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Abstract
Vision Transformers (ViT), when paired with
large-scale pretraining, have shown remarkable
performance across various computer vision tasks,
primarily due to their weak inductive bias. How-
ever, while such weak inductive bias aids in pre-
training scalability, this may hinder the effective
adaptation of ViTs for visuo-motor control tasks
as a result of the absence of control-centric induc-
tive biases. Such absent inductive biases include
spatial locality and translation equivariance bias
which convolutions naturally offer. To this end, we
introduce Convolution Injector (CoIn), an add-on
module that injects convolutions which are rich in
locality and equivariance biases into a pretrained
ViT for effective adaptation in visuo-motor con-
trol. We evaluate CoIn with three distinct types
of pretrained ViTs (CLIP, MVP, VC-1) across 12
varied control tasks within three separate domains
(Adroit, MetaWorld, DMC), and demonstrate that
CoIn consistently enhances control task perfor-
mance across all experimented environments and
models, validating the effectiveness of providing
pretrained ViTs with control-centric biases.12

1. Introduction
Developing intelligent robotic agents capable of precise
visuo-motor control is an important area of research. A
standard paradigm of developing such agents is to train the
visual encoder and control policy end-to-end, using domain-
specific control data (Levine et al., 2016). However, this
approach limits the applicability of visuo-motor control
policies in real-world scenarios due to the excessive amount
of data required for learning and the lack of flexibility in
adapting to new situations, such as unseen environments.
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Figure 1. Avg. performance across 12 visuo-motor control tasks.
Our model CoIn introduces convolutional inductive biases into
ViTs, resulting in consistent performance improvements for various
pretrained ViTs.

In the fields of computer vision and natural language pro-
cessing, a large number of studies have shown that pre-
training high-capacity models on large datasets demonstrate
superior data efficiency and generalization capabilities com-
pared to approaches trained from scratch (Dosovitskiy et al.,
2021; Bommasani et al., 2021; Devlin et al., 2018; Brown
et al., 2020). In response, for visuo-motor control, there has
been a growing interest in utilizing large visual encoders
pretrained on extensive and diverse datasets (Radosavovic
et al., 2022; Hansen et al., 2021; Majumdar et al., 2023).

For visuo-motor control, Vision Transformers (ViT) (Doso-
vitskiy et al., 2021) emerges as an appealing choice as it
achieved remarkable success in a wide range of computer
vision tasks such as image classification (Dosovitskiy et al.,
2021; Bao et al., 2022), object detection (Liu et al., 2021;
Li et al., 2022) and semantic segmentation (Strudel et al.,
2021; Kirillov et al., 2023). The success of ViTs is attributed
to their weak inductive bias, which significantly enhances
model performance when scaled with a large pretraining
dataset and model size (Naseer et al., 2021; Yu et al., 2021;
Mao et al., 2022; Chu et al., 2021; Dehghani et al., 2023).

Nonetheless, although the weak inductive bias of ViTs is
advantageous for scaling during the pretraining phase, this
characteristic may hinder their effective adaptation for visuo-
motor control. For effective visuo-motor control, a visual
encoder must (i) focus on the interaction area of interest,
and (ii) track object and gripper positions with respect to
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Figure 2. Overall framework. (Stage 1) The advent of open-
sourced, large-scale ViTs pretrained with extensive web-scale
datasets provides generalized, ready-to-go visual representations.
(Stage 2) To adapt these pretrained ViTs for visuo-motor control,
we finetune them with an additional light-weight module, CoIn,
enhancing the ViT’s ability to extract visual features beneficial for
control, such as spatial locality and translation equivariance.

their changes in locations. ViTs inherently lack such prop-
erties due to their design. Such limitations of ViTs can be
addressed by incorporating two specific biases that are nat-
urally present in convolutional layers: (i) a bias towards
spatial locality, and (ii) a bias for translation equivariance.

To this end, we introduce Convolution Injector (CoIn),
a module designed to inject spatial locality and transla-
tion equivariance biases into a pretrained ViT for effective
adaptation in visuo-motor control. CoIn is a simple and
lightweight add-on module (3.6% of additional parameters
to a standard ViT-B/16) designed to exploit the strengths
of pretrained ViTs while providing advantageous inductive
biases essential for visual control tasks. Specifically, CoIn
extracts locality and translation equivariance-aware features
through convolutional layers and integrates them into the
ViT architecture using a cross-attention mechanism (see
Figure 3). This integration enables the pretrained ViT to ef-
fectively leverage both its pretrained knowledge and newly
obtained spatial prior features during adaptation for down-
stream control tasks. Therefore, CoIn eliminates the need to
retrain pretrained ViTs from scratch with datasets and ob-
jectives specifically tailored for visual control applications.

To thoroughly evaluate the effectiveness of CoIn, we con-
duct extensive evaluations across 12 different visuo-motor
control tasks within 3 distinct domains: Adroit (Rajeswaran
et al., 2018), MetaWorld (Yu et al., 2020), and DMC (Tassa

et al., 2018) for three different pretrained ViT visual en-
coders: CLIP (Radford et al., 2021), MVP (Radosavovic
et al., 2022), and VC-1 (Majumdar et al., 2023). Our results
demonstrate that CoIn consistently enhances downstream
control task performance across all environments and with
all pretrained ViTs. Notably, when paired with CLIP, fine-
tuning with CoIn achieved a substantial 11.3 point increase
in mean success over finetuning the baseline CLIP model.
These findings suggest that the incorporation of locality
and translation-equivariance-aware features plays a crucial
role in enhancing the capabilities of ViTs for visuo-motor
control tasks.

In summary, although ViTs gain advantages from large-
scale pretraining due to their weak inductive bias, this
same characteristic limits their adaptability for visuo-motor
control tasks because of the absence of specific control-
centric biases. Consequently, we introduce CoIn, a module
which incorporates beneficial control-centric inductive bi-
ases, readily provided by convolutional layers, into large-
scale pretrained ViTs. Our code is available at https:
//godnpeter.github.io/CoIn.

2. Related Work
2.1. Pretrained Visual Encoders for Control

Recently, pretraining effective visual encoders for control by
leveraging large, diverse datasets from the internet has gain
much interest from the research community (Parisi et al.,
2022; Nair et al., 2022; Radosavovic et al., 2022; Majum-
dar et al., 2023; Wang et al., 2022; Yuan et al., 2022; Shah
& Kumar, 2021). Specifically, PVR (Parisi et al., 2022) is
among the initial investigations into the use of large pre-
trained visual encoders for control. It demonstrates that
while doing behavior cloning, ResNet encoders (He et al.,
2016) trained via self-supervised contrastive learning (He
et al., 2020) can match the performance of state-based in-
puts. Further advancements are seen in R3M (Nair et al.,
2022), which employs a temporal contrastive objective to
learn representations for robotic control and VIP (Ma et al.,
2022), which focuses on learning visual representations
which reflect the distance between states and goals. Simi-
larly, MVP (Radosavovic et al., 2022) and VC-1 (Majumdar
et al., 2023) demonstrate the efficacy of ViTs pretrained
with MAE (He et al., 2022) on extensive internet video and
image data for robotic manipulations. As an alternative at-
tempt, MOO (Stone et al., 2023) and RT-2 (Brohan et al.,
2023) investigate the application of vision-language mod-
els pretrained on broad internet data, for improved robotic
control and emergent reasoning. Unlike previous research
which mainly focus on the performance of frozen weights
in different control tasks, our work delves into the effec-
tiveness and challenges of finetuning ViTs for control tasks,
particularly in the context of imitation learning.
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2.2. Integration of CNNs with Pretrained ViTs in
Computer Vision

