
KnowTuning: Knowledge-aware Fine-tuning for Large Language Models

Anonymous ACL submission

Abstract

Despite their success at many natural language001
processing (NLP) tasks, large language mod-002
els (LLMs) still struggle to effectively lever-003
age knowledge for knowledge-intensive tasks,004
manifesting limitations such as generating in-005
complete, non-factual, or illogical answers.006
These limitations stem from inadequate knowl-007
edge awareness of LLMs during vanilla fine-008
tuning. To address these problems, we propose009
a knowledge-aware fine-tuning (KnowTuning)010
method to explicitly and implicitly improve the011
knowledge awareness of LLMs. We devise an012
explicit knowledge-aware generation stage to013
train LLMs to explicitly identify knowledge014
triples in answers. We also propose an im-015
plicit knowledge-aware comparison stage to016
train LLMs to implicitly distinguish between017
reliable and unreliable knowledge, in three as-018
pects: completeness, factuality, and logical-019
ity. Extensive experiments on both generic and020
medical question answering (QA) datasets con-021
firm the effectiveness of KnowTuning, through022
automatic and human evaluations, across var-023
ious sizes of LLMs. Finally, we demonstrate024
that the improvements of KnowTuning gener-025
alize to unseen QA datasets.026

1 Introduction027

Large language models (LLMs) have become a de-028

fault solution for many natural language processing029

(NLP) scenarios, including the question answering030

(QA) task (Brown et al., 2020; Ouyang et al., 2022;031

Qin et al., 2023). To achieve strong performance,032

most LLM first accumulate substantial knowledge033

by pre-training on extensive datasets (Jiang et al.,034

2023; Touvron et al., 2023). Then, these LLMs035

further learn how to exploit the knowledge to an-036

swer diverse questions by supervised fine-tuning037

(SFT) (Wei et al., 2022; Chung et al., 2022; Wang038

et al., 2023f; Peng et al., 2023; Kang et al., 2023;039

Wang et al., 2023c).040

However, many recent studies indicate that fine-041
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Figure 1: Illustrations of vanilla fine-tunined LLMs lack-
ing knowledge awareness. (a) Vanilla fine-tuned LLMs
struggles to identify the necessary knowledge to an-
swer a specific question precisely. (b) Vanilla fine-tuned
LLMs cannot effectively distinguish between reliable
knowledge and unreliable knowledge in answers.

tuned LLMs may struggle to effectively lever- 042

age knowledge for question-answering (Yu et al., 043

2023a; Bai et al., 2023; Chen et al., 2023c; Chang 044

et al., 2023), which aims to answer questions that 045

require in-depth explanations and wide-range do- 046

main knowledge. In particular, LLMs are suscep- 047

tible to generating answers that may be incom- 048

plete (Singhal et al., 2022; Bian et al., 2023; Xu 049

et al., 2023b), non-factual (Wang et al., 2023a; 050

Min et al., 2023; Wang et al., 2023b), or illogi- 051

cal (Chen et al., 2023c; Zhong et al., 2023; Kang 052

et al., 2023). Incomplete answers offer incompre- 053

hensive and insufficient knowledge, non-factual 054

answers deliver factually incorrect knowledge, and 055

illogical answers provide incoherent and poorly 056

structured knowledge. 057

We hypothesize that these limitations stem from 058

the inadequate knowledge awareness of LLMs dur- 059

ing vanilla fine-tuning (Bian et al., 2023; Ji et al., 060

2023; Dou et al., 2023; Hua et al., 2024). Specif- 061

ically, as shown in Figure 1, vanilla fine-tuning 062

seldom identifies the necessary knowledge to an- 063

swer a question. In addition, it usually fails to 064

distinguish between reliable knowledge and unre- 065

liable knowledge in answers. Consequently, there 066

is a pressing need for designing knowledge-aware 067
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fine-tuning methods. This, then, is the overarching068

