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Abstract

The slow processes of stochastic dynamical systems can be captured by Molecular
Dynamics (MD) simulations, which approximate transition matrices describing
how probabilities evolve over metastable conformations. Standard approaches such
as Markov State Models (MSMs) extract dominant conformations and transition
statistics via eigendecomposition, but face scalability and generalization limits.
Here, we introduce Schrödinger Bridge with Doob’s h-Transform (ScooBDoob),
a discrete bridge-matching framework that models metastable dynamics by
tilting MSM transition rates through Doob’s transform to generate optimal
stochastic paths between prescribed initial and terminal ensembles. We show that
ScooBDoob preserves spectral stability of slow modes during training, recovers
rare transition pathways with density-aware regularization, and generalizes
zero-shot across temperatures. Experiments on the Müller-Brown potential and
the Aib9 peptide demonstrate accurate kinetics and robust endpoint-conditioned
rollouts, highlighting broad applicability to biomolecular dynamics.

1 Introduction

Simulating molecular dynamics (MD) trajectories accurately and efficiently remains a fundamental
challenge in computational chemistry, particularly when predicting rare transition events between
metastable states [Lewis et al., 2025a]. Such events are crucial for understanding biological processes
like protein folding, ligand binding, and conformational dynamics, but occur over long timescales,
making direct computational simulations prohibitively expensive [Ghosh and Ranjan, 2020, Vincoff
et al., 2025]. Markov State Models (MSMs) have emerged as a popular approach for approximating
these slow processes by representing continuous trajectories as discrete microstates and modeling
transitions between these states as Markovian jumps [Chodera and Noé, 2014, Trubiano and Hagan,
2024, Pande et al., 2010]. By deriving transition probability matrices from MD data, MSMs efficiently
summarize long-term dynamical behavior, significantly reducing computational complexity and
enabling more tractable analysis of complex biomolecular systems [Chodera and Noé, 2014, Trubiano
and Hagan, 2024, Pande et al., 2010].

However, MSMs face substantial challenges in practice. First, eigendecomposition of transition
matrices is a crucial step for extracting dynamical information, but can lead to numerical instability
and inaccuracies if eigenvectors are unconstrained [Frank et al., 2022]. Unstable eigenvectors can
produce physically unrealistic predictions, which undermines the reliability of MSMs for critical
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Figure 1: Schrödinger Bridge with Doob’s h-Transform (ScooBDoob). ScooBDoob models stochastic
transition paths between metastable states by learning Markov State Models (MSMs) of molecular dynamics
trajectories and conditioning on target end-states using Doob’s h-Transform.

biological applications. Furthermore, MD simulation data is inherently sparse in regions of conforma-
tional space that correspond to rare transitions, resulting in poorly estimated transition probabilities
and limited predictive accuracy [Konovalov et al., 2021, Frank et al., 2022]. Sparse data render
MSM-derived trajectories highly sensitive to sampling variability and noise, thereby limiting their
generalizability to unseen conformations and conditions.

Recent methods have leveraged generative models to sample transition paths between metastable
states by framing trajectory generation as a stochastic control problem. These approaches include
optimization of the Onsager-Machlup (OM) functional or a related control Lagrangian to produce
high-likelihood paths under learned dynamics [Raja et al., 2025, Du et al., 2024], and diffusion-based
samplers trained with off-policy learning to efficiently approximate the transition path distribution
[Seong et al., 2025, Holdijk et al., 2023]. More broadly, Schrödinger bridge formulations [Liu
et al., 2023] provide a principled framework for path sampling under endpoint constraints, and recent
advances in stochastic optimal control further connect bridge problems to tractable learning objectives
[Liu et al., 2025]. Collectively, these methods demonstrate the promise of conditioning generative
dynamics on endpoint constraints to study rare events, bypassing the need for collective variables or
retraining on system-specific data.

In this work, we introduce Schrödinger Bridge with Doob’s h-Transform (ScooBDoob), a novel
Schrödinger bridge formulation explicitly designed to enhance the robustness, stability, and general-
ization capabilities of MSM-based methods. Our framework integrates three key advancements:

1. Parameterization of the Doob-Tilted Transition Matrix. To condition the transition path
on a target meta-stable state, we leverage Doob’s h-transform to tilt the unconditional MSM
transition matrix and train our parameterized model to match the optimal Schrödinger bridge.
This enables the efficient simulation of feasible transition paths despite energy barriers.

2. Density-Aware Regularization. We introduce density-aware reweighting, which adjusts
transition probabilities based on empirical MD sampling density, significantly enhancing
robustness against data sparsity and sampling variability.

3. Stiefel-Constrained Eigenvector Optimization. We explicitly constrain eigenvectors to the
Stiefel manifold, ensuring numerical stability and physically meaningful directional transitions,
thus addressing the instability associated with unconstrained eigendecompositions.

We provide a detailed discussion on related works in Appendix A.

2 ScooBDoob: Schrödinger Bridge with Doob’s h-Transform

We introduce Schrödinger Bridge with Doob’s h-Transform (ScooBDoob), a discrete Schrödinger
bridge framework that learns stochastic transitions between metastable states in molecular systems
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Algorithm 1 ScooBDoob: Schrödinger Bridge with Doob’s h-Transform

1: Input: Observed count of transitions i→ j at τ lag C(i, j; τ) for all i, j ∈ {1, . . . ,m}
2: while Training do
3: P ij(τ)← C(i,j;τ)∑

j′ C(i,j′;τ) , P (τ)← [P ij(τ)]

4: V (i)← α/(Ci + 1), w(i)← exp(−τV (i)) ▷ density-aware weights
5: hV

N ← ν ▷ initialize terminal condition
6: for n in N − 1, . . . , 0 do
7: hV

n ← P (τ)(diag(w)hV
n+1) ▷ compute tilted distributions

8: P V
n (i, j)←

P ij(τ)w(j)hV
n+1(j)

(P (τ)diag(w)hV
n+1)(i)

, P V
n ← [P V

n (i, j)]

9:
10: end for
11: for micro-state i in 1, . . . ,m do ▷ train generator for each state i
12: P h

n,θ(i, ·)← NN(θ)
13: Compute loss Ltotal(θ) = LMSM(θ) + γbridgeLbridge(θ) + γstiefLstief(θ)
14: Optimize θ with ∇θLtotal
15: end for
16: end while
17: return parameterized transition predictor P θ(τ) : [0, 1]→ Rm×m

using a Doob-transformed Markov State Model (MSM). ScooBDoob is capable of modelling discrete
transition probabilities between MD microstates without requiring knowledge of the underlying
potential energy landscape, enabling flexible generalization to molecular systems without known
energies and sparse MD data.

