
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SQLENS: FINE-GRAINED AND EXPLAINABLE ERROR
DETECTION IN TEXT-TO-SQL

Anonymous authors
Paper under double-blind review

ABSTRACT

Text-to-SQL systems translate natural language (NL) questions into SQL queries,
allowing non-technical users to perform complex data analytics. Large language
models (LLMs) have shown promising results on the text-to-SQL task. How-
ever, these LLM-based text-to-SQL solutions often generate syntactically correct
but semantically incorrect SQL queries, which yield undesired execution results.
Additionally, most text-to-SQL solutions generate SQL queries without provid-
ing information on the quality or confidence in their correctness. Systematically
detecting semantic errors in LLM-generated SQL queries in a fine-grained man-
ner with explanations remains unexplored. In this paper, we propose SQLENS,
a framework that leverages the given NL question as well as information from
the LLM and database to diagnose the LLM-generated SQL query at the clause
level. SQLENS can link problematic clauses to error causes, and predict the se-
mantic correctness of the query. SQLENS effectively detects issues related to in-
correct data and metadata usage such as incorrect column selection, wrong value
usage, erroneous join paths, and errors in the LLM’s reasoning process. SQLENS
achieves an average improvement of 25.78% in F1 score over the best-performing
LLM self-evaluation method in identifying semantically incorrect SQL queries on
two public benchmarks. We also present a case study to demonstrate that SQLENS
can localize and explain errors for subsequent automatic error correction.

1 INTRODUCTION

Text-to-SQL systems, that can translate a natural language (NL) question into a SQL query, de-
mocratize data access for non-technical users, serving as an entry point to a larger data science
pipeline (Patel et al., 2024). The advent of Large Language Models (LLMs) has significantly ad-
vanced this field, and LLM-based text-to-SQL techniques (Talaei et al., 2024; Lee et al., 2024) have
demonstrated promising results on public benchmarks such as BIRD (Li et al., 2023) and Spider (Yu
et al., 2018). Recently, the LLM-based text-to-SQL solutions have been adopted in data platforms
offered by AWS1, Databricks2, Snowflake3, etc.

Despite these advancements, text-to-SQL remains a challenging problem. The best performing
method on the BIRD leaderboard4 only achieves an execution accuracy of around 73% on the dev
set, still producing more than 400 incorrect SQL queries out of 1534 NL questions. LLM-based
systems typically employ a multi-stage generation pipeline, consisting of a retrieval stage to col-
lect contextual information, a generation stage to produce candidate SQL queries and a correction
stage to regenerate SQL queries based on SQL parser errors as needed. While much attention has
been given to the retrieval and generation stages, there is still a lack of fine-grained and explainable
error detection in the correction stage. Namely, detecting semantic errors—where the SQL query
executes successfully but returns incorrect results—remains challenging and largely unsolved. This
is because semantic errors require a deep understanding of both the query logic and the database’s
structure. Most text-to-SQL solutions only produce a SQL query without providing any information
on the quality or measures of confidence.

1Amazon Q generative SQL - https://tinyurl.com/yjwcfwmc
2Databricks Assistant - https://tinyurl.com/cdva2bjx
3Snowflake Copilot - https://tinyurl.com/mtry8z7p
4BIRD Leaderboard - Execution Accuracy (EX) - https://bird-bench.github.io/

1

https://tinyurl.com/yjwcfwmc
https://tinyurl.com/cdva2bjx
https://tinyurl.com/mtry8z7p
https://bird-bench.github.io/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

TEXT-To-SQL

Female refers to gender = 'F'
Jesenik branch refers to A2=‘Jesenik’

External Knowledge (Evidence)

How many clients opened their accounts in
Jesenik branch were women?

Question

Financial
database

Generative Model

Labeling Function 1

Noisy Error Labelers

Sub-optimal Join Tree

Incorrect Join Predicate

Database
Signals

LLM Signals Evidence Violation

Labeling Function 2

Labeling Function 4

		𝜆!
		𝜆"

		𝜆#

	𝑌

Error Signal: Detects an evidence
violation that yields an empty
result set.
Correction Instruction: …
Problematic Clauses: [district.A2 =
‘jesenik’, client.gender = ‘Female’]

Error Report

Prediction

SQLens
SQL AST

Empty Predicate Labeling Function 3 		𝜆$

Figure 1: An overview of SQLENS.

Existing LLM-based text-to-SQL methods, like DIN-SQL (Pourreza & Rafiei, 2023) and MCS-SQL
(Lee et al., 2024), have a self-correction module that prompts an LLM to debug and correct a SQL
query. Such modules detect potential errors or measure the confidence of a generated SQL query by
generating multiple results and defining confidence e.g. based on LLM judgements or the number
of consistent outputs. However, these approaches lack fine-grained semantic error information and
explainability. They provide a confidence estimate for the entire SQL query based solely on the
LLM’s output but do not offer detailed insights into which part of the query might be incorrect and
why it is potentially wrong. This lack of fine-grained and explainable error detection hinders both
end users and the LLMs from effectively troubleshooting errors in LLM-generated SQL queries,
ultimately undermining trust in LLM-based systems and their wider adoption (Brown, 2024).

In this paper, we develop SQLENS, a fine-grained and explainable error detection framework for the
text-to-SQL task. We concentrate on two specific challenges: (1) identifying potential error signals
in a generated SQL query at the clause level, and (2) aggregating the error signals to determine
whether the query could be semantically incorrect. SQLENS is based on the intuition that a SQL
query is reasonable for a question if the intermediate results of its clauses are reasonable (e.g., result
sets are not empty, do not have too many missing values, etc.) and if the overall structure of the SQL
follows meaningful join paths in the database schema.

As shown in Figure 1, SQLENS parses a given SQL query into an abstract syntax tree (AST). For
each SQL clause in the AST, SQLENS exploits a variety of error signals - described in detail below
- from both the database and the LLM to detect potential semantic errors. The database signals are
lightweight and deterministic, assessing the correct usage of SQL clauses and evaluating their ex-
ecution results over the database. The LLM-based signals are derived from LLM’s comprehensive
knowledge about SQL and semantic understanding of the given NL question. To mitigate the chal-
lenge of potentially noisy signals, SQLENS is further equipped with a weakly-supervised training
process that integrates both the database and the LLM signals to construct a labeled training dataset.
SQLENS then trains a supervised or unsupervised classification model to predict if the given SQL
query is semantically correct, and generates an error report with detailed explanations. SQLENS can
also use feedback and any available labeled examples.

Fine-grained and Explainable. Detecting semantic errors in text-to-SQL is challenging because
any misunderstandings about NL question or (meta-)data can lead to cascading errors throughout
the SQL query generation process. We are the first to not only provide an overall estimation of a
SQL query’s semantic correctness but also identify potential error causes at the SQL clause level.

Robustness. Our approach can effectively handle noisy signals. The framework is capable of gen-
erating high-quality training data. As such, the system is domain-agnostic and can be adopted even
under the absence of labeled data.

Applicability. SQLENS is a general framework that can be seamlessly integrated with any text-
to-SQL solution as it only takes as inputs an NL question and its corresponding SQL query. The
fine-grained and explainable error report from SQLENS can be utilized by any text-to-SQL solutions
for error correction as demonstrated in Section 4.4.

Effectiveness. We provide extensive experimental results showing the effectiveness of SQLENS
on identifying semantically incorrect SQL queries (Section 4.2). On BIRD (Li et al., 2023) and

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

client

Question (𝒬) How many clients opened their accounts in Jesenik branch were women?
External Knowledge (𝒦): A2 has region names; female refers to gender = ‘F’

Predicted SQL (q) Output: 0 Ground Truth SQL Output: 26

district account

district_id district_id

Join Graph

c e1: Empty Predicate

e4: Sub-optimal Join Tree

e3: Incorrect Join Predicate

e2: Evidence Violation

Figure 2: A running example on BIRD financial database.

Spider (Yu et al., 2018) benchmarks, SQLENS achieves an average improvement of 25.78% in F1
score over the best-performing LLM self-evaluation method.

2 PRELIMINARIES AND PROBLEM STATEMENT

In this paper, a table T consists of a set of columns C = {C1, C2, ..., Cn}. A join relationship
J between two tables Ti and Tj is based on common attributes (i.e., joinable columns Ti.Cm and
Tj .Cn, respectively). A database instance D = {(T1, T2, . . . , Tn),J } comprises a set of tables and
a set of join relationships J between these tables.

Definition 1 (Text-to-SQL Algorithm) A text-to-SQL algorithm f takes as input a natural lan-
guage question Q, a database instance D, and optionally external knowledge K, and generates a
SQL query q = f(Q,D,K).

Figure 2 presents a running example using a question from the BIRD benchmark, asking for the
number of female clients who opened accounts at the Jesenik branch. The benchmark also provides
external knowledge, such as annotations on a column name and a cell value. The predicted SQL
query is generated by a text-to-SQL algorithm to answer the question.

Definition 2 (Semantic Error) A semantic error e results in the SQL query q failing to correctly
answer the natural language query Q. Formally,

do(e) ⇒ O(q,D) ̸= O(Q,D)

The operation do(e) denotes an intervention in the generation of q due to e, leading to a discrepancy
between the observed output O(q,D) and the expected correct output O(Q,D), thereby identifying
e as the semantic error.

For example, the generated SQL query in Figure 2 is semantically incorrect with an output of 0,
whereas the correct output is 26 based on the ground truth SQL query. First, the query incorrectly
uses “jesenik” in the predicate, leading to the empty result. Secondly, the query violates the evidence
specified in the evidence, using gender=‘Female’ instead of gender=‘F’. Even with the correct pred-
icates, the SQL query would still produce an incorrect result of 23 due to an incorrect join predicate
and a suboptimal join strategy. Specifically, there is no valid join path between the client and account
tables, indicating the join predicate client.client id = account.account id in the generated query is
hallucinated. Furthermore, the account table involved in the join tree is redundant as the client and
district tables can be directly joined to answer the question, as indicated in the join graph.