research question that motivates our work: how can069

we effectively improve the knowledge awareness of070

LLMs for solving knowledge-intensive tasks?071

To this end, we propose a novel knowledge-072

aware fine-tuning method, named KnowTuning,073

which aims to improve the knowledge awareness of074

LLMs. KnowTuning consists of two stages: (i) ex-075

plicit knowledge-aware generation, and (ii) implicit076

knowledge-aware comparison. In the first stage, we077

extract knowledge triples from given answers and078

train LLMs to explicitly generate knowledge triples.079

In the second stage, we adopt several knowledge-080

disturbing methods to construct knowledge com-081

parison sets along three dimensions, completeness,082

factuality, and logicality. Specifically, we gener-083

ate answers that are worse in terms of complete-084

ness, factuality, or logicality, by deleting, revising,085

and shuffling these knowledge triples. Besides, we086

rephrase original answers based on the knowledge087

triples to prevent overfitting. Finally, we combine088

the rephrased answers and answers with worse com-089

pleteness, factuality, and logicality as our knowl-090

edge comparison sets. We adopt direct preference091

optimization (DPO) (Rafailov et al., 2023) for opti-092

mizing LLMs on our knowledge comparison sets.093

We conduct experiments on a generic QA dataset094

and a medical QA dataset using automatic and095

human evaluations. Experimental results demon-096

strate the effectiveness of our proposed method097

KnowTuning, assessing completeness, factuality,098

and logicality across various sizes of LLMs. In099

addition, we demonstrate the improvement that100

KnowTuning brought can generalize to unseen QA101

datasets.102

In summary, our main contributions are:103

• We focus on improving the knowledge awareness104

of LLMs via fine-tuning for knowledge-intensive105

tasks.106

• We introduce KnowTuning, a novel method that107

fine-tunes LLMs to leverage explicit knowledge-108

aware generation and implicit knowledge-aware109

comparison to improve knowledge awareness of110

LLMs.111

• We demonstrate the effectiveness of112

KnowTuning in generic and medical do-113

main QA datasets through automatic and human114

evaluations, across various sizes of LLMs.115

Furthermore, the improvement of KnowTuning116

generalizes to unseen QA datasets.117

2 Related work 118

2.1 LLMs for knowledge-intensive Tasks 119

Large language models (LLMs) have been ap- 120

plied to various knowledge-intensive tasks (Moi- 121

seev et al., 2022; Yu et al., 2023b; Khattab et al., 122

2022; Tian et al., 2023; Zhang et al., 2023a; Xu 123

et al., 2023c; Mishra et al., 2023; Nguyen et al., 124

2023). Liu et al. (2022b) use few-shot demonstra- 125

tions to elicit relevant knowledge statements from 126

LLMs for QA tasks. Liu et al. (2022a) train a neural 127

model to generate relevant knowledge through rein- 128

forcement learning for QA tasks. Liu et al. (2023) 129

propose a unified model for generating relevant 130

knowledge and solving QA tasks. 131

However, these approaches mainly focus on 132

multiple-choice QA instead of complex knowledge- 133

intensive QA tasks (Krishna et al., 2021; Kada- 134

vath et al., 2022; Liu et al., 2022a, 2023; Kang 135

et al., 2023), which aim to solve questions that re- 136

quire in-depth explanations and wide-range domain 137

knowledge. Recent research indicates that LLMs 138

face challenges in tackling complex knowledge- 139

intensive QA tasks (Yu et al., 2023a; Bai et al., 140

2023; Chen et al., 2023c; Chang et al., 2023). In 141

particular, they are prone to generating responses 142

that are non-factual (Lee et al., 2022; Sun et al., 143

2023; Su et al., 2022; Wang et al., 2023b), incom- 144

plete (Singhal et al., 2022; Bian et al., 2023), or 145

illogical (Chen et al., 2023c; Zhong et al., 2023; 146

Kang et al., 2023). These limitations stem from the 147

inadequate knowledge awareness of LLMs, hinder- 148

ing their ability to effectively utilize knowledge for 149

solving complex knowledge-intensive QA tasks. 150

Consequently, there is a need for designing meth- 151

ods to improve the knowledge awareness of LLMs 152

for solving knowledge-intensive tasks. 153

2.2 Fine-tuning for LLMs 154

Fine-tuning is a kind of methods to optimize pre- 155

trained LLMs for better understanding and answer- 156

ing to natural language questions (Brown et al., 157

2020; Ouyang et al., 2022). Previously, fine-tuning 158

is mainly focused on enhancing general-purpose 159

QA abilities of LLMs (Wang et al., 2022; Wei et al., 160

2022; Longpre et al., 2023). These approaches 161

mainly adopt human-annotated datasets to build 162

the QA dataset. Recently, an alternative strategy 163

involves generating QA datasets through the uti- 164

lization of advanced LLMs to create answers to a 165

variety of questions (Wang et al., 2023f; Shumailov 166

et al., 2023). 167
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Figure 2: Overview of KnowTuning. KnowTuning leverages explicit knowledge generation and implicit knowledge
comparison to improve the knowledge awareness of LLMs.

Recent studies on fine-tuning fuse information168

about the quality of the generated answers into the169

supervision signals (Zhao et al., 2023; Guo et al.,170

2023; Wang et al., 2023d; Dong et al., 2023; Chen171

et al., 2024). Rafailov et al. (2023) propose direct172

preference optimization (DPO) to directly optimize173

LLMs on the pair-wise comparison set. Song et al.174

(2023) propose Preference Ranking Optimizatio175

(PRO) to fine-tune LLMs on list-wise comparison176

sets. Yuan et al. (2023) propose a margin-rank loss177

to optimize the LLMs on comparison sets.178

However, these methods are not designed to im-179

prove knowledge awareness of LLMs. In this pa-180

per, we aim to leverage explicit knowledge-aware181

generation and implicit knowledge-aware compari-182

son to improve knowledge awareness of LLMs for183

solving knowledge-intensive QA tasks.184

3 Method185

In this section we detail the KnowTuning method.186

First, we introduce the preliminaries. Then, we187

introduce the explicit knowledge-aware generation.188

Next, we introduce implicit knowledge-aware com-189

parison in detail. Finally, a training process for190

KnowTuning is explained.191

3.1 Preliminaries192

Supervised fine-tuning. supervised fine-tuning193

(SFT) aims to train pre-trained LLMs to understand194

and answer natural language questions. Formally, 195

given a QA dataset D = {(qi, ai)}Ni=1, where qi 196

and ai denotes a question and a corresponding an- 197

swer. The training objective of SFT is to minimize 198

the following loss: 199

LSFT = −
|ai|∑
j=1

logPπSFT (ai,j |ai,<j , qi), (1) 200

where ai,j denotes the j-th token of ai. 201

Knowledge triples. Since subject-predicate-object 202

knowledge triples can well cover the necessary 203

knowledge for QA (Yahya et al., 2016; ElSahar 204

et al., 2018; Ouyang et al., 2021), we denote 205

the knowledge in the answer as subject-predicate- 206

object knowledge triples set Ki = {Si,Pi,Oi}, 207

where Si, Pi and Oi refer to subject set, predicate 208

set and object set of answer ai. 209

3.2 Explicit Knowledge-aware Generation 210

To improve the explicit knowledge awareness of 211

LLMs, we fine-tune LLMs to explicitly generate 212

knowledge triples relevant to the question, as illus- 213

trated in Figure 2. Specifically, we extract knowl- 214

edge triples set K from the original answers a as 215

follows: 216

Ki = {Si,Pi,Oi} = Extract(ai), (2) 217

where Extract(·) is implemented by prompting 218

OpenAI models to extract knowledge triples, fol- 219
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lowing Bai et al. (2023). Then, we construct the220