2.1 Problem Setup

While MD is critical for exploring conformational landscapes and reaction pathways of biomolecular
systems, the performance is hindered by two prominent challenges. First, MD requires well-defined
and transferable force fields that accurately capture intermolecular and intramolecular forces
[Kaminski and Jorgensen, 1996, Zhu et al., 2012]. While classical force fields enable fast simulations,
they rely on several assumptions that limit the expressivity of the simulation to model rare or
heterogeneous phenomena. ML-based force fields increase expressivity [Arts et al., 2023, Charron
et al., 2025, Lewis et al., 2025b]; however, they are biased towards the interactions seen in the training
data and remain limited in their ability to generalize to unseen systems.

Second, many crucial processes, such as protein folding and allosteric switches, occur between
multiple low-energy, meta-stable states, where transitions away from the state are rare and occur
over long time-scales [Noé and Clementi, 2017]. This makes these rare processes prohibitively
expensive to simulate, especially for larger systems. Techniques that aim to coerce these transitions
over smaller timescales [Ensing et al., 2006, Branduardi et al., 2012, Bussi and Branduardi, 2015,
Ghosh and Ranjan, 2020] often undermine the probabilistic nature of these transitions and miss
intermediate states.

These challenges motivate the development of data-centric approaches for learning MD trajec-
tories [Jing et al., 2024, Daigavane et al., Lu et al., 2025, Tan et al., 2025, Rehman et al., 2025,
Wang et al., 2024] that bypass the need for defined energy landscapes and can generate feasible
maps between meta-stable states that align with the data manifold, while accounting for the sparsity
of MD data. Notably, ScooBDoob addresses all of these challenges by (1) learning probabilistic
transition rates directly from MD trajectory data, bypassing the need for external force-fields, (2)
conditioning discrete transitions on target states grounded in Doob’s h-Transform theory, and (3)
amplifying regions of low data density with Feynman-Kac reweighting.

2.2 Defining Endpoint-Conditioned Transitions Between Meta-Stable States

Doob’s h-Transform for Target-Conditioned Transition Rates Given an unconditional transition
matrix P (τ) ∈ Rm×m, we can steer trajectories toward a terminal distribution ν ∈ ∆m−1 over
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T = Nτ steps by recursively define the distribution at each step hn ∈ ∆m−1 backward in time.

hN = ν, hn = P (τ)hn+1, n ∈ {N − 1, . . . , 0}. (1)

Then, we construct the time-dependent Doob-conditioned transition matrix as

P h
n(i, j) = P ij(τ)

hn+1(j)

hn(i)
,

m∑
j=1

P h
n(i, j) = 1. (2)

Density-Aware Regularization via Feynman-Kac for Sparse MD Data To mitigate bias toward
over-sampled basins and encourage coverage of sparsely visited regions, we introduce a density-aware
non-negative potential for each micro-state V : {1, . . .m} → R≥0 proportional to the empirical
outgoing transition density.

Ci =
∑
j ̸=i

Cij(τ), ρ(i) =
max(Ci, 1)

C̄
, V (i) = αρ(i), (3)

where Cij(τ) is the number of observed MD transitions at lag τ from state i to state j and Ci denotes
the total number of outgoing transitions from state i. C̄ is the mean of Ci. α ≥ 0 is a hyperparameter
controlling the penalization of sparsely sampled transitions. With the potential, we define a weight
vector w ∈ Rm containing the weights of each microstate wj = exp(−τV (j)).

Given a time horizon of T = Nτ with target distribution ν ∈ ∆m−1, we define the target-conditioned
density-aware probability distributions hV

n ∈ ∆m−1 at each time increment from n ∈ {N,N −
1, . . . , 0} as

hV
N = ν, hV

n = P (τ)
(
diag(w)hV

n+1

)
(4)

where diag(w)hV
n+1 reweights the probability of each state at time n+1 by its corresponding density

weight wj , thereby encouraging the likelihood of transitioning into sparsely sampled intermediate
states. The resulting density-aware Doob kernel at each time step n ∈ {1, . . . , N} is defined as

P h
n(i, j) =

P ij(τ)wj h
V
n+1(j)(

P (τ) diag(w)hV
n+1

)
(i)
,

m∑
j=1

P h
n(i, j) = 1 (5)

Increasing the value of α used to compute V strengthens the regularization, further discouraging
paths through low-density states. Setting α = 0 recovers the standard Doob kernel without density
adjustment.

Proposition 2.1 (ScooBDoob yields the target end state for one-hot ν). Assume the terminal
distribution is the one-hot vector ν = ez concentrating all mass on a fixed target microstate z.
Let hn (or hV

n ) be defined by the backward recursions above and let P h
n be the corresponding

Doob kernels. For any initial distribution µ0 supported on {i : h0(i) > 0}, the forward evolution

µn+1 = µn P
h
n, n = 0, 1, . . . , N − 1

at terminal time satisfies µN = ν.

Stiefel Manifold Constraint for Large Systems To enable stable eigendecomposition of the
transition matrix and enforce orthonormality of the learned eigenvectors, we begin by constructing
the symmetrized form of the Markov State Model. Let P (τ) ∈ Rm×m have stationary distribution π
with D = diag(π), and define the reversible symmetrization

M = D1/2P (τ)D−1/2 = QMSMΛMSMQ⊤
MSM, (6)

where QMSM ∈ Rm×r has orthonormal columns and ΛMSM = diag(λ1, . . . , λr) collects the top r
modes (r = m gives the full basis). We maintain orthonormal columns by constraining QMSM to
the Stiefel manifold Sm,r defined by

QMSM ∈ Sm,r = {Q ∈ Rm×m | Q⊤Q = Ir}, (7)
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After a Euclidean update on a chosen objective function L,

Q(t+1) = QMSM
(t) − η∇QMSML(QMSM

(t)), (8)

with η being a step size. We retract back to Sm,r via a SVD:

Q(t+1) = UΣV ⊤, U⊤U = V ⊤V = I (9)

where Σ = diag(σ1, . . . , σk). This ensures that the transition matrix QMSM remains orthonormal
while steering the kinetics towards the target state.

2.3 Learning Transition Dynamics from Markov State Models

To learn the optimal discrete bridges over microstates, we treat the empirical MSM transition matrix
P ref(τ) ∈ Rm×m as the fixed reference dynamics. We match the reference dynamics with a one-step
parameterized network P θ(τ) that is row-stochastic, and define a sequence of time-dependent tilted
transition matrices with Doob’s h-transform. Finally, we learn a time-dependent network that predicts
the tilted transition probabilities P h

θ,n which preserve the MSM structure via a Stiefel manifold
constraint. The full training procedure is provided in Algorithm 2.