Problem 2.1 (Semantic Error Detection) Given a natural language question Q, a database in-
stance D, optionally external knowledge K, and the output SQL query q = f(Q,D,K) generated
by a text-to-SQL algorithm f , the task is to identify a set of potential semantic errors E from q if q is
semantically incorrect.

3 SQLENS FRAMEWORK

To address Problem 2.1, we introduce SQLENS, the first framework that provides fine-grained and
explainable error detection for the text-to-SQL task. SQLENS derives error signals from the SQL
clauses by incorporating information from the database, the schema, intermediate execution results,
and the LLM (Section 3.1). A robust error detection framework must reason about and establish

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Insufficient Evidence Value Ambiguity Column Ambiguity Table Similarity

Evidence Violation

Incorrect GROUP BY Incorrect Filter in Subquery Empty Predicate Suboptimal Join Tree

Incorrect Join Predicate

Data AmbiguityQuestion Ambiguity

Semantic Misalignment

Unnecessary Subquery

Abnormal ResultIncorrect Question Clause Linking5

Figure 3: The causal graph of semantic errors and error signals in SQL queries.

relationships of these diverse error signals, where each could be noisy. Hence SQLENS employs
a weak-supervision strategy to aggregate these signals to identify potential semantic errors and to
predict the semantic correctness of the SQL query (Section 3.2).

3.1 ERROR SIGNALS

Precise detection of semantic errors from a SQL query is inherently challenging due to the com-
plexity and ambiguity in NL queries, data, and database schemas. Our insight is that many semantic
errors in LLM-generated queries exhibit common patterns that can be detected through carefully
crafted signals. We categorize these errors as follows.
1. Question Ambiguity. The user’s questions might inherently contain ambiguities, and can be

interpreted in different ways. For example, if a user asks “What were the total sales last quarter?”
in a database where the sales table has columns named both gross sales and net sales, either
column could be selected to answer the question.

2. Data Ambiguity. In real-world databases, multiple tables or columns with similar or identical
names could exist due to data integration, versioning, table transformations, and other factors,
causing ambiguities as well. For example, a user might ask “What are the average salaries by
department?”, but the database contains both a dept table and a department table. Choosing the
wrong table leads to incorrect query results.

3. Semantic Misalignment. Even when there is no ambiguity in NL questions nor databases, the
semantic gap between the question and the data can still lead to misalignments between the gen-
erated SQL query and the given NL question. For instance, the SQL query shown in Figure 2 uses
an incorrect join predicate (client.client id = account.account id) as the text-to-SQL algorithm
fails to understand the join relationships in the financial database.

Definition 3 (SQL Error Signal) An error signal s analyzes a SQL query q to identify potentially
erroneous clauses Q′ and their associated error causes E . Formally, (Q′, E) = s(q).

Intuitively, an error signal acts as a proxy for identifying SQL semantic errors. As depicted in
Figure 3, we introduce an error causal graph that connects a diverse set of error signals to three com-
mon types of semantic errors described above. This graph resonates with the SQL error analysis
conducted in recent text-to-SQL studies (Wang et al., 2024; Lee et al., 2024). Note that certain error
signals can be more effectively and reliably extracted through database-driven analysis, particularly
those related to semantic misalignment. In contrast, error signals that require nuanced interpreta-
tion of both the question and the SQL demand the deep semantic understanding capabilities from
an LLM. Hence SQLENS incorporates both DB-based and LLM-based error signals to detect se-
mantic errors effectively. Note that neither the aforementioned semantic errors nor the error signals
described below are exhaustive, as error detection often involves a long tail of edge cases.

DB-based Error Signals. DB-based signals are designed to identify semantic misalignment and the
inherent ambiguity within the data. In Table 1, we present examples of incorrect and correct SQL
query pairs based on NL questions in the BIRD benchmark, highlighting the specific SQL clauses
targeted by each signal. We design these DB-based signals by analyzing real-life and benchmark
SQL queries such as TPC-DS6, Redset (van Renen et al., 2024), BIRD (Li et al., 2023), etc. These
signals can be efficiently obtained, without using LLMs, by (1) executing a subquery from the
SQL query (e.g., Empty Predicate, Abnormal Result), (2) checking (meta-)data information from
the underlying database (e.g., Suboptimal Join Tree, Value Ambiguity), or (3) leveraging general
heuristics from the above query workloads (e.g., Unnecessary Subquery). Further details regarding
all DB-based error signals are provided in Appendix A.1.

5Question Clause Linking refers to the mappings between the entities and expressions in an NL question to
their corresponding clauses in the SQL query.

6https://www.tpc.org/tpcds/

4

https://www.tpc.org/tpcds/

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Table 1: DB-based Error Signals.
Signal Name Incorrect SQL Query Correct SQL Query SQL Clause

Abnormal
Result
(BIRD id=340)

SELECT c.id FROM cards c
WHERE c.cardKingdomFoilId = c.cardKingdomId
AND c.cardKingdomId IS NOT NULL
AND c.hasFoil = 1 AND c.isFullArt = 0
AND c.isOversized = 0 AND c.isPromo = 0; Output Size: 0

SELECT id FROM cards
WHERE cardKingdomFoilId IS NOT NULL
AND cardKingdomId IS NOT NULL;

Output Size: 25061

WHERE

Empty
Predicate
(BIRD id=223)

SELECT c.atom id, c.atom id2 FROM connected c
JOIN bond b ON c.bond id = b.bond id
WHERE b.bond id = ‘TR 000 2 5’;
‘TR 000 2 5’ is not in b.bond id, should be ‘TR000 2 5‘

SELECT T.atom id FROM connected AS T
WHERE T.bond id = ‘TR000 2 5’; WHERE

Incorrect Filter
in Subquery
(BIRD id=612)

SELECT Name FROM badges WHERE UserId =
(SELECT Id FROM users
WHERE DisplayName = ‘Pierre’);

SELECT Name FROM badges WHERE UserId IN
(SELECT Id FROM users
WHERE DisplayName = ‘Pierre’);

SUBQUERY

Incorrect
GROUP BY
(BIRD id=30)

SELECT s.City, f.Enrollment (K-12)
FROM frpm f JOIN schools s
ON f.CDSCode = s.CDSCode
GROUP BY s.City, f.‘Enrollment (K-12)’
ORDER BY SUM(f.‘Enrollment (K-12)’) ASC LIMIT 5;

SELECT T2.City FROM frpm AS T1
INNER JOIN schools AS T2
ON T1.CDSCode = T2.CDSCode
GROUP BY T2.City
ORDER BY SUM(T1.‘Enrollment (K-12)’) ASC LIMIT 5;

GROUP BY

Incorrect Join
Predicate
(BIRD id=109)

SELECT (SELECT COUNT(DISTINCT client.client id)
FROM client INNER JOIN account
ON client.client id = account.account id
INNER JOIN district
ON account.district id = district.district id
WHERE district.a2 = ‘Jesenik’
AND client.gender = ‘F’) AS num female clients;

SELECT COUNT(T1.client id)
FROM client AS T1 INNER JOIN district AS T2
ON T1.district id = T2.district id
WHERE T1.gender = ‘F’ AND T2.A2 = ‘Jesenik’;

ON

Suboptimal
Join Tree
(BIRD id=162)

SELECT d.a3 FROM client c
JOIN disp di ON c.client id = di.client id
JOIN account a ON di.account id = a.account id
JOIN district d ON a.district id = d.district id
WHERE c.client id = 3541 LIMIT 1;

SELECT T1.a3 FROM district T1
INNER JOIN client T2
ON T1.district id = T2.district id
WHERE T2.client id = 3541;

FROM
JOIN

Table
Similarity
(BIRD id=995)

SELECT AVG(r.points) AS avg score
FROM results r JOIN drivers d ON r.driverId = d.driverId
JOIN races ra ON r.raceId = ra.raceId
WHERE d.forename = ‘Lewis’ AND d.surname = ‘Hamilton’
AND ra.raceId IN (SELECT raceId FROM races
WHERE name LIKE ‘%Turkish Grand Prix%’);

SELECT AVG(T2.points) FROM drivers AS T1
INNER JOIN driverStandings AS T2
ON T1.driverId = T2.driverId
INNER JOIN races AS T3 ON T3.raceId = T2.raceId
WHERE T1.forename = ‘Lewis’ AND T1.surname = ‘Hamilton’
AND T3.name = ‘Turkish Grand Prix’

SELECT
FROM

Unnecessary
Subquery
(BIRD id=349)

SELECT (SELECT c.name FROM cards c WHERE c.uuid =
(SELECT uuid FROM rulings)) AS card name,
(SELECT c.artist FROM cards c WHERE c.uuid =
(SELECT uuid FROM rulings)) AS artist,
(SELECT c.ispromo FROM cards c WHERE c.uuid =
(SELECT uuid FROM rulings)) AS is promo;

SELECT T1.name, T1.artist, T1.isPromo
FROM cards AS T1 INNER JOIN rulings AS T2
ON T1.uuid = T2.uuid WHERE T1.isPromo = 1
GROUP BY T1.artist ORDER BY
COUNT(DISTINCT T1.uuid) DESC LIMIT 1

SUBQUERY

Value
Ambiguity
(BIRD id=367)

SELECT c.‘artist’ FROM ‘cards’ c
JOIN ‘foreign data’ f ON c.‘uuid’=f.‘uuid’
WHERE c.‘watermark’=‘phyrexian’
AND c.‘artist’ IS NOT NULL GROUP BY c.‘artist’;

SELECT T1.artist FROM cards AS T1
INNER JOIN foreign data AS T2
ON T1.uuid = T2.uuid
WHERE T2.language = ‘Phyrexian’;