knowledge triples generation dataset Dtk as fol-221

lows:222

Dk = {qi, aki }Ni=1, (3)223

where aki denotes the text of knowledge triples set224

Ki. Finally, we combine the original QA dataset225

D and the knowledge triples generation dataset Dk226

as the explicit knowledge-aware generation dataset227

Dkg as:228

Dkg = D ∪Dk. (4)229

3.3 Implicit Knowledge-aware Comparison230

To improve implicit knowledge awareness of LLMs231

in terms of completeness, factuality and logicality,232

we construct three comparison sets by deleting,233

revising, and shuffling knowledge triples.234

Knowledge completeness comparison. To im-235

prove knowledge completeness awareness of236

LLMs, we construct the knowledge completeness237

comparison set by randomly deleting the knowl-238

edge triples and rewriting the answers. Specifically,239

we first randomly delete the subject, predicate and240

object in the knowledge triples set Ki as follows:241

Kic
i = {Sic

i ,P ic
i ,Oic

i }, (5)242

where Sic
i , P ic

i and Oic
i refer to the incomplete sets243

after randomly deleting α percent of Si, Pi and Oi,244

respectively. Then, we rewrite the answer based on245

the incomplete knowledge triples set as:246

aici = Rewrite(Kic
i ), (6)247

where Rewrite(·) is implemented by prompting248

OpenAI models. In addition, to avoid overfitting on249

the original answers (Jain et al., 2023), we rephrase250

the original answers based on knowledge triples.251

arepi = Rewrite(Ki). (7)252

Finally, we combine the rephrase answer arepi and253

the incomplete answer aici into knowledge com-254

pleteness comparison set as follows:255

Dkcc = {(qi, (arepi , aici ))}Ni=1, (8)256

Knowledge factuality comparison. To improve257

the knowledge factuality awareness of LLMs, we258

construct the knowledge factuality comparison set259

by randomly revising the knowledge triples as non-260

factual knowledge triples and rewriting the answers.261

Specifically, we first randomly revise the knowl-262

edge triples set Ki as follows:263

Knf
i = Revise(Ki), (9)264

where Revise(·) is implemented by prompting Ope- 265

nAI models to revise the knowledge triples to the 266

wrong knowledge triples. Then, we rewrite the an- 267

swer based on the nonfactual knowledge triples set 268

as: 269

anfi = Rewrite(Knf
i ). (10) 270

Finally, we combine the rephrased answer arepi and 271

the nonfactual answer anfi into knowledge factual- 272

ity comparison set as follows: 273

Dkfc = {(qi, (arepi , anfi ))}Ni=1. (11) 274

Knowledge logicality comparison. To improve 275

the knowledge logicality awareness of LLMs, we 276

construct the knowledge logicality comparison set 277

by randomly shuffling the knowledge triples and 278

rewriting the answers. Specifically, we first ran- 279

domly shuffle the subject, predicate and object in 280

the knowledge triples set K as follows: 281

Kil
i = {Sil

i ,P il
i ,Oil

i }, (12) 282

where Sil
i , P il

i and Oil
i refers to the illogical sets 283

after random shuffling β percent of Si, Pi and Oi, 284

respectively. Then, we rewrite the answer based on 285

the illogical knowledge triples set as: 286

aili = Rewrite(Kil
i ), (13) 287

We combine the rephrased answer arepi and the 288

illogical answer aili into knowledge logicality com- 289

parison set as follows: 290

Dklc = {(qi, (arepi , aili ))}Ni=1. (14) 291

Finally, we combine the knowledge completeness 292

comparison set, the knowledge factuality compari- 293

son set, and the knowledge logicality comparison 294

set as the implicit knowledge-aware comparison 295

set: 296

Dkc = Dkcc ∪ Dkfc ∪ Dklc. (15) 297

3.4 Training 298

To improve the knowledge awareness of LLMs 299

for solving complex knowledge-intensive tasks, 300

KnowTuning includes explicit knowledge-aware 301

generation training and implicit knowledge-aware 302

comparison training. Specifically, we first train 303

LLMs on explicit knowledge-aware generation 304

dataset Dkg, resulting in a model denoted as πkg. 305

Then, KnowTuning aims to further improve the 306

implicit knowledge awareness of the model πkg 307
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in completeness, factuality, and logicality. To ac-308

complish this, we rewrite the DPO (Rafailov et al.,309

2023) loss to obtain the implicit knowledge-aware310

comparison loss as follows:311

Lkc=E(q,(aw,al))∼Dkc

[
log σ

(
β log

πkc(aw|q)
πkg(aw|q)

− β log
πkc(al|q)
πkg(al|q)

