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Abstract
Direct speech translation (ST) models often001
struggle with rare words. Incorrect translation002
of these words can have severe consequences,003
impacting translation quality and user trust.004
While rare word translation is inherently chal-005
lenging for neural models due to sparse learn-006
ing signals, real-world scenarios often allow ac-007
cess to translations of past recordings on similar008
topics. To leverage these valuable resources,009
we propose a retrieval-and-demonstration ap-010
proach to enhance rare word translation accu-011
racy in direct ST models. First, we adapt ex-012
isting ST models to incorporate retrieved ex-013
amples for rare word translation, which allows014
the model to benefit from prepended examples,015
similar to in-context learning. We then de-016
velop a cross-modal (speech-to-speech, speech-017
to-text, text-to-text) retriever to locate suitable018
examples. We demonstrate that standard ST019
models can be effectively adapted to leverage020
examples for rare word translation, improving021
rare word translation accuracy over the base-022
line by 17.6% with gold examples and 8.5%023
with retrieved examples. Moreover, our speech-024
to-speech retrieval approach outperforms other025
modalities and exhibits higher robustness to un-026
seen speakers. Our code is in the submission.027

1 Introduction028

Speech translation (ST) traditionally involves cas-029

cading automatic speech recognition (ASR) and030

machine translation (MT) (Stentiford and Steer,031

1988; Waibel et al., 1991) to convert spoken lan-032

guage into text in a different language. However,033

recent years have witnessed rapid progress in di-034

rect ST models (Anastasopoulos et al., 2021, 2022;035

Agarwal et al., 2023) that bypass intermediate text036

representations for lower inference latency and re-037

duced error propagation (Sperber and Paulik, 2020).038

Despite the advancements, accurately translating039

rare words like person names (Gaido et al., 2021,040

2023) remains a significant challenge for ST sys-041

tems. While infrequent, incorrect translations of042

rare words can severely degrade overall translation 043

quality and even users’ trust in the deployed mod- 044

els. Rare word translation is inherently difficult for 045

ST models due to limited or absent learning signals. 046

Practically, however, valuable external resources 047

hold the potential to address this issue. Real-world 048

scenarios often allow access to translations from 049

past recordings on similar topics, sometimes even 050

from the same speaker. Similarly, human transla- 051

tors often leverage existing translations (Bowker, 052

2005), especially for special terminologies (Brkić 053

et al., 2009). Inspired by these observations, we 054

ask the question: How can we improve the rare 055

word translation performance of direct ST models 056

by leveraging an example pool that contains similar 057

translations? 058

The envisioned approach faces challenges in 059

both the retrieval and translation components. 060

First, the retrieval task is complicated by the vari- 061

ability of speech and the locality of rare words. As 062

the speaking condition for the same rare word dif- 063

fers in every utterance, source-side feature match- 064

ing as often done in text translation (Zhang et al., 065

2018; Bulte and Tezcan, 2019; Xu et al., 2020; Cai 066

et al., 2021; Hao et al., 2023) is not sufficient to 067

handle the pronunciation variations. Moreover, as 068

rare words only constitute a small portion of the 069

query and candidate utterances, the retriever must 070

be able to locate the relevant information in long 071

speech utterances. For the translation model, inte- 072

grating retrieved utterance-translation pairs is also 073

non-trivial. Standard models trained on sentence- 074

level data require adaptation to ingest the examples. 075

Besides processing longer inputs, they also need to 076

pinpoint both the acoustic features and correspond- 077

ing textual translations of rare words. 078

Addressing the above challenges, we introduce a 079

retrieval-and-demonstration framework (Figure 1) 080

effective for improving rare word translation accu- 081

racy of ST models. Specifically, we adapt standard 082

ST models to benefit from prepended examples in 083
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Figure 1: Proposed retrieval-and-demonstration framework: At the ST model training stage (§2.1), example-
prepended training data is used to instill in-context learning abilities in the S2T model. At the retriever training
stage (§2.2), SONAR encoders are fine-tuned within the DPR architecture for our rare word task. At the inference
stage (§2.3), retrieved examples are used as demonstrations to facilitate the translation of rare words.