The integration of CNNs with pretrained ViTs to lever-
age their collective capabilities for various computer vision
tasks has recently been investigated by the research com-
munity (Peng et al., 2021; Fang et al., 2023; Chen et al.,
2022b; Ranftl et al., 2021; Hong et al., 2022). VitMatte (Yao
et al., 2024) demonstrates the effectiveness of combining
lightweight CNNs with a pretrained ViT for enhanced im-
age matting. For dense prediction, DPT (Ranftl et al., 2021)
introduces a randomly initialized CNN decoder, and ViT-
Adapter (Chen et al., 2022b) utilizes a CNN-based adapter
which embeds local semantic features into pretrained ViTs.
MIMDET (Fang et al., 2023) employs a compact CNN en-
coder before the patch embedding layer of ViT, creating a
CNN-ViT hybrid feature extractor for object detection.

Such hybrid models are particularly well-suited for visuo-
motor control applications. This approach naturally inte-
grates spatial locality and translation equivariance biases
which lack in ViTs, but are essential for visuo-motor control.
This eliminates the need for retraining with visuo-motor
specific datasets for obtaining ViTs tailored towards visuo-
motor control. However, despite active exploration in com-
puter vision, the application of such convolutional bias inte-
grated pretrained ViTs for visuo-motor control has been rel-
atively unexplored (often relying on either standard ResNet
or ViT models as previously mentioned in section 2.1). Our
research aims to address this gap, exploring how pretrained
ViTs can be effectively adapted for control tasks while fully
leveraging their well-generalized features.

3. Method
Our objective is to enhance the capabilities of pretrained
ViTs for visuo-motor control, by introducing control-centric
inductive biases during the adaptation stage. To achieve this,
we propose a simple yet effective add-on module, termed
CoIn. Inspired by ViT-Adapter (Chen et al., 2022b), CoIn
is composed of a lightweight CNN encoder and a cross-
attention layer (Chen et al., 2021). This design enables the
effective incorporation of locality and translation equivariant
features extracted from the CNN encoder into ViT’s patch
embeddings for improved visuo-motor task performance.
From here, we denote convolutional inductive bias to refer
to both spatial locality and translation equivariance.

The ViT architecture is briefly described in Section 3.1, and
the CNN module and cross-attention mechanism in CoIn
are described in Section 3.2, 3.3, respectively.

3.1. Vision Transformer

In ViT, there are primarily two components: the patch em-
bedding module and transformer encoder blocks (Dosovit-

Patch Em
bedding

ViT Block 1

Position embedding

Addition

…

ViT Block N

…

Cross-Attention
Key

Value

(b) Convolution Injector (CoIn)

Conv

Query

(a) Vision Transformer (ViT)

Figure 3. Overall architecture of CoIn. While leaving the (a) ViT
architecture untouched, (b) CoIn incorporates two key modules:
a CNN encoder, which captures spatial locality and translation
equivariance rich features from the input image, and a cross at-
tention module, which introduces such biases into the ViT patch
token embeddings. Notably, these enhancements are seamlessly
integrated without any modification to the overall ViT architecture.

skiy et al., 2021). For an image X ∈ RH×W×3 (H,W
denotes the image’s resolution), the model segments the
image into patches of size 16 × 16 through the patch em-
bedding module. Then, these patches undergoes a three-step
transformation: they are (1) flattened, (2) projected into
D-dimensional vectors, and (3) augmented with positional
embeddings. The resultant token (Z0 in Eq. 1) are then fed
sequentially through a series of transformer encoder blocks.

Z0 = PatchEmbedding(X), X ∈ RH×W×3

Zl = Blockl(Zl−1), l = 1...L, Zl ∈ RN×D
(1)

L denotes the total number of transformer encoder blocks
and N denotes the number of patches.

3.2. CNN Encoder

To adapt a standard pretrained ViT for control tasks, we
introduce a lightweight CNN encoder (Figure 3b (left)). Its
primary role is to generate features rich in spatial locality
and translation equivariance bias which will later benefit
the token embeddings Z0 before they proceed through the
transformer encoder blocks.

The design of the CNN encoder takes inspiration from the
spatial prior module described in ViT-Adapter (Chen et al.,
2022b). Initially, it uses a standard convolutional stem (He
et al., 2016), which is followed by a series of stride-2 3× 3
convolutions.
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S = Stem (X) S ∈ R
H
4 ×W

4 ×c0

F1 = Conv1 (S) F1 ∈ R
H
8 ×W

8 ×c1

F2 = Conv2 (F1) F2 ∈ R
H
16×

W
16×c2

F3 = Conv3 (F2) F3 ∈ R
H
32×

W
32×c3

(2)

where ci denotes the hidden dimension of each layer.

As the output from the stem layer S passes through sub-
sequent Conv1 to Conv3, we generate a feature pyramid
consisting of multiple scales, represented as Fconv =
{F1,F2,F3}. Each scale of this pyramid corresponds to
a different resolution, providing a comprehensive spatial
representation of the input image. The inclusion of this
multi-scale feature map array in our architecture enhances
the model’s ability to perceive spatial information at various
resolutions, which is a key aspect for control tasks where
recognizing different spatial scales is essential. Ablations on
employing multi-scale feature is provided in Section 5.4.1.

Next, to makes these feature maps compatible with the ViT
token embeddings, we apply 1×1 convolutions to each scale
of the feature pyramid, which results in F1 ∈ RH

8 ×W
8 ×D,

F2 ∈ RH
16×

W
16×D, and F3 ∈ RH

32×
W
32×D, where D matches

the dimension of the ViT patch token embeddings Z0.

3.3. Cross Attention Module

To incorporate the convolutional inductive bias rich fea-
tures provided by the feature pyramid Fconv into a pre-
trained ViT, we utilize the multi-head cross attention mech-
anism (Vaswani et al., 2017; Alayrac et al., 2022).

Initially, each of the feature maps from Fconv is flat-
tened and merged into a singular tensor F ′

conv =

R(HW/82+HW/162+HW/322)×D. Subsequently, we employ
the output patch embeddings Z0 from the ViT, as the query.
Fconv is utilized both as the key and the value. This cross-
attention mechanism enables the pretrained ViT to utilize
the spatial locality and translation equivariance bias rich
features extracted by the CNN encoder, which are important
for downstream visuo-motor control tasks.

Ẑ0 = Z0 + CrossAttention(Z0,F ′
conv)

Ẑl = Blockl(Ẑl−1), l = 1 . . . L
(3)

The enriched outputs Ẑ0, which are the sum of the outputs
from the cross-attention module and the original Z0, are
then processed through the standard encoder blocks of the
original ViT transformer.

This formulation ensures a seamless and effective integra-
tion of convolutional features into the ViT architecture. It
allows for a feature representation enriched with spatial

priors, while simultaneously leveraging the robust and pow-
erful representations of a pretrained ViT.