)]
,

(16)312

where (aw, al) denotes the answer pair of the ques-313

tion q ∈ Dkc, and aw is the better answer.314

4 Experiments315

4.1 Research questions316

We aim to answer the following research questions317

in our experiments: RQ1: How does KnowTuning318

perform on generic and medical domain QA un-319

der automatic evaluation? RQ2: What is the per-320

formance of KnowTuning on generic and medi-321

cal domain QA under human evaluation? RQ3:322

How do explicit knowledge-aware generation and323

implicit knowledge-aware comparison affect the324

performance of KnowTuning? RQ4: How effec-325

tive is KnowTuning at generalizing to unseen QA326

datasets?327

4.2 Datasets328

We divide the datasets in our experiments into329

two groups: generic domain and domain-specific.330

We conduct experiments on generic domain331

and domain-specific knowledge-intensive question-332

answering datasets:333

• LIMA (Zhou et al., 2023) is a carefully curated334

generic domain QA dataset. The dataset is col-335

lected from three community QA websites: Stack336

Exchange, wikiHow, and the Pushshift Reddit337

Dataset (Baumgartner et al., 2020). The dataset338

includes 1000 QA pairs for training and 300 ques-339

tions for testing.340

• MedQuAD (Abacha and Demner-Fushman,341

2019) is a medical domain QA dataset, which342

is collected from 12 National Institutes of Health343

websites. The dataset covers 37 different ques-344

tion types. In this paper, following (August et al.,345

2022), we filter the questions of the category “In-346

formation” for giving definitions and information347

about medical terms. Specifically, we filter 1000348

QA pairs for training and 100 questions for test-349

ing.350

In addition, to evaluate the ability of methods to351

generalize to unseen questions, we employed two352

diverse test sets: Vicuna (Chiang et al., 2023) and 353

WizardLM (Xu et al., 2023a). These test sets to- 354

tally contain 298 real-world human questions from 355

diverse sources and diverse difficulties. 356

4.3 Baselines 357

We compare our model with the following base- 358

lines: 359

• Base denotes that testing the Llama2-base 360

model (Touvron et al., 2023) under zero-shot 361

setting. 362

• SFT (Ouyang et al., 2022) represents vanilla fine- 363

tuning backbone LLMs on QA datasets accord- 364

ing to Eq. 1. 365

• DPO (Rafailov et al., 2023) fine-tunes LLMs 366

on comparison sets by increasing the likelihood 367

of generating good answers while decreasing 368

the likelihood of bad ones. Following Cui et al. 369

(2023), we first collect candidate answers from 370

different sizes of vanilla fine-tuned LLMs and 371

golden answers, and then use GPT-4 scoring to 372

construct comparison sets with the same size as 373

the knowledge comparison set. 374

4.4 Evaluation Metrics 375

We present our experimental results using two eval- 376

uation metrics: automatic evaluation and human- 377

based evaluation. Since ROUGE (ROUGE, 2004) 378

and BLEU (Papineni et al., 2002) can not effec- 379

tively evaluate the quality of answers for com- 380

plex questions (Krishna et al., 2021; Xu et al., 381

2023b; Chen et al., 2023a), recent studies propose 382

to use GPT-4 for evaluating the quality of LLMs 383

answers (Zheng et al., 2023; Dubois et al., 2023; 384

Fu et al., 2023). Consequently, we employ GPT-4 385

to rate generated answers on three aspects: com- 386

pleteness, factuality, and logicality, on a range of 1 387

to 10. Following Singhal et al. (2022); Zheng et al. 388

(2023); Zhang et al. (2023b), we define complete- 389

ness, factuality and logicality as: (i) Completeness: 390

it examines whether the answers provide compre- 391

hensive and sufficient knowledge to the questions. 392

(ii) Factuality: it examines whether the knowledge 393

in the answers is factually correct. (iii) Logicality: 394

it examines whether the knowledge in the answers 395

is logically rigorous and structured. To avoid posi- 396

tional bias (Ko et al., 2020; Wang et al., 2023e), we 397

evaluate each answer in both positions during two 398

separate runs. Following Li et al. (2023); Chen et al. 399

(2023b), we define “Win-Tie-Lose” as: (i) Win: 400

KnowTuning wins twice, or wins once and ties 401

once. (ii) Tie: KnowTuning ties twice, or wins 402
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Completeness Factuality Logicality

Model Dataset Win Tie Lose Win Tie Lose Win Tie Lose Avg. gap

Backbone Language Model: Llama2-7b-base

KnowTuning vs Base
LIMA

95.00∗ 3.67 1.33 88.33∗ 10.34 1.33 92.00∗ 6.67 1.33 +90.45
KnowTuning vs SFT 72.67∗ 17.66 9.67 48.33∗ 43.67 8.00 61.33∗ 29.67 9.00 +51.89
KnowTuning vs DPO 68.67∗ 22.66 8.67 41.00∗ 51.00 8.00 61.67∗ 29.66 8.67 +48.67

KnowTuning vs Base
MedQuAD

87.00∗ 11.00 2.00 70.00∗ 20.00 10.00 73.00∗ 20.00 7.00 +70.33
KnowTuning vs SFT 56.00∗ 28.00 16.00 49.00∗ 32.00 19.00 52.00∗ 30.00 18.00 +34.67
KnowTuning vs DPO 43.00∗ 32.00 25.00 48.00∗ 29.00 23.00 45.00∗ 34.00 21.00 +22.33

Backbone Language Model: Llama2-13b-base

KnowTuning vs Base
LIMA

90.67∗ 8.33 1.00 68.00∗ 28.00 4.00 74.00∗ 23.00 3.00 +74.89
KnowTuning vs SFT 66.67∗ 19.67 13.66 48.67∗ 40.67 10.66 60.67∗ 29.00 10.33 +47.12
KnowTuning vs DPO 60.33∗ 22.00 17.67 37.00∗ 49.00 14.00 49.67∗ 36.67 13.67 +33.89

KnowTuning vs Base
MedQuAD

94.00∗ 4.00 2.00 70.00∗ 25.00 5.00 72.00∗ 23.00 5.00 +74.67
KnowTuning vs SFT 51.00∗ 26.00 23.00 37.00∗ 45.00 18.00 40.00∗ 46.00 14.00 +24.33
KnowTuning vs DPO 51.00∗ 27.00 22.00 35.00∗ 44.00 21.00 39.00∗ 44.00 17.00 +21.67

Table 1: Main results on generic QA and medical QA datasets evaluated by GPT-4. The scores marked with ∗ mean
KnowTuning outperforms the baseline significantly with p-value< 0.05 (sign. test), following Guan et al. (2021).

