
Under review as a conference paper at ICLR 2024

IT’S ABOUT TIME: TEMPORAL REFERENCES IN
EMERGENT COMMUNICATION

Anonymous authors
Paper under double-blind review

ABSTRACT

As humans, we use linguistic elements referencing time, such as “before” or
“tomorrow”, to easily share past experiences and future predictions. While temporal
aspects of the language have been considered in computational linguistics, no
such exploration has been done within the field of emergent communication. We
research this gap, providing the first reported temporal vocabulary within emergent
communication literature. Our experimental analysis shows that the ability to
process temporal relationships is sufficient for the natural emergence of temporal
references, and that no additional losses are necessary. Our readily transferable
architectural insights provide the basis for the incorporation of temporal referencing
into other emergent communication environments.

1 INTRODUCTION

How will autonomous agents communicate? What will the resulting language look like if it’s left
to them to design their own complex languages? These questions have been examined through the
lens of Emergent Communication (EC) (Lazaridou and Baroni, 2020), where agents develop their
language from scratch. The resulting language is usually tailored to the specific environment in which
they have been trained, with the language reflecting the tasks the agents perform, the actions available
to them and the other agents they interact with. These properties make the emergent language memory
and bandwidth efficient, as the agents can optimise their vocabulary size and word length to their
specific task, providing an advantage over a general, hand-crafted communication protocol.

Another aspect of the communication protocol which may benefit the agents is the ability to reference
previous observations. For example, agents deployed in autonomous vehicles can share information
about previously encountered obstacles or past traffic conditions. Agents working in finance can
share their experiences of past trading operations, trading performance and past financial data. Agents
tasked with monitoring cybersecurity could more easily share information about past incidents and
attack patterns to prevent future threats. As environmental complexity is being scaled in emergent
communication research (Chaabouni et al., 2022), temporal references will also benefit agents
in settings where temporal relationships are embedded. One example is social deduction games
(Brandizzi et al., 2021; Lipinski et al., 2022; Kopparapu et al., 2022), where referencing past events
are expected to be key to winning strategies. Temporal references will also allow agents to develop
more efficient methods of communication by assigning shorter messages to events which happen
more often, similarly to Zipf’s Law in human languages Zipf (1949). The temporal references,
in conjunction with the general characteristics of emergent languages, will enhance the agent’s
bandwidth efficiency and task performance in a variety of situations.

While temporal aspects of the language have been considered in linguistics (Spronck and Casartelli,
2021), there is no recorded natural emergence of temporal references, nor any exploration of how they
may emerge in communication among agents. Prior research in EC has investigated the influence
of time as a pressure for protocol emergence (Kalinowska et al., 2022a;b), temporally separated
tasks (Ossenkopf et al., 2019), or the effect of the amount of communication time on the emergent
protocol (Lipinski et al., 2022). Most closely related is the work of Kang et al. (2020), where temporal
relationships between episodes have been employed to optimise communication. The authors exploit
similarity between time steps, where subsequent time steps do not differ significantly from the ones
immediately preceding. This allows the messages between agents to be more succinct, by reducing
the amount of redundant information transferred. Kang et al. (2020) look into the pragmatics of

1

Under review as a conference paper at ICLR 2024

the language, noting that through utilisation of temporal relationships, together with optimisation of
reconstruction of speaker’s state, the agents’ performance improves. However, the temporal aspects
of the language itself have not been explored.

We investigate the factors of temporal reference emergence, thus closing this gap. The main con-
tribution of this work is the first reported temporal vocabulary developed by agents in a referential
game. We analyse the incentives required for the development of temporal references in language
through an environment we call the Temporal Referential Game (TRG) (Section 2.3). We show that,
surprisingly, only the ability to process temporal relationships is needed for the agents to be able to
understand and utilise temporal references (Section 2.4).

2 TEMPORAL REFERENTIAL GAMES

Our experimental setup is based on classic referential games (Lewis, 1969; Lazaridou et al., 2018).
The commonly used agent architecture, as implemented in Kharitonov et al. (2019) and similarly in
other works (Chaabouni et al., 2020; Taillandier et al., 2023; Bosc, 2022; Ueda and Washio, 2021),
has two agents: a sender and a receiver. The sender begins the game by observing a target object,
which could be represented by an image or a vector, and then generates a message. This message is
passed to the receiver, along with the target object and a number of distractor objects. The receiver’s
task is to discern the target object from among the objects it observes, using the information contained
in the message it receives. This exchange is repeated every episode.

We use referential games with attribute-value vectors to isolate and limit the external factors that
could impact the performance of the agents. We do not use image-based representations of the objects
to separate the performance of the agent from the training and performance of a vision network, and
to reduce the computational requirements of our experiments. Additionally, the output of a vision
layer can be considered as a representation of the object attributes, which could be approximated by
the vectors used in our setup instead.

This common approach from EC (Kharitonov et al., 2019; Chaabouni et al., 2020; Ueda et al., 2022),
allows us to use a well-known test bed to probe the more complex temporal properties of the emergent
language. By using a simple referential game, and removing extraneous modules, our findings are
more generalisable and transferable to other settings.

2.1 DEFINITIONS

In referential games, agents need to identify objects from an object space V , which appear to them
as attribute-value vectors x ∈ V . To define the object space V , we first define the value space of
all possible attribute values as Sval = {0, 1, 2 . . . Nval} where Nval is the number of values. The
value space represents the variations each object attribute can have. The object space is defined as
V = V1 × · · · × VN = {(a1, . . . , aNatt

) | ai ∈ Vi for every i ∈ {1, . . . , Natt}}, where Natt is the
number of attributes of an object.

To give intuition to the notion of attributes and values, consider that the object shown to the sender
is an abstraction of an image of a circle. The attributes of the circle could include whether the line
is dashed, the colour of the line, or the colour of the background. The values are the variations of
these attributes. In our example, a value of the background colour could be black, blue, or red. For
example, to represent a blue, solid line circle on a red background a vector such as [blue, solid, red]
could be used, which could also be represented as an integer vector, for example [2, 1, 3].

The characters available to the agents (i.e., the symbol space) is ω = {0, 1, 2 . . . Nvocab − 1} where
Nvocab is the vocabulary size. The message space, or the space that all messages must belong to, is
defined as ξ = ω1 × · · · × ωL = {(c1, . . . , cL) | ci ∈ ωi for every i ∈ {1, . . . , L}}, where L is the
maximum message length.

Combining the message and object space, the agents’ language is defined as a mapping from the
objects in V to messages in ξ. Finally, the exchange history, representing all messages and objects
that the agents have sent/seen so far, is defined as a sequence τ = {(mn,xn)}n∈{1,...,t} such that
∀n,mn ∈ ξ ∧ xn ∈ V , with t signifying the episode of the last exchange. Agent communication is
defined as agents using this language to convey information about the observed object.

2

Under review as a conference paper at ICLR 2024

2.2 TEMPORAL LOGIC

We use temporal logic to formally define the behaviour of our environment, as well as an analogue
for how our agents communicate. To achieve this, we employ a form of Linear Temporal Logic (LTL)
(Pnueli, 1977) called Past LTL (PLTL) (Lichtenstein et al., 1985), bringing common terminology
from the logic domains into the field of emergent communication.