3.4. Implementation and Computation Requirements

We note that CoIn exhibits a significantly lower computation
footprint compared to a standard ViT, thereby minimizing
the additional computational burden during the finetuning
stage. To illustrate, while a standard ViT-B/16 (our primary
experimental architecture) contains approximately 85.8M
parameters, CoIn contains only approximately 3.1M param-
eters. This amounts to merely 3.6% of the parameter count
of a ViT-B/16, highlighting CoIn’s lightweight nature. Such
a compact design makes CoIn an affordable add-on module
to be additionally trained along with the ViT during the fine-
tuning stage. Furthermore, in the interest of computational
efficiency within the cross-attention layer, we adopt a linear
sparse self-attention variant (Zhu et al., 2020; Chen et al.,
2022b), which is recognized for its computational efficiency
in terms of trainable parameters, training time, and mem-
ory compared to conventional global self-attention modules.
Further implementation details are provided at Appendix C.

4. Experiment Setup
4.1. Environments

Here we describe the environments and tasks used in our
evaluation. We consider a total of 12 tasks across three differ-
ent domains: 2 tasks from Adroit (Rajeswaran et al., 2018),
5 tasks from MetaWorld (Yu et al., 2020), and 5 tasks from
DMC (Tassa et al., 2018). We provide a brief description
regarding the selected tasks below (See Figure 4).

Adroit (Rajeswaran et al., 2018) is a suite of tasks focused
on dexterous manipulation. The agent is required to con-
trol a 28-DoF anthropomorphic hand to accomplish various
goal-oriented activities in a virtual 3D environment. We fo-
cus on two challenging tasks from Adroit, ’Relocate’ and
’Reorient-Pen’, where the agent’s objective is to either po-
sition an object at a specific target location or align it to
a predetermined orientation. These tasks serve as a mea-
sure of the robot’s precision and adaptability in complex
manipulation tasks.

MetaWorld (Yu et al., 2020) requires an agent to control a
Sawyer robot arm to perform various object manipulation
tasks on a tabletop environment. Following prior work (Ma-
jumdar et al., 2023; Nair et al., 2022), we utilize five tasks
from MetaWorld: Assembly, Bin Picking, Button Pressing,
Drawer Opening, and Hammering.

Deepmind Control Suite (DMC) (Tassa et al., 2018) is a
widely used benchmark for continuous control which in-
volves low-level locomotion and manipulation of various
difficulty. In our studies, we focus on five tasks from the
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(c) DeepMind Control Suite | Walker, Finger Spin, Cheetah, Reacher(b) MetaWorld | Hammer, Drawer, Button Press, Bin Picking, Assembly(a) Adroit | Pen, Relocate 

Figure 4. Visualization of tasks used in our evaluation. We utilize 2 tasks from Adroit, 5 tasks from Metaworld, and 5 tasks from DMC.

suite: Walker Stand, Walker Walk, Reacher Easy, Finger
Spin, and Cheetah Run.

4.2. Models

In order to validate the efficacy of our approach, we exper-
iment on three pretrained ViT encoders which have been
widely utilized as a visual encoder for control tasks.

CLIP (Radford et al., 2021) is pretrained on a vast collection
of web-scale image-text pairs, aligning image and language
features effectively through contrastive learning. Its capabil-
ities extend to a variety of tasks, including manipulation and
navigation (Shridhar et al., 2022; Khandelwal et al., 2022).
In line with existing work, our research explores its potential
as a foundational visual encoder for both manipulation and
locomotion tasks.

MVP (Radosavovic et al., 2022) focuses on spatial under-
standing by reconstructing randomly masked patches using a
massive collection of Internet and egocentric data. MVP un-
derlines the advantages of pretraining large visual encoders
from web scale datasets for real-world robotic applications.

VC-1 (Majumdar et al., 2023) seeks to extend the achieve-
ments of MVP for pretrained visual representations in
robotics. By coupling the ViT encoder and MAE pretraining
objective on a more diverse dataset primarily composed of
egocentric data, VC-1 attains competitive results in a wide
array of visuo-motor control tasks.

4.3. Downstream Evaluation

In this paper, we focus on adapting pretrained visual rep-
resentations for visuo-motor control tasks using behavior
cloning (BC) with minimal expert trajectory data to effec-
tively learn a control policy network π(·). The objective
function is defined as:

L =

N∑
i=1

H∑
t=1

||ait − π([zit, p
i
t])||22 (4)

where at, zt, and pt denote the expert action, the encoded
visual representation, and the proprioceptive information for
trajectory i at timestep t, respectively.

Observations in the expert trajectory data consist of 256×
256 RGB images, which are center-cropped to 224× 224.
For ViT models, the [CLS] token is used as the encoded

visual observation feature input to the control policy network
π(·), whereas for ResNet models, the final feature map
after global average pooling serves as the encoded visual
observation feature input. The default architecture utilized
throughout all experiments is ViT-B/16 for ViT models and
ResNet50 for ResNet models, unless otherwise specified.

For Adroit and MetaWorld tasks, agents receive proprio-
ceptive data, which are concatenated to the encoded visual
observation features before being fed into the control policy
network π(·). In contrast, for DMC tasks, proprioceptive
data is not available, so only the encoded visual observations
are fed into π(·).

Following existing work (Hansen et al., 2022; Parisi et al.,
2022; Majumdar et al., 2023; Nair et al., 2022), we utilize
100 expert demonstrations for Adroit and DMC, and 25
for MetaWorld, across a training span of 100 epochs. The
visuo-motor control policy’s performance is evaluated every
5 epochs, with the best success rate achieved during training
reported across three independent runs for each task. For
Adroit and MetaWorld, success rate serves as the primary
metric, while normalized episode return is used for DMC.
Further implementation details are provided in Appendix C.

5. Experiments
5.1. Main Results

E2E finetuning works. Previous studies have primarily
evaluated the efficacy of pretrained visual representation for
visuo-motor control tasks by freezing the visual encoders
and finetuning only the control policy network, leaving end-
to-end finetuning as an open question for future investi-
gation (Parisi et al., 2022; Radosavovic et al., 2022; Nair
et al., 2022; Ma et al., 2022). End-to-end finetuning within
this domain hasn’t always matched the success observed
in other fields such as computer vision, occasionally re-
sulting in suboptimal performance in visuo-motor control
tasks. Previous research often suspect overfitting as a critical
issue, suggesting the need of unique adaptation strategies
such as performing further self-supervised pretraining on
demonstration data to address these challenges (Yuan et al.,
2022; Majumdar et al., 2023). Our findings, detailed in Ap-
pendix A, demonstrate that applying standard optimization
strategies from the computer vision domain, such as weight
decay and cosine learning rate scheduling (He et al., 2022),
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Table 1. Main results: CoIn with various pretrained ViTs. Performance improvements achieved by incorporating CoIn across 12 tasks
in three benchmarks (Adroit, MetaWorld, DMC) with three independent seeds. For each benchmark, we report the average performance
and the average standard deviation of each task. CoIn is indicated in gray rows and the best results for each model are highlighted in bold.
CoIn consistently improves performance for all models and across all benchmarks.