LIMA MedQuAD

Model Avg. length Avg. length

Backbone Language Model: Llama2-7b-base

Base 377.84 328.43
SFT 387.66 287.88
DPO 405.47 432.15
KnowTuning 426.13 367.21

Backbone Language Model: Llama2-13b-base

Base 255.01 223.52
SFT 369.96 325.31
DPO 391.12 368.58
KnowTuning 444.57 392.62

Table 2: Average length of generated answers.

once and loses once. (iii) Lose: KnowTuning loses403

twice, or loses once and ties once.404

In addition, we employ human judgments as the405

gold standard for assessing the quality of answers.406

Specifically, human evaluators perform pair-wise407

comparisons of the top-performing models identi-408

fied in automatic evaluations. They are presented409

with a question and two answers and asked to judge410

on three aspects: completeness, factuality, and log-411

icality. More details of the evaluation are in Ap-412

pendix A.413

4.5 Implementation details414

We employ Llama2-base models of different sizes415

(7b and 13b) as our backbone models for training.416

We adopt the Alpaca template (Taori et al., 2023)417

for training and inference. The OpenAI model used418

for Extract(·), Rewrite(·) and Revise(·) is gpt-419

3.5-turbo-16k. More details of the implementation420

are in Appendix B.421

5 Experimental results and analysis 422

To answer our research questions, we conduct 423

generic domain and medical domain QA exper- 424

iments, ablation studies, and unseen QA experi- 425

ments. In addition, we conducted a case study to 426

gain further understanding of the effectiveness of 427

KnowTuning. 428

5.1 Main results (RQ1) 429

Table 1 presents the GPT-4 evaluation results for 430

both generic and medical domain QA datasets. 431

Across all metrics, KnowTuning outperforms the 432

baseline models in these domains. Based on the 433

results, we have three main observations: 434

• KnowTuning consistently surpasses baselines 435

in terms of completeness, factuality and 436

logicality. Compared with Base and SFT, 437

KnowTuning focuses on explicitly and implic- 438

itly improving knowledge awareness of LLMs, 439

which significantly improves the performance of 440

LLMs on knowledge-intensive QA tasks. Com- 441

pared with DPO, KnowTuning is more effec- 442

tive in improving the performance of LLMs on 443

complex knowledge-intensive QA in multiple as- 444

pects. Although DPO improves the performance 445

of vanilla fine-tuned LLMs by distinguishing be- 446

tween generally good and bad answers, it ig- 447

nores improving the knowledge awareness of 448

LLMs in multiple essential aspects. In contrast, 449

KnowTuning improves knowledge awareness of 450

LLMs in terms of completeness, factuality and 451

logicality, simultaneously. These improvements 452

of KnowTuning are observed across generic and 453
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Completeness Factuality Logicality

Model Dataset Win Tie Lose Win Tie Lose Win Tie Lose Avg. gap

Backbone Language Model: Llama2-7b-base

KnowTuning vs DPO LIMA 62.33 27.00 10.67 34.67 58.33 7.00 54.00 37.67 8.33 +41.67
KnowTuning vs DPO MedQuAD 54.00 19.00 27.00 46.00 36.00 18.00 47.00 36.00 17.00 +28.33

Backbone Language Model: Llama2-13b-base

KnowTuning vs DPO LIMA 55.33 28.34 16.33 31.00 58.33 10.67 42.67 45.66 11.67 +30.11
KnowTuning vs DPO MedQuAD 47.00 31.00 22.00 33.00 55.00 12.00 29.00 63.00 8.00 +22.33

Table 3: Human evaluation results on generic domain and medical domain QA datasets.

Completeness Factuality Logicality

Model Win Tie Lose Win Tie Lose Win Tie Lose Avg. gap

-KG vs KnowTuning 19.33 32.67 48.00 14.67 58.00 27.33 15.67 46.00 38.33 -21.33

-KCC vs KnowTuning 25.67 32.33 42.00 18.67 59.33 22.00 18.00 50.00 32.00 -11.22
-KFC vs KnowTuning 27.67 30.33 42.00 16.33 59.00 24.67 22.33 48.34 29.33 -9.89
-KLC vs KnowTuning 25.33 33.67 41.00 14.00 63.67 22.33 19.33 44.00 36.67 -13.78
-KC vs KnowTuning 14.00 16.67 69.33 12.67 40.66 46.67 13.00 23.33 63.67 -46.67

Table 4: Ablation study evaluated by GPT-4.