LTL focuses on the connection between future and present propositions, defining operators such as
“next” �, indicating that a given predicate or event will be true in the next step. The LTL operators can
then be extended to include the temporal relationship with propositions in the past, creating PLTL.
PLTL defines the operator “previously” ⊖, corresponding to the LTL operator of “next” �.

The “previously” PLTL operator must satisfy Equation (1), using the definitions from Maler et al.
(2008), where σ refers to a behaviour of a system (the message sent by an agent), at the time t to the
time that event has occurred (when the message was sent), and ϕ signifies a property (the object seen
by the agent).

(σ, t) |= ⊖ϕ ↔ (σ, t− 1) |= ϕ (1)

Additionally, the shorthand notation of ⊖n is used, signifying that the ⊖ operator is applied n times,
where n refers to the number of episodes back. For instance, ⊖4ϕ ↔ ⊖⊖⊖⊖ ϕ.

2.3 TEMPORAL REFERENTIAL GAMES

Our temporal version of the referential games (Lewis, 1969; Lazaridou et al., 2017) is based on
the “previously” (⊖) PLTL operator. 1 At every game step st, the sender agent is presented with an
input object vector x generated by the function X(t, c, hv), with a random chance parameter c, the
previous horizon value hv , and the current episode t. 2

X(t, c, hv) =

{
x c = 0

⊖hvx = τt−hv
c = 1

(2)

The previous horizon value is uniformly sampled, taking the value of any integer in the range [1, h],
where h is the previous horizon hyperparameter. We sample the previous horizon value to allow agents
to develop temporal references of varying temporal horizons, instead of fixing the parameter each
run. The function X(t, c, hv) selects a target object to be presented to the sender using Equation (2),
either generating a new random target object or using the old target object. This choice is facilitated
using the chance parameter c, which is sampled from a Bernoulli distribution, with p = 0.5. If c = 1
a previous target object is used, and if c = 0 a new target object is generated. Both c and hv are
sampled every time a target object is generated.

For example, consider episode t = 4, and the sampled parameters are c = 1 and hv = 2. Suppose
the agent has observed the following targets: [a, b, c]. Given that c = 1, further to Equation (2), the
⊖2 (⊖hv) target is chosen. The target sequence becomes [a, b, c, b], with the target b being repeated,
as it was the second to last target. Now suppose that c was sampled to be c = 0 instead. Further to
Equation (2), a random target x is generated, from x ∈ V . The target sequence becomes [a, b, c,x].

This behaviour describes the environment “TRG Previous”, which represents the base variant of
temporal referential games, where targets are randomly generated with a 50% chance of repetition.
The “TRG Hard” variant is also used, which is a temporal referential game with the same 50% chance
of a repetition, but where targets only differ in a single attribute when compared to the distractors.
“TRG Hard” tests whether temporal referencing improves performance in environments where highly
similar target repetitions are common. 3

The agents are also trained and evaluated in the “RG Classic” environment, which represents the
classic referential game (Lewis, 1969; Lazaridou et al., 2017), where targets are randomly generated,

1Code is available on Anonymous GitHub
2Additional details are available in the Appendix Cl.
3Measurements of amounts of repetitions in each environment are provided in Appendix B.

3

https://anonymous.4open.science/r/TRG-E137

Under review as a conference paper at ICLR 2024

and “RG Hard”, which is our more difficult version of the referential games, where the target and
distractors only differ in a single attribute. The “RG Classic” environment establishes a reference
performance for the agents, while “RG Hard” determines whether temporal references enhance
performance in an environment where targets are harder to differentiate.

Additionally, two more environments are used — “Always Same” and “Never Same”. Their purpose
is to verify whether the messages that would be identified as temporal references are correctly labelled.
The “Always Same” environment sequentially repeats each target from a uniformly sampled subset
of all possible targets ten times4. With each target repeating ten times, we verify that the messages
used are consistently; i.e., if the agents use temporal messaging. The “Never Same” never repeats a
target and goes through a subset of all possible targets in order. The “Never Same” environment is
used to verify if the same messages are used for other purposes than to purely indicate that the targets
are the same. In both environments, the dataset only repeats the target object, while the distractor
objects are randomly generated for each object set. Sample inputs and expected outputs for these
environments are provided in Appendix B.1.

2.4 AGENT ARCHITECTURE

Both the sender and the receiver agents are usually built around a single recurrent neural network
Kharitonov et al. (2019), such as an LSTM (Hochreiter and Schmidhuber, 1997) or a GRU (Cho et al.,
2014). These networks are supplied with a representation of the objects and, in the case of the receiver,
a message. These representations are obtained using fully connected layers, with the message being
either discrete or a distribution of character probabilities in the case of Gumbel-Softmax.

We introduce a second LSTM module in both the sender and receiver networks, cf., Figure 1. In
other approaches (Kharitonov et al., 2019; Chaabouni et al., 2019; Auersperger and Pecina, 2022),
the sender’s LSTM receives each target and distractor set individually and computes the message,
processing each object separately. Instead, our additional LSTM is batched with a sequence over the
whole training input, similar to the sequential learning of language in humans (Christiansen and Kirby,
2003). By including this sequential LSTM, the sender and the receiver are able to develop a more
temporally focused understanding. We conjecture that this ability to process temporal relationships
allows them to represent the whole object sequence within the LSTM hidden state. Since it does not
require reward shaping approaches or architectures specifically designed for referential games, this
addition is also a scalable and general approach to allowing temporal references to develop.

To give intuition to the sequential LSTM, assume the sender LSTM expects an input of the form
[batch_size, seq_len, object_attributes]. Let batch_size take the common value of 128, and let
the object_attributes, or Natt, be equal to 6. We can then create a batch of shape [128, 1, 6],
obtaining 128 objects of size 6, with sequence length one (Kharitonov et al., 2019). The sequential
LSTM instead receives a batch of shape [1, 128, 6], or a sequence of 128 objects of size 6. This
allows the sequential LSTM to process all objects one after another to create temporal understanding.

The hidden states gathered from both sender LSTMs are combined using an element-wise multiplica-
tion, which returns the combined state. The result is the initial hidden state for the message generation
LSTM. For message generation, the same method is followed as used in previous work (Kharitonov
et al., 2019), and messages are generated character by character, using the Gumbel-Softmax trick
(Jang et al., 2017).

These messages are then passed to the receiver, an overview of which is shown in Figure 1b. The
receiver’s architecture contains an object embedding linear layer and a message processing LSTM,
similar to the most commonly used architectures (Kharitonov et al., 2019). We additionally employ
the temporal prediction layer and the sequential LSTM. First, a hidden state is computed for each
message by the regularly batched LSTM. Then, the sequential LSTM processes each of the regularly
batched LSTM’s hidden states to build a temporal understanding of the sender’s messages. This
output is combined with the output of the object embedding linear layer to create the referential
game object prediction. The combined information from both LSTMs and the object is also used
in the temporal prediction layer, which allows the agent to signify whether an object is the same
as a previously seen object, up to the previous horizon h. This is implemented as a single linear
layer, which outputs the temporal label prediction. The temporal label used in this loss function only

4A subset is used as the target space grows exponentially with the number of attributes and values.