Parameterization of the Discrete Transition Matrices Let P θ(τ) ∈ Rm×m be the learned
one-step transition matrix. Let zθ be a neural network that produces a positive endpoint potential;
define

hθ,N = ν, hθ,n = P θ(τ)diag(w)hθ,n+1, n ∈ {N − 1, . . . , 0}. (10)
with density-aware regularization wj = exp(−τV (j)) introduced in Section 2.2. The student’s
time-inhomogeneous kernels are the discrete Doob tilts:

P h
θ,n(i, j) =

P θ(i, j)wjhθ,n+1(j)

(P θ(τ)diag(w)hθ,n+1)(i)
,

m∑
j=1

P h
θ,n(i, j) = 1. (11)

2.4 Defining the Training Objective

Unconditional MSM Loss Let Cij(τ) denote the empirical transition counts at lag τ and P θ(τ) ∈
Rm×m be a parameterized network. We train P θ with an unconditional MSM loss LMSM defined as

LMSM = −
∑
i,j

Cij(τ) logP θ,ij(τ) + γCKLCK + γrevLrev (12)

LCK =

K∑
k=2

∥∥ P̂ (kτ)− P θ(τ)
k
∥∥2

F
, Lrev =

∥∥DθP θ(τ)− P θ(τ)
⊤Dθ

∥∥2

F
(13)

where π⊤
θ P θ(τ) = π⊤

θ and Dθ = diag(πθ), and K ∈ {2, 3} in practice. The first term represents
the count likelihood, and the second and third terms are the Chapman-Kolmogorov (CK) consistency
and reversibility, respectively.

Schrödinger Bridge Loss To train P h
θ,n such that it predicts the optimal Schrödinger bridge defined

by tilting the reference dynamics with Doob’s h-transform, we minimize a KL-divergence-based
bridge loss Lbridge defined as

Lbridge =

N−1∑
n=0

m∑
i=1

KL
(
P h

ref,n(i, ·)
∥∥P h

θ,n(i, ·)
)

(14)

where P h
ref,n(i, ·) is defined with (5) using the fixed reference dynamics P ref(τ)

Stiefel Loss Given the parameterized transition matrix P θ(τ), we obtain the top-r eigenvector-
eigenvalue pairs by symmeterizing and diagonalizing Mθ ≈ QθΛθQ

⊤
θ , Qθ ∈ Rm×r (See Appendix

B.3 for full details). To ensure that the eigenvectors are orthonormal, we add a soft Stiefel loss Lstief
defined as

Lstief =
∥∥Q⊤

θ Qθ − Ir

∥∥2
F
+ η

r∑
i=1

max(0, |λθ,i| − 1)2 (15)
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Figure 2: Transition Paths Predicted by ScooBDoob on Müller-Brown Potential and Aib9 Peptide. We
show the teacher paths with and without density-aware FK reweighting. The inference paths are shown for the
MB potential with and without endpoint conditioning.

We show in Figure A1 that the orthonormal constraint is enforced throughout training, highlighting
that our approach effectively preserves the validity of the learned transition matrix. Finally, we define
the total training loss to be the weighted sum of the MSM loss, bridge loss, and Stiefel loss, given by

Ltotal = LMSM + γbridgeLbridge + γstiefLstief (16)

which jointly optimizes the one-step transition matrix (teacher model) and the time-varying condi-
tional transition dynamics.

2.5 Simulating the Learned Transition Dynamics

Simulating Unconditional Dynamics Given an initial distribution over microstates µ0 ∈ ∆m−1,
we can simulate the unconditional trajectory over time T = Nτ with the learned reference transition
matrix P θ(τ).

µn = µ0P θ(τ)
n, xn+1 ∼ P θ(τ)(xn, ·) (17)

Target Conditioned Bridge Given a time horizon T = Nτ and a target distribution ν ∈ Rm, we
can sample the intermediate trajectory from an initial distribution µ0 ∈ ∆m−1

µn+1 = µnP
h
θ,n or xn+1 ∼ P

(h,V )
θ,n (xn, ·). (18)

over time steps n ∈ {1, . . . , N}. Unconditional and target-conditioned simulation proceeds via
Algorithm 3.

3 Experiments

Here, we demonstrate the effectiveness of ScooBDoob on predicting discrete transitions between MD
states conditioned on a target state. We start with a synthetic example on the Müller-Brown (MB)
potential energy landscape, illustrating the model’s ability to capture intermediate states between
conditioned endpoints. Then, we scale our evaluation to the 9-residue α-helical Aib9 peptide with
two distinct intermediate paths [Karle and Balaram, 1990].

3.1 Müller-Brown Potential

Setup Following [Müller and Brown, 1979], we build up the testing system for a 2D Müller-Brown
potential with a potential energy landscape U(x) with three local minima states. We generated 8
unconditioned rollouts of length 8000 steps each, seeding half of the trajectories near the starting
point at (−0.6, 1.5), and the other half near the end point at (0.6, 0.0). 64K frames are used for
training in total. Experiment details are given in Appendix E.
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Figure 3: Simulated transition paths for Aib9 Peptide. Simple time indicates a fixed lag time τ = 60, and
dynamic time indicates a non-fixed lag time, N indicates the number of jumps simulated at inference, and
K denotes the number of discrete microstates. Dark purple indicates high probability mass, and light purple
indicates low probability mass. The axes are the φ/ψ dihedral angles. (A) Unconditional paths simulated for 60
jumps. (B) Endpoint-conditioned paths with Doob’s h-transform simulated with τ = 60. (C) Unconditional
paths and (D) endpoint-conditioned paths simulated from dynamic τ .

Table 1: Results for Müller
Brown potential with N = 60.

Metric MB potential

Row-KL (↓) 0.3204
CK (↓) 0.5401
Mean W2 (↓) 0.2038

Results Using TICA with lag τ = 120 steps, we discretize trajec-
tories into K = 200 microstates. The reference MSM exhibits a
spectral gap with λ2 = 0.986, indicating slow transitions. We first
constructed our FK-Doob teacher with density-aware weights and
committor-based biasing to enable transition paths to cross saddle
points. After training a parameterized student kernel, we found that
the unconditional path explored essential states, while conditioning
on the target end state significantly reduced the search space and
produced more concentrated endpoints (Figure 3, Table 1). To test
generalization, we evaluated zero-shot performance across N ∈ {5, 55, 120}. The student kernel
adapted well for N = 55 and N = 120, but for the extreme case of N = 5, it failed to consistently
cross saddle points. This suggests that careful selection ofN is critical to ensure sufficient exploration
time (Figure A3).

3.2 Aib9 Peptide

Setup Aib9 peptide is a 9-residue peptide experimentally validated to have two known macro
intermediate states. We retrieve the Aib9 peptide trajectory with 100 ns simulation length from [Wang
and Tiwary, 2021]. We picked the replica at 400K for training and 412K for zero-shot prediction.
There are a total of 50K frames, and 70% are used for training.

Results We selected the 400K replica as our training trajectory and built ScooBDoob on the
TICA-projected microstates of the Aib9 peptide using τ sweeping based on a balance selection
from the spectral gap against CK error. The teacher kernel, trained with FK constraints, produced
smoother and more connected transition paths (Figure 3). In addition to matching MSM metrics
(Table 2), we mapped transitions back to the original ψ/ϕ angle distributions and verified that the
correct intermediate states participated in the transitions with high probability.