Backbone Model Training Strategy Adroit MetaWorld DMC Mean Success

ResNet50

VIP Frozen 58.0 ± 7.6 92.0 ± 3.5 64.4 ± 3.8 71.5
(Ma et al., 2022) Finetuned 63.3 ± 4.6 95.5 ± 3.9 82.4 ± 1.8 80.4

R3M Frozen 61.3 ± 6.3 92.5 ± 2.9 69.8 ± 3.8 74.5
(Nair et al., 2022) Finetuned 78.7 ± 3.5 94.9 ± 3.5 81.8 ± 1.7 85.1

ViT-B

CLIP Frozen 38.7 ± 3.2 60.5 ± 5.1 37.4 ± 2.3 45.5

(Radford et al., 2021) Finetuned 47.3 ± 3.2 68.8 ± 8.1 62.8 ± 4.6 59.6
Finetuned + CoIn 52.7 ± 6.2 88.8 ± 3.1 71.1 ± 3.7 70.9 (+11.3)

MVP Frozen 58.0 ± 3.5 89.6 ± 5.0 64.6 ± 5.2 70.7

(Radosavovic et al., 2022) Finetuned 82.0 ± 5.3 94.1 ± 4.9 77.4 ± 1.9 84.5
Finetuned + CoIn 83.3 ± 4.6 94.9 ± 3.5 80.5 ± 2.5 86.2 (+1.7)

VC-1 Frozen 50.0 ± 5.4 86.7 ± 5.4 61.0 ± 3.2 65.9

(Majumdar et al., 2023) Finetuned 73.3 ± 5.2 93.9 ± 4.0 74.9 ± 3.5 80.7
Finetuned+ CoIn 77.3 ± 5.1 95.7 ± 2.2 80.7 ± 4.2 84.6 (+3.9)

significantly improves finetuning performance for large vi-
sual encoders in visuo-motor control, leading to enhanced
task performance across all models and tasks (Table 1).

We hope this finding will encourage future research to ex-
plore and validate the adoption of computer vision finetun-
ing practices and hyperparameters for thorough evaluation
of pretrained visual encoders in visuo-motor control tasks.

Effectiveness of CoIn. The integration of CoIn with various
pretrained ViTs leads to notable performance enhancements
across all baseline ViT models and their associated control
tasks, as detailed in Table 1. Specifically, when CoIn is
combined with CLIP, there is a significant increase in the
mean performance by 11.3 points. Furthermore, the addition
of CoIn also benefits MVP and VC-1, boosting their mean
performance by 1.7 and 3.9 points, respectively.

The unique efficacy of CoIn with CLIP, as compared to its
integration with MVP and VC-1, can be ascribed to the dis-
tinct nature of CLIP’s pretraining datasets. MVP and VC-1
are pretrained on datasets with an egocentric perspective,
making them naturally compatible with environments such
as Adroit and MetaWorld, which require egocentric visual
inputs from robot agents. Conversely, CLIP, which is pre-
trained on diverse web-scale image-text pairs, does not ini-
tially possess these egocentric, control-centric features. By
integrating CoIn, CLIP is endowed with control-oriented in-
ductive biases, allowing for a significant enhancement in its
ability to adapt features for motor control tasks. This demon-
strates that CoIn can be especially beneficial for pretrained
ViT models which lack control-centric visual features. We
would also like to note that despite being pretrained with
egocentric data, MVP and VC-1 still lack control-specific
inductive biases necessary for certain tasks, as evidenced by

the performance gains when incorporating CoIn.

Further comparison with ResNet-based pretrained visual
representation methods reveals an intriguing aspect of
CoIn’s performance. Initially, R3M outperforms ViTs, indi-
cating the advantage of inductive biases from convolution
layers for these tasks. However, CoIn’s integration signifi-
cantly enhances ViT performance, allowing them to meet
or even surpass R3M’s success rates in cases like MVP.
This demonstrates CoIn’s effectiveness in adapting ViTs for
control tasks, especially when the pretrained models lack
control-oriented features. Full performance table is available
in Appendix D.

5.2. Analysis of CoIn Visual Features

In this section, we perform an in-depth analysis regarding
the distinct properties of the visual features learned by ViTs,
both with and without the incorporation of CoIn. Our pri-
mary objective is to determine whether incorporating CoIn
in a standard ViT does indeed induce convolutional induc-
tive bias rich visual features. We utilize VC-1 as our baseline
model throughout our analysis experiments in this section.

Capturing high frequency. CNNs excel in detecting de-
tailed, high-frequency elements in images, including local
details such as texture, edges and contours (Bai et al., 2022),
which is an essential property for effective visuo-motor con-
trol. Thus, we assess whether CoIn helps ViTs in capturing
such valuable high-frequency elements by examining the
relative log amplitudes in the Fourier transformed feature
maps (Chen et al., 2022b; Si et al., 2022; Park & Kim, 2022).
Figure 5a illustrates our findings: finetuning ViTs with CoIn
significantly improves its ability to detect high-frequency
signals compared to a standard ViT. This highlights the cru-
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(a) Relative log amplitudes

Drawer Open

Cheetah Run

Relocate

ViT ViT + CoIn

ViT+ CoIn 
ViT

(b) Translation Equivariance (C) Attention Rollout

Figure 5. (a) Comparison of the relative log amplitudes of Fourier-transformed feature maps. ViT + CoIn incorporates beneficial
inductive biases extracted from convolutional networks, allowing it to capture more high-frequency signals compared to ViT. (b)
Translation equivariance comparison. ViT + CoIn enhances translation equivariance across intermediate representations within the ViT.
(c) Visualization of self-attention maps obtained through Attention Rollout. ViT + CoIn exhibits improved focus on critical regions
for visuo-motor control. All analysis were performed on VC-1 and averaged across all 12 tasks.

cial role of CoIn in effectively instilling spatial inductive
biases to ViTs, thereby enhancing the performance of ViTs
for downstream control tasks.

Translation equivariance. To evaluate whether the con-
volutional characteristics of CoIn enhance the learning of
translation equivariant features for pretrained ViTs, we con-
ducted a synthetic experiment following Bruintjes et al.
(2023). Specifically, we computed the Pearson correlation
between f1:i(T (X)) and T (f1:i(X)) for all i = 1, 2, ..., N ,
where T represents translations (diagonal shifts), fi denotes
the i-th intermediate layers of the ViT (i.e., f1:i(X) =
fi · fi−1 · ... · f1(x)) and N refers to the total number of
layers. Higher correlation values indicate that the model has
learned higher translation equivariance.

While position embeddings in ViTs are known to present
challenges for learning translation equivariance (Xu et al.,
2023; Dai et al., 2021; Ding et al., 2023), CoIn alleviates this
issue by directly injecting translation equivariance rich fea-
tures into the output patches of the patch-embedding layer
(Figure 3). As illustrated in Figure 5b, we observed that
incorporating CoIn with ViTs enhances translation equivari-
ance throughout the ViT intermediate representations.

Attention visualization. Additionally, we employ Attention
Rollout (Abnar & Zuidema, 2020; Gildenblat, 2020) to visu-
alize the self-attention maps of both VC-1 with and without
CoIn (Figure 5c). This qualitative analysis further demon-
strates that when equipped with CoIn, ViTs effectively focus
more on image regions that are semantically relevant for
visuo-motor control. This also highlights the efficacy in
further providing ViTs with spatial locality and translation

equivariance rich features via CoIn. More qualitative results
can be found in Appendix G.