4

Under review as a conference paper at ICLR 2024

Objects
[1,3,2,4]
[4,3,3,1]
[2,2,1,4]
[3,1,2,4]

Target
[4,3,3,1]

LSTM 1
(Temporal)

[1,batch_size,4]

LSTM 2
(Meaning)

[batch_size,1,4]

Final hidden states
 for each element
 in the sequence

Hidden states for
 each element in
 the sequence

Elementwise
Multiply

torch.mul

Combined
Features

Message
Generation

LSTM

Initial Hidden State for LSTM

Gumbel-Softmax

Sequence of
Character

Probabilities

Embedding from
Vocab to Character

Linear

Repeat until max_len reached

Hidden to Vocab
Linear

Sender

Input

Temporal Module

(a) The sender architecture.

 LSTM 1
(Meaning)

[batch_size, len, vocab]

Final hidden
states for each
element in the

sequence

Object
Embedding

Linear

Object Guess Temporal
Guess

Receiver

Objects
[1,3,2,4]
[4,3,3,1]
[2,2,1,4]
[3,1,2,4]

Input

Sequence of
Character

Probabilities

Objects
Embedded

Temporal
Prediction

Linear

Multiply
torch.matmul

LSTM 2
(Temporal)

[1, batch_size, 128]

Hidden states for
 each element in
 the sequence

Temporal Module

Elementwise
Multiply

torch.mul

(b) The receiver architecture.

Figure 1: The sender and receiver architectures, with the temporal modules highlighted in purple.

considers the previous horizon h; otherwise, it defaults to 0. For example, assume an object has been
repeated in the current episode and has last appeared 5 episodes ago. If the previous horizon h is 8,
the label assigned to this object would be 5, as 5 past episodes are still within the horizon, i.e., 5 ≤ h.
However, if h is 4, the label would be 0, as the episode lies outside the previous horizon, i.e., 4 ≥ h.

This predictive ability is combined with an additional term in the loss function, which together form a
temporal prediction loss. The agents’ loss function can be formulated as Lt = Lrg + Ltp. The Lrg

component is the referential game loss between the receiver guess and the sender target label, using
cross entropy. Ltp is the temporal prediction loss, which is implemented using cross entropy between
the labels of when an object has last appeared, and the receiver’s prediction of that label. Agents
that include this loss perform an additional task, which corresponds to correctly identifying which
two outputs are the same. The goal of this loss is to improve the likelihood of an agent developing
temporal references by increasing the focus on these relationships. Analysis of how the presence of
this explicit loss impacts the development of temporal references is provided in Section 3.

3 TEMPORALITY EXPERIMENTS

3.1 TEMPORALITY METRIC

We propose a metric, denoted as M⊖n , which measures how often a given message has been used as
the “previous” operator in prior communication. Given a sequence of objects shown to the sender and
messages sent to the receiver τ , it checks when an object has been repeated within a given horizon
hv , and records the corresponding message sent to describe that object.

Let Cm⊖n count the times the message m has been sent together with a repeated object for hv = n:

Cm⊖n =

t∑
j=1

I(mj = m ∧ objectSame(xj , n)) (3)

where I(·) is the indicator function that returns 1 if the condition is true and 0 otherwise, and
objectSame(xj , n) is a function that evaluates to true if the object xj is the same as the object n
episodes ago.

Let Cmtotal denote the total count of times the message m has been used:

Cmtotal =
t∑

j=1

I(mj = m) (4)

5

Under review as a conference paper at ICLR 2024

where I(·) is an indicator function selecting the message m in the exchange history τ .

The percentage of previous messages that are the same as m can then be calculated using M⊖n(m):

M⊖n(m) =
Cm⊖n

Cmtotal
× 100 (5)

To give intuition to this metric, its objective is to measure if a message is used similarly to the
sentence “The car I can see is the same colour as the one mentioned two sentences ago”, i.e.,
if the message can give reference to a previous episode. More formally, assume a target object
sequence of [x,y, z,y,y,y,x]. Each vector — x,y,z — represents an object belonging to the
same arbitrary V . In this example, there is only one object repeating: y. We can then consider
three message sequences: [m1,m2,m3,m2,m4,m4,m1], [m1,m2,m3,m4,m4,m4,m1] and
[m1,m2,m3,m2,m2,m2,m1], with each mn belonging to the same arbitrary ξ. Given these
sequences, we can calculate our metric for ⊖1.

There are two repetitions in the sequence of objects: the second and third x following the sequence
of [x,y, z,y]. In the first example message sequence, for both of the repetitions, the message m4

has been sent and so Cm4
⊖1 = 2. The total use of m4 is Cm4

total = 2. Calculating the metric
M⊖1(m4) = 2/2 × 100 = 100% gives 100% for the use of m4 as a ⊖1 operator. The result of
100% indicates that this message is used exclusively as a ⊖1 operator.

In the second message sequence, m4 has also been used for the initial observation of the object. This
means that Cm4 total = 3, while Cm4⊖1 = 2. We can calculate M⊖1(m4) = 2/3 × 100 = 66%,
which shows the message being used as ⊖1 66% of the time.

Lastly, the simplest case of a message describing an object exactly. Following the previous ex-
amples, Cm2

total = 4, with Cm2
⊖1 = 2. This message would then be classed as 50% ⊖1 usage,

M⊖1(m2) = 2/4×100 = 50%. A non-100% result indicates that the message is not used exclusively
as a ⊖1 operator.

3.2 AGENT TRAINING

The following architectures are evaluated:

Non-Temporal-NL (NL meaning No-Loss) Same as regular emergent communication agents, which
is used as a baseline for comparison;

Non-Temporal Same as regular emergent communication agents, but with temporal prediction loss;
Temporal-NL Includes the sequential LSTM, but not the temporal prediction loss; and
Temporal Includes both the sequential LSTM and the temporal prediction loss.

The agents that include the temporal prediction loss (i.e., Temporal and Non-Temporal) have an
explicit reward to develop temporal understanding. There is no additional pressure to develop
temporal references for agents that do not include the temporal prediction loss (i.e., Temporal-NL and
Non-Temporal-NL), except for the possibility of increased performance on the referential task.

We hypothesise that Non-Temporal, Temporal-NL and Temporal agents will develop temporal refer-
ences, with the Temporal agents more likely to do so, given their incentive is higher. We define the
development of temporal references as the appearance of messages which reach 100% on our M⊖n

metric. We use the cut-off of 100% to ensure we only report messages used consistently as temporal
references, ensuring that any positive results are not a result of chance repetitions. This means that we
should see our M⊖n metric reach 100% for all these agents, but not for the Non-Temporal-NL agents.

All agent types were trained for the same number of epochs and on the same environments during
each run. Evaluation of the agents is performed after the training has finished. Each agent pair is
assessed in the six different environments: “Always Same”, “Never Same”, “RG Classic”, “RG Hard”,
“TRG Previous” and “TRG Hard”. The target objects are uniformly sampled from the object space V
in all environments.

Each possible configuration was run ten times, with randomised seeds between runs for both the
agents and the datasets. Each agent pair was then evaluated in six different environments. Appendix A
provides further details.