SELECT
WHERE

Table 2: LLM-based Error Signals.
Signal Name Incorrect SQL Query Correct SQL Query SQL Clause

Column
Ambiguity
(BIRD id=50)

SELECT s.School, s.StreetAbr FROM
satscores sat JOIN schools s ON sat.cds = s.CDSCode
ORDER BY sat.AvgScrMath DESC LIMIT 1 OFFSET 5;

SELECT T2.MailStreet, T2.School
FROM satscores AS T1
INNER JOIN schools AS T2 ON T1.cds = T2.CDSCode
ORDER BY T1.AvgScrMath DESC LIMIT 5, 1;

SELECT

Evidence
Violation
(BIRD id=463)

Evidence: set of cards with “Angel of Mercy”
in it refers to name = ‘Angel of Mercy’

SELECT COUNT(*) FROM set translations
WHERE setCode = ‘UNH’;

SELECT COUNT(DISTINCT translation)
FROM set translations WHERE setCode IN
(SELECT setCode FROM cards
WHERE name = ‘Angel of Mercy’)
AND translation IS NOT NULL;

Any clause
identified by

LLM

Insufficient
Evidence
(BIRD id=215)

Q: How many atoms with iodine and sulfur type
elements are there in single bond molecules?
Evidence: with iodine element refer to element = ‘i’;
with sulfur element refers to element = ‘s’;
single type bond refers to bond type = ‘-’;

It is not clear what “single bond molecules” refers to.

SELECT COUNT(DISTINCT CASE WHEN T1.element = ‘i’
THEN T1.atom id ELSE NULL END) AS iodine nums,
COUNT(DISTINCT CASE WHEN T1.element = ‘s’
THEN T1.atom id ELSE NULL END) AS sulfur nums
FROM atom AS T1 INNER JOIN connected AS T2
ON T1.atom id = T2.atom id INNER JOIN bond AS T3
ON T2.bond id = T3.bond id WHERE T3.bond type = ‘-’;

Any clause
identified by

LLM

Incorrect Question
Clause Linking
(BIRD id=305)

Q: List the top 10 players’ names whose heights are above
180 in descending order of average heading accuracy.

SELECT p.player name FROM Player p JOIN
Player Attributes pa ON p.player api id = pa.player api id
WHERE p.height > 180 ORDER BY pa.heading accuracy
DESC LIMIT 10;

SELECT t1.player name FROM Player AS t1
INNER JOIN Player Attributes AS t2
ON t1.player api id = t2.player api id
WHERE t1.height > 180 GROUP BY t1.id
ORDER BY CAST(SUM(t2.heading accuracy) AS REAL)
/ COUNT(t2.‘player fifa api id’) DESC LIMIT 10;

Any clause
identified by

LLM

LLM
Self-Check
(BIRD id=365)

SELECT p.Paragraph Text FROM Paragraphs p
JOIN Documents d ON p.Document ID = d.Document ID
WHERE d.Document Name = ‘Welcome to NY’;

SELECT T1.paragraph text FROM Paragraphs AS T1
JOIN Documents AS T2 ON T1.document id =T2.document id
WHERE T2.document name = ‘Customer reviews’;

Any clause
identified by

LLM
1 Question clause linking is the process of linking entities and expressions in a user question to the corresponding clauses in a SQL query.

LLM-based Error Signals. DB-based signals primarily focus on extracting information from the
SQL and the underlying data. However, for semantic errors due to insufficient evidence or LLM
hallucination, we need to consider both the question and the SQL query simultaneously and under-
stand the LLM’s reasoning process. Therefore, SQLENS introduces LLM-based error signals that
dig into question ambiguity and the LLM’s reasoning process. The signals are listed in Table 2.
Further details regarding all error signals are provided in Appendix A.2 and A.3.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3.2 AGGREGATING ALL SIGNALS USING WEAK SUPERVISION

The signals we collect are noisy, in that any signal may mistakenly flag correct SQL clauses as er-
roneous and vice versa. For example, the empty predicate signal, as shown in Figure 2, is to check
whether the value “jesenik” is in the column “A2”. However, it can lead to false positives if the
absence of value in the column domain is intended. Therefore, it is crucial to consider these diverse
signals collectively, for a specific application or database, when annotating the semantic correct-
ness of a generated SQL query, thereby mitigating the impact of noise. To do this, we leverage a
weak-supervision based framework that aggregates multiple sources of noisy labels – called label-
ing functions (LFs) – to approximate the true labels. These LFs can be heuristics or rules, each
contributing partial information about the target label. Weak supervision not only leverages the col-
lective wisdom of the LFs similarly to majority voting, but also goes further by learning the accuracy
and correlations of these LFs (Ratner et al., 2017).

In the context of SQLENS, our diverse error signals are essentially the LFs, identifying potential
issues with a SQL query but not providing a definitive verdict on its correctness. By combining
these noisy error signals using weak supervision, we can infer the correctness of SQL queries, even
in the absence of ground truth labels. Specifically, an error signal s maps SQL clauses in q to
potential semantic errors. To determine whether any problematic SQL clauses are identified, we
apply the LF λs, which converts s(q) into a variable I. Formally,

I = λs(q) =

{
1 if |s(q)| > 0

−1 if |s(q)| = 0

I = 1 indicates that the error signal s has detected at least one problematic SQL clause, suggesting
that the SQL is likely incorrect, while I = −1 indicates that no issues are found. Note that error
signals are designed to identify potential errors and can only suggest that a SQL query is incorrect.
Relying solely on negative labelers in weak supervision can result in limited coverage, leaving the
correctness of many SQL queries uncertain from labeling. To fully assess the correctness of a SQL,
we also develop three positive labelers, which are derived from combinations of error signals to label
a SQL as correct (i.e., I = 0).

1. λall: labels a SQL query as correct if no error signals are detected.

2. λdb: labels a SQL query as correct if no database-based signals are detected.

3. λllm: labels a SQL query as correct if no LLM-based signals are detected.

For a SQL query q, we have negative labelers derived from error signals that label a SQL as incorrect
(1) and three positive labelers that label a SQL as correct (0). This results in a decision vector
Λq = ⟨λs1(q), ..., λsn(q), λall(q), λdb(q), λllm(q)⟩.
The goal of weak supervision is to learn a generative model, often called a label model, that estimates
the joint distribution p(Λ, Y), where Y represents the unobserved true labels and Λ denotes the
observed noisy labels. The model’s objective is to find the parameters θ that best describe the
distribution by maximizing the likelihood of observing the labels provided by the LFs. To train the
model without true labels, SQLENS minimizes the negative log marginal likelihood:

θopt = argmin
θ

− log
∑
Y

pθ(Λ, Y)

Since the true labels Y are unknown, the model sums over all possible values that Y could take (Rat-
ner et al., 2017). Using the generative model, we obtain probabilistic labels, p(Y |Λ), representing
the likelihood of a SQL query’s correctness. SQLENS then uses these probabilistic labels to train a
classifier that predicts the semantic correctness of SQL queries.

4 EXPERIMENTAL RESULTS

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate our approach on the dev sets of two widely used text-to-SQL benchmarks:
BIRD (Li et al., 2023) and Spider (Yu et al., 2018). These datasets provide a correspondence between
the NL questions and the ground truth SQL queries.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 3: Statistics of generated SQL queries.

Approach Benchmark Accuracy 11 Accuracy 22 # SQL Queries # Incorrect # Syntax Error # Semantic Error

Vanilla BIRD 55.41 59.07 1534 684 95 589
DINSQL BIRD 35.53 39.49 1534 989 154 835
MACSQL BIRD 58.87 60.04 1534 631 30 601

CHESS BIRD 67.60 67.91 1534 497 7 490

Vanilla Spider 79.11 79.65 1034 216 7 209
DINSQL Spider 76.31 77.66 1034 245 18 227
MACSQL Spider 78.92 79.69 1034 218 10 208

1 Accuracy over all queries 2Accuracy over queries without syntax errors

For each dataset, we employ multiple text-to-SQL approaches, including Vanilla using a basic text-
to-SQL prompt (See Appendix A.3.1), DIN-SQL (Pourreza & Rafiei, 2023), and MAC-SQL (Wang
et al., 2024), to generate SQL queries. Claude 3 (Anthropic, 2024) is configured as the backbone
LLM for all these methods. In addition, we also directly use the SQL queries on the BIRD dev set,
provided by the authors of CHESS7 (Talaei et al., 2024).

Statistics of Generated SQL Queries. Table 3 presents the statistics of generated SQL queries on
two benchmarks using the above mentioned text-to-SQL approaches. The input to SQLENS is a set
of generated SQL queries without syntax errors. We evaluate the correctness of a SQL query by
comparing its execution result with the ground truth SQL query execution result.

Baselines. We consider the following baselines to identify semantically incorrect SQL queries.
In both baselines, we use Claude 3 as the judge model, providing it with the question, database
schemas, and the predicted SQL.

• LLM Self-Evaluation (Bool). Kadavath et al. (2022) found that LLMs can evaluate the validity of
their own answers and are well-calibrated on True/False questions. In this baseline, we ask the LLM
to determine whether the predicted SQL correctly answers the user question. The prompt we use is
provided in Appendix A.3.2.

• LLM Self-Evaluation (Prob). Tian et al. (2023) showed that LLMs produce well-calibrated verbal-
ized probabilities as confidence scores for their answers. In this baseline, we ask the LLM to output
the probability (0.0 to 1.0) that the SQL is correct. The prompt is provided in Appendix A.3.3.

• SQLENS with Supervised Learning. We manually annotated a set of training data where the cor-
rectness of SQL queries has been evaluated against the ground truth. Each SQL query in the training
set is associated with a decision vector generated by the SQLENS’s LFs and a ground truth label
g indicating whether the query is correct. The goal is to train a classifier F to predict the correct-
ness of a SQL query based on the labeler outputs. We utilize AutoGluon (Erickson et al., 2020), an
automated machine learning framework, to obtain the best performing classification model.