5.3. Comparison with Adapters

In this section, we aim to address a fundamental question:
Does the performance improvement of CoIn stem primarily
from the utilization of additional parameters? To assess this,
we compare CoIn with two well established adapter-based
methods, RoboAdapter (Sharma et al., 2023) and Adapt-
former (Chen et al., 2022a). Although these adapter-based
methods originally focus on parameter-efficient finetuning
(PEFT), where the pretrained visual encoder is frozen and
only the lightweight additional modules are finetuned for
task adaptation (Houlsby et al., 2019; Hu et al., 2021), we
explore a full finetuning variant of this approach where
the pretrained visual encoder is finetuned alongside with
the additional adapter modules. Such full finetuning vari-
ant provides an efficient means in incorporating additional
task-specific parameters during finetuning.

Our findings, as detailed in Table 2, demonstrate that none
of the adapter-based baseline methods match the perfor-
mance of CoIn. Notably, for CLIP, only CoIn was able to
enhance CLIP’s performance while all other adapter base-
lines failed to provide any performance gains. This observa-
tion aligns with our explanation of why CoIn offers greater
performance gains for CLIP compared to VC-1. The lack of
performance gains from other adapter baselines can be at-
tributed to their composition, which consists solely of MLPs
and does not include any control-oriented inductive bias. As
a result, these baselines are ineffective in helping CLIP learn
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Table 2. Full finetuning performance against adapter methods.
We report the mean performance of full finetuning across all 12
tasks in Adroit, MetaWorld, and DMC. Evaluations were con-
ducted using CLIP and VC-1 with ViT-B. Underscored values
indicate the hidden dimension size of the adapter modules. For
detailed results, refer to Table 11.

Model Module # trainable params Mean

CLIP

X 85.8M 59.6
AdaptFormer64 +1.2M 59.4
RoboAdapter64 +1.2M 59.2
RoboAdapter192 +3.5M 59.1

CoIn +3.1M 70.9

VC-1

X 85.8M 80.7
AdaptFormer64 +1.2M 82.3
RoboAdapter64 +1.2M 83.0
RoboAdapter192 +3.5M 82.5

CoIn +3.1M 84.6

control-oriented features. In contrast, CoIn’s ability to im-
part control-oriented inductive biases significantly enhances
CLIP’s capacity to adapt features for motor control tasks.

This finding suggests that the effectiveness of CoIn is not
merely due to the inclusion of additional trainable parame-
ters. Instead, it significantly stems from the strategic integra-
tion of locality and translation equivariance biases, which
are lacking in standard ViTs and are particularly beneficial
for pretrained models lacking control-centric visual features.

Table 3. PEFT performance against adapter methods. We report
the mean performance of parameter-efficient finetuning across
all 12 tasks in Adroit, MetaWorld, and DMC. Evaluations were
conducted using CLIP and VC-1 with ViT-B. Underscored values
indicate the hidden dimension size of the adapter modules. For full
results, refer to Table 12.

Model Module # trainable params Mean

CLIP

X – 45.5
AdaptFormer64 1.2M 51.3
RoboAdapter64 1.2M 50.1
RoboAdapter192 3.6M 50.3

CoIn 3.3M 67.9

VC-1

X – 65.9
AdaptFormer64 1.2M 78.8
RoboAdapter64 1.2M 78.8
RoboAdapter192 3.6M 78.9

CoIn 3.3M 79.5

Additionally, we also conduct experiments under the PEFT
scenario, which is the typical approach for training adapter-
based methods. In this approach, the visual encoder is frozen
and only the lightweight additional modules are finetuned.
To achieve this, CoIn was minimally modified to include
additional lightweight bottleneck MLP layers (merely 0.2M
additional parameters) for the first two ViT encoder block.
These layers are designed to process novel patch embed-

dings enriched with convolutional inductive biases, which
the frozen pretrained ViT had not previously encountered.

Despite CoIn not being originally designed for parameter-
efficient transfer, the results in Table 3 demonstrate CoIn’s
superior performance against traditional adapter methods.
This highlights the potential of our approach for parameter
efficient transfer learning of visual encoders in control tasks.
In addition, similar to the full finetuning scenario, the ap-
parent effectiveness of CoIn over other adapter baselines for
CLIP further emphasizes the effectiveness of CoIn’s ability
to inject control-centric inductive biases crucial for visuo-
motor tasks into pretrained ViTs which lack such biases,

5.4. Ablation Study

5.4.1. FEATURE PYRAMID COMPONENTS

In Section 3.2, we discussed the rationale behind incorpo-
rating multi-scale feature maps in CoIn instead of relying
solely on a single feature map from its convolutional mod-
ule. The central idea is that multi-scale feature maps can
significantly improve the representational capabilities of
visuo-motor control policies by capturing objects at differ-
ent scales. This multi-scale approach is deemed critical for
visuo-motor tasks, where the size and appearance of objects
or obstacles can greatly vary. To evaluate our hypothesis,
we evaluated a variant of CoIn that exclusively uses the F2

feature map. This feature map matches the resolution of
ViT-B/16, meaning it is 1

16 th the size of the input resolution
and does not offer a variety of feature scales.

Table 4. Feature Pyramid Comparison. Compared to using a
single-scale feature map {F2}, utilizing multi-scale feature map
{F1,F2,F3} is beneficial for CoIn.

Model & Feature Pyramid Adroit Meta- DMC MeanStrategy World

CLIP + X 47.3 ± 3.2 68.8 ± 8.1 62.8 ± 4.6 59.6

Finetuned {F2} 51.3 ± 5.2 86.1 ± 4.0 73.9 ± 3.3 70.4
{F1,F2,F3} 52.7 ± 6.2 88.8 ± 3.1 71.1 ± 3.7 70.9

VC-1 + X 73.3 ± 5.2 93.9 ± 4.0 74.9 ± 3.5 80.7

Finetuned {F2} 76.0 ± 3.5 95.2 ± 3.4 79.9 ± 3.1 83.7
{F1,F2,F3} 77.3 ± 5.1 95.7 ± 2.2 80.7 ± 4.2 84.6

Table 4 indicates that even the single-scale variants signifi-
cantly improves the performance against the vanilla baseline,
clearly highlighting the benefits of integrating inductive bi-
ases tailored to control tasks. Additionally, incorporating
multi-scale feature maps yielded even better results, demon-
strating the efficacy of providing varied scale perspectives.

We note that the integration of multi-scale feature maps
into CoIn is both efficient and cost-effective, as they are
intrinsically generated from the lightweight convolutional
layers. Given these empirical observations, we set the multi-
scale feature pyramid as our standard setup for CoIn.
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5.4.2. SCALING STUDY

To further understand the effectiveness of CoIn on larger ViT
models, we performed experiments where CoIn is applied to
ViT-L/14 across all 12 tasks considered in this work. Table 5
details the results of finetuning VC-1 with and without CoIn,
for both ViT-B/16 and ViT-L/14. For performance results of
each benchmark, refer to Table 13.

Table 5. CoIn with larger scale. CoIn boosts visuo-motor control
task performance for both scales, where ViT-B + CoIn outperforms
ViT-L with significantly fewer parameters.