6

Under review as a conference paper at ICLR 2024

Always Same TRG Hard TRG Previous
Validation dataset

0%

20%

40%

60%

80%

100%

M
4

Network Type
Non-Temporal-NL trained on RGs
Non-Temporal-NL trained on TRGs
Non-Temporal trained on RGs
Non-Temporal trained on TRGs

Temporal-NL trained on RGs
Temporal-NL trained on TRGs
Temporal trained on RGs
Temporal trained on TRGs

(a)

Always Same TRG Previous TRG Hard
Validation dataset

0%

20%

40%

60%

80%

100%

%
 C

or
re

ct
 fo

r
4

Network Type
Temporal-NL trained on RGs
Temporal-NL trained on TRGs

Temporal trained on RGs
Temporal trained on TRGs

(b)

Figure 2: The M⊖4 metric (a) and correctness of messages (b) used as the ⊖4 operator.

3.3 TEMPORALITY ANALYSIS

Figure 2a illustrates the M⊖4 metric values (referring to an observation four messages in the past)
of all agent types over the evaluation environments (cf., Sections 3.1 and 3.2), where M⊖4 ≥ 0% 5.
“TRGs” refers to “TRG Previous”, and “RGs” refers to “RG Classic”. Figure 2a indicates that the
temporally focused processing of the input data makes the agents predetermined to develop temporal
references. Only the networks that have the sequential LSTM, i.e., Temporal and Temporal-NL, are
capable of producing temporal references. Conversely, temporal references emerge in both Temporal
and Temporal-NL networks, regardless of the training dataset. This shows that even in a regular
environment, without additional pressures, temporal references are advantageous. No messages in
the Non-Temporal or Non-Temporal-NL architectures are used 100% of the time for ⊖4, irrespective
of the dataset they have been trained on. This demonstrates that the temporal prediction loss is not
enough, and that a sequential LSTM module is the key factor to the emergence of temporal references.

Figure 2b shows that messages that are used for ⊖4 have a high chance of being correct, with most
averaging above 90% correctness. Correctness refers to whether the receiver agent correctly guessed
the target object after receiving the message. As expected, no Non-Temporal networks appear in
Figure 2b because they learn no temporally specialised messages, and so no messages are used as ⊖4.

Analysing the development of temporal references, we observe the emergence of messages being
used by the agents to describe the previous hv = 4 episodes. As an example of such behaviour, in one
of the runs where the agents were trained in the Temporal configuration, the message [25, 6, 9, 3, 2]
was consistently used as a ⊖1 operator. When the agents were evaluated in the “Always Same”
environment, they used this message only when the target objects were repeating, while also being
used exclusively for twelve distinct objects. For a total of 10 repetitions of each object, this message
was utilised nine times, indicating that the only time a different message was sent was when the
object appeared for the first time. For example, when the object [4, 2, 3, 6, 5, 8, 8, 4] appeared for the
first time, a message [25, 6, 17, 9, 9] was sent, and subsequently the temporal message was used. This
shows that temporal messages aid generalisation. A message that has been developed in a different
training environment, in this case “TRG Previous”, can be subsequently used during evaluation, even
if the targets are not shared between the two environments.

The distribution of all messages as compared to their M⊖4 value is shown in Figure 3a. Most
messages are used only in the context of the current observations, with both Temporal and Temporal-
NL networks using a more specialised subset of messages to refer to the temporal relationships. Only
Temporal and Temporal-NL variants develop messages that reach 100% on the M⊖4 metric. The
distribution also suggests that these messages could be a more efficient way of describing objects,
as the number of temporal messages is relatively small. Since only a small number of messages are
needed for the temporal references, they could be used more frequently. This message specialisation,

5We choose the value of 4 arbitrarily, to lie in the middle of our explored range of h. We provide more
detailed analysis from hv = 1 to hv = 8 in Appendix E.

7

Under review as a conference paper at ICLR 2024

0% 20% 40% 60% 80% 100%
M 4

0%

20%

40%

60%

80%
%

 o
f a

ll
m

es
sa

ge
s

Network Type
Non-Temporal-NL
Non-Temporal

Temporal-NL
Temporal

(a)

Non-Temporal-NL Non-Temporal Temporal-NL Temporal
Network Type

20%

40%

60%

80%

100%

M
4

Repeat Chance
25% 50% 75%

(b)

Figure 3: Usage of messages compared to their M⊖4 value (a), and of the M⊖4 value when varying
the network type and the chance of repetition p (b).

Table 1: Percentage of networks that develop temporal messages.

Network Type Loss Type Percentage
Non-Temporal Non-Temporal 0%
Non-Temporal Temporal 0%
Temporal Non-Temporal 98.66%
Temporal Temporal 97%

combined with a linguistic parsimony pressure (Rita et al., 2020), could lead to a more efficient way
of describing an object, as sending the object properties requires more bandwidth than sending only
the time step the object last appeared.

The percentage of networks that develop temporal messaging is shown in Table 1. The percentages
shown are absolute values, calculated by taking the total number of runs and checking whether at
least one message has reached M⊖n = 100% for each run. That number of runs is divided by the
total number of runs of the corresponding configuration to arrive at the quantities in Table 1.

In Table 1, both Temporal and Temporal-NL network variants reach over 95% of runs that have
converged to a strategy which uses at least one message as the ⊖n operator. In contrast, the Non-
Temporal and Non-Temporal-NL networks never achieve such a distinction. Additionally, some runs
have not converged to a temporal strategy in the case of both Temporal network variants. However,
these experiments account for only 3% of the total number of runs. These results further show that
the ability to build a temporal understanding of the input data is the deciding factor in the emergence
of temporal references. Only networks that include the sequential LSTM converge to strategies that
include such references.

To thoroughly investigate this result, we analyse the impact of the network size on the development
of temporal references. We evaluate agents with just the temporal module, removing the Meaning
LSTM 2 for the sender and the Meaning LSTM 1 for the receiver, matching the number of parameters
as observed in the base agent (Section 2.4). The agents with just the temporal module still develop
temporal references, but perform worse on the referential task, achieving lower accuracy. Therefore,
they are omitted from the comparisons.

4 DISCUSSION

When and how can temporal references emerge? We posit that our addition of the sequential LSTM to
the agents is key to allowing them to develop the ability to communicate about time. The fundamental
factor in the emergence of temporal references is whether the agents can look into the past, which the

8

Under review as a conference paper at ICLR 2024

sequential LSTM allows them to do. Our results support this, showing the inclusion of this module is
sufficient for agents to form temporal references.

In Figure 3b, we verify that by increasing the number of repetitions in a dataset, the use of temporal
messages increases. As we increase the repetition chance, the percentage of messages that are used
for ⊖n increases for all agent variants. On average, Non-Temporal and Non-Temporal-NL networks
demonstrate the same chance of using a message for ⊖n as the dataset repetition chance. This means
that while the percentage increases, it is only due to the increase in the repetition chance. If a dataset
contains 75% repetitions, on average, each message will be used as an accidental ⊖n 75% of the time.
For example, if the language does not have temporal references and uses a given message to describe
an object, this message will be repeated every time this object appears. This means that for every
repetition, the message could be seen as a message indicating a previous episode, whereas in reality,
it is just a description of the object. In contrast to Non-Temporal and Non-Temporal-NL networks,
for Temporal and Temporal-NL networks, the average percentage does reach 100%. This means that
messages the agents designate for ⊖n are used more often than the repetition chance.