Metrics. We evaluate the performance of SQLENS using the following metrics: (1) Accuracy,
(2) Area under the ROC Curve (AUC), and (3) Precision/Recall/F1. Accuracy and AUC assess
the overall prediction power in determining if the predicted SQL correctly answers the question.
Precision, recall and F1 evaluates the ability to identify semantically incorrect SQL queries. Note
that relying solely on accuracy can be misleading because state-of-the-art text-to-SQL approaches
have reasonable accuracy on Spider and BIRD, which means blindly predicting all SQL queries as
correct can still have a high accuracy. Therefore, it is crucial to also consider precision, recall, and
F1 in detecting incorrect SQL queries when evaluating the performance of different approaches.

4.2 OVERALL EFFECTIVENESS OF SQLENS

We first evaluate the overall effectiveness of SQLENS in predicting the correctness of SQL queries.
Table 4 presents the results on BIRD, while the results on Spider are reported in Table 7 in Ap-
pendix A.4. We use 5-fold cross-validation to compute the statistics for all approaches.

On BIRD, SQLENS outperforms all baselines in terms of Accuracy, Recall and F1, indicating better
performance in identifying erroneous SQL queries. While the LLM Self-Evaluation (Prob) achieves
the highest precision on MAC-SQL, it does so at the expense of having the lowest recall. On Spider,
we observe similar results, with SQLENS outperforming LLM self-evaluation methods in terms of
both recall and F1 score (Table 7). A notable observation is that LLM self-evaluation tends to be

7https://tinyurl.com/mry73y24

7

https://tinyurl.com/mry73y24

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

overly confident in the generated SQL queries, leading to low recall in identifying incorrect queries.
For instance, LLM Self-Evaluation (Prob) only identifies 5.16% of the incorrect SQL queries on
those generated by MAC-SQL.

When aggregating various signals, The use of supervised learning in SQLENS yields better accu-
racy, AUC, and precision compared to the weak supervision method. This advantage arises because
supervised learning has access to gold labels during training, making it to more effectively assess the
reliability of each signal. The presence of these true labels allows the model to learn which signals
are more indicative of correctness, leading to slightly higher overall accuracy and precision.

On the other hand, aggregating all signals through weak supervision results in better recall and F1
scores. Weak supervision does not rely on ground truth labels. Instead, it depends on the agreement
and conflicts among signals to gauge their reliability. This approach may result in lower accuracy
and precision compared to supervised learning, as it lacks the direct guidance of gold labels. How-
ever, weak supervision achieves higher recall and F1 scores by trusting the majority of signals,
particularly when they cover different aspects of the SQL queries and do not frequently conflict.

Table 4: Effectiveness of SQLENS on BIRD (AUC=✗ when the classification is not threshold-
based). We highlight the top two results in bold and mark the top-1 result using †.

Method Accuracy AUC Precision Recall F1

Vanilla

LLM Self-Evaluation (Bool) 60.53 (±2.30) ✗ 57.70 (18.90) 10.02 (4.54) 16.97 (7.35)
LLM Self-Evaluation (Prob) 59.76 (±1.10) 64.23 (±2.98) 64.22 (±22.97) 2.72 (±1.89) 5.17 (±3.49)

SQLENS w. Supervised Learning 66.58† (±2.56) 65.12† (±3.88) 71.83† (±9.55) 31.77 (±7.38) 43.32 (±6.47)
SQLENS 64.63 (±1.97) 61.90 (±2.18) 58.11 (±2.80) 48.74† (±4.31) 52.94† (±3.24)

DIN-SQL

LLM Self-Evaluation (Bool) 61.52 (±1.20) ✗ 86.83 (±2.18) 42.99 (±2.72) 57.43 (±2.20)
LLM Self-Evaluation (Prob) 49.57 (±1.56) 73.01 (±0.86) 92.27† (±5.05) 17.84 (±2.19) 29.83 (±3.09)

SQLENS w. Supervised Learning 76.96† (±2.10) 83.55† (±2.33) 85.90 (±2.14) 74.13 (±3.27) 79.53† (±2.14)
SQLENS 75.29 (±2.33) 81.49 (±1.74) 81.64 (±2.17) 76.41† (±3.50) 78.88 (±2.19)

MAC-SQL

LLM Self-Evaluation (Bool) 61.50 (±1.47) ✗ 65.51 (±14.72) 7.83 (±2.16) 13.94 (±3.69)
LLM Self-Evaluation (Prob) 61.37 (±0.81) 64.60 (±2.19) 72.69† (±12.19) 5.16 (±1.53) 9.61 (±2.76)

SQLENS w. Supervised Learning 67.09 (±3.56) 65.07† (±4.30) 66.19 (±10.83) 38.11 (±2.90) 48.16 (±4.29)
SQLENS 67.43† (±4.38) 64.27 (±4.42) 63.27 (±8.64) 45.10†(±3.90) 52.63† (±5.62)

CHESS

LLM Self-Evaluation (Bool) 67.98 (±1.95) ✗ 50.89 (±10.76) 15.71 (±3.96) 23.81 (±5.22)
LLM Self-Evaluation (Prob) 68.50 (±0.82) 64.23† (±1.65) 61.87 (±13.09) 4.90 (±1.63) 9.03 (±2.87)

SQLENS w. Supervised Learning 72.10† (±1.27) 62.95 (±3.23) 72.43† (±8.93) 23.06 (±7.23) 33.96 (±8.04)
SQLENS 69.35 (±1.60) 63.34 (±2.90) 52.54 (±2.91) 44.69† (±6.03) 48.17† (±4.33)

4.3 EFFECTIVENESS OF INDIVIDUAL SIGNALS

Table 5 shows detailed performance of individual signals for SQL queries generated by MAC-SQL,
DIN-SQL, and CHESS on BIRD. Nw is the number of truly incorrect SQL queries identified by a
signal. Detailed results on the other setups including those on Spider, are provided in Appendix A.5.

BIRD Overall Results. For the SQL queries generated by MAC-SQL, 13 out of 14 signals achieve
over 60% precision. Notably, Abnormal Result identifies 40 incorrect SQL queries with 100% pre-
cision, while Suboptimal Join Tree identifies the highest number of incorrect queries with ∼62%
precision. Signals such as Empty Predicate and Incorrect Join Predicate are shown to be effec-
tive across all three text-to-SQL solutions. On the other hand, some signals, such as Unnecessary
Subquery and Insufficient Evidence, exhibit relatively lower precision on the queries generated by
MAC-SQL and CHESS. Their impact on overall accuracy is not significant as they only identify a
small number of SQL queries. Notably, the effectiveness of LLM Self-Check is more robust com-
pared to other LLM-based error signals. This observation is consistent with the results on LLM
Self-Evaluation presented in Table 4.

Spider Overall Results. We observe similar patterns on Spider, although the overall precision of
signals is lower than on BIRD. This reduction in precision can be attributed to the higher accuracy
of the text-to-SQL approaches on Spider, as shown in Table 3. With nearly 80% accuracy on Spider,
only approximately 200 semantically incorrect queries remain for error detection, resulting in a
long-tailed distribution of errors.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 5: Effectiveness of individual error signals on BIRD.

Signal Name DIN-SQL MAC-SQL CHESS
DB-based Error Signals Precision Recall Nw Precision Recall Nw Precision Recall Nw

Abnormal Result 99.68 37.01 309 100 6.66 40 98.48 13.27 65
Empty Predicate 96.07 46.83 391 75.81 7.82 47 81.25 10.61 52
Incorrect Filter in Subquery No queries detected 76 3.16 19 No queries detected
Incorrect GROUP BY 68.75 5.27 44 66.67 3.0 18 50 0.2 1
Incorrect Join Predicate 100 0.12 1 92.86 2.16 13 100 0.41 2
Suboptimal Join Tree 73.86 15.57 130 62.24 10.15 61 55.13 8.78 43
Table Similarity 73.08 4.55 38 67.31 5.82 35 63.27 6.33 31
Unnecessary Subquery 92.31 1.44 12 62.77 10.15 61 100 0.2 1
Value Ambiguity 66.22 5.87 49 58.49 5.16 31 38.89 5.71 28

LLM-based Error Signals Precision Recall Nw Precision Recall Nw Precision Recall Nw

Column Ambiguity 88.69 17.84 149 75.0 3.49 21 50 4.69 23
Evidence Violation 91.24 14.97 125 87.1 4.49 27 42.86 1.22 6
Insufficient Evidence 82.4 12.34 103 62.07 3.0 18 41.03 3.27 16
LLM Self-Check 86.71 43.0 359 65.28 7.82 47 50.33 15.71 77
Question Clause Linking 87 12.34 103 60.71 5.66 34 53.49 4.69 23

Additional Insights. The precision of Suboptimal Join Tree is lower with MAC-SQL and CHESS,
because, in some cases, the generated SQL query includes a redundant table in the join tree, which
does not affect the final outcome of the query. However, we observe that the optimal join tree identi-
fied by this signal often aligns with the ground truth query. Although a suboptimal join tree may not
impact the semantic correctness of the results, it can adversely affect query execution performance.
Incorrect Join Predicate achieves more than 90% precision across all datasets. Overall, DB-based
error signals demonstrate higher coverage and precision compared to LLM-based signals.

4.4 CASE STUDY: USING DETECTED ERRORS TO CORRECT SQL QUERIES

SQLENS’s error signals are associated with SQL clauses and provide a detailed error report, as
depicted in Figure 2. Each error report consists of: (1) signal description and the conditions that
trigger it; (2) example(s) (optional) to clarify the meaning of the signal; (3) correction instruction
for correcting the SQL query; and (4) problematic clauses identified as potential sources of error.
Such error report offers valuable insights for addressing the identified errors in SQL queries.