The lag time τ and the number of clusters K contribute most strongly to the quality of the sampled
paths. With a larger K, the model has more possible microstate transitions, which increases its ability
to reach rare states. Conversely, a smaller K makes the number of microstates closer to the number
of macrostates, effectively coarsening the dynamics. With the additional of the desired end state
signal during inference, the paths will guarantee to end at the endpoints, as demonstrated in the
Figure 3. When comparing fixed and dynamic timesteps, the dynamic variant produces paths that
visually follow the teacher more closely, often finding multiple reasonable routes to the endpoint. By
contrast, the fixed variant sometimes finds the shortcut to the endpoints and involve some looping
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Table 2: Ablation studies for Aib9 experiment hyperparameters. Metrics are computed for inference rollouts.
Total steps N determine the step choices for the models. The number of nearest neighbors K determines the
number of discrete microstates that can be transitioned into. Simple timestep defines a rigid number of steps,
and dynamic timesteps allow various timesteps.

Hyperparameter Row-KL (↓) CK (↓) Mean W2 (↓) KLendpoint (↓)

Total Steps N at fixed K = 40
N = 20 0.48 ± 0.08 0.67 0.032 1.09 ± 0.01
N = 40 0.40 ± 0.06 0.66 0.19 11.17 ± 0.04
N = 60 0.46 ± 0.08 0.67 0.053 0.88 ± 0.02

Nearest Neighbor K at fixed N = 60
K = 40 0.45 ± 0.08 0.64 0.05 0.82 ± 0.02
K = 60 0.42 ± 0.07 0.67 0.19 10.78 ± 0.04
K = 100 0.48 ± 0.08 0.63 0.040 0.86 ± 0.02

Timestep N = 40,K = 60
Simple 0.26 ± 0.07 0.49 0.0008 0.42 ± 0.01
Dynamic 0.46 ± 0.08 0.67 0.053 0.88 ± 0.02

between nearby states, as shown by the higher density of the white paths chosen between some states.
Although the fixed N yields lower row-KL and endpoint KL numerically, these scores often reflect
confident transitions rather than a more faithful path exploration follows the teacher.

In addition, we noticed that during inference, when N = K, the end point KL divergence spikes,
even though other metrics remain comparable. We suspect that the model effectively compressed the
dynamics so that the probability mass arrives at the endpoints either too quickly or along the wrong
support. This creates an artificial divergence in the endpoint distribution, even though the rollout
paths still appear reasonable.

To monitor spectral stability during training, we evaluated the leading eigenvalues and eigenvectors
of the learned transition matrix Pθ at each epoch (Table A2, Figure A1). The dominant eigenvalue λ1
remained near 1, as required for MSMs, and eigenvalue equation residuals were negligible, confirming
numerical accuracy. Successive eigenvectors showed overlaps approaching 1 with small Frobenius
distances, indicating smooth evolution and stable slow modes. These diagnostics confirm that Stiefel
regularization stabilizes the eigendecomposition during training.

We also tested zero-shot generalization on replicas at 412K and 503K (Table A1). The fixed-N
kernel achieved lower row-KL under temperature shift by concentrating transitions into sharper steps,
while the multi-N kernel spread probability more smoothly across paths. This smoothing raised
row-KL slightly but kept CK error low, showing that multi-N training preserves overall kinetics and
yields more robust rollouts at unseen temperatures despite less favorable local scores.

4 Conclusion

We have introduced Schrödinger Bridge with Doob’s h-Transform (ScooBDoob), a machine learning
framework for modeling molecular dynamics trajectories by learning discrete transitions between
metastable states. ScooBDoob constructs a principled Schrödinger bridge from empirical MSMs
using Doob’s transform and density-aware regularization, enabling rare-event trajectory generation
without a known energy landscape. This approach allows conditioning on endpoint structures, making
it well-suited for applications like protein refolding, allosteric modulation, and conformational control.
Our future extensions will incorporate experimental intermediates or kinetic priors as constraints,
enabling multi-objective control over long-timescale dynamics in undersampled or sparse regimes.
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Outline of Appendix

In Appendix B, we discuss the construction of the Markov State Model and the Stiefel manifold
constraint (B.3). Appendix E provides the setup for our experiments and the evaluation metrics.
Finally, the pseudocode for training ScooBDoob is given in Appendix F.

Notation In this work, we consider a molecular system with features x(t) ∈ Rd which can be
reduced with TICA to a lower-dimensional feature vector y(t). We denote the number of microstates
as m and the unconditional transition matrix with lag time τ as P (τ) ∈ Rm×m, where P ij(τ) ∈ R
is the probability of transition from microstate i at time t to microstate j at time t+ τ . This matrix
is constructed from the observed transition counts C(i, j; τ) ∈ R. The initial discrete distribution
over the microstates is denoted µ0 ∈ ∆m−1 and the final distribution ν ∈ ∆m−1. Given the number
of lag steps N with a total time horizon T = Nτ , we define the discrete distribution for step
n ∈ {N − 1, . . . , 0} starting from hN = ν ∈ ∆m−1 as hn = P (τ)hn+1. The Doob-tilted transition
matrices given the backward distributions hn at each time step n is denoted P h

n ∈ Rm×m where the
transition probability from i to j is P h

n(i, j) ∈ R. V : {1, . . . ,m} → R≥0 denotes a density-aware
potential for each micro-state which is used to compute a weight vector w ∈ Rm where each element
is w(j) = exp(−τV (j)).

The parameterized unconditional transition matrix with parameters θ is denoted P θ(τ) ∈ Rm×m

and the corresponding tilted distribution at step n is denoted hθ,n ∈ Rm which constructs the tilted
transition matrix P h

θ,n ∈ Rm×m. To define the Stiefel constraint, we symmetrize P θ(τ) with the
diagonal matrix D = diag(π) where π ∈ ∆m−1 is the stationary distribution π⊤P θ(τ) = π to get
the symmetrical matrix M ∈ Rm×m. Then, we perform a symmetric eigendecomposition to obtain
the orthonormal matrix QMSM ∈ Rm×r and eigenvalues ΛMSM = diag(λ1, . . . , λr). At inference
time, we generate intermediate distributions µn ∈ ∆m−1 by applying the learned transition to the
initial distribution µ0 and sampling discrete states xn ∼ µn.

A Related Works

Transition Path Sampling (TPS) Computational approaches to transition path sampling over en-
ergy landscapes have been widely explored [Bolhuis et al., 2002, Dellago et al., 1998, Vanden-Eijnden
et al., 2010]. Traditionally, non-ML approaches have leveraged low-dimensional representations
of molecules via collective variables (CVs) [Hooft et al., 2021], including steered MD [Schlitter
et al., 1994, Izrailev et al., 1999], umbrella sampling [Torrie and Valleau, 1977, Kästner, 2011],
meta-dynamics [Laio and Parrinello, 2002, Ensing et al., 2006, Branduardi et al., 2012, Bussi and
Branduardi, 2015], adaptive biasing force Comer et al. [2015], and on-the-fly probability-enhanced
sampling [Invernizzi and Parrinello, 2020]. Such methods are powerful when good CVs are known,
but selecting CVs remains challenging [Hooft et al., 2021].