a way similar to in-context learning (Brown et al.,084

2020), and then build a retriever to find suitable ex-085

amples. Building on recent multi-modal encoders086

(Duquenne et al., 2023), the retriever supports mul-087

tiple modalities (speech→speech, speech→text,088

text→text). Second, we propose an evaluation089

methodology to adapt standard ST corpora, MuST-090

C (Di Gangi et al., 2019) in this case, for targeted091

assessment of rare words translation (§3.1). Our092

main findings are:093

• Standard direct ST models can be easily adapted094

to benefit from prepended examples for rare word095

translation, in a way similar to in-context learn-096

ing (§4.1). This improves rare word translation097

accuracy over the baseline by 17.6% with gold098

examples and 8.5% with retrieved examples.099

• Text-to-text information retrieval architectures100

(Karpukhin et al., 2020) can be effectively101

adapted for speech-based rare word retrieval,102

yielding 33.3% to 46.6% top-1 retrieval accuracy103

under different modalities (§4.2).104

• Compared to other modalities, speech-to-speech105

retrieval leads to higher overall translation quality106

and rare word translation accuracy (§4.3), as well107

as more robustness to unseen speakers (§5.1).108

2 Proposed Framework109

Our retrieval-and-demonstration framework is illus-110

trated in Figure 1. First, a trained direct ST model111

is finetuned to ingest examples (§2.1), which serve 112

as demonstrations of correctly translating the rare 113

words in question. During inference, given an ut- 114

terance containing rare words, we retrieve (§2.2) a 115

relevant utterance and its translation as a demon- 116

stration to guide the inference (§2.3). 117

2.1 Adapting ST Models to Ingest Examples 118

Motivation Human translators often leverage ex- 119

ample translations also known as translation mem- 120

ory (Bowker, 2005), especially for domain-specific 121

translation with terminologies (Brkić et al., 2009). 122

We aim to apply a similar approach to direct ST 123

models. The underlying idea mirrors that of in- 124

context learning (ICL) (Brown et al., 2020), where 125

providing models with task-specific examples dur- 126

ing inference improves the quality of the generated 127

output. While ICL has been primarily observed on 128

text-based LLMs (Brown et al., 2020; Min et al., 129

2022; Vilar et al., 2023), we explore whether small- 130

or medium-sized encoder-decoder-based speech 131

translation models can also exhibit this capability. 132

Training To adapt standard ST models to ingest 133

examples, the example utterance and translation 134

must be included as context for training and in- 135

ference. An intuitive approach is to include the 136

example as prefix in both input and output, as 137

shown in the left side of Figure 1, This allows the 138

output generation to be conditioned on the exam- 139
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ple utterance and translation as context. Formally,140

given an utterance u, let ŷ be the target translation141

and y the predicted translation. Let (ue, ye) be142

an example utterance-translation pair. We aim to143

adapt an ST model so that the model maximizes144

the probability of generating the correct transla-145

tion ŷ, given the input utterance u and example146

(ue, ye) : y = argmaxŷ P (ŷ|ue, ye, u). The dif-147

ference to the standard training is that the example148

(ue, ye) is included as context when generating the149

target translation. For the training data, for the i-150

th training utterance ui, an example utterance uei151

is prepended to it, forming a concatenated input152

uei + ui.1 The targets are also concatenated as153

yei + <SEP> + yi, where <SEP> is a special token154

indicating the separator between sentences. Dur-155

ing training, the loss is only calculated on yi to156

prioritize the translation of the utterance after the157

example.2 In doing so, we encourage the model to158

predict its outputs based on the context provided159

by the demonstration example.160

2.2 Example Retrieval161

Formalization and Challenge Given a query ut-162

terance u containing a rare word w, we aim to163

retrieve a relevant example (ue, ye) from an exam-164

ple pool D = {(u1, y1), . . . , (um, ym)} with a re-165

trieval model r, such that the rare word w is spoken166

in utterance ue. Here ui indicates the i-th utterance167

and yi its translation. As the query u is only in168

speech, we face additional complexities compared169

to text-based retrieval. First, speech is versatile,170

unlike text, which often has a standard writing sys-171

tem. The speaking condition for the same word172

varies in every recording, requiring a robust re-173

triever that accounts for pronunciation variations.174

Second, speech sequences are magnitudes longer175

than text. The retriever must find fine-grained lo-176

cal features corresponding to the keywords in long177

sequences. Third, transcribing the query utterance178

first and then using text-based retrieval is subopti-179

mal due to ASR errors, especially on rare words.180

Architecture As the nature of our example re-181

trieval task resembles information retrieval (IR)182

where relevant answers are retrieved given a ques-183

tion, we take inspiration from IR approaches for184

our retriever. In text-to-text IR, a prominent ar-185

chitecture is the Dense Passage Retriever (DPR)186

1Details on constructing the dataset is in §3.1.
2Including the loss on the prefix leads the finetuning step

to end prematurely in preliminary experiments. The loss cal-
culation is formally described in Appendix A.