Table 6: Effectiveness of using detected errors to
correct SQL queries (MAC-SQL on BIRD).

Signal Name Nfix Nbreak Nnet

DB-based Signals

Abnormal Result 4 0 4
Empty Predicate 8 1 7

Incorrect Filter in Subquery 9 3 6
Incorrect GROUP BY 5 2 3

Incorrect Join Predicate 5 1 4
Suboptimal Join Tree 16 7 9

Table Ambiguity 2 1 1
Unnecessary Subquery 6 4 2

Value Ambiguity 4 1 3

LLM-based Signals

Column Ambiguity 4 1 3
Evidence Violation 9 1 8
LLM Self-Check 10 3 7

In this case study, we explore the potential
of using error reports to automatically correct
SQL queries. Specifically, we design an LLM-
based SQL correction module that takes as in-
puts: (1) an NL question, (2) optional external
knowledge, (3) the original SQL query gener-
ated by a text-to-SQL solution, and (4) an er-
ror report generated by SQLENS. The LLM-
based correction module produces a new SQL
query if any correction is needed. During the
correction process, a syntactic error might be
introduced into the updated SQL query. To han-
dle this, we follow the common practice (Pour-
reza & Rafiei, 2023; Lee et al., 2024), which
takes the parser error message from a database
and iteratively prompts the LLM to revise the
SQL query until it is syntactically correct. The
prompt template for the SQL correction module
can be found in Appendix A.7.

We evaluate the SQL correction capability of each individual signal. For each signal, we input all
SQL queries that a signal flags as problematic into the LLM-based correction module and measure
three outcomes: the number of SQL queries successfully corrected (incorrect → correct), denoted
as Nfix; the number of SQL queries that were correct but were made incorrect (correct → incorrect),
denoted as Nbreak; and the net number of SQL queries corrected, calculated as Nnet = Nfix −Nbreak.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Question Clause Linking and Insufficient Evidence signals were not included in this experiment as
they require additional external information for corrections.

The result is shown in Table 6. Among DB-based signals, Suboptimal Join Tree exhibits the highest
correction power, with Nfix = 16 and a net correction of 9 queries. Empty Predicate also shows high
effectiveness, with a net correction of 7 (Nfix = 8, Nbreak = 1). Among the LLM-based signals,
Evidence Violation performs the best, achieving a net correction of 8 queries. Overall, all signals
result in a positive net number of corrected SQL queries, underscoring the efficacy of SQLENS.

Additionally, we calculate the total net number of successfully corrected SQL queries, Qnet =
|
⋃n

i=1 S
i
fix −

⋃n
i=1 S

i
break|, where Qfix = |

⋃n
i=1 S

i
fix| denotes the total number of queries corrected

successfully and Qbreak = |
⋃n

i=1 S
i
break| is the total number of SQL queries that were correct but

became incorrect due to the LLM-based correction module. Here Si
fix and Si

break represent the set
of SQL queries successfully corrected and broke by the signal si, respectively. For the 1,534 SQL
queries generated by MAC-SQL on BIRD, we found Qfix = 67, Qbreak = 22, and Qnet = 45
(2.9% of total queries). These results demonstrate the potential of SQLENS to further enhance the
performance of state-of-the-art text-to-SQL methods.

5 RELATED WORK

Text-to-SQL. Generating accurate SQL from natural language questions (Text-to-SQL) is a long-
standing challenge due to the complexities in user question understanding, database schema com-
prehension, and SQL generation (Quamar et al., 2022; Katsogiannis-Meimarakis & Koutrika, 2023).
Recently, large language models (LLMs) have demonstrated significant capabilities in natural lan-
guage understanding as the model scale increases. LLM-based text-to-SQL solutions (Hong et al.,
2024) have emerged. DIN-SQL (Pourreza & Rafiei, 2023) studies how decomposing the text-to-SQL
task into smaller sub-tasks can be effective. MAC-SQL (Wang et al., 2024) presents a multi-agent
collaborating framework. The selector preserves relevant tables for user questions, the decomposer
breaks down user questions into sub-questions and provides solutions, and finally the refiner val-
idates and refines the defective SQL. CHESS (Talaei et al., 2024) introduces a new pipeline that
hierarchically retrieves relevant data and context, selects an efficient schema, and synthesizes cor-
rect and efficient SQL queries. MCS-SQL (Lee et al., 2024) leverages multiple prompts to explore a
broader search space for possible answers and effectively aggregate them. However, the SQL queries
generated by these methods can often be semantically incorrect. And such erroneous queries are only
detected after being executed. These methods can benefit from our SQLENS by incorporating its
fine-grained error detection capability.

LLM Self-Evaluation. As part of ongoing research to improve LLM’s reliability and trustwor-
thiness, LLM self-evaluation enables an LLM to assess the quality, accuracy, or relevance of its
own response (Geng et al., 2024). Kadavath et al. (2022) explored the self-evaluation capabili-
ties of LLMs. The findings show that LLMs are well-calibrated when answering multiple-choice
and true/false questions. This ability improves further when the models consider multiple possible
answers before deciding on one. Tian et al. (2023) introduced methods to obtain well-calibrated con-
fidence scores from large language models (LLMs) that have been fine-tuned using reinforcement
learning from human feedback (RLHF). Self-RAG (Asai et al., 2024) enhances the factual accuracy
of LLMs by combining selective retrieval of external information with self-critiquing mechanisms.
The model can decide when to retrieve information and critique its own outputs, leading to more
reliable and verifiable results. However, these methods are designed for general tasks, which do not
address the unique challenges in text-to-SQL.

6 CONCLUSION

In this paper, we introduce SQLENS, the first framework that exploits information from both the
database and the LLM to achieve fine-grained and explainable error detection in text-to-SQL. DB-
based signals identify semantic misalignment and the inherent ambiguity within the underlying data,
while LLM-based signals consider the question and the SQL query simultaneously and examine
the reasoning process of an LLM. SQLENS systematically diagnoses SQL queries at the clause
level, aggregating noisy error signals through weak supervision to predict the semantic correctness
of a SQL query. SQLENS significantly outperforms LLM self-evaluation methods in identifying
semantic errors in SQL queries. Beyond error detection, we also demonstrate the effectiveness of
using error signals to fix SQL queries automatically.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

7 REPRODUCIBILITY

To ensure the reproducibility of SQLENS, we provide a detailed discussion regarding the exper-
imental setup in Section 4.1, including the backbone LLM, dataset statistics, baselines, etc. The
implementation of DB-based error signals is thoroughly described in Appendix A.1. Additionally,
the prompts used for LLM-based error signals are available in Appendix A.3. We report additional
experimental results in Appendix A.4 and A.5. Lastly, the prompts for the vanilla text-to-SQL ap-
proach and the SQL query correction module can be found in Appendix A.3.1 and A.7, respectively.

REFERENCES

Anthropic. Claude 3 model card, 2024. URL https://www-cdn.anthropic.com/
de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf.
Accessed: 2024-08-12.

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and Hannaneh Hajishirzi. Self-rag: Learning to
retrieve, generate, and critique through self-reflection. In The Twelfth International Conference on
Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024.
URL https://openreview.net/forum?id=hSyW5go0v8.

Nik Bear Brown. Enhancing trust in llms: Algorithms for comparing and interpreting llms. arXiv
preprint arXiv:2406.01943, 2024.

Nick Erickson, Jonas Mueller, Alexander Shirkov, Hang Zhang, Pedro Larroy, Mu Li, and Alexander
Smola. AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data, March 2020.
URL http://arxiv.org/abs/2003.06505. arXiv:2003.06505 [cs, stat].

Jiahui Geng, Fengyu Cai, Yuxia Wang, Heinz Koeppl, Preslav Nakov, and Iryna Gurevych. A survey
of confidence estimation and calibration in large language models. In Kevin Duh, Helena Gomez,
and Steven Bethard (eds.), Proceedings of the 2024 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies (Volume 1:
Long Papers), pp. 6577–6595, Mexico City, Mexico, June 2024. Association for Computational
Linguistics. doi: 10.18653/v1/2024.naacl-long.366. URL https://aclanthology.org/
2024.naacl-long.366.

Zijin Hong, Zheng Yuan, Qinggang Zhang, Hao Chen, Junnan Dong, Feiran Huang, and Xiao
Huang. Next-generation database interfaces: A survey of llm-based text-to-sql. CoRR,
abs/2406.08426, 2024. doi: 10.48550/ARXIV.2406.08426. URL https://doi.org/10.
48550/arXiv.2406.08426.

Saurav Kadavath, Tom Conerly, Amanda Askell, Tom Henighan, Dawn Drain, Ethan Perez,
Nicholas Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli Tran-Johnson, Scott Johnston,
Sheer El-Showk, Andy Jones, Nelson Elhage, Tristan Hume, Anna Chen, Yuntao Bai, Sam
Bowman, Stanislav Fort, Deep Ganguli, Danny Hernandez, Josh Jacobson, Jackson Kernion,
Shauna Kravec, Liane Lovitt, Kamal Ndousse, Catherine Olsson, Sam Ringer, Dario Amodei,
Tom Brown, Jack Clark, Nicholas Joseph, Ben Mann, Sam McCandlish, Chris Olah, and
Jared Kaplan. Language Models (Mostly) Know What They Know, November 2022. URL
http://arxiv.org/abs/2207.05221. arXiv:2207.05221 [cs].

George Katsogiannis-Meimarakis and Georgia Koutrika. A survey on deep learning approaches for
text-to-sql. VLDB J., 32(4):905–936, 2023. doi: 10.1007/S00778-022-00776-8. URL https:
//doi.org/10.1007/s00778-022-00776-8.