State-based Kinetic Models An alternative line of work focuses on state-based models that extract
slow kinetics directly from simulation data. A rigorous theory shows that optimal CVs correspond
to the eigenfunctions of the transfer operator underlying MD [Noé and Clementi, 2017]. Practical
approximations include Time-lagged Independent Component Analysis (TICA) [Pérez-Hernández
et al., 2013], Diffusion Maps [Coifman et al., 2005], and Markov State Models (MSMs) [Prinz et al.,
2011, Bowman et al., 2014, Mardt et al., 2018], which discretize conformational space into metastable
states and estimate transition probabilities. These approaches unify dimensionality reduction and
kinetics estimation under a variational principle.

Modeling Molecular Dynamics More recently, coarse-grained and full-atom generative models
have sought to reconstruct trajectories and sample new transitions [Arts et al., 2023, Charron et al.,
2025, Kohler et al., 2023, Majewski et al., 2023, Lu et al., 2025, Raja et al., 2025]. Methods such as
score-based modeling [Daigavane et al., Tan et al., 2025], energy-based modeling [Lu et al., 2025,
Lewis et al., 2025b], and flow-based generative dynamics [Jing et al., 2024, Kohler et al., 2023,
Rehman et al., 2025] attempt to bypass explicit force fields by directly learning mappings between
metastable ensembles.
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Schrödinger Bridge over MSM In discrete time, classical Schrödinger Bridges (SBs) on Markov
chains [Beghi, 2002, Pavon et al., 2010, Pavon and Ticozzi, 2010] solve endpoint-constrained path-
space maximum-entropy problems by a multiplicative Doob h-transform of a prior kernel, with
potentials given by space-time harmonic functions and uniqueness via the Beurling-Jamison theorem.
While this theory provides constructive formulas for tilting Markov kernels analytically, ScooBDoob
learns these tiltings directly from molecular dynamics trajectories. The student kernel P θ acts as a
parametric Doob h-transform, constrained by reversibility and conditioned on metastable endpoints.

Whereas SBs enforce exact marginals and admit closed-form harmonic potentials, ScooBDoob
enforces macrostate marginals and learns an approximate bridge distribution, extending the maximum
entropy principle into a data-driven regime. Thus, given an MSM prior

∏
and endpoint marginals

(µ0, µN ), with µN concentrated on a target macrostate, ScooBDoob seeks a Markov bridge kernel
P θ that approximates the SB minimizer PSB = minP{KL(P∥Q) : P0 = µ0,PN = µN} by training
P θ to match the Doob-tilted optimum through MSM consistent losses.

Learning Schrödinger Bridges Schrödinger bridge methods have also been used outside molecular
dynamics to construct samplers or generative models in continuous time. Bernton et al. [2019]
approximates iterative proportional fitting in continuous state spaces to reduce variance in Annealed
Importance Sampling and Sequential Monte Carlo. With others [De Bortoli et al., 2021, Liu et al.,
2023] connect bridge dynamics with score-based generative modeling and Kim et al. [2024] extend
the scope into graph transformation. While these methods focus on sampling from static or structured
distributions via continuous or discrete diffusions, our approach differs in that we operate on finite-
state MSMs and learn bridge kernels directly from MD trajectories to generate endpoint-conditioned
paths between metastable states.

B Extended Theoretical Background

Here, we describe preliminaries and additional details on the theory of Schrödinger bridge matching
with Doob’s h-Transform and optimization on the Stiefel manifold.

B.1 Learning Discrete Schrödinger Bridges

Schrödinger Bridge Problem The Schrödinger Bridge (SB) problem aims to find the optimal
probability path measure P from samples of an initial distribution x0 ∼ µ0 to samples from a final
distribution xN ∼ µN . The optimal solution is defined as the path measure PSB with marginals µ0

and µn that minimizes the KL-divergence to a reference path measure Q

PSB = min
P
{KL(P∥Q) : P0 = µ0,PN = µN} (19)

where Q can be defined as standard Brownian motion in continuous state spaces and a Dirichlet
process in discrete state spaces. Note that PSB ̸= Q as P, since it must satisfy the boundary constraints
P = µ0 and PT = µT .

Continuous-Time Markov Chains In discrete state spaces X = {1, . . . ,m}, time-varying stochas-
tic process (Xt)t∈[0,T ] over the time horizon [0, T ] is considered a continuous-time Markov chain
(CTMC) if it can be characterized by a transition rate matrix or generator Qt ∈ RX×X defined as

Qt(x, y) = lim
∆t→0

1

∆t

[
P(Xt+∆t = y|Xt = x)− 1x=y

]
(20)

where P(Xt+∆t = y|Xt = x) is the probability of making a discrete "jump" from state x at time t
to state y at time t+∆t and 1x=y is an indicator function that equals 1 if x = y. By taking the limit
as ∆t, the generator defines the instantaneous jump probability at time t. By definition, all entries of
the generator are non-negative for x ̸= y (i.e., Qt(x, y) ≥ 0) and the diagonal entries are defined as
Qt(x, x) = −

∑
y ̸=x Qt(x, y).

Doob’s h-Transform The Doob’s h-transform is a theoretically-grounded method to condition a
transition rate matrix (or generator) Qt(x, y) ∈ Rm×m of a CTMC (Xt)t∈[0,T ] to a target state z at
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time T by tilting it via the conditional probability function ht(x).

Qt(x, y; z) = Qt(x, y)
P(XT = z|Xt = y)

P(XT = z|Xt = x)
− δxy

∑
u

Qt(x, u)
P(XT = z|Xt = u)

P(XT = z|Xt = x)
(21)

where P(XT = z|Xt = y) is the conditional probability of transitioning to a state z at time t
given the current state Xt = x and δxy is the Dirac delta function that returns 1 when x = y and
0 otherwise. Intuitively, this transform decreases the transition rate x → y if the probability of
transitioning to z from state x is higher than from state y and increases the transition rate if the
probability of transitioning to z from state y is higher than from state x.

B.2 Markov State Models

Molecular Dynamics A molecular dynamics (MD) simulation produces a time-ordered trajectory
of molecular conformations, represented as Cartesian positions at discrete timesteps [Scherer et al.,
2015]. For larger biomolecules, the dimensionality of the MD features grows prohibitively large,
resulting in computational bottlenecks when simulating their trajectories. Coarse-graining techniques
have aimed to lower the dimensionality of MD features by finding collective variables (CVs) that
largely capture the degrees of freedom of a molecule’s conformation over time [Ingólfsson et al.,
2014, Joshi and Deshmukh, 2021].