Our results also indicate that the only pressures required for temporal messages to emerge are implicit,
and that no explicit pressures are required. We show that the incentives are already present in datasets
that are not altered to increase the number of repetitions occurring. Temporal references therefore
emerge naturally, as long as the agents are able to build a temporal understanding of the data, such as
with the sequential LSTM used in our work. This ease of transfer of our insights allows temporal
references to emerge in any emergent communication settings. This could allow for greater bandwidth
efficiency by allowing agents to use shorter messages for events that happen often, especially when
combined with other linguistic parsimony approaches (Rita et al., 2020; Chaabouni et al., 2019).

The emergence of temporal references only through architectural changes could also point towards
additional insights in terms of modelling human language evolution using EC (Galke et al., 2022). Our
sequential LSTM approach to the emergence of temporal references could be viewed as analogous to
sequential learning in natural language (Christiansen and Kirby, 2003), as we learn to encode and
represent elements in temporal sequences.

5 LIMITATIONS

It’s possible for the agent to send a unique message that describes the time of the object’s appearance,
rather than sending a message it has used before. Our metric would then incorrectly identify the
training run as having no temporal references, given that all messages would be unique. This would
require the agents to develop a very large vocabulary, creating a unique message for every object
repetition. We do not, however, observe this happening in our training runs, as our agents’ vocabulary
contains at most 4k messages over the whole training run. This is significantly smaller than the
number of repeated objects, which in the case of the 50% repetition dataset would be 10k. Using the
pigeonhole principle, we can conclude that they do not create a unique message for each repetition.
We consider that this limitation is related to the issues with most compositionality metrics in EC.
While most compositionality metrics measure trivial compositionality (Chaabouni et al., 2020; Ueda
et al., 2022; Perkins, 2021), our metric would be akin to measuring trivial temporality.

6 CONCLUSION

Discussing past observations is vital to communication, saving bandwidth by avoiding repeating
information and allowing for easier experience sharing. We investigate the emergence of temporal
references, addressing the fundamental questions of when and how they can develop. We present an
environment to probe how agents might create such references. By testing environmental pressures,
employing multiple network architectures, and incorporating a temporal referencing reward, we
analyse the mechanisms underlying the formation of temporal references.

We perform a comparison of a conventional agent architecture with an architecture featuring the
ability to understand temporal relationships in the data. We show that this change is sufficient for
temporal references to emerge, finding the additional explicit incentive of a temporal prediction loss
to be unnecessary. The ability to process observations temporally, combined with implicit pressures
from the environment, allows temporal references to emerge naturally.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Angeliki Lazaridou and Marco Baroni. Emergent Multi-Agent Communication in the Deep Learning
Era. ArXiv preprint, abs/2006.02419, 2020.

Rahma Chaabouni, Florian Strub, Florent Altché, Eugene Tarassov, Corentin Tallec, Elnaz Davoodi,
Kory Wallace Mathewson, Olivier Tieleman, Angeliki Lazaridou, and Bilal Piot. Emergent
communication at scale. In Proc. of ICLR. OpenReview.net, 2022.

Nicolo’ Brandizzi, Davide Grossi, and Luca Iocchi. RLupus: Cooperation through emergent com-
munication in The Werewolf social deduction game. Intelligenza Artificiale, 15(2):55–70, 2021.
ISSN 2211-0097.

Olaf Lipinski, Adam Sobey, Federico Cerutti, and Timothy J. Norman. Emergent Password Signalling
in the Game of Werewolf. In Emergent Communication Workshop at ICLR 2022, 2022.

Kavya Kopparapu, Edgar A. Duéñez-Guzmán, Jayd Matyas, Alexander Sasha Vezhnevets, John P.
Agapiou, Kevin R. McKee, Richard Everett, Janusz Marecki, Joel Z. Leibo, and Thore Graepel.
Hidden Agenda: a Social Deduction Game with Diverse Learned Equilibria. ArXiv preprint,
abs/2201.01816, 2022.

George Kingsley Zipf. Human behavior and the principle of least effort. Human behavior and the
principle of least effort. Addison-Wesley Press, 1949.

Stef Spronck and Daniela Casartelli. In a Manner of Speaking: How Reported Speech May Have
Shaped Grammar. Frontiers in Communication, 6:150, 2021. ISSN 2297-900X.

Aleksandra Kalinowska, Elnaz Davoodi, Kory W. Mathewson, Todd Murphey, and Patrick M.
Pilarski. Towards Situated Communication in Multi-Step Interactions: Time is a Key Pressure in
Communication Emergence. Proceedings of the Annual Meeting of the Cognitive Science Society,
44(44), 2022a.

Aleksandra Kalinowska, Elnaz Davoodi, Florian Strub, Kory Mathewson, Todd Murphey, and Patrick
Pilarski. Situated Communication: A Solution to Over-communication between Artificial Agents.
In Emergent Communication Workshop at ICLR 2022, 2022b.

Marie Ossenkopf, Mackenzie Jorgensen, and Kurt Geihs. When Does Communication Learning
Need Hierarchical Multi-Agent Deep Reinforcement Learning. Cybernetics and Systems, 50(8):
672–692, 2019. ISSN 0196-9722.

Yipeng Kang, Tonghan Wang, and Gerard de Melo. Incorporating pragmatic reasoning communica-
tion into emergent language. In Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual, 2020.

David Kellogg Lewis. Convention: A Philosophical Study. Cambridge, MA, USA: Wiley-Blackwell,
1969.

Angeliki Lazaridou, Karl Moritz Hermann, Karl Tuyls, and Stephen Clark. Emergence of linguis-
tic communication from referential games with symbolic and pixel input. In Proc. of ICLR.
OpenReview.net, 2018.

Eugene Kharitonov, Rahma Chaabouni, Diane Bouchacourt, and Marco Baroni. EGG: a toolkit for
research on emergence of lanGuage in games. In Proc. of EMNLP, pages 55–60. Association for
Computational Linguistics, 2019.

Rahma Chaabouni, Eugene Kharitonov, Diane Bouchacourt, Emmanuel Dupoux, and Marco Baroni.
Compositionality and generalization in emergent languages. In Proc. of ACL, pages 4427–4442.
Association for Computational Linguistics, 2020.

Valentin Taillandier, Dieuwke Hupkes, Benoît Sagot, Emmanuel Dupoux, and Paul Michel. Neural
Agents Struggle to Take Turns in Bidirectional Emergent Communication. 2023.

10

Under review as a conference paper at ICLR 2024

Tom Bosc. Varying meaning complexity to explain and measure compositionality. In Emergent
Communication Workshop at ICLR 2022, 2022.

Ryo Ueda and Koki Washio. On the relationship between Zipf’s law of abbreviation and interfering
noise in emergent languages. In Proc. of ACL, pages 60–70. Association for Computational
Linguistics, 2021.

Ryo Ueda, Taiga Ishii, Koki Washio, and Yusuke Miyao. Categorial Grammar Induction as a Compo-
sitionality Measure for Emergent Languages in Signaling Games. In Emergent Communication
Workshop at ICLR 2022, 2022.

Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium on Foundations of
Computer Science (sfcs 1977), pages 46–57. ieee, 1977.

Orna Lichtenstein, Amir Pnueli, and Lenore Zuck. The glory of the past. In Workshop on Logic of
Programs, pages 196–218. Springer, 1985.