Model & Backbone Scale & # trainable MeanStrategy Additional Module params

VC-1+
ViT-B 85.8M 80.7

Finetuned
ViT-B + CoIn 88.9M 84.6

ViT-L 303.3M 83.4
ViT-L + CoIn 307.7M 84.5

The findings in Table 5 lay out three important aspects.
First, finetuning larger pretrained encoders, as expected,
yield better performance than smaller pretrained encoders in
downstream visuo-motor control tasks. Second, the benefits
of injecting convolutional inductive bias via CoIn works
in tandem with increasing model size, enhancing perfor-
mance regardless of the model’s scale. Lastly, a particular
surprising observation is that when ViT-B is paired with
CoIn, despite having significantly fewer parameters, it out-
performs ViT-L. This emphasizes the role of CoIn in en-
hancing smaller encoders to reach the efficacy levels of their
larger counterparts.

Overall, these findings underscore the scalability and effi-
cacy of CoIn in enhancing ViT models for complex visuo-
motor control tasks, revealing its potential for application in
larger encoders.

6. Discussion and Conclusion
In our study, we explore the challenges encountered by pre-
trained ViTs when applied to visuo-motor tasks. Particularly,
while the weak inductive bias of ViTs are advantageous
for large-scale pretraining, it limits their applicability in
control-specific scenarios. To address this, we introduce a
simple lightweight module, CoIn, designed to inject ViTs
with convolutional inductive biases which are beneficial in
performing effective visuo-control. This allows pretrained
ViTs to leverage both their strong visual representations
and beneficial biases for downstream visuo-motor control
tasks provided by CoIn. Our thorough evaluation across a
variety of visuo-motor control tasks confirms the consistent
advantages and efficiency of CoIn.

In this work, we primarily focus on learning policies us-

ing behavior cloning, to highlight how CoIn effectively en-
hances ViTs for control tasks under limited data availability.
We believe that extending CoIn to reinforcement learning
for complex robotic tasks is a valuable avenue for future
investigation. Moreover, while our current experiments are
conducted within simulated environments, real-world robot
experiments may present additional challenges and leave the
evaluation of CoIn on real-world hardware as future work.
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A. Finetuning strategy
Prior research mainly evaluate pretrained visual encoder for visuo-motor control tasks by keeping them frozen and finetuning
only the control policy. However, we argue that this approach does not fully assess the capabilities of pretrained visual
encoders for visuo-motor control tasks. To understand their effectiveness, it is crucial to examine the effectiveness of
pretrained visual encoders both when they are frozen and when they are finetuned. For instance, previous studies have
suggested that linear probing may not accurately correlate with transfer learning performance (Chen & He, 2021), with
some findings showing inconsistent rankings across tasks (See Figure 9 in (He et al., 2022))

Despite this, how to optimize pretrained visual encoder for visuo-motor control tasks is an under-researched question which
has not received the attention it should by the research community. Addressing this gap, our experiments demonstrate that
applying ViT finetuning strategies commonly utilized by the computer vision community are also effective for visuo-motor
control tasks.

Table 6. Finetuning strategy ablation. Here we present the mean succes of VC-1 with ViT-B finetuned across all 12 tasks in Adroit,
Metaworld, and DMC. The grey row indicates our default setup for finetuning ViTs. Cosine LR indicates cosine learning rate decay and
LLDR indicates layer-wise learning rate decay.

Finetune Weight decay Cosine LR LLDR Mean Success ↑

(a) - - - - 65.9
(b) ✓ - - - 55.1
(c) ✓ ✓ - - 58.9
(d) ✓ ✓ ✓ - 76.5
(e) ✓ ✓ ✓ ✓ 80.7

Our results, as shown in Table 6 (a) and (b), first reveal an initially counter-intuitive finding which has often been observed
by previous research (Yuan et al., 2022; Majumdar et al., 2023): simply finetuning VC-1 with ViT-B results in deteriorated
performance compared to its frozen counterpart. This is counter intuitive since further training the visual encoder on
in-domain specific data should increase performance, not deteriorate the performance of the control policy. We speculate
that the main cause of this performance deterioration is due to overfitting. By implementing a combination of weight decay,
cosine learning rate decay, and layer-wise learning rate decay (Bao et al., 2022; Clark et al., 2020), which are techniques
commonly used in finetuning ViTs (He et al., 2022; Bao et al., 2022; Dong et al., 2022; Steiner et al., 2021), we observe
significant performance improvements. Specifically, applying weight decay led to a 3.8 points increase (55.1 → 58.9),
cosine learning rate decay resulted in a further 17.6 point boost (58.9 → 76.5), and layer-wise learning rate decay (Clark
et al., 2020; Bao et al., 2022) added an additional performance improvement of 4.2 points (76.5 → 80.7). These strategies
demonstrate the potential of finetuning to unlock the full capabilities of pretrained visual encoders for visuo-motor control
tasks.

B. Comparison with ViT-Adapter
Here, we describe in detail how CoIn differs compared to the context of existing computer vision literature which introduce
convolutional inductive biases to the ViT architecture, particularly in relation to ViT-Adapter (Chen et al., 2022b). We
provide a detailed explanation to elucidate the difference between CoIn and ViT-Adapter and illustrate the advancements
that CoIn offers through experimental results.

We would first like to clarify that CoIn and ViT-Adapter differ in (i) motivation and (ii) practical implementation. The main
motivation behind CoIn is in injecting convolutional inductive biases into pretrained ViTs, as spatial locality and translation
equivariance are beneficial properties in performing precise visuo-motor control. In contrast, the principal motivation behind
ViT-Adapter is to construct an effective multi-scale feature map from pretrained ViT representations. This multi-scale
feature map is subsequently used by dense prediction heads (He et al., 2017; Cai & Vasconcelos, 2019; Kirillov et al., 2019)
to perform tasks such as object detection and semantic segmentation. Although CoIn incorporates elements inspired by
ViT-Adapter, this difference in their motivations results in a key distinction: CoIn does not require the Extractor module
present in ViT-Adapter and operates exclusively with the Injector module.

In ViT-Adapter, the Extractor module constructs effective multi-scale convolutional feature maps Fconv = {F1,F2,F3}
by distilling representations from a pretrained ViT. This feature map serves as the output of ViT-Adapter. Conversely,
CoIn focuses on injecting convolutional inductive bias rich features into pretrained ViTs for effective visuo-motor control.
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Consequently, the Injector module is essential for CoIn while the Extractor module is unnecessary from a motivation
standpoint. In addition, CoIn employs the ViT [CLS] token, rather than the multi-scale feature maps Fconv = {F1,F2,F3}
for predicting actions. This further underscores the redundancy of the Extractor module in terms of practical implementation.
Therefore, driven by its core motivation and implementation strategy, CoIn solely utilizes the Injector module.

Table 7. Performance comparison between CoIn and ViT-Adapter. We report the mean performance results of CoIn against ViT-
Adapter across all 12 tasks in three benchmarks (Adroit, MetaWorld, DMC) with three independent seeds. CoIn significantly outperforms
ViT-Adapter in terms of computational cost, inference speed, and mean performance.

Model (ViT-B/16) Additional component # trainable params MACs Inference speed Mean

VC-1 X 85.8M 16.88G 6.04 ms 80.7
VC-1 + ViT-Adapter Injector & Extractor 103.2M 26.07G 14.50 ms 80.8
VC-1 + CoIn (Ours) Injector only 88.9M 19.06G 8.78 ms 84.6

Moreover, through extensive experiments across 12 varied visuo-motor control tasks, we empirically observed that CoIn
outperforms ViT-Adapter significantly in (i) computational cost (26.07G → 19.06G), (ii) inference speed (14.50 ms →
8.78 ms) and in (iii) mean score performance (80.8 → 84.6). These empirical results clearly supports our architectural
choices behind CoIn and demonstrates the advantages of CoIn over ViT-Adapter for visuo-motor control tasks. We note
that computational costs were calculated using ptflops3 (Sovrasov, 2024) and inference speed was calculated on a single
RTX-3090 GPU using a single input image with a resolution of 224 x 224.