(Karpukhin et al., 2020). It has a dual-encoder 187

architecture, where one encoder encodes the ques- 188

tions, and the other encodes the passages poten- 189

tially containing answers to the questions. The re- 190

trieval model is trained with a contrastive objective, 191

mapping question-passage (positive) pairs closer 192

to each other in the latent space while pushing 193

irrelevant (negative) pairs further apart. During in- 194

ference, passages closer to the encoded question by 195

the dot-product similarity are returned as answers. 196

In our case, the utterances containing the same rare 197

words are considered positive pairs, while those 198

not sharing the same rare words are negative pairs. 199

Speech-to-Speech/Text Retrieval We propose to 200

extend the DPR model to support querying from 201

speech. As the example utterances to be retrieved 202

often also have text transcripts available, we con- 203

sider the following retrieval modalities: 204

• Speech→speech retrieval: we retrieve ue in 205

speech using audio query u. 206

• Speech→text retrieval: we retrieve ye directly 207

using audio query u. This requires the retriever 208

to support both modalities (text and speech). 209

• Naïve text→text retrieval: first transcribing the 210

query utterance u and then text-to-text retrieval 211

for ye. As discussed before, the risk of ASR 212

errors especially on rare words renders this ap- 213

proach suboptimal. The additional inference time 214

for running ASR makes it further unpractical. 215

Given these requirements, instead of initializing 216

the dual encoders with pre-trained BERT (Devlin 217

et al., 2019) as in DPR (Karpukhin et al., 2020), 218

we leverage recent speech-text joint representation 219

models including SONAR (Duquenne et al., 2023) 220

and SpeechT5 (Ao et al., 2022). 221

2.3 Integrating Examples into ST Model 222

Inference with Retrieved Examples During in- 223

ference, the model is provided with a test input 224

u and a retrieved example (ue, ye). The example 225

is prepended to test input in the same way as in 226

training. The example input-output pairs are in- 227

tegrated by forced decoding. After the separator 228

token (<SEP>), the model starts to autoregressively 229

generate the output translation, conditioned addi- 230

tionally by the example utterance and translations. 231

Practical Considerations An advantage of our 232

framework is its modularity. The separation of the 233

ST and retrieval modules enables straightforward 234

upgrades to newer models in either component. 235

Moreover, the retrieval module can be implemented 236

using highly optimized toolkits like FAISS (John- 237
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son et al., 2021), which ensures efficient retrieval238

without compromising inference speed.239

Split # utt. Avg. utt.
duration (s)

Avg. #
tokens

# unique
rare words

train (original) 250942 6.5 27.1 9512
tst-COMMON 2580 5.8 25.3 157

rare-word pool 9821 9.7 43.1 8679
dev-rare-word 6932 9.9 42.8 6244
tst-rare-word 2500 9.9 43.1 2358
train-reduced 231689 6.2 25.8 3164

Table 1: Dataset statistics. We split the original training
set into the example pool with rare words (rare-word
pool), dev/test sets for rare words (dev/tst-rare-word),
and a reduced training set (train-reduced). The example
pool simulates existing resources for querying.