Time-lagged Independent Component Analysis (TICA) Time-lagged independent component
analysis (TICA; Pérez-Hernández et al. [2013]) is a method for reducing the high-dimensional feature
space of molecular systems to a set of Collective Variables (CVs) that determine the primary degrees
of freedom responsible for the slow transitions in MD simulations. Consider an MD snapshot of a
d-dimensional molecular system at time t as x(t) ∈ Rd. Then, the time-lagged covariance matrices
are defined as

Cov00 = E
[
x(t)x(t)⊤

]
, Cov0τ = E

[
x(t)x(t+ τ)⊤

]
(22)

where the expectation is over the trajectory frames and τ is the chosen lag time. To determine the
CVs, TICA solves the generalized eigenproblem

Cov0τ ui = λi Cov00ui, i ∈ {1, . . . , d} (23)

where ui ∈ Rd are the eigenvectors and λi are the corresponding eigenvalues, and t = −τ/ lnλi.
With the top k eigenvalues sorted as 1 = |λ1| ≥ |λ2| ≥ · · · ≥ |λd|, we construct a projection matrix
U ∈ Rn×k with columns being the corresponding eigenvectors, which projects x(t) ∈ Rd to a
k-dimensional feature vector y(t) as

y(t) = U⊤x(t), U = [u1, . . . ,uk] (24)

Constructing the Markov State Model We can cluster the TICA-projected y(t) into m discrete
microstates and represent state transitions over a lag time τ by a Markov State Model (MSM).
Formally, an MSM at lag time τ is defined as a stochastic matrix P (τ) ∈ Rm×m matrix of transition
probabilities:

P (τ) ∈ Rm×m, P ij(τ) = P(Xt+τ = j |Xt = i) =
C(i, j; τ)∑
j′ C(i, j

′; τ)
, (25)

where C(i, j; τ) is the observed count of transitions from state i at time t to state j at time t+ τ . The
construction of an MSM has a natural connection to CTMCs, where the transition probabilities define
a stochastic trajectory between discrete micro-states, which motivates our work.

B.3 Stiefel Manifold Constraint

Stiefel Manifold The Stiefel manifold, denoted Sn,k is the set of n × k (n ≥ k) orthonormal
rectangular matrices defined as

Sn,k = {Q ∈ Rn×k|Q⊤Q = Ik} (26)

where Ik ∈ Rk×k is the k × k identity matrix.
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Eigendecomposition of MSM Given the MSM transition matrix P (τ) at lag time τ , there exists a
stationary distribution π ∈ Rm such that P (τ)π = π [Beauchamp et al., 2011]. Symmetrize via:

M = D
1
2P (τ)D− 1

2 , D = diag(π) (27)

We then diagonalize

M = QMSM ΛMSM Q⊤
MSM, QMSM ∈ Rm×r, ΛMSM = diag(λ1, . . . , λm), (28)

so that

P (τ) = D− 1
2QMSM ΛMSM Q⊤

MSMD
1
2 =

m∑
i=1

λi ri ℓ
⊤
i , (29)

where λi are the eigenvalues of P (τ), and ri and ℓi are the corresponding right and left eigenvectors,
respectively. ri = D− 1

2 qi, ℓi = D
1
2 qi, and bi-orthogonality ℓ⊤i Drj = δij maintains.

B.4 Chapman-Kolmogorov Consistency

For a Markov chain modeling of dynamics at lag time τ , one step of length kτ should look the same
as k consecutive steps of length τ .

P (kτ) = P (τ)k, k = 2, 3, . . . (30)

If such CK consistency fails, the assumption that the dynamics are approximately Markovian at lag τ
does not hold.

From the MD trajectory, count matrix Cij can be built to represent jump from state i to state j after
lag τ . Assume that at lag kτ there exists Ckτ , counts can be turned into probability:

P̂ ref(τ)[i, j] =
Cτ [i, j]∑
j′(Cτ [i, j′])

(31)

where j = k depend on the metrics asked. ScoobDoob parameterizes the one-step kernel Pθ, and the
CK consistency is used to measure whether

P k
θ ≈ P̂ ref(kτ). (32)

Low CK error indicates that the learned one-step dynamics compose correctly over longer lags, a
prerequisite for stable implied timescales and reliable kinetic predictions [Prinz et al., 2011, Bowman
et al., 2014, Noé and Clementi, 2017].

C Theoretical Proofs

Lemma 1 (Row-stochasticity and telescoping identity). Let P (τ) ∈ Rm×m be a row-stochastic
MSM transition matrix and let (hn)

N
n=0 be the backward sequence defined by

hN = ν, hn = P (τ)hn+1, n = N − 1, . . . , 0,

or, in the density-aware case, by

hV
N = ν, hV

n = P (τ) diag(w)hV
n+1, n = N − 1, . . . , 0,

with wj = exp(−τV (j)) as in Section 2.2. Define the time-inhomogeneous Doob kernels

P h
n(i, j) =

P ij(τ)hn+1(j)

hn(i)
, or P h

n(i, j) =
P ij(τ)wj h

V
n+1(j)(

P (τ) diag(w)hV
n+1

)
(i)
.

Then for every n and i,
∑

j P
h
n(i, j) = 1 (row-stochasticity). Moreover, for any path (i0, . . . , iN )

the path probability under the Doob chain satisfies the telescoping identity

µ0(i0)

N−1∏
n=0

P h
n(in, in+1) = µ0(i0)

(
N−1∏
n=0

P inin+1
(τ)

)
· hN (iN )

h0(i0)
,

with hn replaced by hV
n in the density-aware case. Row-stochasticity is immediate from the weighted

space-time harmonic relation hn = P (τ)diag(w)hn+1 (cf. Pavon-Ticozzi, Eq 25) [Pavon and Ticozzi,
2010], exactly as in their Eq. 27, where

∑
j p̂ij = 1 follows by dividing

∑
j πijφ(t+ 1, j) by φ(t, i).
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Proof. Row-stochasticity follows from the backward recursion, where we sum over columns j:

m∑
j

P h
n(i, j) =

1

hn(i)

m∑
j

P ij(τ)hn+1(j) =

(
P (τ)hn+1

)
(i)

hn(i)
=

hn(i)

hn(i)
= 1,

and similarly in the density-aware case with diag(w)hV
n+1. For the telescoping identity, expand the

product of Doob factors and note that the ratios hn+1(in+1)/hn(in) cancel along the path, leaving
only hN (iN )/h0(i0). The argument is identical with hV .

Proposition 2.1 (ScooBDoob yields the target end state for one-hot ν). Assume the terminal
distribution is the one-hot vector ν = ez concentrating all mass on a fixed target microstate z.
Let hn (or hV

n ) be defined by the backward recursions above and let P h
n be the corresponding

Doob kernels. For any initial distribution µ0 supported on {i : h0(i) > 0}, the forward evolution

µn+1 = µn P
h
n, n = 0, 1, . . . , N − 1

at terminal time satisfies µN = ν.