In summary, CoIn’s contribution is in its optimized and practical architecture tailored towards effectively adapting large-
scaled pretrained ViTs for visuo-motor control applications. CoIn differs from ViT-Adapter in terms of both motivation
and architectural design, while also demonstrating superior performance in computational cost, inference speed and mean
performance.

C. Implementation Details
C.1. Visual encoder

Detailed hyperparameters for finetuning pretrained visual encoders with and without CoIn are listed in Table 8. The same set
of hyperparameters is shared across all pretrained visual encoders, regardless of the task and architecture, with the following
exceptions: (i) a smaller learning weight is used for CLIP-related experiments, and (ii) different layer-wise learning rate
decay values are applied between ViT-based models and ResNet-based models.

C.2. Control policy

We closely follow the architecture and training hyperparameters of the control policy network from prior work (Majumdar
et al., 2023; Hansen et al., 2022). Specifically, the control policy network is a 4-layer MLP with 256 hidden units each
and ReLU activation. Additionally, the control policy includes a 1D BatchNorm layer at the beginning to normalize the
pretrained visual representations. As in VC-1 (Majumdar et al., 2023), we also use frame-stacking, where the visual encoder
individually encodes each observation in the stack of recent observations. The control policy then fuses the encoded features
using Flare (Shang et al., 2021). Detailed hyperparameters for finetuning the control policy network are listed in Table 9. As
with their visual encoder counterpart, the same set of hyperparameters are shared across all tasks regardless of the visual
encoder architecture.

C.3. CoIn

Positional embeddings For the multi-scale convolutional feature maps Fconv = {F1,F2,F3} within CoIn’s Injector module,
we assign separate learnable 1D embeddings for each scale which act as positional embeddings. For example, feature
map F1 with scale H/8 × W/8 is combined with a positional embedding EF1 ∈ Rd, while feature map F3 with scale
H/32×W/32 is combined with a different embedding EF3 ∈ Rd. These learnable 1D embeddings enable the model to
distinguish features extracted from different scales.

3Code : https://github.com/sovrasov/flops-counter.pytorch
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Table 8. Visual encoder finetuning hyperparameters. The same set of hyperparameters is applied across all pretrained ViT and ResNet
methods - except for (i) using a smaller learning weight for CLIP-related experiments and (ii) applying different layer-wise learning rate
decay values between ViT-based models and ResNet-based models - when performing finetuning regardless of with or without CoIn for
all tasks.

Hyperparameter Value

Optimizer AdamW

Learning rate CLIP : 1× 10−4

others : 1× 10−3

Optimizer momentum β1, β2 = 0.9, 0.999

Layer-wise lr decay ViT : 0.75
ResNet : 1.0

Weight decay 0.05
Batch size 256
Learning rate schedule cosine decay
Warmup epochs 5
Training epochs 100

Table 9. Control policy finetuning hyperparameters. The same hyperparameters are applied across all tasks.

Hyperparameter Value

Optimizer Adam
Learning rate 1× 10−3

Optimizer momentum β1, β2 = 0.9, 0.999
Hidden units 256, 256, 256
Frames stacked 3
Batch size 256
Training epochs 100

Cross-attention mechanism CoIn’s cross-attention mechanism uses deformable attention (Zhu et al., 2020) to address the
inherent computational inefficiency of global self-attention where each query token has a global spatial receptive field and
examines every key/value token when computing attention weights. This leads to quadratic computation requirements in
terms of the total number of query and key tokens. Motivated by the key underlying principle of deformable convolution (Dai
et al., 2017), our implementation enables each query patch token (i.e., reference points) in the deformable attention module
to selectively focus on a small set of spatially relevant locations (i.e., sampling locations) by predicting a fixed number of
sampling offsets respective to the reference point. This selective attention module circumvents the necessity of computing
attention weights for every key token for each query token, concentrating instead on a fixed number of key points identified
for each query patch token. As a result, this significantly reduces the computational complexity to linear terms relative to the
number of query tokens, enhancing the efficiency of the cross-attention process. Therefore, employing deformable attention
aligns with our goal in achieving a scalable, fast, and effective cross-attention mechanism for CoIn, while also focusing on
spatially relevant local locations.

Architecture configurations For the deformable attention, we fix the number of sampling points to 4, and the number of
attention heads to 12 and 16 for ViT-B and ViT-L, respectively. In addition, we downsize the feature embedding size in our
Injector module to save computation overhead, where the hidden dimension size is 192 for ViT-B and 256 for ViT-L. We
only use a single Injector module in all experiments, as additional Injector modules did not provide additional gains.
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D. Main Results

Table 10. Success rate of each individual task and model. We present the success rate and standard deviation for each task and model
we evaluate during our experiments for Section 5 before aggregating them for each benchmark. All tasks were evaluated with three
independent seeds.

Task Adroit MetaWorld DMC
Model pen relocate hammer drawer open button press bin picking assembly walker stand walker walk reacher easy finger spin cheetah run

VIP Frozen 78.7 ± 2.3 37.3 ± 12.9 94.7 ± 4.6 98.7 ± 2.3 82.7 ± 2.3 93.3 ± 2.3 90.7 ± 6.1 76.9 ± 8.0 47.2 ± 1.7 89.7 ± 4.8 70.2 ± 0.4 38.2 ± 4.3
VIP Finetuned 80.0 ± 0.0 46.7 ± 9.2 98.7 ± 2.3 100.0 ± 0.0 96.0 ± 4.0 88.0 ± 4.0 94.7 ± 9.2 94.5 ± 1.3 87.7 ± 1.6 89.1 ± 2.6 69.8 ± 0.2 70.7 ± 3.4

R3M Frozen 78.7 ± 4.6 44.0 ± 8.0 100.0 ± 0.0 100.0 ± 0.0 74.7 ± 6.1 93.3 ± 2.3 94.7 ± 6.1 88.2 ± 1.0 64.5 ± 6.8 91.0 ± 6.1 68.7 ± 1.0 36.7 ± 3.9
R3M Finetuned 82.7 ± 2.3 74.7 ± 4.6 100.0 ± 0.0 100.0 ± 0.0 84.0 ± 10.6 93.3 ± 2.3 97.3 ± 4.6 96.6 ± 1.3 89.7 ± 1.0 91.8 ± 4.3 68.9 ± 0.8 62.1 ± 1.1