3 Experimental Setup240

3.1 Dataset Construction241

For evaluation, we use the English-to-German sub-242

set of the MuST-C dataset (Di Gangi et al., 2019),243

where the task is to translate from English-public244

speaking audio to German text. To create a targeted245

test condition for rare words, we extract sentences246

containing rare words from the original training247

set to create dedicated sets. The statistics of the248

original dataset and the newly created splits are in249

Table 1. The rare-word sets have higher average250

token counts due to: 1) longer utterance duration251

and 2) the rare words being segmented into finer-252

grained subwords. Note that we only re-split the253

training set, leaving the official validation and test254

sets (tst-COMMON) unmodified. Below we de-255

scribe the dataset construction process in detail.256

Rare Word Sets Our data partition step is inspired257

by Niehues (2021), which re-splits parallel data258

based on word frequencies. Specifically, from259

the English transcript, we find rare words by their260

corpus-level frequency, choosing those appearing261

two or three times in the original training set. For262

rare words occurring twice, we move their corre-263

sponding utterances to the rare-word pool and the264

joint dev/tst set respectively, which creates a zero-265

shot condition where the rare word is never seen in266

training. For rare words occurring thrice, we fol-267

low the same strategy for two occurrences. The re-268

maining third occurrence is retained in the reduced269

training set to create a one-shot learning scenario,270

where the rare word is seen once in the training271

set. Finally, the aggregated dev/tst set is split into272

individual development and test sets for standard273

evaluation. We analyze the rare word types in tst- 274

rare-word by a named entity recognition (NER) 275

model3 with results in Table 2. A more detailed 276

categorization of the words is in Appendix B. 277

tst-rare-word Person Location Tech Food Company

2358 130 72 29 27 25

Table 2: NER results on rare words in tst-rare-word with
the number of unique words in each category.

Training Data with Prepended Examples To 278

adapt the ST model and to train the retriever, we 279

need training data with prepended examples. As 280

most utterances lack rare words by the previously 281

used corpus-level frequency (3164 rare words in 282

231k utterances in Table 1), we propose to use 283

sentence-level rare words to choose the prepended 284

examples. Specifically, for each piece of the train- 285

ing data (ui, si, yi), we identify the word ws in si 286

that has the least corpus-level frequency among all 287

words in its transcript. We then sample another 288

training instance (uj , sj , yj) where sj contains the 289

same sentence-level rare word ws as example. 290

Test Set with Gold Examples We also construct 291

a variant of tst-rare-word set with gold examples, 292

where the rare word in the test utterance is always 293

present in the example. This serves as an oracle 294

condition for evaluating the ST model’s ability to 295

learn from perfect demonstrations. As our data 296

splitting procedure ensures that the rare words also 297

occur in the example pool, we select sentences 298

from the rare-word pool containing the same rare 299

words as those in the tst-rare-word set to serve as 300

example sentences. The example sentences are 301

then prepended to test sentences in a way identical 302

to that in the training set with prepended examples. 303

3.2 Model Configuration 304

ST Model We use the Transformer architecture 305

S2T_TRANSFORMER_S in FAIRSEQ S2T (Wang 306

et al., 2020) for all our ST models. To prevent 307

the tokenizer from seeing the rare words during its 308

training, which will cause an unfair test condition, 309

we train the SentencePiece (Kudo and Richardson, 310

2018) tokenizer on the reduced train set after the 311

utterances containing rare words are moved to ded- 312

icated splits (Table 1). Based on this vocabulary, 313

we train the base model on the train-reduced set, 314

closely following the hyperparameters from Wang 315

et al. (2020). We then adapt the base model to 316

3Huggingface model by Zaratiana et al. (2023)
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ingest examples as described in §2.1 using the re-317

