559, 2003.

[21] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In
NeurlPS, 2023.

[22] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019.

[23] Victor Martinez, Fernando Berzal, and Juan-Carlos Cubero. A survey of link prediction in
complex networks. ACM computing surveys (CSUR), 49(4):1-33, 2016.

[24] Julian McAuley, Christopher Targett, Javen Qinfeng Shi, and Anton van den Hengel. Image-
based recommendations on styles and substitutes. Proceedings of the 38th International ACM
SIGIR Conference on Research and Development in Information Retrieval, 2015.

[25] Mark E. J. Newman. Clustering and preferential attachment in growing networks. Physical
review. E, Statistical, nonlinear, and soft matter physics, 64 2 Pt 2:025102, 2001.

[26] Stephen Robertson and Hugo Zaragoza. The probabilistic relevance framework: Bm25 and
beyond. Found. Trends Inf. Retr., 3(4):333-389, apr 2009.

[27] Apoorv Saxena, Adrian Kochsiek, and Rainer Gemulla. Sequence-to-sequence knowledge
graph completion and question answering. In Smaranda Muresan, Preslav Nakov, and Aline
Villavicencio, editors, Proceedings of the 60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages 2814-2828, Dublin, Ireland, May 2022.
Association for Computational Linguistics.

[28] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Gallagher, and Tina Eliassi-
Rad. Collective classification in network data. AI Mag., 29(3):93-106, sep 2008.

[29] Harry Shomer, Yao Ma, Haitao Mao, Juanhui Li, Bo Wu, and Jiliang Tang. Lpformer: An
adaptive graph transformer for link prediction. arXiv preprint arXiv:2310.11009, 2023.

[30] Arnab Sinha, Zhihong Shen, Yang Song, Hao Ma, Darrin Eide, Bo-June (Paul) Hsu, and Kuansan
Wang. An overview of microsoft academic service (mas) and applications. In Proceedings of
the 24th International Conference on World Wide Web, WWW ’15 Companion, page 243-246,
New York, NY, USA, 2015. Association for Computing Machinery.

[31] Jiabin Tang, Yuhao Yang, Wei Wei, Lei Shi, Lixin Su, Sugi Cheng, Dawei Yin, and Chao Huang.
Graphgpt: Graph instruction tuning for large language models. arXiv preprint arXiv:2310.13023,
2023.

[32] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas
Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes,
Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony
Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian
Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut
Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov,
Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta,
Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiao-
qing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng
Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien
Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation
and fine-tuned chat models, 2023.

[33] Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, and Partha Talukdar. Composition-based
multi-relational graph convolutional networks. ICLR, 2020.

[34] Liang Wang, Wei Zhao, Zhuoyu Wei, and Jingming Liu. SimKGC: Simple contrastive knowl-
edge graph completion with pre-trained language models. In Proceedings of the 60th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages
4281-4294, Dublin, Ireland, May 2022. Association for Computational Linguistics.

[35] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou, Chao Ma,
Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He, George Karypis, Jinyang Li, and Zheng Zhang.
Deep graph library: A graph-centric, highly-performant package for graph neural networks,
2020.

[36] Hao Yan, Chaozhuo Li, Ruosong Long, Chao Yan, Jianan Zhao, Wenwen Zhuang, Jun Yin,
Peiyan Zhang, Weihao Han, Hao Sun, et al. A comprehensive study on text-attributed graphs:
Benchmarking and rethinking. Advances in Neural Information Processing Systems, 36:17238—
17264, 2023.

[37] Junhan Yang, Zheng Liu, Shitao Xiao, Chaozhuo Li, Defu Lian, Sanjay Agrawal, Amit Singh,
Guangzhong Sun, and Xing Xie. Graphformers: Gnn-nested transformers for representation
learning on textual graph. In Neural Information Processing Systems, 2021.

[38] Liang Yao, Jiazhen Peng, Chengsheng Mao, and Yuan Luo. Exploring large language models
for knowledge graph completion, 2024.

[39] Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. NeurlPS, 31,
2018.

[40] Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. In Neural
Information Processing Systems, 2018.

[41] Muhan Zhang, Pan Li, Yinglong Xia, Kai Wang, and Long Jin. Labeling trick: A theory of
using graph neural networks for multi-node representation learning. NeurIPS, 34:9061-9073,
2021.

[42] Yu Zhang, Bowen Jin, Qi Zhu, Yu Meng, and Jiawei Han. The effect of metadata on scientific
literature tagging: A cross-field cross-model study. In WWW’23, pages 1626-1637, 2023.