Dongjun Lee, Choongwon Park, Jaehyuk Kim, and Heesoo Park. MCS-SQL: Leveraging Multiple
Prompts and Multiple-Choice Selection For Text-to-SQL Generation, May 2024. URL https:
//arxiv.org/abs/2405.07467v1.

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, Bowen Li, Bailin Wang, Bowen Qin,
Rongyu Cao, Ruiying Geng, Nan Huo, Xuanhe Zhou, Chenhao Ma, Guoliang Li, Kevin C. C.
Chang, Fei Huang, Reynold Cheng, and Yongbin Li. Can LLM Already Serve as A Database
Interface? A BIg Bench for Large-Scale Database Grounded Text-to-SQLs, November 2023.
URL http://arxiv.org/abs/2305.03111. arXiv:2305.03111 [cs].

11

https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://openreview.net/forum?id=hSyW5go0v8
http://arxiv.org/abs/2003.06505
https://aclanthology.org/2024.naacl-long.366
https://aclanthology.org/2024.naacl-long.366
https://doi.org/10.48550/arXiv.2406.08426
https://doi.org/10.48550/arXiv.2406.08426
http://arxiv.org/abs/2207.05221
https://doi.org/10.1007/s00778-022-00776-8
https://doi.org/10.1007/s00778-022-00776-8
https://arxiv.org/abs/2405.07467v1
https://arxiv.org/abs/2405.07467v1
http://arxiv.org/abs/2305.03111

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Liana Patel, Siddharth Jha, Carlos Guestrin, and Matei Zaharia. Lotus: Enabling semantic queries
with llms over tables of unstructured and structured data. arXiv preprint arXiv:2407.11418, 2024.

Mohammadreza Pourreza and Davood Rafiei. DIN-SQL: Decomposed In-Context Learning of
Text-to-SQL with Self-Correction, April 2023. URL https://arxiv.org/abs/2304.
11015v3.

Abdul Quamar, Vasilis Efthymiou, Chuan Lei, and Fatma Özcan. Natural language interfaces to
data. Found. Trends Databases, 11(4):319–414, 2022. doi: 10.1561/1900000078. URL https:
//doi.org/10.1561/1900000078.

Alexander Ratner, Stephen H. Bach, Henry Ehrenberg, Jason Fries, Sen Wu, and Christopher Ré.
Snorkel: rapid training data creation with weak supervision. Proceedings of the VLDB Endow-
ment, 11(3):269–282, November 2017. ISSN 2150-8097. doi: 10.14778/3157794.3157797. URL
https://dl.acm.org/doi/10.14778/3157794.3157797.

Shayan Talaei, Mohammadreza Pourreza, Yu-Chen Chang, Azalia Mirhoseini, and Amin Saberi.
CHESS: Contextual Harnessing for Efficient SQL Synthesis, June 2024. URL http://arxiv.
org/abs/2405.16755. arXiv:2405.16755 [cs].

Katherine Tian, Eric Mitchell, Allan Zhou, Archit Sharma, Rafael Rafailov, Huaxiu Yao, Chelsea
Finn, and Christopher D. Manning. Just Ask for Calibration: Strategies for Eliciting Calibrated
Confidence Scores from Language Models Fine-Tuned with Human Feedback, October 2023.
URL http://arxiv.org/abs/2305.14975. arXiv:2305.14975 [cs].

Alexander van Renen, Dominik Horn, Pascal Pfeil, Kapil Eknath Vaidya, Wenjian
Dong, Murali Narayanaswamy, Zhengchun Liu, Gaurav Saxena, Andreas Kipf, and
Tim Kraska. Why tpc is not enough: An analysis of the amazon redshift fleet.
In VLDB 2024, 2024. URL https://www.amazon.science/publications/
why-tpc-is-not-enough-an-analysis-of-the-amazon-redshift-fleet.

Bing Wang, Changyu Ren, Jian Yang, Xinnian Liang, Jiaqi Bai, Linzheng Chai, Zhao Yan, Qian-
Wen Zhang, Di Yin, Xing Sun, and Zhoujun Li. MAC-SQL: A Multi-Agent Collaborative
Framework for Text-to-SQL, June 2024. URL http://arxiv.org/abs/2312.11242.
arXiv:2312.11242 [cs].

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene
Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir Radev. Spider: A Large-
Scale Human-Labeled Dataset for Complex and Cross-Domain Semantic Parsing and Text-to-
SQL Task. In Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii (eds.), Pro-
ceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp.
3911–3921, Brussels, Belgium, October 2018. Association for Computational Linguistics. doi:
10.18653/v1/D18-1425. URL https://aclanthology.org/D18-1425.

12

https://arxiv.org/abs/2304.11015v3
https://arxiv.org/abs/2304.11015v3
https://doi.org/10.1561/1900000078
https://doi.org/10.1561/1900000078
https://dl.acm.org/doi/10.14778/3157794.3157797
http://arxiv.org/abs/2405.16755
http://arxiv.org/abs/2405.16755
http://arxiv.org/abs/2305.14975
https://www.amazon.science/publications/why-tpc-is-not-enough-an-analysis-of-the-amazon-redshift-fleet
https://www.amazon.science/publications/why-tpc-is-not-enough-an-analysis-of-the-amazon-redshift-fleet
http://arxiv.org/abs/2312.11242
https://aclanthology.org/D18-1425

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 DB-BASED ERROR SIGNALS

SQLENS uses the following signals to identify semantic misalignment.

• Suboptimal join tree signal is introduced to determine whether a SQL query utilizes the optimal
join tree for connecting the required tables to answer an NL question. SQLENS first constructs a join
graph G = (D,J) based on the database schema, where D represents the tables and J represents
the join relationships. Let Dreq ⊆ D denote the subset of tables required to answer the question. The
optimal join tree is defined as the minimum Steiner tree T ∗ that spans Dreq, indicating the minimal
set of tables needed for the join. If the SQL query includes more tables than those in Dreq, the
Sub-optimal Join Tree signal is flagged. For example, Figure 4 (right) shows an optimal join tree to
connect the tables A and C.

Suboptimal Join Tree

A

B C

D

Optimal Join Tree (Minimum Steiner Tree)

A

B C

D

Figure 4: Steiner Trees spanning A and C

To implement this signal, SQLENS first identifies the columns in a SQL query that are not involved
in the JOIN clauses. Based on these columns, SQLENS searches for the minimum Steiner Tree on
the join graph built offline to connect the relevant tables. If the SQL query involves more tables in the
join than necessary, compared to the minimum Steiner Tree, SQLENS raises Suboptimal Join Tree
flag. This signal can produce false positives when a suboptimal join strategy does not impact the
correctness of the SQL query. For instance, if a query asks for the total sales from a specific store, it
can directly select the sales column from the store sales table. However, if the query unnecessarily
joins the store sales table with a store location table, even though the store location table is not
needed to get the correct sales data, the result would still be correct but the join is suboptimal.

• Incorrect join predicate signal checks whether a SQL query uses an invalid join predicate. For
example, in Figure 2, the predicted SQL incorrectly joins client id with account id, which does not
exist in the corresponding schema graph. To implement this signal, SQLENS first extracts all the
join predicates from the SQL query. It then identifies two types of correct join predicates: (1) using
a primary key-foreign key (PK/FK) join explicitly defined in the database schema, and (2) derived
from PK/FK joins. Specifically, if two columns Ci and Cj both reference the same primary key
Ck (i.e., they refer to the same entity), Ci and Cj can be used in a join predicate. This signal may
generate false positives when the PK/FK relationships are not fully documented in the database.

• Empty predicate signal detects if there is a predicate within a SQL query that yields an empty
result. This signal is useful to detect semantic misalignment errors, including wrong column selec-
tion, wrong value usage or wrong comparison operator. SQLENS extracts all comparisons between
a column and a literal from a given SQL, executes each of them individually and records the output
size. If there is a predicate that yields empty rows, this signal is flagged. This signal may lead to
false positives when an empty predicate is intentional.

• Abnormal result signal detects whether a SQL outputs an abnormal result that does not provide
much information. SQLENS executes the SQL and records its output. The output is considered
abnormal if (1) it is empty, (2) it contains a column full of zeros, or (3) it contains a column full
of NULLs. This signal extends beyond the empty predicate to evaluate the entire SQL output. In
addition to detecting empty predicates, it can identify empty intermediate execution results, making
it effective for catching semantic misalignment in the intermediate steps of a SQL query. This signal
may incorrectly flag a SQL query when the abnormal result is intentional, though this scenario is
rare in practice.

• Incorrect filter in subquery signal detects the problematic filtering in a subquery. Filters in a
subquery often follow the pattern column = (SELECT...). When the subquery returns multiple rows,

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

the filter condition becomes ambiguous (e.g., IN or ‘=’), potentially leading to errors. SQLENS
uses regular expressions to match this pattern and executes the extracted subquery separately. If it
returns more than one row, the signal is flagged. Additionally, SQLite is lenient with SQL semantics,
allowing column = (SELECT...) to match only the first value returned by the subquery. While the
query might still be correct if the first value happens to be the desired one, relying on this behavior
is generally considered poor practice in SQL writing.

• Incorrect GROUP BY signal detects any standalone GROUP BY clause without accompanying
aggregate functions such as MAX, COUNT. A misused GROUP BY clause can change the SQL
semantics and lead to an incorrect result. In SQLite, a standalone GROUP BY behaves the same
as the DISTINCT operator. While the query may still be correct when using GROUP BY as a
substitute for DISTINCT, this approach is generally considered poor practice.

• Unnecessary subquery signal indicates if there is an excessive use of subqueries in a SQL query,
which leads to inefficiencies, increased complexity, and a higher likelihood of errors. This signal
counts the number of subqueries in a SQL query and flags it as problematic if the count exceeds a
specified threshold. In our evaluation, this threshold is set to 3. False positives may arise when the
subqueries are necessary for performance optimization or specific logic, even though they exceed
the threshold.