duced training set with prepended examples (§3.1).318

As the prefix tokens do not contribute to the overall319

loss (Figure 1), we double the effective batch size320

to keep the loss scale comparable to before. Further321

details on training and inference are in Appendix C.322

Retriever We use the DPR (Karpukhin et al., 2020)323

architecture for the retriever. The encoders are ini-324

tialized with either SONAR (Duquenne et al., 2023)325

or SpeechT5 (Ao et al., 2022). For both models, we326

use the encoder only and discard the decoder. DPR327

requires fixed-size embeddings from its encoders.328

For SpeechT5, we mean-pool over the sequence329

length. For SONAR, we use the built-in attention-330

pooling for the speech encoder and mean-pooling331

for the text encoder. The dual encoders in DPR are332

trained on the reduced training set with prepended333

examples. Each sentence’s example serves as a pos-334

itive example, while examples from other sentences335

in the batch are in-batch negatives. Only the top336

layer of the encoders is trained, as the lower layers337

of the encoders are likely responsible for extracting338

low-level acoustic features. These features are con-339

sidered less relevant for our retrieval task, which340

focuses on word-level information. Another reason341

is memory efficiency in training. Further details on342

training and inference are in Appendix D.343

3.3 Evaluation344

We evaluate speech translation quality with BLEU345

(Papineni et al., 2002)4 and COMET (Rei et al.,346

2020)5. For the accuracy of rare word transla-347

tion, we evaluate how many unique lemmatized348

rare words in the test set are translated. We use349

the spaCy toolkit (Honnibal et al., 2020) for word350

lemmatization and used AWESoME Aligner (Dou351

and Neubig, 2021) for en-de word-level alignment.352

For rare word accuracy, we further distinguish be-353

tween rare words appearing once or never appear354

in the training set (§3.1), which corresponds to the355

one-shot and zero-shot accuracy. For the retriever,356

we use top-1 retrieval accuracy to evaluate the re-357

triever’s performance. Only the top retrieved exam-358

ples are used as demonstrations in the ST model.359

4 Main Results360

Before presenting the results of our proposed frame-361

work, we confirm that our baseline model performs362

4sacreBLEU (Post, 2018) signature:
nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.4.2

5with Unbabel/wmt22-comet-da; ×100 for readability.
The COMET models take text transcripts as source.

on par with those reported in the literature. The 363

details are in Appendix E. 364

4.1 Impact of Demonstration 365

Direct ST models can effectively learn from 366

demonstration at inference time. To indepen- 367

dently analyze the ST model’s ability to learn from 368

the prepended examples, we first assume an oracle 369

retrieval model by using gold examples which al- 370

ways contain the rare words in question. The results 371

are in row (2) of Table 3. Compared to the baseline 372

in row (1), this model achieves substantially higher 373

overall rare word translation accuracy (+17.6% 374

abs.), with a larger gain in zero-shot (+18.8%) than 375

one-shot accuracy (+15.3%). Nonetheless, this 376

gain comes at the cost of overall translation quality 377

(−0.2 BLEU, −2.3 COMET). A potential reason 378

is that the prepended example sentences make the 379

input sequences much longer and therefore create 380

more difficulty for learning. Nonetheless, since 381

rare words are often important named entities, cap- 382

turing them correctly is as crucial if not more than 383

the overall translation quality scores. Overall, the 384

results suggest that task-specific demonstrations 385

provided at inference time can effectively enhance 386

rare word translation accuracy of direct ST models. 387

Quality of the given demonstration matters. 388

Next, we study the impact of the demonstration 389

quality. In contrast to the gold examples before, 390

we now use random examples that do not contain 391

rare words relevant to the sentence to be translated. 392

The results are in row (3) of Table 3. This led to 393

a decline in translation quality (−1.3 BLEU, −2.4 394

COMET) and rare word accuracy. These results 395

indicate that irrelevant demonstrations are harmful. 396

Seeing rare words only in training does not suffi- 397

ciently improve their translation accuracy. In- 398

stead of retrieving data from the rare-word pool as 399

demonstration, a simple alternative is to add these 400

data in training. Here, we add the rare-word pool 401

into the training set and train an identical model to 402

the baseline. The results are in row (4) of Table 3. 403

Overall, the rare word accuracy only sees a slight 404

increase compared to row (1), with an absolute ac- 405

curacy improvement of 3.7%, which is far less than 406

using gold example sentences (+17.6% overall). 407

This indicates that training with rare words alone 408

is insufficient for improving their translation accu- 409

racy. This is likely because of the limited training 410

signal for rare words, as each appears only once 411

or twice. Note that the translation quality scores 412
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ST Model BLEU COMET Overall
acc (%)

0-shot
acc (%)

1-shot
acc (%)

(1) baseline model (on train-reduced) 17.2 57.9 11.8 11.0 13.3
(2) adapted + gold example 17.0 55.6 29.4 29.8 28.6
(3) adapted + random example 15.7 53.2 8.8 8.4 9.7
(4) train on {train-reduced + rare-word pool} (more data) 17.9 59.0 15.5 14.7 17.2

Using retrieved examples
(5) adapted + text (gold transcript)→text 15.2 54.4 20.1 19.6 21.2
(6) adapted + speech→text 15.3 54.0 18.8 18.2 20.2
(7) adapted + speech→speech 16.2 55.3 20.3 20.3 20.2

Table 3: Translation quality (BLEU↑, COMET↑) and rare word accuracy↑ (overall, 0- and 1-shot) of different
models on the tst-rare-word split. The lower section uses retrieved examples from the retriever (§4.3).