[43] Jianan Zhao, Meng Qu, Chaozhuo Li, Hao Yan, Qian Liu, Rui Li, Xing Xie, and Jian
Tang. Learning on large-scale text-attributed graphs via variational inference. arXiv preprint
arXiv:2210.14709, 2022.

[44] Jing Zhu, Xiang Song, Vassilis N Ioannidis, Danai Koutra, and Christos Faloutsos. Touchup-
g: Improving feature representation through graph-centric finetuning. arXiv preprint
arXiv:2309.13885, 2023.

[45] Yun Zhu, Yaoke Wang, Haizhou Shi, and Siliang Tang. Efficient tuning and inference for large
language models on textual graphs. arXiv preprint arXiv:2401.15569, 2024.

[46] Zhaocheng Zhu, Zuobai Zhang, Louis-Pascal Xhonneux, and Jian Tang. Neural bellman-ford
networks: A general graph neural network framework for link prediction. NeurIPS, 34:29476—
29490, 2021.

A Related Works

Text-attributed graphs. In this work, we focus on text-attributed graphs, where each node is
associated with a text description. Text-attributed graphs are typically dense and homogeneous
and are structurally different from heterogeneous, sparse knowledge graphs [36l 46]. As a result,
knowledge graph-based methods are not typically used in text-attributed graphs. Recent studies on
text-attributed graphs focus on learning the integration of textual semantics within individual nodes
and the topological connections across nodes [15,136} 43} 44]]. LINKGPT further extends the study of
learning on text-attributed graphs and proposes to incorporate structural information directly into the
LLMs.

Generation-based knowledge graph completion (KGC). In recent years, some studies have
approached KGC as a sequence-to-sequence task, where generative language models directly generate
tail entity texts based on a given head entity and relation [27, 38]]. The probability of LLM generating
these texts is then used as the basis for ranking. Although seems similar to the generation-based
retrieval approaches in LINKGPT, these methods cannot be directly applied to LP on general TAGs.
Firstly, compared to the entity texts in KGs, the texts associated with nodes in general TAGs are often
longer and more irregular, making it challenging for LLMs to generate text that matches the nodes
present in the candidate set. Moreover, using the probability of text generation as the ranking criterion
leads to a training scenario with only positive samples and no negative samples, and LLMs thus
cannot learn the differences between the pairwise and neighborhood information between positive
and negative target candidates, which are crucial for LP on general dense homogeneous TAGs.

Link prediction. Link prediction aims to complete missing links in a graph [23}[33]. While heuristic
algorithms were once predominant, graph neural networks (GNNs) have been prevalent in the past
few years. Methods that use GNNs for LP mainly fall into two categories: Graph Autoencoder (GAE)-
based methods and enclosing subgraph-based methods [[18} 4} 39]. While GNN-based methods show
promising results, they do not generalize to unseen graphs. In this work, we aim to explore LLMs’
structure reasoning ability on LP tasks and evaluate their generalization ability in both zero-shot and
few-shot settings.

Large language models for graphs. Recent progress on applying LLMs for TAGs aims to leverage
the power of LLMs to boost performance on graph-related tasks [11,[14]. Two main strategies have
emerged: (1) LLMs as predictors, where LLMs directly generate solutions to tasks [31}15], and (2)
LLMs as enhancers, which utilize LLM capabilities to improve the representations learned by smaller
GNNs s for better efficiency [45)]. LINKGPT directly predicts missing links in graphs and thus falls
into the first category. While previous works mainly focus on improving LLMs’ ability to predict
node labels on node classification task, here we believe that LLMs’ ability to predict missing links in
graphs presents its actual structure reasoning ability.

B Details about Node Encoding

Let fo and fr denote the node encoder and text encoder, respectively. The neighborhood text
representations T € R *247 are obtained by:

1
I _ / /
T = fr(X), T, = concat <T,U, —|N,I}| E wen? Tu> 3)
where T/, € R4 is the raw text encoding of node v. Here we use bert-base-uncased [§]] as fr.
v g

Furthermore, the node representations H € RV *4# are given by H = fg(V, £, X). We employ
GraphFormers [37]] as our node encoder fg, where layerwise GNN components are nested alongside
the transformer encoder blocks of language models. Formally, the forward pass of each layer in
GraphFormers is given by:

20 = GNN{HV[CLS] | u € N'}) @

H = concat(z(V, H!))
f{g)/ = LayerNorm(H,(f) + MHAasy(ﬂg))) ©)
H(+D = LayerNorm(H' + MLP(H®")) @

where HT(,Z) is the hidden states of node v in the [-th layer, and MHA,,, means asymmetric multihead

attention. The initial embedding Hq()o) is obtained through a learnable embedding module.