Oded Maler, Dejan Nickovic, and Amir Pnueli. Checking Temporal Properties of Discrete, Timed
and Continuous Behaviors. In Pillars of Computer Science: Essays Dedicated to Boris (Boaz)
Trakhtenbrot on the Occasion of His 85th Birthday, Lecture Notes in Computer Science, pages
475–505. Springer, 2008. ISBN 978-3-540-78127-1.

Angeliki Lazaridou, Alexander Peysakhovich, and Marco Baroni. Multi-agent cooperation and the
emergence of (natural) language. In Proc. of ICLR. OpenReview.net, 2017.

Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neural Computation, 9(8):
1735–1780, 1997. ISSN 0899-7667.

Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio. On the properties of
neural machine translation: Encoder–decoder approaches. In Proceedings of SSST-8, Eighth Work-
shop on Syntax, Semantics and Structure in Statistical Translation, pages 103–111. Association for
Computational Linguistics, 2014.

Rahma Chaabouni, Eugene Kharitonov, Emmanuel Dupoux, and Marco Baroni. Anti-efficient
encoding in emergent communication. In Advances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December
8-14, 2019, Vancouver, BC, Canada, pages 6290–6300, 2019.

Michal Auersperger and Pavel Pecina. Defending compositionality in emergent languages. In
Proceedings of the 2022 Conference of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies: Student Research Workshop, pages 285–291.
Association for Computational Linguistics, 2022.

Morten H. Christiansen and Simon Kirby. Language evolution: consensus and controversies. Trends
in Cognitive Sciences, 7(7):300–307, 2003. ISSN 1364-6613.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. In
Proc. of ICLR. OpenReview.net, 2017.

Mathieu Rita, Rahma Chaabouni, and Emmanuel Dupoux. “LazImpa”: Lazy and impatient neural
agents learn to communicate efficiently. In Proceedings of the 24th Conference on Computational
Natural Language Learning, pages 335–343. Association for Computational Linguistics, 2020.

Lukas Galke, Yoav Ram, and Limor Raviv. Emergent Communication for Understanding Human
Language Evolution: What’s Missing? In Emergent Communication Workshop at ICLR 2022,
2022.

Hugh Perkins. Neural networks can understand compositional functions that humans do not, in the
context of emergent communication. ArXiv preprint, abs/2103.04180, 2021.

William Falcon and The PyTorch Lightning Team. PyTorch Lightning, 2019.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proc. of ICLR,
2015.

11

Under review as a conference paper at ICLR 2024

Lukas Biewald. Experiment Tracking with Weights and Biases, 2020.

Mathieu Rita, Corentin Tallec, Paul Michel, Jean-Bastien Grill, Olivier Pietquin, Emmanuel Dupoux,
and Florian Strub. Emergent Communication: Generalization and Overfitting in Lewis Games. In
Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information
Processing Systems 2022, NeurIPS 2022, 2022.

Henry Brighton and Simon Kirby. Understanding Linguistic Evolution by Visualizing the Emergence
of Topographic Mappings. Artificial Life, 12(2):229–242, 2006. ISSN 1064-5462.

12

Under review as a conference paper at ICLR 2024

A TRAINING DETAILS

Our agents were trained using PyTorch Lightning (Falcon and The PyTorch Lightning Team, 2019)
using the Adam optimizer (Kingma and Ba, 2015), with experiment tracking done via Weights
& Biases (Biewald, 2020). We provide our grid search parameters per network and per training
environment in Table 2. We ran a manual grid search over these parameters for each network and
training dataset combination, where the networks were Non-Temporal, Non-Temporal-NL, Temporal,
and Temporal-NL, and the training datasets were Classic Referential Games or Temporal Referential
Games. Each trained network was then evaluated on the six available environments: Always Same,
Never Same, Classic Referential Games, Temporal Referential Games, Hard Classic Referential
Games, and Hard Temporal Referential Games. Running the grid search for one iteration, with the
value of repetition chance fixed, took approximately 28 hours, using the compute resources in Table 3.

Table 2: Grid Search Parameters

Parameter Value
Epochs [600]
Optimizer Adam
Learning Rate α 0.001
Number of Objects in Dataset [20 000]
Number of Distractors [10]
Number of Attributes Natt [8]
Number of Values Nval [8]
Length Penalty [0]
Maximum Message Length L [5]
Vocabulary Size Nvocab [26]
Repetition Chance (p) [0.25, 0.5, 0.75]
Previous Horizon h [8]
Sender Embedding Size [128]
Sender Meaning LSTM Hidden Size [128]
Sender Temporal LSTM Hidden Size [128]
Sender Message LSTM Hidden Size [128]
Receiver LSTM+Linear Hidden Size [128]
Gumbel-Softmax Temperature [1.0]

Table 3: Compute Resources

Resource Quantity
CPU Cores (Intel(R) Xeon(R) Silver 4216 × 2) 20
GPUs (NVIDIA Quadro RTX8000) 1
Wall Time 28hrs

13

Under review as a conference paper at ICLR 2024

B DATASETS DETAILS

In Figure 4, we analyse our datasets, using the parameters as specified in Appendix A, for the number
of repetitions that occur. When the temporal dataset repetition chance is set to 50%, the datasets,
predictably, oscillate around 50% of repeating targets. Generating the targets randomly yields a
miniscule fraction of repetitions of less than 1%, as we can see in Figure 4, for the Classic and Hard
referential games.

RG Classic RG Hard TRG Previous TRG Hard
Dataset type

0%

10%

20%

30%

40%

50%

%
 R

ep
ea

ts
 in

 a
 d

at
as

et

Figure 4: Number of target repetitions per dataset. Regular referential games datasets very rarely
encounter target repetitions. This data is an average over 1000 seeds per environment.

B.1 TEST ENVIRONMENTS

Both “Always Same” and “Never Same” environments act as sanity checks for our results.

We provide example inputs and outputs for both environments in Table 4 and Table 5. We use
single-attribute objects and messages for clarity.

For the “Always Same” environment, in the case of the agent using temporal references, we may
also see other messages instead of the message 4, as we have observed that there are more than one
message used as previously. We always expect to see at least 90% of usage as previously for this
environment. However, for agents that learn temporal referencing strategies, we would expect the
usage to reach 100%.

For the “Never Same” environment, we expect to see no temporal references being identified. Any
identification of temporal references in the Never Same environment would indicate an issue with our
metric.

Table 4: Example Inputs and Outputs for Always Same.

Environment Always Same
Input [x,x,x,y,y,y, z, z, z]

Temporal Referencing [m1,m4,m4,m2,m4,m4,m3,m4,m4]
No Temporal Referencing [m1,m2,m3,m4,m5,m6,m7,m8]

14

Under review as a conference paper at ICLR 2024

Table 5: Example Inputs and Outputs for Never Same.

Environment Never Same
Input [x,y, z,a, b, c,d, e]

Temporal Referencing [m1,m1,m1,m2,m2,m2,m3,m3,m3]
No Temporal Referencing [m1,m2,m3,m4,m5,m6,m7,m8]

C ARCHITECTURE OVERVIEW

In Figure 5, we present an overview of our whole experimental setup. We can see the sender and
receiver architectures, together with their inputs, as described in Section 2.4. We also show our
loss calculations, for both the Temporal-NL version and the Temporal version of our games. In the
Temporal-NL variant, we disable the temporal prediction module for the receiver, also disabling the
temporal prediction loss. Consequently, in the Non-Temporal version we disable both the temporal
prediction loss and the sequential LSTM, to achieve an architecture as close as possible to the ones
used in most emergent communication research (Kharitonov et al., 2019).