Retrieval Model T→T S→T S→S

(1) Orig. DPR w/ BERT (pretrained) 2.0 − −
(2) Orig. DPR w/ BERT (finetuned) 55.8 − −
(3) DPR w/ SpeechT5 (finetuned) 0.1 0.0 0.0
(4) DPR w/ SONAR (pretrained) 28.7 22.3 20.6
(5) DPR w/ SONAR (finetuned) 46.6 33.3 41.3

Table 4: Top-1 retrieval accuracy (%) of different retriev-
ers on 3 modalities of text-to-text (T→T), speech-to-text
(S→T), and speech-to-speech (S→S) on the tst-rare-
word split. T→T retrieval uses gold transcripts as query.

under this data condition also improved, which is413

likely a result of the additional training data.414

4.2 Retrieval Performance415

Before integrating retrieved examples into the ST416

model, we analyze the retrieval performance alone417

with results in Table 4. To establish the upper418

bounds of retrieval performance, we first use the419

original DPR model for text-to-text retrieval with420

gold transcripts of the query utterances and exam-421

ples. As shown in row (1) of Table 4, directly using422

the pretrained DPR for QA is not sufficient for our423

task of rare word retrieval. Fine-tuning DPR’s en-424

coders (row (2)) on our task enables effective rare425

word retrieval in a text-to-text setting (55.8%).426

Encoder choice is crucial for successful retrieval.427

We proceed by adapting the original DPR to re-428

trieval from speech. Overall, we notice that the429

choice of the encoder heavily impacts the retrieval430

performance. With SONAR, using the pretrained431

encoders already achieves partial success in fulfill-432

ing the task (row (4) in Table 4), with finetuning433

further improving the results (row (5)). However,434

finetuning SpeechT5 proves insufficient for learn-435

ing the task (row (3)). We believe that the dis-436

crepancy primarily arises from the models’ ability437

to aggregate information over the sentence length:438

SONAR is explicitly trained to aggregate it into 439

fixed-size embeddings while SpeechT5 lacks such 440

a mechanism. Naïve mean-pooling over sequence 441

length fails to create meaningful embeddings over 442

long sequences like speech, as well as character- 443

level text representations used in SpeechT5. 444

Speech→speech outperforms speech→text re- 445

trieval. While we initially expected speech-to- 446

speech retrieval to be more challenging than speech- 447

to-text retrieval due to the high variability of speech, 448

the finetuned retriever in (5) of Table 4 shows 449

stronger performance on speech→speech retrieval 450

than speech→text (41.3% vs. 33.3%). We suppose 451

that the reason is the modality gap between text 452

and speech, which makes it more challenging to 453

bridge the two different types of data. 454

4.3 ST Performance with Retrieved Examples 455

Correlation between retrieval accuracy and 456

translation quality: As the retriever based on 457

finetuned SONAR showed the most promising re- 458

trieval results (Table 4), we use the retrieved exam- 459

ples from this model to guide the ST. The results 460

are in rows (5), (6), and (7) of Table 3. When com- 461

paring the performance of the three retrieval modal- 462

ities, retrieval accuracy does not always translate 463

to improved overall translation quality or rare word 464

accuracy. Although text-to-text retrieval using gold 465

transcripts had the highest retrieval accuracy (Ta- 466

ble 4), its integration into the ST model resulted 467

in lower translation quality compared to speech- 468

to-speech retrieval. Moreover, in practice, we still 469

need an ASR model to derive the transcripts that 470

likely contain errors, especially on rare words. This 471

introduces additional limitations to the text-to-text 472

retrieval approach. Overall, these results show that 473

speech-speech retrieval is more effective than the 474

other modalities in improving rare word translation 475
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accuracy. Despite the improvement in rare word476

translation accuracy, we also note the drop in trans-477

lation quality compared to the baseline (row (7)478

vs. (1); −1.0 BLEU and −2.6 COMET). We ex-479

pect that increasing the robustness of the ST model480

to examples containing incorrect rare words, for481

instance by including such examples in training,482

could mitigate this negative impact.483

Does speech→speech retrieval help by implicit484

speaker adaptation? Speech-to-speech retrieval485

could be particularly effective in finding same-486

speaker utterances due to the access to acoustic487

information. This raises the hypothesis that if488

the prepended example originates from the same489

speaker as the utterance to be translated, translation490

quality could be improved by implicit speaker adap-491

tation (Saon et al., 2013), where the model benefits492

from adapting to the specific speaker’s voice char-493

acteristics. To test this, we analyze the proportion494

of retrieved sentences from the same speaker across495

different retrieval modalities. The results in Table 5496

show similar percentages for all three scenarios,497

indicating that the gains by speech-to-speech re-498

trieval do not stem from speaker adaptation.