The following signals are designed to capture the inherent ambiguity within the data.

• Value ambiguity signal detects incorrect column selections when a value used in an NL ques-
tion appears in multiple columns. For example, “New York” can appear in both “state” and “city”
columns. To identify ambiguous value, this signal extracts all values used in the SQL and finds
columns that contain a used value via an inverted index built offline. If there is an alternative column
that is closer to the question semantically, the signal flags the corresponding value as ambiguous. It
is possible that the originally selected column in the SQL is correct, as the semantic distance may
not always accurately determine which column containing the value is the best candidate to answer
the question.

• Table similarity signal detects potential errors in table selection by identifying alternative tables
with similar structures. It extracts all columns used in the SQL, groups columns by their tables,
and searches for other tables that contain the same groups of columns. If such a table is found, it
suggests that the alternative table could have been used, indicating a potential mistake in the original
chosen table. False positives can occur when the chosen table is actually correct, but another table
with a similar structure exists, leading the system to incorrectly flag a possible error.

A.2 LLM-BASED ERROR SIGNALS

• Evidence violation signal identifies cases where the generated SQL query contradicts the evidence
provided in the question or external knowledge. For example, if the question specifies retrieving
rows only about active employees, but the SQL query does not include a condition to filter out
inactive employees, this would trigger an evidence violation. The prompt used by SQLENS can be
found in Appendix A.3.4.

• Insufficient evidence signal assesses whether the available evidence is adequate to confirm that
the SQL query correctly answers the user’s question. For example, if the question lacks a clear
explanation of a domain-specific concept, the LLM is prone to hallucination. This signal essentially
verifies that the LLM has enough information and context to provide a correct response. The prompt
is shown in Appendix A.3.5.

• Incorrect question clause linking signal evaluates the LLM’s confidence in the generated SQL
clauses. This signal first prompts the LLM to map the concepts, entities, and expressions in the user
question to the corresponding clauses in the SQL query. For each identified link, the LLM is then
asked to indicate its confidence in the generated clause by responding with a simple yes or no. This
signal is flagged when there is at least one clause with low confidence. The prompt can be found in
Appendix A.3.6.

• Column ambiguity signal identifies whether there are columns in the database that are very similar
to those used in the SQL query and could also be used to answer the user’s question. This signal

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

suggests that a SQL is prone to wrong column selection. The prompt for this signal is shared in
Appendix A.3.7.

The above signals provide specific error causes for the LLM to detect. Given that studies have shown
LLMs possess the ability to validate their own answers Kadavath et al. (2022); Tian et al. (2023), we
also incorporate a signal that prompts the LLM to provide an overall assessment of its own output.

• LLM self-check asks an LLM to determine whether the proposed SQL correctly answers the user
question considering the database and any available external knowledge. The prompt can be found
in Appendix A.3.2.

False positives can occur for the LLM-based signals when the LLM misinterprets the question, has
limited understanding of the specified knowledge, experiences hallucination, or exhibits bias when
evaluating its own output.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A.3 PROMPTS

A.3.1 PROMPT FOR VANILLA TEXT-TO-SQL

Role: You are an expert SQL database administrator responsible for
crafting precise SQL queries to address user questions.↪→

Context: You are provided with the following information:
1. A SQLite database schema
2. A user question
3. Relevant evidence pertaining to the user's question

Database Schema:
- Consists of table descriptions
- Each table contains multiple column descriptions
- Frequent values for each column are provided

Your Task:
1. Carefully analyze the user question, evidence and the database

schema.↪→
2. Write a SQL query that correctly answers the user question

Format your SQL query using the following markdown:
```sql
YOUR SQL QUERY HERE
```

[Question]
{question}

[Evidence]
{evidence}

[Database Info]
{db_desc_str}

[Answer]

A.3.2 PROMPT FOR LLM SELF-CHECK (TRUE/FALSE)

You are provided with a SQLite database schema, a user question, and a
proposed SQL query intended to solve the user question. Your task is
to determine whether the proposed SQL correctly answers the user
question. Your answer should be in the form of a JSON object with
two keys: "correct" and "explanation". Provide an explanation only
if the SQL is incorrect.

↪→
↪→
↪→
↪→
↪→

You need to generate the answer in the following format:

[Answer]:
```json
{{

"correct": false,
"explanation": "your explanation of why the SQL is incorrect"

}}
```
Make sure you generate a valid json response.
=================================
Please start answering the following question:
[Question]
{question}. {evidence}

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

[Database Info]
{db_desc_str}

[SQL query]
{sql_query}

[Answer]

A.3.3 PROMPT FOR LLM SELF-CHECK (PROBABILITY)

You are provided with a user question, a SQLite database schema and a
proposed SQL query intended to solve the user question.↪→

Your task is to evaluate the proposed SQL query and provide the
probability that it correctly answers the user question.↪→

Provide this probability as a decimal number between 0 and 1.

You need to generate the answer in the following format:

[Answer]:
```json
{{

"probability": <the probability between 0.0 and 1.0 that the SQL
correctly answers the question>↪→

}}
```
Make sure you generate a valid json response.
=================================
Please start answering the following question:
[Question]
{question}. {evidence}

[Database Info]
{db_desc_str}

[SQL query]
{sql_query}

[Answer]

A.3.4 PROMPT FOR EVIDENCE VIOLATION

You are provided with a user question and a proposed SQL query that
solves the user question. Your task is to determine whether the
proposed SQL query reflects all the evidence specified in the
question.

↪→
↪→
↪→

Here is a typical example:

==== Example ====

Question] How many users are awarded with more than 5 badges? more than
5 badges refers to Count (Name) > 5; user refers to UserId↪→

[SQL query] SELECT UserId FROM (SELECT UserId, COUNT(DISTINCT Name) AS
num FROM badges GROUP BY UserId) T WHERE T.num > 6;↪→

[Answer]:

```json
{{

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

"violates_evidence": true
"explanation": "This SQL query violates the evidence in the question

because it counts the number of users with more than 6 badges, not
more than 5 badges. Additionally, it uses COUNT(DISTINCT Name)
instead of COUNT(Name) as specified in the question.

↪→
↪→
↪→

}}
```
Question Solved. Make sure you generate a valid json response.
===============

Here is new example, please start answering:

[Question] {question}. {evidence}

[SQL query] {sql_query}

[Answer]

A.3.5 PROMPT FOR INSUFFICIENT EVIDENCE

You are provided with sqlite database schema, a user question, and a
proposed SQL query that solves the user question. Your task it to
determine whether you have sufficient evidence to determine whether
the SQL answers the user question correctly.

↪→
↪→
↪→

Output a JSON object in the following format. Make sure you generate a
valid json response.↪→

[Answer]
```json
{{

"insufficient_evidence": true/false
"explanation": "why the evidence is not sufficient"

}}
```
Question Solved.
===============
Here is new example, please start answering:

[Question] {question}. {evidence}

{db_desc_str}

[SQL query]

{sql_query}

[Answer]

A.3.6 PROMPT FOR QUESTION-CLAUSE LINKING

You are given a SQLite database schema, a user question, and a proposed
SQL query intended to address the user's question. Please follow
these steps:

↪→
↪→

1. Link the concepts, entities, and expressions in the user question to
the corresponding clauses in the SQL query.↪→

2. For each link you have identified, indicate whether you are confident
in the generated clause by answering "yes" or "no."↪→

Output a JSON object in the following format. Make sure you generate a
valid json response.↪→

[Answer]
```json

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

{{
"<(entity in the question, the corresponding SQL clause)>":

"<yes/no>"↪→
}}

```

Please start answering the following question:
[Question] {question}. {evidence}.

{db_desc_str}

[SQL query] {sql_query}

[Answer]

A.3.7 PROMPT FOR COLUMN AMBIGUITY

As an experienced and professional database administrator, you are
provided with a SQLite database schema, a user question, and a
proposed SQL query intended to solve the user question. The database
schema consists of table descriptions, each containing multiple
column descriptions.

↪→
↪→
↪→
↪→
Your task is to determine whether there are columns in the database that

are very similar to the ones used in the SQL query and could also be
used to answer the user's question.

↪→
↪→

Here is a typical example:

==== Example ====

[Question] Which state special schools have the highest number of
enrollees from grades 1 through 12? State Special Schools refers to
DOC = 31; Grades 1 through 12 means K-12

↪→
↪→

[DB_ID]california_schools
[Database Schema]
Table: frpm
[

(CDSCode, CDSCode.),
(Enrollment (K-12), Enrollment (K-12).),

]
Table: satscores
[

(cds, cds. Column Description: California Department Schools),
(sname, school name. Value examples: [None, 'Middle College High',

'John F. Kennedy High', 'Independence High', 'Foothill High',
'Washington High', 'Redwood High'].),

↪→
↪→
(enroll12, enrollment (1st-12nd grade).),

]
Table: schools
[

(CDSCode, CDSCode.),
(DOC, District Ownership Code. Value examples: ['54', '52', '00',

'56', '98', '02'].),↪→
]

[SQL query] <SQL> SELECT T2.sname FROM schools AS T1 INNER JOIN
satscores AS T2 ON T1.CDSCode = T2.cds WHERE T1.DOC = '31' AND
T2.enroll12 IS NOT NULL ORDER BY T2.enroll12 DESC LIMIT 1; </SQL>

↪→
↪→

[Answer]
```json
{{

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

"alternative_column": true
"explanation": "frpm.Enrollment (K-12) can also be used to determine

the number of enrollees from grades 1 through 12. This column is
very similar to satscores.enroll12 used in the proposed SQL."

↪→
↪→

}}
```
Question Solved. Make sure you generate a valid json response.
===============

Please start answering the following question.
[Question] {question}. {evidence}

{db_desc_str}

[SQL query] {sql_query}

[Answer]

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

A.4 EFFECTIVENESS OF SQLENS ON SPIDER

Table 7: Effectiveness of SQLENS on Spider (AUC=✗ when the classification is not threshold-
based.). We highlight the top two results in bold and mark the top-1 result using †.