C Details about Pairwise Encoding

To capture the pairwise relationship between nodes in an explicit and adaptive way, we employ
LPFormer [29] as the pairwise encoder. For nodes a, b € V, LPFormer learns a pairwise encoding
fp(a,b) to represent their relationship. Common heuristics, such as CN [25] and Katz Index [16],
can be represented as its special cases. Formally,

fp(a,b) = Zuev(, w(a,b,u) ® h(a,b,u))

Link Prediction:

This is the source node. <NODE> Text: {text).

This is another node. <NODE> <PAIRWISE> Text: {text}. Is this node connected with the source
node? Answer: {Yes/No)

This is another node. <NODE> <PAIRWISE> Text: {text}. Is this node connected with the source
node? Answer: {Yes/No)

Neighbor Generation:
This is the source node. <NODE> Text: {text}. What nodes are connected with it?
Answer: Text: {text}. Text: {text]. ...

\ J

Figure 3: Instruction templates for the link prediction and neighbor generation tasks. Only the
answers (highlighted in green) are used for calculating the loss.

where w(a, b, u) and h(a, b, u) denote the importance and encoding of node u relative to the relation
between a and b respectively, and V), ;) denotes the set of nodes that might be important to the
relation, consisting of nodes with Personalized PageRank (PPR) [2] score higher than a threshold n
relative to either a or b. In this paper, we set 7 = 0.01 for nodes in A/} U AL, and = 1 for all other
nodes to filter them out. Furthermore, w(a, b, u) and h(a, b, u) are given by:

W(a, b, u) = Pan(ha, hy, hu,rpe(mb,u)))
exp(w(a, b, u))
w(a,b,u) = _ (10)
ZvGV\{a,b} exp(w(a, b7 U))
h(a,b,u) = W pconcat(h,, rpe,;) (11)

where ¢un denotes the GATV2 attention mechanism [3]], Wp is a trainable weight matrix, and
rpe, ;) denotes the relative positional encoding (RPE), which is given by:

I‘pe(a,b,u) = MLP(ppr(a, U), ppr(ba u)) (12)

The pairwise encoding fp(a,b) is also mapped to the semantic space of the LLM using a simple
alignment projector op, and the mapped encoding will be the embedding of the special token
<PAIRWISE>. However, unlike node encoder f¢, fp is trained along with the LLM from scratch.

D Prompts

The prompts for the link prediction and neighbor generation tasks are shown in Figure 3]

In the prompts, each data point contains one source node s and multiple candidate target nodes, with
an equal number of positive and negative ones. The positive candidates are sampled from N, while
the negative candidates are sampled from V\ /! randomly. Such setup allows the model to compare
the current candidate with other candidates that appear before it in the context, enabling the model to
have in-context learning capabilities during inference.

E Details about the Retrieval Methods

E.1 Sparse retrieval (SR).

We first prompt the LLM to directly generate several potential neighbors of the source node s
using the neighbor generation prompt in Figure [3| The generated texts are then used as queries
Q={q,q, -, qnq} to search for relevant candidates in the target set C using BM25 [26], which
evaluates the similarity between queries and candidates based on term frequency and inverse document
frequency (TF-IDF). Formally, the score of each candidate target node ¢ € C is given by:

1 Ng
score(t) = e 27::1 BM25(t, q;) (13)

10

len(q;) ot) - (b + 1
BM(t,qi) =) = IDF(qy)- flaig,t) - (k1 + 1) _
. f(Qij7t)+k1-(1—b+b.L())

lc

(14)

where g;; is the j-th term of query ¢;, IDF(g;;) is the inverse document frequency of term g¢;;, f(¢ij,t)
is the term frequency of term g;; in the text of candidate ¢, [is the average length of the texts of
all candidate target nodes in C, and k; and b are two adjustable parameters. The definition of IDF is
further given by:

No — n(qij) +0.5
n(qij) + 0.5

where N = |C|, and n(g;;) is the number of candidates that contain term g¢;; in their corresponding
texts.

IDF(g;;) = log (15)

E.2 Dense retrieval (DR).