Temporal
Module

Hidden states for
 each element in
 the sequenceObjects

[1,3,2,4]
[4,3,3,1]
[2,2,1,4]
[3,1,2,4]

Target
[4,3,3,1]

LSTM 1
(Temporal)

[1,batch_size,4]

LSTM 2
(Meaning)

[batch_size,1,4]

Final hidden states
 for each element
 in the sequence

Elementwise
Multiply

torch.mul

Initial Hidden State for LSTM

Combined
Features

Message
Generation

LSTM
Gumbel-Softmax

Sequence of
Character

Probabilities

Embedding from
Vocab to Character

Linear

Repeat until max_len reached

Hidden to Vocab
Linear

Sender

Input

Loss

Labels
TemporalObject

Targets

Cross EntropyCross Entropy Final Loss

 LSTM 1
(Meaning)

[batch_size, len, vocab]

Final hidden
states for each
element in the

sequence

Object
Embedding

Linear

Object Guess Temporal
Guess

Receiver

Objects
Embedded

Temporal
Prediction

Linear

Multiply
torch.matmul

LSTM 2
(Temporal)

[1, batch_size, hidden] Hidden states for
 each element in
 the sequence

Temporal Module

Elementwise
Multiply

torch.mul

Figure 5: Full overview of our Temporal Referential Games setup. Together with the sender and
receiver we have described in Section 2.4, we also include the working of the loss.

15

Under review as a conference paper at ICLR 2024

D ACCURACY ANALYSIS

We compare the accuracy of both variants of the Temporal networks to Non-Temporal networks in
Figure 6. According to this metric, the Temporal networks with the temporal prediction loss perform
marginally worse than the networks which do not include the temporal predictions. Temporal-NL
networks that do not need to output temporal predictions, and so are not incentivised to assign more
weight to the temporal aspects, perform better, matching the performance of the regular agents.
Additionally, using the comparison between “RG Classic” and “RG Hard” (and analogously “TRG
Previous” and “TRG Hard”), we observe that temporal references do not improve the performance on
harder tasks, where targets are highly similar.

Always Same Never Same RG Classic RG Hard TRG Hard TRG Previous
Validation dataset

60%

70%

80%

90%

100%

Ac
cu

ra
cy

Network Type
Non-Temporal-NL trained on RGs
Non-Temporal-NL trained on TRGs
Non-Temporal trained on RGs
Non-Temporal trained on TRGs

Temporal-NL trained on RGs
Temporal-NL trained on TRGs
Temporal trained on RGs
Temporal trained on TRGs

Figure 6: The evaluation accuracies for all of our network types, in all of our evaluation environments.

We believe that the reason for the accuracy drop lies in too much pressure on the temporal aspects in
the case of networks that include a loss for temporal predictions. Because of this additional loss, the
agents can increase their rewards by only focusing on creating temporal messages, without learning a
general communication protocol. This then leads to an overfit to the training dataset, where they can
rely on both their mostly temporal language and their memory of the object sequences, instead of
communicating about the object attributes. Consequently, we observe a decline in performance on
the evaluation dataset.

We also found no overfitting of our agents, even over 600 epochs of training, as their evaluation
accuracy does not decrease. We find that our agents continue to hold at approximately 100% accuracy,
even 500 epochs after they have reached peak performance, which we can see in Figure 7. This
contrasts with a recent result in Rita et al. (2022), where agents were reported to overfit as training
passed 250 epochs. As our Temporal-NL networks do not experience this decrease in accuracy, it may
point to an advantage of temporal communication in countering co-adaptation of agents. However,
the setting used in Rita et al. (2022) is different from ours, as the authors focus their analyses on a
reconstruction game, where agents are tasked with reconstructing the sender input given a message.
Instead, in our game, agents are asked to pick the correct object from a list. Another possible factor
we have identified is the model size difference between our setting and Rita et al. (2022). While we

16

Under review as a conference paper at ICLR 2024

0 100 200 300 400 500 600
Epoch

40%

60%

80%

100%
Ac

cu
ra

cy

Temporal Net
Non-Temporal Net
Non-Temporal Net w/o t-loss
Temporal Net w/o t-loss

Figure 7: Average validation accuracy across all training and validation environments for all of our
network types versus the number of epochs trained. All runs converge to close to 100% accuracy, and
we observe no reduction in accuracy over longer training times.

use a hidden size of 128 for the LSTM, Rita et al. (2022) use 256. This is another possible reason for
the observed overfitting, as it is well-known that larger models tend to overfit more easily. This may
be in addition to the regularising impact of the environment or the temporal prediction loss.

E ANALYSIS FOR PREVIOUS HORIZON FROM hv = 1 TO hv = 8

In this section, we present the additional results for previous horizon from hv = 1 to hv = 8.

Table 6: Emergence of temporal references for a given horizon

Network Type hv = 1 hv = 2 hv = 3 hv = 4 hv = 5 hv = 6 hv = 7 hv = 8
Non-Temporal-NL 0% 0% 0% 0% 0% 0% 0% 0%
Non-Temporal 0% 0% 0% 0% 0% 0% 0% 0%
Temporal-NL 99.44% 100% 100% 99.72% 98.61% 100% 99.72% 98.89%
Temporal 99.72% 100% 99.72% 99.17% 99.44% 99.72% 99.72% 99.44%

17

Under review as a conference paper at ICLR 2024

Always SameNever Same RG Classic RG Hard TRG Hard TRG Previous
Validation dataset

0%

20%

40%

60%

80%

100%

M
1

Network Type
Non-Temporal-NL trained on RGs
Non-Temporal-NL trained on TRGs
Non-Temporal trained on RGs
Non-Temporal trained on TRGs

Temporal-NL trained on RGs
Temporal-NL trained on TRGs
Temporal trained on RGs
Temporal trained on TRGs

Always SameNever Same RG Classic RG Hard TRG Hard TRG Previous
Validation dataset

0%

20%

40%

60%

80%

100%

M
2

Always SameNever Same RG Classic RG Hard TRG Hard TRG Previous
Validation dataset

0%

20%

40%

60%

80%

100%

M
3

Always SameNever Same RG Classic RG Hard TRG Hard TRG Previous
Validation dataset

0%

20%

40%

60%

80%

100%

M
4

Always SameNever Same RG Classic RG Hard TRG Hard TRG Previous
Validation dataset

0%

20%

40%

60%

80%

100%

M
5

Always SameNever Same RG Classic RG Hard TRG Hard TRG Previous
Validation dataset

0%

20%

40%

60%

80%

100%

M
6

Always SameNever Same RG Classic RG Hard TRG Hard TRG Previous
Validation dataset

0%

20%

40%

60%

80%

100%

M
7

Always SameNever Same RG Classic RG Hard TRG Hard TRG Previous
Validation dataset

0%

20%

40%

60%

80%

100%

M
8

Figure 8: The M⊖h metric values per message, for all environments.