Method Accuracy AUC Precision Recall F1

Vanilla

LLM Self-Evaluation (Bool) 74.39 (±3.12) ✗ 21.59 (±13.00) 9.13 (±5.21) 12.77 (±7.42)
LLM Self-Evaluation (Prob) 77.41 (±1.43) 57.42 (±1.30) 13.33 (±17.78) 2.90 (±3.89) 4.77 (±6.38)

SQLENS w. Supervised Learning 80.72† (±1.06) 61.02† (±3.28) 75.79† (±17.24) 10.56 (±4.53) 17.79 (±6.62)
SQLENS 74.49 (±4.86) 59.49 (±5.91) 34.91 (±14.18) 29.22† (±11.61) 31.76† (±12.75)

DIN-SQL

LLM Self-Evaluation (Bool) 75.69 (±2.46) ✗ 40.38 (±11.33) 16.78 (±4.24) 23.64 (±6.01)
LLM Self-Evaluation (Prob) 76.58 (±1.23) 58.60 (±1.78) 41.07 (±17.97) 5.73 (±2.23) 9.90 (±3.72)

SQLENS w. Supervised Learning 82.48† (±2.27) 67.89† (±3.66) 73.68† (±7.45) 33.57 (±9.14) 45.51 (±9.91)
SQLENS 76.38 (±2.75) 67.14 (±4.30) 47.18 (±5.76) 48.09† (±6.91) 47.59† (±6.17)

MAC-SQL

LLM Self-Evaluation (Bool) 76.85 (±1.60) ✗ 31.20 (±11.26) 11.52 (±4.11) 16.81 (±5.98)
LLM Self-Evaluation (Prob) 78.51 (±1.21) 57.81 (±4.42) 42.52 (±30.00) 5.31 (±2.41) 9.07 (±3.74)

SQLENS w. Supervised Learning 79.98† (±1.39) 61.59† (±3.11) 54.83† (±21.06) 9.65 (±8.11) 15.10 (±11.29)
SQLENS 74.41 (±2.24) 58.99 (±3.19) 35.88 (±5.22) 32.23† (±4.33) 33.88† (±4.49)

A.5 EFFECTIVENESS OF INDIVIDUAL ERROR SIGNALS ON BIRD AND SPIDER

Table 8: Individual error signal performance (Vanilla+BIRD).

Signal Name Precision Recall Nw

DB-based Signals

Abnormal Result 98.96 16.13 95
Empty Predicate 85.34 11.88 70

Incorrect Filter in Subquery No Queries Detected
Incorrect GROUP BY 40.0 2.38 14

Incorrect Join Predicate 100 1.87 11
Suboptimal Join Tree 45.9 14.26 84

Table Similarity 67.35 5.6 33
Unnecessary Subquery 33.33 0.34 2

Value Ambiguity 53.85 7.13 42

LLM-based Signals

Column Ambiguity 68.75 1.87 11
Evidence Violation 61.11 1.87 11

Insufficient Evidence 29.03 1.53 9
LLM Self Check 60.82 10.02 59

Question Clause Linking 53.49 3.9 23

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 9: Individual error signal performance (Vanilla+Spider).

Signal Name Precision Recall Nw

DB-based Signals

Abnormal Result 60.0 14.35 30
Empty Predicate 50.0 2.39 5

Incorrect Filter in Subquery 100.0 0.48 1
Incorrect GROUP BY 64.29 4.31 9

Incorrect Join Predicate 100.0 5.26 11
Suboptimal Join Tree 42.86 5.74 12

Table Similarity No Queries Detected
Unnecessary Subquery 100.0 0.48 1

Value Ambiguity 33.33 1.44 3

LLM-based Signals

Column Ambiguity 33.33 0.48 1
Evidence Violation 100 1.44 3

Insufficient Evidence 7.14 1.44 3
LLM Self Check 20.65 9.09 19

Question Clause Linking 70.0 3.35 7

Table 10: Individual error signal performance (DIN-SQL+Spider).

Signal Name Precision Recall Nw

DB-based Signals

Abnormal Result 73.61 23.35 53
Empty Predicate 82.98 17.18 39

Incorrect Filter in Subquery No Queries Detected
Incorrect GROUP BY 43.33 5.73 13

Incorrect Join Predicate 92.86 11.45 26
Suboptimal Join Tree 33.33 5.73 13

Table Similarity No Queries Detected
Unnecessary Subquery 0 0 0

Value Ambiguity 25.0 1.32 3

LLM-based Signals

Column Ambiguity 80 1.76 4
Evidence Violation 80 1.76 4

Insufficient Evidence 40 7.93 18
Question Clause Linking 53.33 3.52 8

LLM Self Check 39.58 16.74 38

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 11: Individual error signal performance (MAC-SQL+Spider).

Signal Name Precision Recall Nw

DB-based Signals

Abnormal Result 58.82 14.42 30
Empty Predicate 52.94 4.33 9

Incorrect Filter in Subquery 100 1.44 3
Incorrect GROUP BY 50 3.37 7

Incorrect Join Predicate 100 3.85 8
Suboptimal Join Tree 38.71 5.77 12

Table Similarity No Queries Detected
Unnecessary Subquery 33.33 0.48 1

Value Ambiguity 25.0 1.44 3

LLM-based Signals

Column Ambiguity 0 0 0
Evidence Violation 58.33 3.37 7

Insufficient Evidence 18.92 3.37 7
LLM Self Check 31.17 11.54 24

Question Clause Linking 40 2.88 6

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

A.6 EXAMPLE ERROR REPORT

A.6.1 EMPTY PREDICATE

{
"signal description": "The SQL query contains a predicate that

yields an empty result set.",↪→

"example": "<sql> SELECT * FROM students WHERE LOWER(students.name)
= LOWER('mike')</sql> The predicate students.name = 'mike'
yields an empty result set because it is case-sensitive. It
should be students.name = 'Mike' or use a case-insensitive
comparison.",

↪→
↪→
↪→
↪→

"correction instruction": """
1. For predicates that yield an empty result set, ensure you are

using the correct value with the correct case. Consider
using case-insensitive comparisons like LOWER(column_name) =
LOWER(value).

↪→
↪→
↪→
2. There might be typos in a user's question. Consider choosing

values that are very similar to the user's question and that
do appear in the database.

↪→
↪→
3. Review the value examples provided in the database schema to

ensure the format of the value is correct.↪→
4. Verify that the column name is correct. Refer to the database

schema to find the correct column name.↪→
5. Ensure that the schema linking process is accurate, meaning

that the entities mentioned in the question are correctly
mapped to the corresponding database columns.

↪→
↪→

"""

"problematic clauses": {
"Predicates that yield empty results": [
"bond.\"BOND_ID\" = 'TR_000_2_5'"

]
}

}

A.6.2 SUBOPTIMAL JOIN TREE

{
"signal description": "The SQL query uses more tables than necessary

in the join clauses, which may lead to potential errors.",↪→

"correction instruction": """
Review and revise the SQL query to include only the essential

tables in the join clauses.↪→
"""

"problematic clauses": {
"tables used in the JOIN clauses": ["client", "account",

"district"],↪→
"optimal set of tables to join": ["client", "district"],

}
}

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

A.7 PROMPT FOR SQL QUERY CORRECTION MODULE

Role: You are an experienced and professional database administrator
tasked with analyzing and correcting SQL queries that are
potentially wrong.

↪→
↪→

Context: You are provided with the following information:
1. A SQLite database schema
2. A user question
3. A proposed SQL query intended to answer the user question
4. An error report for the proposed SQL query. The error report suggests

potential errors in the SQL.↪→

Database Schema:
- Consists of table descriptions
- Each table contains multiple column descriptions
- Frequent values for each column are provided

Your Task:
1. Analyze the error report
2. Determine if the SQL query needs to be fixed. You can choose not to

modify the SQL if it is correct.↪→
3. If the proposed SQL is incorrect, generate a correct SQL query to

answer the user question↪→

Instructions:
1. Review the provided information carefully
2. Use SQL format in code blocks for any SQL queries
3. Explain your reasoning and any changes made to the query
4. Avoid using overly complex queries. For example, ... EXISTS (SELECT 1

FROM table WHERE condition) can be substituted with JOIN.↪→

[Question]
{question}

[Evidence]
{evidence}

[Database Info]
{db_desc}

[Old SQL]
```sql
{old_sql}
```

[Error Report]
{error_report}

Now, please analyze the error report, decide whether the SQL needs to be
fixed and generate a correct SQL to answer the user question if you
think the proposed SQL is indeed wrong.

↪→
↪→

[Correct SQL]

25

	Introduction
	Preliminaries and Problem Statement
	SQLens Framework
	Error Signals
	Aggregating All Signals Using Weak Supervision

	Experimental Results
	Experimental Setup
	Overall Effectiveness of SQLens
	Effectiveness of Individual Signals
	Case study: Using Detected Errors to Correct SQL Queries

	Related Work
	Conclusion
	Reproducibility
	Appendix
	DB-based Error Signals
	LLM-based Error Signals
	Prompts
	Prompt for Vanilla text-to-SQL
	Prompt for LLM Self-Check (True/False)
	Prompt for LLM Self-Check (probability)
	Prompt for Evidence Violation
	Prompt for Insufficient Evidence
	Prompt for Question-Clause Linking
	Prompt for Column Ambiguity

	Effectiveness of SQLens on Spider
	Effectiveness of Individual Error Signals on BIRD and Spider
	Example Error Report
	Empty Predicate
	Suboptimal Join Tree

	Prompt for SQL query correction module