Proof. We prove the density-aware case (the unweighted case is identical with wj ≡ 1). Since
ν = ez , we have

hV
N = ν = ez, hV

N−1 = P (τ) diag(w) ez = wz P (τ)ez,

so that hV
N−1(i) = wz P iz(τ) for every i. By Eq. (5), for the final step n = N − 1 and any i, j,

P h
N−1(i, j) =

P ij(τ)wj ν(j)

wz P iz(τ)
= δjz =

{
1, j = z,

0, j ̸= z.

Thus the last-step kernel P h
N−1 deterministically sends all mass into z, so regardless of µN−1,

µN (j) =

m∑
i

µN−1(i)P
h
N−1(i, j) =

m∑
i

µN−1(i)δjz = δjz = ez = ν(j).

where δ is the Kronecker delta. Because each P h
n is row-stochastic (Lemma 1), normalization and

positivity are preserved throughout, and the recursion is well defined for all n. Hence µN = ν.

Remark 1 (General terminal distributions). For a general terminal law ν ∈ ∆m−1 (not necessarily
one-hot), the Doob kernels (Eqs. (2) or (5)) still define a valid inhomogeneous Markov chain. Writing
αn(i) := µn(i)/hn(i) (or αn(i) := µn(i)/h

V
n (i) in the density-aware case). Then one verifies that

α⊤
n+1 = α⊤

nP (τ) (unweighted), α⊤
n+1 = α⊤

nP (τ)diag(w) (density-aware). Hence

µN (j) = ν(j) [α⊤
0 P (τ)N ]j or µN (j) = ν(j) [α⊤

0 (P (τ)diag(w))N ]j

To enforce µN = ν componentwise for arbitrary µ0, one requires the full Schrödinger system
(maximum-entropy) compatibility between the boundary marginals, equivalently choosing the forward
potential so that the terminal factor equals 1; see Appendix A.3 and Eq. (24). In our experiments we
restrict to the one-hot terminal law (Appendix D.1), for which Proposition 2.1 applies directly.

D Additional Results and Discussion

D.1 Evaluating Spectral Stability During Training

Spectral gap Denote the symmetrized operator by M ∈ Rm×m with eigenvalues 1 = λ1 ≥ λ2 ≥
. . . λm. The spectral gap is the difference between λ1 − λ2, which quantifies separation between
the stationary mode and the slowest dynamic process [Prinz et al., 2011]. A larger gap is a clearer
metastable separation.
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Table A1: Zero-shot evaluation across temperatures. Metrics computed at replicas 412 K and 503 K using
models trained at 400 K. Lower is better. Multi-N maintains CK consistency with only a modest increase in KL.

412 K 503 K

Model Row-KL CK W2 Row-KL CK W2

Fixed-N 1.462 0.925 0.016 1.047 0.869 0.041
Multi-N 1.520 0.927 0.020 1.124 0.877 0.023

Figure A1: Spectral stability metrics over training steps.

Table A2: Spectral stability diagnostics of the learned MSM during training. All metrics indicate stable
eigenvalues and eigenvectors across training, attributed to the Stiefel constraints.

Metric Value (mean ± std)

Spectral gap (gap1) 0.091±0.014

Perron eigenvalue (λ1) 1.000028±0.000001

Overlap diag. mean (↑) 0.951±0.084

Overlap diag. min (↑) 0.829±0.340

Residual (first eigenpair) (↓) (1.9±0.3)× 10−5

Residual (mean top-r) (↓) (2.3±0.1)× 10−5

Subspace distance (SubF) (↓) 0.341±0.494

Perron eigenvalue For any row-stochastic transition matrix, the Perron-Frobenius theorem guaran-
tees a leading eigenvalue λ1 = 1. Deviations indicate difficulty in normalization and reversibility of
P θ(τ) [Smyth, 2002].

Overlap diag. Let Q(t)
MSM and Q

(t−1)
MSM denote the top r eigenvectors of M at successive training

steps. The overlap matrix O = (Q
(t−1)
MSM )⊤Q

(t)
MSM measures alignment [Husic and Pande, 2018]. The

mean and minimum of the diagonal entries of |O| indicates how stable each eigenvector is across
epochs.

Residual For each eigenpair (λi, qi) with qi a column of QMSM, the residual is defined follows
Simoncini [2005] as

∥Mqi − λiqi∥2 . (33)

Small numbers confirms that the computed eigenpairs solve the eigenvalue problem accurately.

Subspace distance The subspace spanned between epochs by the top r eigenvectors is represented
by the projection matrix QMSMQ

⊤
MSM. Subspace distance between two consecutive steps is measured

as the Frobenius norm ∥∥∥Q(t)
MSM(Q

(t)
MSM)⊤ −Q

(t−1)
MSM (Q

(t−1)
MSM )⊤

∥∥∥
F
, (34)

which is invariant to rotations and sign flips. Smaller values indicate that the slow kinetic subspace is
stable across training iterations.
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N = 5
Success: 100%

N = 55
Success: 100%

N = 120
Success: 100%

Figure A2: Transition Paths Predicted by ScooBDoob on Müller-Brown Potential. Tested path generation on
unseen number of steps N . Green stars indicate starting states and red Xs indicate target end state. Intermediate
transition states are marked with the yellow square.

E Experimental Details

E.1 Automatic τ Sweeping and Endpoint Determination

For systems like AIB9 where inputs are torsion features without clear labels for start and end
microstates, we avoid manual choices and infer 1) a suitable lag time τ and 2) representative start/end
state sets directly from kinetics estimated on the data.

Based on our previous discussion on MSMs, the pair (λ2, q2) encodes the slowest nontrivial relaxation.
We use the sign of the second eigenvector q2 to produce a coarse two-well split [Röblitz and Weber,
2013]:

A = {i : (q2)i ≤ 0}, B = {i : (q2)i > 0}. (35)

To get confident endpoints for conditioning, we then pick the k most negative entries of q2 as the
start set Sstart and the k most positive as the end set Send. In the current experiment, k is set to 6.

For a chosen lag τ , the implied timescale of the slowest process is

t2(τ) =
−τ

ln |λ2|
, spectral_gap = 1− |λ2|. (36)

A larger gap implied clearer separation between the stationary mode and the slowest transition, which
tends to stabilize metastable assignments.

A grid of lag steps τmultiple range from 40 to 200 was tested. The final τ will be picked by maximizing
the score below that favors both kinetic separation and a split with balanced start and end states:

score(τ) = spectral_gap(τ)(0.5 + 0.5 · min(|A|, |B|)
max(1,max(|A|, |B|))

) (37)

Then during training, at τ∗ we set Sstart/Send to the k most negative/positive entries of q2.