In DR, queries Q are generated in the same way as SR, but the similarity between queries and
candidates is evaluated using the cosine similarity between their embeddings. Formally, the score of
each candidate ¢ is given by:

1 ng 1 ng q;-t
score(t) = — ~cos(q;,t) = — . (16)
“ Mg Zl:l (:.t) Nq Zzzl |qil[t]
where q; and t denote the embeddings of ¢; and ft. Pretrained language model

sup-simcse-bert-base-uncased [9] is used here to create the text embeddings.

E.3 Generative retrieval (GR).

Unlike SR and DR where the text generated by the LLM are used as queries, LLM with GR can
directly generate the texts of candidates in C in an end-to-end way, and thus does not require external
indexing [[7]]. Specifically, we construct a prefix tree (a.k.a trie) [6] for C and then use it to guide the
LLM to perform constrained beam search, ensuring that the generated sequences are always the prefix
of some target candidates during the whole generation process. GR implicitly uses the candidates’
probabilities of being generated by the LLM as the scoring function.

len(t)
score(t) = P(t | 5:0,) = [["~ Pti | t<i,s;65) (17)

where ¢; denotes the i-th token in the text of candidate ¢, ¢, represents the sequence of tokens
ti,t2, -+ ,t;—1, and O, represents the parameters of the LLM ¢.

F Time Complexity Analysis of Reusing Keys and Values During Inference

Denote the length of the part about the source node and all examples in the prompt by mg, and denote
the length of the part about the candidate target node by m;. Since the time complexity of each
self-attention layer in LLM is O(m?), where m represents the length of the input sequence, if we do
not reuse any past keys or values, the time complexity for all n¢ instructions would be

O(nc(ms +my)?) = O(nem? + ngmemy + nems) (18)
However, for a given (s, C) pair, the prompt for each candidate ¢; € C shares the same part about the

source node s and examples. Thus, by reusing the keys and values generated by each self-attention
layer of the shared part, we can reduce the time complexity to

) <m§ + ne z:(mS + i)> = O(m3 + ncmemy + nemy) (19
i=1

Due to the existence of examples and question text, m is usually much longer than m,. Therefore,

reusing keys and values can boost the efficiency of the ranking stage of LINKGPT without any
performance loss.

11

G Statistics of the Datasets

The statistics of the 7 datasets are presented in Table[3] Since the experiments on ogbn-Arxiv can
already demonstrate the scalability of our model on large graphs, Sports, Clothing, Math, and Geology
are subsampled by randomly selecting 20,000 nodes.

For all datasets, we randomly split the edges in the graphs into training, validation, and test sets in a
9:0.5:0.5 ratio. For the validation and test sets, the negative target candidates corresponding to each
source node s are randomly selected from V\NV. During both training and testing, all edges in the
test set are removed from the original graph to prevent data leakage.

Table 3: Datasets used in LINKGPT: We use 7 datasets of various scales and domains and are
commonly used for LP on TAGs [15}15]].

Sports [15] Clothing [1S5] Math [15] Geology [15] ogbn-Arxiv [5] PubMed [5] Cora [S]

Domain e-commerce e-commerce academic academic academic academic academic
Nodes 20,417 20,180 19,878 20,530 169,343 19,717 2,708
Edges 48,486 44,775 34,676 51,540 1,166,243 44,338 5,429
Sparsity 2.33e-4 2.20e-4 1.76e-4 2.45e-4 8.13e-5 2.28e-4 1.48e-3

H Descriptions of the Baseline Models

In this section, we introduce the ten baseline models used in our study, which are organized into four
categories.

For all GAE-based models, we use the implementation of Deep Graph Library (DGL) [35]]. After
obtaining the embedding of each node through the model, a 3-layer MLP is applied to determine
whether two nodes are connected. For all other baselines, we use their official code for implementation,
and the corresponding optimal hyper-parameters reported in the original papers are used for training.
Specifically, for the experiments of LLaGA [5] on Cora, PubMed, and ogbn-Arxiv, as well as the
experiments of GraphGPT [31]] on ogbn-Arxiv and PubMed, we directly used the checkpoints released
by the original authors because they had already been trained and tested on these datasets.

(1) GAE-Based Models

* GCN [17]: GCN extends CNN to graph-structured data, learning node features through information
passing and aggregation between nodes and their neighbors.

* GraphSAGE [10]]: GraphSAGE learns graph representations by sampling and aggregating features
from a node’s neighbors, which makes it particularly suitable for large graphs.