18

Under review as a conference paper at ICLR 2024

Always Same TRG Hard TRG Previous
Validation dataset

0%

20%

40%

60%

80%

100%

%
 C

or
re

ct
 fo

r
1

Network Type
Temporal-NL trained on RGs
Temporal-NL trained on TRGs

Temporal trained on RGs
Temporal trained on TRGs

Always Same TRG Hard TRG Previous
Validation dataset

0%

20%

40%

60%

80%

100%

%
 C

or
re

ct
 fo

r
2

Always Same TRG Hard TRG Previous
Validation dataset

0%

20%

40%

60%

80%

100%

%
 C

or
re

ct
 fo

r
3

Always Same TRG Hard TRG Previous
Validation dataset

0%

20%

40%

60%

80%

100%
%

 C
or

re
ct

 fo
r

4

Always Same TRG Hard TRG Previous
Validation dataset

0%

20%

40%

60%

80%

100%

%
 C

or
re

ct
 fo

r
5

Always Same TRG Hard TRG Previous
Validation dataset

0%

20%

40%

60%

80%

100%

%
 C

or
re

ct
 fo

r
6

Always Same TRG Hard TRG Previous
Validation dataset

0%

20%

40%

60%

80%

100%

%
 C

or
re

ct
 fo

r
7

Always Same TRG Hard TRG Previous
Validation dataset

0%

20%

40%

60%

80%

100%

%
 C

or
re

ct
 fo

r
8

Figure 9: Correctness of messages used as the ⊖h operator.

19

Under review as a conference paper at ICLR 2024

Non-Temporal-NLNon-Temporal Temporal-NL Temporal
Network Type

20%

40%

60%

80%

100%

M
1

Repeat Chance
25% 50% 75%

Non-Temporal-NLNon-Temporal Temporal-NL Temporal
Network Type

20%

40%

60%

80%

100%

M
2

Non-Temporal-NLNon-Temporal Temporal-NL Temporal
Network Type

20%

40%

60%

80%

100%

M
3

Non-Temporal-NLNon-Temporal Temporal-NL Temporal
Network Type

20%

40%

60%

80%

100%

M
4

Non-Temporal-NLNon-Temporal Temporal-NL Temporal
Network Type

20%

40%

60%

80%

100%

M
5

Non-Temporal-NLNon-Temporal Temporal-NL Temporal
Network Type

20%

40%

60%

80%

100%

M
6

Non-Temporal-NLNon-Temporal Temporal-NL Temporal
Network Type

20%

40%

60%

80%

100%

M
7

Non-Temporal-NLNon-Temporal Temporal-NL Temporal
Network Type

20%

40%

60%

80%

100%

M
8

Figure 10: The M⊖h value when varying the network type and the chance of repetition.

20

Under review as a conference paper at ICLR 2024

0% 20% 40% 60% 80% 100%
M 1

0%

20%

40%

60%

%
 o

f a
ll

m
es

sa
ge

s

Network Type
Non-Temporal-NL Non-Temporal Temporal-NL Temporal

0% 20% 40% 60% 80% 100%
M 2

0%

20%

40%

60%

%
 o

f a
ll

m
es

sa
ge

s

0% 20% 40% 60% 80% 100%
M 3

0%

20%

40%

60%

80%

%
 o

f a
ll

m
es

sa
ge

s

0% 20% 40% 60% 80% 100%
M 4

0%

20%

40%

60%

80%

%
 o

f a
ll

m
es

sa
ge

s

0% 20% 40% 60% 80% 100%
M 5

0%

20%

40%

60%

80%

%
 o

f a
ll

m
es

sa
ge

s

0% 20% 40% 60% 80% 100%
M 6

0%

20%

40%

60%

80%

%
 o

f a
ll

m
es

sa
ge

s

0% 20% 40% 60% 80% 100%
M 7

0%

20%

40%

60%

80%

%
 o

f a
ll

m
es

sa
ge

s

0% 20% 40% 60% 80% 100%
M 8

0%

20%

40%

60%

80%

%
 o

f a
ll

m
es

sa
ge

s

Figure 11: Usage of messages compared to their M⊖h value.

21

Under review as a conference paper at ICLR 2024

F COMPOSITIONALITY ANALYSIS

We analyse the created languages in terms of their compositionality scores, using the topographic
similarity metric (Brighton and Kirby, 2006), commonly employed in emergent communication. We
also use the posdis and bosdis metrics (Chaabouni et al., 2020), which account for languages where
the symbols themselves carry all the information (permutation invariant languages — bosdis), or
which use the positional information of individual characters (posdis). We show the results for these
metrics in Figure 12, Figure 13, and Figure 14, respectively.

All of our agents create compositional languages with varying degrees of compositional structure,
which shows that learning to use temporal references does not negatively impact this language
property. Most agents reach values between 0.1 and 0.2 (the higher, the more compositional the
language is) on the topographic similarity metric (Brighton and Kirby, 2006; Rita et al., 2022),
where a score of 0.4 has been considered high in previous research (Rita et al., 2022). However, the
topographic similarity metric would fail to measure compositionality regarding temporal references.
As the temporal messages can be compositional but would not refer to a specific object, topographic
similarity would not be able to identify them correctly. This could be the reason for the lower values
compared to previous research (Rita et al., 2022).

Always Same Never Same RG Classic RG Hard TRG Hard TRG Previous
Validation dataset

0.06

0.08

0.10

0.12

0.14

0.16

0.18

To
po

gr
ap

hi
c

sim
ila

rit
y

Network Type
Non-Temporal-NL trained on RGs
Non-Temporal-NL trained on TRGs
Non-Temporal trained on RGs
Non-Temporal trained on TRGs

Temporal-NL trained on RGs
Temporal-NL trained on TRGs
Temporal trained on RGs
Temporal trained on TRGs

Figure 12: Topographic similarity scores for each network and evaluation environment.

22

Under review as a conference paper at ICLR 2024

Always Same Never Same RG Classic RG Hard TRG Hard TRG Previous
Validation dataset

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Po
sit

io
na

l D
ise

nt
an

gl
em

en
t

Network Type
Non-Temporal-NL trained on RGs
Non-Temporal-NL trained on TRGs
Non-Temporal trained on RGs
Non-Temporal trained on TRGs

Temporal-NL trained on RGs
Temporal-NL trained on TRGs
Temporal trained on RGs
Temporal trained on TRGs

Figure 13: Positional disentanglement scores for each network and evaluation environment.

Always Same Never Same RG Classic RG Hard TRG Hard TRG Previous
Validation dataset

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Ba
g-

of
-w

or
ds

 d
ise

nt
an

gl
em

en
t

Network Type
Non-Temporal-NL trained on RGs
Non-Temporal-NL trained on TRGs
Non-Temporal trained on RGs
Non-Temporal trained on TRGs

Temporal-NL trained on RGs
Temporal-NL trained on TRGs
Temporal trained on RGs
Temporal trained on TRGs

Figure 14: Bag-of-words disentanglement scores for each network and evaluation environment.

23

	Introduction
	Temporal Referential Games
	Definitions
	Temporal Logic
	Temporal Referential Games
	Agent Architecture

	Temporality Experiments
	Temporality Metric
	Agent Training
	Temporality Analysis

	Discussion
	Limitations
	Conclusion
	Training Details
	Datasets Details
	Test Environments

	Architecture Overview
	Accuracy Analysis
	Analysis for previous horizon from hv=1 to hv=8
	Compositionality Analysis