E.2 Constructing the Teacher Transition Matrix

The teacher transition matrix P ref(τ) is used to define the matching objective of the parameterized
student model P θ(τ). We fix a time horizon T = Nτ and a terminal distribution ν ∈ ∆m−1, where
N is the number of lag steps. For a target state z, we set the terminal distribution to the one-hot
vector. We define the conditional distributions at each time step hV

n ∈ ∆m−1 as

hN = ν, hn = P ref(τ) diag(w)hn+1, n ∈ {N − 1, . . . , 0}. (38)

The Doob h-transformed teacher transition matrices at each time step are then defined as

P h
ref,n(i, j) =

P ref(i, j; τ)w(j)hθ,n+1(j)(
P ref(τ) diag(w)hθ,n+1

)
(i)

(39)
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Figure A3: Unconditional transition paths of Aib9 peptide at temperatures of 412K and 503K. Simulations
were performed with trained models under the identical conditions of K = 40 and N = 60. Above: Darker
color indicates lower-energy states, with white lines showing sampled transition paths. Start and End states
were determined following Appendix E. Below: Color highlights the states visited by the model. The grey
background indicates ground-truth coverage.

E.3 Data Curation

Synthetic Müller-Brown Potential Following [Müller and Brown, 1979], we build up the testing
system for a 2D and 3D Müller-Brown potential with a potential energy landscape U(x) with three
local minima states.

U(x) =

4∑
j=1

Aj · exp[aj(x1 −Xj)
2 + bj(x1 − Yj)(x2 −Xj) + cj(x2 − Yj)2] (40)

where a = (−1,−1,−6.5,−0.7), b = (0, 0, 11, 0.6), c = (−10,−10,−6.5, 0.7), A =
(−200,−100,−170, 15), X = (1, 0,−0.5,−1), Y = (0, 0.5, 1.5, 1), as formulated in [Müller
and Brown, 1979, Hernández et al., 2018]. The dynamics are governed by

ẋ(t) = −β∇U(x) +
√
2Dη(t) (41)

where β = 1, η(t) is Gussian noise with zero mean, time step ∆t = 10−3, and reflecting bounds
(−1.5, 1.2)× (−0.2, 2.0).

E.4 Loss Construction

We used a complex loss system to maintain the Markov State Model properties. Additional constraints
like the Chapman-Kolmogorov loss ensure the conservation of the stationary distribution at the second-
highest eigenvalue. Reversibility loss ensures that the detailed balance is held in the MSM system,
and the Stiefel constraint ensures that the eigenvectors remain orthogonal.
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For protein systems, the K can be large with thousands of states, so we approximate the P θ by only
predicting the transition probabilities for the k = 48 nearest neighbors:

∀j ∈ N (i), P θ(i, j) = softmax(pθ(zi, zj ;n)) (42)

where N (i) are the k nearest neighbors of state i.

E.5 Training Details

For MB potential training, a two-layer MLP with a hidden dimension of 128 and a dropout rate of
0.1 was used to map the features to a scalar score. We trained the model for 200 epochs with early
stopping. The learning rate was set to 3e−3 using the Adam optimizer. All default hyperparameters
are given in Table A3.

For Aib9 peptide experiments, we concatenated all angle features into a 36D-shaped input for the
model, and applied a 2-layer MLP encoder that takes paired interaction features as input. The learning
rate was set to 1e−3 using the Adam optimizer. Training occurred for 200 epochs with early stopping.
All default hyperparameters are given in Table A3.

Table A3: Default hyperparameters for MB and Aib9 peptide experiments.

Experiment ∆t Temp (K) LR Epochs λCK λrev λstf λbr Paths (unc/cond)

MB Potential 1.0×10−3 – 1×10−3 200 1.0 1.0 1.0 1.0 200 / 200
Aib9 Peptide 2.0 ps 400 1×10−3 200 1.0 2.0 2.0 1.0 100 / 100

E.6 Evaluation Metrics

Row-KL Divergence We evaluate the KL-divergence of the predicted transition probabilities from
each micro-state i ∈ {1, . . . ,m} defined as a row of the parameterized transition matrix P θ(τ)
compared to the teacher transition matrix P ref(τ).

DKL(P θ(i, ·)||P ref(i, ·)) =
m∑
j=1

P θ(i, j) log
P θ(i, j)

P ref(i, j)
(43)

Wasserstein-2 Distance (W2) We compute theW2 distance of the predicted terminal state

W2 =

(
min

π∈Π(p,q)

∫
∥x− y∥22dπ(x,y)

)1/2

(44)

Chapman-Kolmogorov Error We are comparing the student kernel P θ at lag τ against empirical
2−lag kernel from counts to satisfy:

P (2τ) = P (τ)2 (45)
The error is reported to be: ∥∥P 2

θ − P ref(2τ)
∥∥
F

max(10−16, ∥P ref(2τ)∥F )
(46)

If the error is small, the model composes correctly and respect Markovianity, otherwise the model is
not consistent across time lags.
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F Algorithms

Here, we provide the pseudocode for the construction of the teacher transition matrices and training
the parameterized time-dependent generators in Algorithm 2 and the procedure for simulating the
unconditional and target-conditioned dynamics with ScooBDoob in Algorithm 3.

Algorithm 2 Training ScooBDoob
1: Input: Observed count of transitions between states i→ j at τ lag C(i, j; τ) for all i, j ∈
{1, . . . ,m}

2:
3: while Training do
4: P ij(τ)← C(i,j;τ)∑

j′ C(i,j′;τ) ▷ compute transition probabilities from each microstate

5: P (τ)← [P ij(τ)] ▷ construct unconditional transition matrix
6: V (i)← α/(Ci + 1), w(i)← exp(−τV (i)) ▷ density-aware weights
7: hV

N ← ν ▷ initialize terminal condition
8: for n in N − 1, . . . , 0 do
9: hV

n ← P (τ)(diag(w)hV
n+1) ▷ compute tilted distributions

10: P V
n (i, j)←

P ij(τ)w(j)hV
n+1(j)

(P (τ)diag(w)hV
n+1)(i)

▷ compute doob-tilted probabilities

11: P V
n ← [P V

n (i, j)] ▷ construct matrix
12:
13: end for
14: for micro-state i in 1, . . . ,m do ▷ train generator for each state i
15: P h

n,θ(i, ·)← NN(θ)
16: Compute loss Ltotal(θ) = LMSM(θ) + γbridgeLbridge(θ) + γstiefLstief(θ)
17: Optimize θ with ∇θLtotal
18: end for
19: end while
20: return parameterized transition predictor P θ(τ) : [0, 1]→ Rm×m

Algorithm 3 Inference with ScooBDoob

1: Input: parameterized model P θ(τ) : [0, 1]→ Rm×m, initial distribution µ0, number of steps N
2: P ← {} ▷ initialize path
3: for step n in 1, . . . , N − 1 do
4: µn ← µn−1P θ(τ) ▷ predict distribution over microstates
5: zn ∼ µn ▷ sample discrete state from distribution
6: P ← P ∪ {µn, zn} ▷ append to path
7: end for
8: return P , µN , zn
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