DRP + SONAR finetuned T→T S→T S→S

Examples from same speaker (%) 50.3 53.4 50.2

Table 5: Proportion of retrieved examples from the same
speaker as the utterance to be translated for the three
retrieval modalities on tst-rare-word.

499

5 Further Analyses and Discussions500

5.1 Effects on Unseen Speakers501

Now we push the approach further under the chal-502

lenging scenario of unseen speakers, i.e., the ex-503

ample pool does not contain any utterance from504

the speaker of the test utterance. Specifically, dur-505

ing retrieval, we ignore utterances from the same506

speaker as the query utterance. As shown in Ta-507

ble 6, this harms retrieval accuracy substantially,508

losing 14.9% to 23.4% compared to Table 4 for509

the three modalities. This is mainly due to the lim-510

ited coverage of the rare-word pool, which contains511

only one sentence for most rare words. Excluding512

the speaker also excludes the rare word. However,513

the BLEU scores and overall rare word translation514

accuracy change only slightly compared to Table 3:515

T→T (−0.6 BLEU, −1.5%), S→T (−0.3 BLEU,516

−3.2%), S→S (+0.2 BLEU, −1.0%). This demon-517

strates that our approach, especially when using 518

speech→speech retrieval, is relatively robust to un- 519

seen speakers. 520

Retrieval
modality

Retrieval
acc (%) BLEU Overall

acc (%)
0-shot

acc (%)
1-shot

acc (%)

(5) T→T 23.2 14.6 18.6 18.5 18.7
(6) S→T 18.4 15.0 15.6 15.6 15.7
(7) S→S 23.5 16.4 19.3 18.8 20.2

Table 6: Retrieval and ST performance on unseen speak-
ers. Compared to Table 3, S→S retrieval has the least
decrease in translation quality and rare word accuracy.

5.2 Qualitative Example 521

Table 7 shows an example where our approach cre- 522

ates partially correct translation for the named en- 523

tities “Patrice and Patee”. To avoid cherry-picked 524

results, we include more examples where our ap- 525

proach succeeds and fails in Appendix F. 526

Source (transcript): Patrice and Patee set out most days to
go out hunting in the forest around their homes.
Baseline (Table 3 row (1)): Die Bäume und Petes (Trees
and Petes) setzten die meisten Tage hinaus, um in den
Wäldern um ihre Häuser zu pumpen.
Adding rare-word pool to training (Table 3 row (4)):
Patrizinpathie (Patrizinpathie) setzte sich in den meisten
Tagen um die Jagd in den Wäldern um ihre Häuser.
Speech→speech example (Table 4 row (5)): Sie heißen
Patrice und Patee (Their names are Patrice and Patee.).
Adapted ST + speech→speech (Table 3 row (7)): Patrice
und Pateetee setzten die meisten Tage, um in den Wäldern
um ihre Häuser herum jagen zu können.
Target: Patrice und Patee (Patrice and Patee) gehen fast
jeden Tag jagen in dem Wald rundum ihr Heim.

Table 7: An example of our retrieval-and-demonstration
approach improving the translation of rare words.

5.3 Analyses of Retrieval Performance 527

In our main experiments, we partially finetuned the 528

DPR encoders. We now investigate the impact of 529

different numbers of trainable parameters in the 530

retriever. As shown in Figure 2, the retrieval per- 531

formance of the SONAR-based retriever is stable 532

across 100 to 500M trainable parameters out of a 533

total of over 1.3B parameters. This indicates that 534

the retriever can maintain nearly consistent perfor- 535

mance despite changes in model capacity. 536

5.4 Potential of Using More Examples 537

Few-shot learning is more often performant than 538

one-shot learning because it provides the model 539

with a broader context and more varied examples. 540

7



0 100 200 300 400 500 600
Trainable Parameters (Millions)

0

20

40

60

80

100
R

et
ri

ev
ed

 P
er

ce
nt

ag
e 

(t
st

-r
ar

e-
w

or
d 

se
t)

 (%
)

33.0

43.9
46.6

28.9 29.9
33.3

38.0 40.4
41.3

55.8

text-text retrieval
speech-text retreival
speech-speech retrieval
text-text retrieval(original DPR)

Figure 2: Retrieval performance of the SONAR-based
retriever for different numbers of trainable parameters.