* GATV2 [3]]: GATV2 uses a dynamic attention mechanism to assign different weights to each node
in the graph, thus capturing important relationships between nodes.

(2) Models Leveraging Contrastive Learning

* SimKGC [34]: SimKGC is primarily designed for knowledge graph completion. It conducts
effective contrastive learning by collecting a large number of diverse negatives and applying a
hardness-aware InfoNCE loss.

(3) Models Leveraging Pairwise Information
* SEAL [40]: SEAL encodes local subgraphs between node pairs using GNNs, thus capturing richer

structural information.

 BUDDY [4]: BUDDY uses subgraph sketches as message passing without explicit subgraph
construction and applies feature precomputation technique, making it scalable in both time and
space.

* LPFormer [29]: LPFormer designs an adaptive pairwise encoding using the attention mechanism
of GATV2, thus effectively capturing pairwise information between nodes.

(4) LLM-Based Models

12

Table 4: Link prediction performance of LINKGPT on Clothing and Geology datasets with standard
deviation.

Dataset MRR H@1

Clothing 90.18 +£0.37 84.82+0.59
Geology 7543 +0.22 64.57+0.45

Table 5: Summary of parameters and memory usage for each stage of instruction tuning.

Total Params # Params Tuned =~ Memory

Stage 1 6.7B 526M~58M 27GB
Stage 2 6.7B 839 M 27 GB

* LLaMAZ2 [32]: The LLaMA?2 model is a large autoregressive language model trained on a large
corpus. We use the LLaMA2-7B version in this paper.

* GraphGPT [31]: GraphGPT performs text-graph grounding through contrastive learning and uses
graph matching, node classification, and link prediction as training tasks for dual-stage instruction
tuning. Although it can perform link prediction, it is primarily designed for node classification.

* LLaGA [5]]: LLaGA enables LLMs to understand graph structural information by reorganizing
nodes into two kinds of structure-aware sequence. It is trained using three tasks: node description,
node classification, and link prediction.

I Implementation Details of LINKGPT

In each stage of the instruction tuning, the link prediction and neighbor generation tasks are carried
out for 1 epoch respectively for all datasets except Cora. Due to its small size, Cora undergoes 3
epochs for each task. In stage 1 of instruction tuning, only the pairwise encoder fp, projector op
and the node projector og are tuned. In stage 2, the aforementioned modules are frozen and only
the LLM is tuned. When tuning the LLM, we apply LoRA [12]] to the query and value projection
modules with rank = 16 and alpha o = 32. During the whole training process, the learning rate is
set to 3 x 10~ % and the batch size is set to 8. Furthermore, we use AdamW [22] as the optimizer.

One NVIDIA A40 GPU is used for training and inference, except for generative retrieval (GR),
which requires 2 GPUs. The numbers of tuned parameters, and memory usage for each stage of the
instruction tuning are summarized in Table[5] The training time is 1.27 hours for Cora, 66 hours for
ogbn-Arxiv, and approximately 5 hours for Sports, Clothing, Math, Geology, and PubMed.

J Experimental Error

Given the time-consuming nature of training and inference with LLMs, following convention [3]], we
do not calculate errors for all experimental data. Instead, we replicate the experiments from Table
five times using two moderately sized datasets, Clothing and Geology. The results, along with the
standard deviations, are reported in Table [

13

Source Node: An experimental study of the kinetics of decompression-induced crystallization in
silicic melt.

Positive Target Candidate: Preeruption conditions and timing of dacite-andesite magma mixing
in the 2.2 ka eruption at Mount Rainier.

Generated Neighbors:

1. Experimental study of the kinetics of decompression-induced crystallization in silicic magma.
2. Thermodynamics of decompression-induced crystallization in silicic magma.

3. Hydrothermal alteration of the 1980 Mt. St. Helens eruption.

4. Crystallization kinetics of silicic melt at 1200-1400 °C and 10-15 kbar: Implications for
magma chamber dynamics.

5. Decompression-induced crystallization in silicic melt.

\ J

Figure 5: One example of the neighbor generation task on the Geology dataset. The five texts in the
"Generated Neighbors" are the top-scoring results from the five beam groups in the setting of SR or
DR. The words that appear both in the positive target node and the generated neighbors are marked
with the same colors.