medical domain QA datasets, which indicate the454

importance of improving explicit and implicit455

knowledge awareness of LLMs.456

• KnowTuning demonstrates effectiveness on457

LLMs across different sizes. We observe that458

KnowTuning consistently improves the perfor-459

mance of QA tasks on different scales (7b and460

13B) LLMs. This finding aligns with Bian et al.461

(2023): LLMs learn a lot of knowledge during462

the pre-training stage but still need to learn how463

to effectively leverage knowledge for solving464

knowledge-intensive QA tasks.465

• Knowtuning tends to generate longer answers466

with better completeness, factuality, and logi-467

cality. As shown in Table 2, KnowTuning mostly468

generates longer answers than the baselines and469

achieves better completeness, factuality and log-470

icality. An exception is observed in the medi-471

cal QA domain, where DPO based on llama7b-472

base generates longer answers than KnowTuning.473

Nonetheless, these answers from DPO are worse474

in completeness, factuality and logicality. It fur-475

ther demonstrates the importance of improving476

knowledge awareness of LLMs, as opposed to477

more surface-level aspects.478

5.2 Human evaluation (RQ2)479

Human evaluations are crucial for accurately as-480

sessing the quality of answers. As shown in Table 3,481

to facilitate human annotation processes, we focus482

on comparing KnowTuning with the key baseline483

DPO:484

• Our findings indicate that KnowTuning consis-485

tently surpasses DPO in terms of completeness, 486

factuality, and logicality performance across var- 487

ious sizes of LLMs under human evaluation. 488

• KnowTuning demonstrates superior performance 489

over QA in both generic and medical domain QA 490

evaluated by human, in terms of completeness, 491

factuality, and logicality. 492

5.3 Ablation studies (RQ3) 493

To analyze the effect of the different knowledge- 494

aware stages in KnowTuning, we conduct an 495

ablation study. Table 4 shows the results 496

on KnowTuning with five settings: (i) -KG: 497

KnowTuning without explicit knowledge gener- 498

ation. (ii) -KCC: KnowTuning without the im- 499

plicit knowledge completeness comparison set. 500

(iii) -KFC: KnowTuning without the implicit 501

knowledge factuality comparison set. (iv) -KLC: 502

KnowTuning without the implicit knowledge logi- 503

cality comparison set. (v) -KC: KnowTuning with- 504

out any implicit knowledge comparison sets. 505

Table 4 shows that all knowledge-aware stages 506

help KnowTuning as removing any of them de- 507

creases performance: 508

• Removing the explicit knowledge-aware gen- 509

eration. We observe that removing explicit 510

knowledge-aware generation (-KG) decreases the 511

performance of KnowTuning, especially in terms 512

of completeness and logicality. This indicates 513

that explicit knowledge-aware generation helps 514

LLMs to be aware of complete knowledge infor- 515

mation and the logical structure of knowledge. 516

• Removing the implicit knowledge-aware com- 517
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(e) Factuality
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(f) Logicality
Figure 3: Results on unseen QA datasets evaluated by GPT-4, including completeness, factuality, and logicality. The
backbone model of (a), (b) and (c) is Llama2-7b-base. The backbone model of (d), (e) and (f) is Llama2-13b-base.

parison. We observe that the model without518

the implicit knowledge-aware comparison faces519

a huge performance degradation in knowledge-520

intensive QA. Specifically, removing knowledge521

completeness comparison (-KCC) negatively im-522

pacts completeness, removing knowledge factu-523

ality comparison (-KFC) negatively impacts fac-524

tuality, and removing knowledge logicality com-525

parison (-KLC) negatively impacts logicality. In526

addition, when removing all implicit knowledge-527

aware comparison sets (-KC), there is a substan-528

tial drop in the performance on the knowledge-529

intensive QA task on all three aspects. As a530

result, although the model still explicitly gen-531

erates knowledge, the absence of distinguishing532

reliable and unreliable knowledge leads to poor533

knowledge-intensive QA performance.534

5.4 Unseen QA datasets results (RQ4)535

To evaluate the ability of methods to generalize536

to unseen questions, we conduct experiments on537

LLMs trained on the generic domain QA dataset.538

Figure 3 demonstrates that KnowTuning can effec-539

tively generalize to unseen questions:540

• Compared to baselines, KnowTuning can gener-541

alize the improvement to unseen questions across542

different sizes of LLMs.543

• We observe that the factuality improvement of544

KnowTuning is harder to generalize to unseen545

questions than completeness and logicality. This546

difficulty arises because factuality requires spe-547

cific and detailed knowledge that might not be548

covered during the training phase (Wang et al., 549

2023b; Xu et al., 2024). 550

5.5 Case study 551

We also conduct a detailed case study to intu- 552

itively show how KnowTuning improves knowl- 553

edge awareness of LLMs for solving knowledge- 554

intensive tasks, compared to SFT and DPO. In 555

the case study, KnowTuning answers the question 556

logically in multiple aspects, while SFT and DPO 557

answer with incomplete knowledge and lack of log- 558

icality. In addition, SFT and DPO both introduce 559

incorrect knowledge in answers. More details of 560

our case study results are in Appendix C. 561

6 Conclusions 562

In this paper, we focus on improving the knowledge 563

awareness of LLMs via fine-tuning for knowledge- 564

intensive tasks. We have proposed KnowTuning 565

to fine-tune LLMs through explicit knowledge- 566

aware generation and implicit knowledge-aware 567

comparison stages. We have conducted compre- 568

hensive experiments on generic and medical do- 569

main QA datasets, demonstrating the effective- 570

ness of KnowTuning through automatic and hu- 571

man evaluations, across various sizes of LLMs. 572

Moreover, we have shown that the improvements 573

achieved with KnowTuning can generalize to un- 574

seen QA datasets. Our code and dataset are avail- 575

able at https://anonymous.4open.science/r/ 576

ACL_KnowTuning-FBA0. 577
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Limitations578