CLIP Frozen 68.0 ± 4.0 9.3 ± 2.3 80.0 ± 4.0 98.7 ± 2.3 56.0 ± 8.0 40.0 ± 6.9 28.0 ± 4.0 43.8 ± 4.6 14.9 ± 1.0 50.5 ± 2.1 63.6 ± 2.4 14.4 ± 1.1
CLIP Finetuned 76.0 ± 4.0 18.7 ± 2.3 90.7 ± 2.3 97.3 ± 2.3 46.7 ± 16.2 65.3 ± 12.9 44.0 ± 6.9 83.8 ± 3.3 49.8 ± 9.0 79.7 ± 4.3 68.9 ± 0.9 31.9 ± 5.4
CLIP Finetuned + CoIn 76.0 ± 4.0 29.3 ± 8.3 98.7 ± 2.3 100.0 ± 0.0 76.0 ± 0.0 90.7 ± 8.3 78.7 ± 4.6 92.6 ± 5.2 77.6 ± 3.5 72.0 ± 3.0 70.6 ± 1.1 42.7 ± 5.7

MVP Frozen 77.3 ± 2.3 38.7 ± 4.6 92.0 ± 6.9 100.0 ± 0.0 85.3 ± 4.6 80.0 ± 4.0 90.7 ± 9.2 82.6 ± 5.7 52.6 ± 7.6 91.7 ± 4.9 70.4 ± 0.3 25.8 ± 7.3
MVP Finetuned 81.3 ± 2.3 82.7 ± 8.3 100.0 ± 0.0 100.0 ± 0.0 89.3 ± 4.6 89.3 ± 9.2 92.0 ± 10.6 96.3 ± 0.9 89.8 ± 1.3 84.4 ± 4.2 69.9 ± 0.8 46.7 ± 2.1
MVP Finetuned + CoIn 78.7 ± 2.3 88.0 ± 6.9 100.0 ± 0.0 100.0 ± 0.0 92.0 ± 8.0 86.7 ± 2.3 96.0 ± 6.9 96.3 ± 0.8 88.9 ± 2.1 98.0 ± 0.5 68.9 ± 3.0 50.7 ± 6.2

VC-1 Frozen 73.3 ± 4.6 26.7 ± 6.1 96.0 ± 4.0 100.0 ± 0.0 81.3 ± 10.1 70.7 ± 4.6 85.3 ± 8.3 75.5 ± 1.7 44.6 ± 3.3 83.1 ± 5.7 70.4 ± 1.3 31.3 ± 4.0
VC-1 Finetuned 74.7 ± 2.3 72.0 ± 8.0 98.7 ± 2.3 100.0 ± 0.0 93.3 ± 4.6 85.3 ± 2.3 92.0 ± 10.6 96.5 ± 0.5 78.4 ± 3.6 83.4 ± 8.2 69.6 ± 0.9 46.6 ± 4.3
VC-1 Finetuned + CoIn 80.0 ± 4.0 74.7 ± 6.1 100.0 ± 0.0 100.0 ± 0.0 93.3 ± 2.3 90.7 ± 2.3 94.7 ± 6.1 95.9 ± 2.1 86.6 ± 3.3 93.6 ± 6.8 69.3 ± 0.6 58.3 ± 8.3

E. Adapter-based Methods Results

Table 11. Detailed full finetuning performance results against adapter methods. We report the full performance results of CoIn
compared to adapter-based methods for full finetuning, using CLIP and VC-1 with ViT-B across three independent seeds.

Model Module # trainable params Adroit MetaWorld DMC Mean

X 85.8M 47.3 ± 3.2 68.8 ± 8.1 62.8 ± 4.6 59.6

CLIP
AdaptFormer64 +1.2M 48.0 ± 5.4 71.7 ± 8.0 58.6 ± 3.8 59.4
RoboAdapter64 +1.2M 47.3 ± 3.2 68.8 ± 5.9 61.4 ± 3.0 59.2
RoboAdapter192 +3.5M 47.3 ± 1.2 67.5 ± 8.9 62.4 ± 3.7 59.1

CoIn +3.1M 52.7 ± 6.2 88.8 ± 3.1 71.1 ± 3.7 70.9

X 85.8M 73.3 ± 5.2 93.9 ± 4.0 74.9 ± 3.5 80.7

VC-1
AdaptFormer64 +1.2M 75.3 ± 3.1 94.1 ± 4.3 77.4 ± 2.7 82.3
RoboAdapter64 +1.2M 74.7 ± 4.3 94.9 ± 2.9 79.5 ± 2.1 83.0
RoboAdapter192 +3.5M 75.3 ± 6.2 95.2 ± 4.6 77.1 ± 3.2 82.5

CoIn +3.1M 77.3 ± 5.1 95.7 ± 2.2 80.7 ± 4.2 84.6

Table 12. Detailed PEFT performance results against adapter methods. We report the full performance results of CoIn compared to
adapter-based methods for parameter-efficient finetuning, using CLIP and VC-1 with ViT-B across three independent seeds.

Model Module # trainable params Adroit MetaWorld DMC Mean

X – 38.7 ± 3.2 60.5 ± 5.1 37.4 ± 2.3 45.5

CLIP
AdaptFormer64 1.2M 41.3 ± 2.3 67.7 ± 8.4 45.0 ± 4.4 51.3
RoboAdapter64 1.2M 44.7 ± 6.5 61.9 ± 6.5 43.7 ± 3.2 50.1
RoboAdapter192 3.6M 45.3 ± 5.8 61.9 ± 4.8 43.8 ± 2.6 50.3

CoIn 3.3M 51.3± 10.1 86.9 ± 5.5 65.4 ± 4.4 67.9

X – 50.0 ± 5.4 86.7 ± 5.4 61.0± 3.2 65.9

VC-1
AdaptFormer64 1.2M 68.7 ± 8.4 90.9 ± 5.4 76.8 ± 2.9 78.8
RoboAdapter64 1.2M 70.0 ± 4.2 93.1 ± 4.9 73.3 ± 3.0 78.8
RoboAdapter192 3.6M 69.3 ± 5.1 91.5 ± 5.8 75.8 ± 3.9 78.9

CoIn 3.3M 66.7 ± 8.1 93.9 ± 3.1 77.8 ± 3.9 79.5
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F. Ablation Results

Table 13. Detailed performance results for CoIn with larger scale. We provide the full performance results of CoIn when paired with
ViT-B/16 and ViT-L/14 for VC-1 across three independent seeds. We observe that CoIn boosts visuo-motor control task performance for
both scales, where ViT-B + CoIn outperforms the larger ViT-L.

Model & Strategy Backbone Scale & # trainable params Adroit MetaWorld DMC MeanAdditional Module

VC-1+
ViT-B 85.8M 73.3 ±5.2 93.9 ±4.0 74.9 ±3.5 80.7

Finetuned
ViT-B + CoIn 88.9M 77.3 ±5.1 95.7 ±2.2 80.7±4.2 84.6

ViT-L 303.3M 78.7 ±7.6 95.2±4.9 76.3±1.1 83.4
ViT-L + CoIn 307.7M 76.0 ±6.1 97.6 ±3.1 79.8 ±3.3 84.5

G. Additional Visualization of CoIn
To analyze where our model focuses on the input images, we apply the Attention Rollout technique as described by Abnar
& Zuidema (2020); Gildenblat (2020). We first select the attention heads with the maximum attention weights (minimum
for DMC) and eliminate 90% of the attention pixels to concentrate on the most significant parts. Figure 6 presents further
qualitative examples of these attention rollouts. Overall, the integration of ViT with CoIn demonstrates a relatively precise
ability to identify the positions of hands/grippers and objects (Adroit and MetaWorld) as well as the agents (DMC).
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Figure 6. Attention rollout visualization. Additional qualitative attention map visualization for all tasks.
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