K Few-shot Generalization Ability of LINKGPT

76 75.32 75.46 0 example
2 examples
4 examples

70.09
69.59

Geology Sports —» Geology

Figure 4: Performance of few-shot in-context learning. (Left): When the model is trained and
evaluated on the same dataset, e.g., Geology, we do not observe significant performance improvement
for in-context learning. (Right): However, when we perform cross-domain generalization, e.g., train
on Sports and evaluate on Geology, we observe that in-context learning boosts the performance
significantly.

In this section, we evaluate the generalization ability of LINKGPT with the help of a few examples
included in the prompt in test time. Note that none of the baseline models have the capability for
in-context learning due to their architectures or prompt designs. The results are shown in Figure [4]
When training and evaluating on the same dataset, in-context learning offers limited benefits since
the model has already been finetuned on that dataset. However, for cross-domain generalization,
in-context learning is particularly effective, increasing the model’s MRR from 66.40 to 70.09 when
trained on Sports and evaluated on Geology.

L Case Study of the Retrieval-reranking Scheme

Figure [5]illustrates an example from Geology, where the five sentences in the "Generated Neighbors"
part are the top-scoring results from the five beam groups in the setting of SR or DR. Although there
is no perfect match, LINKGPT successfully predicts two crucial keywords: "magma" and "eruption."
These two words did not appear in the source node or its neighbors but were mentioned multiple
times in the generated texts, demonstrating the effectiveness of LINKGPT in neighbor generation.

M Ablation Study

Setup. In this section, we investigate the individual contributions of the node and pairwise encodings.
We remove each encoding component separately and train the model using the same two-stage
instruction tuning strategy. This allows us to isolate the effect of each encoding on the model’s

14

== (Re)rank Runtime
Retrieval Runtime 60
MRR

' I 30
&
=

N (Re)rank Runtime
Retrieval Runtime
MRR 25

N (Re)rank Runtime
Retrieval Runtime
MRR

runtime (s)
runtime (s)

-5
L3 L _ R 1 R R ® ® ~ RIS™ _ A
L\}GU““GP«(M“ CTETE NS LLaGm\(GF‘ RERVENTEAIIE L\;"m\&\ﬂ EERVENETE A

(a) ogbn-Arxiv (b) PubMed (c) Cora
Figure 6: Performance of the retrieval-reranking scheme of LINKGPT on ogn-Arxiv, PubMed, and
Cora.

Table 6: Ablation on the node encoding and pairwise encoding. The pairwise encoding is more
important than node encoding for the link prediction task since pairwise information is more helpful.
However, both encodings contribute to the final performance of LINKGPT.

Dataset Clothing Geology
MRR H@1 MRR H@1

LINKGPT (Ours) 90.18 84.82 7543 64.57

- w/o node encoding 88.77 82.46 74.73 63.50

- w/o pairwise encoding 83.08 74.11 72.07 60.42

performance. For the ablated models, we maintain the same hyper-parameters and training settings
as the full LINKGPT model to ensure a fair comparison. The models are evaluated on the same
benchmark datasets, and their link prediction performance is reported.

Results. The results of the ablation study are presented in Table [6] Incorporating the node and
pairwise encodings leads to significant improvements in link prediction performance. This highlights
the importance of explicitly encoding node and pairwise information to enhance the LLMs’ under-
standing of the graph structure. The node encoding allows the model to capture node-wise structural

information, such as the features of its neighborhood, and the pairwise encoding enables the model to
reason about the relationships between node pairs.

Comparing the contributions of the two encodings, we find that the pairwise encoding plays a
more crucial role in the link prediction task. The removal of pairwise encoding results in a larger
performance drop compared to removing the node encoding. This observation aligns with the intuition
that pairwise information, which captures the connectivity patterns between nodes, is more directly
relevant to predicting missing links.

15

	Introduction
	Preliminaries
	LinkGPT
	Node and Pairwise Encoding
	Two-Stage Instruction Tuning
	Retrieval-Reranking Scheme for Inference

	Experiments
	Experimental Setup
	Overall Performance
	Generalization Ability
	Scalability Analysis

	Conclusion
	Related Works
	Details about Node Encoding
	Details about Pairwise Encoding
	Prompts
	Details about the Retrieval Methods
	Sparse retrieval (SR).
	Dense retrieval (DR).
	Generative retrieval (GR).

	Time Complexity Analysis of Reusing Keys and Values During Inference
	Statistics of the Datasets
	Descriptions of the Baseline Models
	Implementation Details of LinkGPT
	Experimental Error
	Few-shot Generalization Ability of LinkGPT
	Case Study of the Retrieval-reranking Scheme
	Ablation Study