In this study, KnowTuning is mainly aimed at579

knowledge-intensive tasks, leaving its applicabil-580

ity to other tasks for future research (Burns et al.,581

2023). Moreover, our efforts have been concen-582

trated on enhancing the knowledge awareness of583

LLMs during the fine-tuning stage. Future studies584

will aim to explore improving knowledge aware-585

ness of LLMs in the pre-training stage (Rosset586

et al., 2020).587

Ethics Statement588

KnowTuning mainly focuses on completeness, fac-589

tuality, and logicality, but not social bias or the po-590

tential for generating harmful or toxic content (He-591

witt et al., 2024). It is imperative to exercise caution592

when implementing our model in real-world appli-593

cations, particularly in scenarios involving critical594

decision-making or direct interactions with users.595
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Appendix1059

A Details of Evaluation1060

A.1 GPT-4 Evaluation1061

This section provides specifics of the GPT-4 prompt1062

utilized for evaluation, employing gpt4-turbo. Fig-1063

ure 4 illustrates the adapted prompt from Zheng1064

et al. (2023), aimed at assessing the completeness,1065

factuality, and logicality of answers.1066

A.2 Human Evaluation1067

Instructions for human evaluation are depicted in1068

Figure 5.1069

B Details of Implementation 1070

B.1 Prompts for Extracting, Rewriting, and 1071

Revising 1072

Details for the prompts used in Extract(·), 1073

Rewrite(·), and Revise(·) are provided. Fig- 1074

ures 6, 7, and 8 display the prompts for Extract(·), 1075

Rewrite(·), and Revise(·), respectively. 1076

B.2 Training 1077

During the training phase, the AdamW optimizer 1078

(Loshchilov and Hutter, 2019) is utilized with ini- 1079

tial learning rates of 5 · 10−5 for SFT and 1 · 10−5 1080

for DPO. The batch sizes for SFT and DPO are 1081

set to 16 and 8, respectively, with SFT undergo- 1082

ing 3 epochs of training and DPO 1 epoch. The 1083

deletion and shuffling percentages, α and β, are 1084

both fixed at 0.5. Training leverages PEFT (Man- 1085

grulkar et al., 2022), LLaMA-Factory (Hiyouga, 1086

2023) and LoRA (Hu et al., 2022). All training hy- 1087

perparameters for SFT and DPO are recommended 1088

by LLaMA-Factory (Hiyouga, 2023). 1089

C Details of Case Study 1090

As shown in Figure 9, this case study presents an- 1091

swers provided by three methods: SFT, DPO, and 1092

KnowTuning. Generally, the observations are as 1093

follows: 1094

• The answer of KnowTuning is the most complete, 1095

providing detailed information on ingredients, 1096

texture, taste, and how dosa and poori masalas are 1097

served differently. The answer of SFT describes 1098

only one type of potato masala and does not com- 1099

pare the differences between the two types of 1100

potato masala. And the answer of DPO does not 1101

describe poori masala comprehensively, making 1102

it bad completeness. 1103

• KnowTuning leads in factuality, with specific, ac- 1104

curate details that match traditional recipes. The 1105

answer of SFT describes incorporates elements 1106

(like grated coconut and carrots) that are not typ- 1107

ically found in the most traditional or widely 1108

recognized versions of potato masala for dosa. 1109

DPO emphasizes coconut milk, which is not a 1110

standard ingredient in either dish. 1111

• KnowTuning also excels in logicality, methodi- 1112

cally comparing the two masalas in a way that’s 1113

easy to understand. SFT does not logically ad- 1114

dress the question, offering a non-comparative, 1115

repetitive analysis. DPO encounters problems in 1116

maintaining a coherent structure; it does not fol- 1117

low through with a detailed description of poori 1118
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[System prompt]
You are a helpful and precise assistant for checking the quality of the answer.

[User prompt]
[Question] 
{Q} 
[The Start of Assistant 1’s response] 
{R1} 
[The End of Assistant 1’s response]
[The Start of Assistant 2’s response] 
{R2} 
[The End of Assistant 2’s response]
We would like to request your feedback on the performance of two AI assistants in 
response to the user question displayed above.
Please rate the Knowledge Completeness, Knowledge Factuality and Knowledge Logicality 
of their responses. Each aspect of each assistant receives an score on a scale of 1 to 10, 
where a higher score indicates better performance. 
Please generate Knowledge Completeness, Knowledge Factuality and Knowledge 
Logicality scores for each assistant in order.
Please generate the scores in order and following format.
{'Knowledge Completeness':value,'Knowledge Factuality':value,'Knowledge Logicality':value}
Please first output two lines containing values indicating the Knowledge Completeness, 
Knowledge Factuality and Knowledge Logicality scores for Assistant 1 and 2, respectively. 
In the subsequent line, please provide a comprehensive explanation of your evaluation, 
avoiding any potential bias and ensuring that the order in which the responses were 
presented does not affect your judgment.

Figure 4: Prompts for GPT-4 evaluation.

You’ll be presented with a series of questions. For each question, two answers will be 
provided. Your task is to read both answers carefully and decide which one you believe is 
better. 
When judging, consider:
Completeness: It examines whether the answers provide comprehensive and sufficient 
knowledge relevant to the questions.
Factuality: It examines whether the knowledge in the answers is factually correct
Logicality: it examines whether the knowledge in the answers is logically rigorous and 
structured.

Question: 
{Q} 
Answer A:
{A1}
Answer B: 
{A2}

Comparing these two answers, Comparing these two answers, in terms of completeness, 
factuality and logicality, respectively. 
Give the win-tie-lose of Answer A compared to Answer B in each of the three aspects.

Figure 5: Instructions for human evaluation.
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[System prompt]
You are an expert in extracting knowledge triples (Subject, Predicate, Object).

[User prompt]
Please follow the following requirements to extract knowledge triples:
1. Please extract all #Knowledge Triples# from the #Given Text#.                                   
2. Please generate answers in JSON format.

{
"Triplets": [
{
"Subject": "...",
"Predicate": "...",
"Object": "..."

}
]

}
3. Please extract the knowledge triples according to the following definition.                                    
Subject: In a triplet, the subject represents the primary entity or concept that the statement 
is about. It's akin to the focal point of the information being conveyed. The subject is usually 
a distinct entity identifiable within a given domain of knowledge.

Predicate: The predicate in a triplet functions as the relationship or property that connects 
the subject to the object. It defines the nature of the link or association between the two. 
Predicates are often verbs or verb phrases in natural language but can also be relationship 
terms in a database.

Object: The object in a triplet is the entity or concept that is linked to the subject through the 
predicate. It can be seen as the target or endpoint of the relationship initiated by the subject. 
The object can be a concrete entity, a value, or another abstract concept.
#Given Text#:                                    
{A}
#Knowledge Triples#:

Figure 6: Prompts for extracting.

[System prompt]
You are an assistant skilled in writing an fluent answer based on given knowledge triples.

[User prompt]
Please rewrite the #Answer# based on the #Given Knowledge Triples#, and #Answer# 
should follow the content and logical order in the #Given Knowledge Triples#.

#Given Knowledge Triples#:
{Knowledge Triples}
#Answer#:

Figure 7: Prompts for rewriting.

[System prompt]
You are an expert at revising knowledge triples (Subject, Predicate, Object).

[User prompt]
Please revise the following knowledge triples to be factually incorrect according to the 
following rules:
1.Revise the knowledge triple to try to have the same word count as the original knowledge 
triple
#Given Knowledge Triples#:
{Knowledge Triples}
#Revised Knowledge Triples#:

Figure 8: Prompts for revising.
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Question:
What is the difference between the potato masala for Dosa and the one that is served with poori?

SFT:
There are two ways of preparing potato masala for dosa. The first one is to make a paste of boiled 
potatoes, grated coconut, green chilies, and coriander. This paste is then mixed with grated carrots, 
ginger, garlic, and some salt. This mixture is then fried until the potatoes are cooked.

The second way of preparing potato masala for dosa is to make a paste of boiled potatoes, grated 
coconut, green chilies, and coriander. This paste is then mixed with grated carrots, ginger, garlic, and 
some salt. This mixture is then fried until the potatoes are cooked.

DPO:
There are a few key differences between the potato masala for dosa and the one served with poori. 

The potato masala for dosa is usually made with less spices than the one served with poori. This is 
because the dosa is already spicy enough on its own, and the potato masala is meant to complement 
the spice level of the dosa.
The potato masala for dosa is usually made with more potatoes than the one served with poori. This is 
because the dosa is a more filling dish than the poori, and the potato masala helps to add more volume 
to the dish.\n* The potato masala for dosa is usually made with more coconut milk than the one served 
with poori. This is because the dosa is a creamier dish than the poori, and the coconut milk helps to 
add more creaminess to the dish. 
The potato masala for dosa is usually made with more coriander leaves than the one served with poori. 
This is because the dosa is a more flavorful dish than the poori, and the coriander leaves help to add 
more flavor to the dish. 
The potato masala for dosa is usually made with more cumin seeds than the one served with poori. 
This is because the dosa is a more aromatic dish than the poori, and the cumin seeds help to add 
more aroma to the dish.

### Potato Masala for Dosa

The potato masala for dosa is a simple yet flavorful dish that is perfect for a quick and easy meal. The 
dish is made with potatoes, onions, tomatoes, and a few spices. The potatoes are boiled and then 
mashed, and then the onions, tomatoes, and spices are added to the mashed potatoes. The dish is 
then simmered until the potatoes are tender and the flavors have melded together. The potato masala 
for dosa is a delicious and easy dish that can be made in just a few minutes.

### Potato Masala for Poori

The potato masala for poori is a popular dish in Indian cuisine. The dish is made.

KnowTuning:
There are two types of potato masala commonly served in India, one with dosa and the other with poori. 
Here are the key differences between the two:

1. Ingredients: The dosa potato masala is typically prepared with grated potatoes, onions, tomatoes, 
coriander, green chili, ginger, garlic, turmeric powder, red chili powder, cumin powder, coriander 
powder, salt, and water. The poori potato masala, on the other hand, is made with grated potatoes, 
onions, tomatoes, green chilies, ginger, garlic, red chili powder, coriander powder, salt, and water. 
While both recipes call for the same ingredients, the dosa masala has a distinct flavor profile due to the 
addition of turmeric powder and cumin powder.

2. Texture: The dosa masala has a creamy texture, while the poori masala has a chunky texture. The 
dosa masala is more of a dip or sauce that you can scoop up with the dosa, while the poori masala is a 
more substantial side dish that goes well with the soft and fluffy texture of the poori.

3. Taste: The dosa masala is typically spicier and more flavorful than the poori masala. The dosa
masala is aromatic and has a tangy flavor from the tomatoes and the green chilies. The poori masala, 
on the other hand, is more subtle in flavor and is slightly sweet due to the addition of turmeric powder.

4. Serving: The dosa masala is usually served as a dip or side dish to be scooped up with the dosa. 
The poori masala, on the other hand, is served as a side dish to be eaten with the poori.

In conclusion, while both potato masalas are delicious and popular dishes in India, they are different in 
terms of their ingredients, texture, taste, and serving.

Figure 9: Case study for intuitive comparisons.
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masala, which undermines the logicality.1119
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