However, as shown in Table 8, the increase in re-541

trieval accuracy with additional top-10 examples542

is still not substantial compared to the top-1 result.543

Including multiple examples also makes input se-544

quences significantly longer, especially as audio545

inputs are factors longer than text. This not only546

poses a challenge for the model but would also sig-547

nificantly slow down the inference speed, which we548

aim to avoid. For these reasons, we do not further549

explore the potential of using more examples.550

DPR + SONAR ft. T→T S→T S→S

Top 1 46.6 33.3 41.3
Top 5 60.4 48.0 56.2
Top 10 64.6 53.1 61.1

Table 8: Top-10 retrieval performance (%) of the
SONAR-based retriever on the tst-rare-word set.

6 Related Work551

Retrieval-Augmented Translation Our work falls552

within the paradigm of retrieval-augmented trans-553

lation (RAT) (Simard and Langlais, 2001; Koehn554

and Senellart, 2010; Tu et al., 2018; Khandelwal555

et al., 2021), which augments a translation model556

with results retrieved from a translation memory.557

Prior works on RAT primarily focus on text-to-text558

translation (Zhang et al., 2018; Gu et al., 2018;559

Bulte and Tezcan, 2019; Xu et al., 2020; Cai et al.,560

2021; Hoang et al., 2023; Hao et al., 2023), where561

retrieval relies on textual feature matching such as562

n-gram overlap. These methods are therefore not563

readily applicable to direct ST due to the continu-564

ous nature of speech and much longer input lengths.565

In ST, Du et al. (2022) use kNN-MT (Khandelwal566

et al., 2021) for domain adaption. This approach re-567

quires a joint model for speech and text input, with568

a fully text-based datastore. Our work does not 569

require modifying the ST model to support speech 570

and text inputs, and enables the retriever to query 571

from speech to speech or text. Our retrieval module 572

is related to the recent work by Lin et al. (2024) as 573

both are based on DPR. The main difference is that 574

their model is for informational retrieval and does 575

not support cross-modal retrieval. 576

Rare Words in ASR, MT, and ST In ASR, some 577

representative approaches to handle rare words in- 578

clude language model rescoring or fusion (Raju 579

et al., 2019; Yang et al., 2021; Huang et al., 2022; 580

Weiran et al., 2022; Mathur et al., 2023), data 581

augmentation by text-to-speech (TTS) (Guo et al., 582

2019; Zheng et al., 2021; Qu et al., 2023), and con- 583

text enhancement by an additional memory module 584

(Bruguier et al., 2019; Jain et al., 2020; Chang et al., 585

2021; Huber et al., 2021; Qiu et al., 2022; Huber 586

and Waibel, 2024). In MT, rare word translation 587

has been tackled by, among other techniques, con- 588

strained decoding (Chatterjee et al., 2017; Hasler 589

et al., 2018; Ailem et al., 2021; Zhang et al., 2023), 590

copying by source annotations (Dinu et al., 2019; 591

Song et al., 2019; Bergmanis and Pinnis, 2021) or 592

pointing mechanisms (Gulcehre et al., 2016; Pham 593

et al., 2018; Gu et al., 2019; Zhang et al., 2021), 594

and retrieval-augmented translation (Martins et al., 595

2023; Liu et al., 2023). In direct ST, translating 596

rare words is a significant challenge due to the com- 597

bined complexities of ASR and MT. The amount 598

of prior work is also relatively sparse. Gaido et al. 599

(2022) use multilingual models to improve the ac- 600

curacy of non-English names. Gaido et al. (2023) 601

propose to first detect named entities (NEs) in the 602

source audio that are present in a given contextual 603

dictionary and then inject these NEs in text form 604

into the decoder. Our approach does not assume 605

a readily available contextual dictionary, but can 606

instead leverage unprocessed parallel data. 607

7 Conclusion 608

We introduced a retrieval-and-demonstration ap- 609

proach to improve rare word translation accuracy 610

in direct ST. For real-world applications, e.g., trans- 611

lating scientific talks, we recommend adding ut- 612

terances from the same speaker to the example 613

pool and using speech-to-speech retrieval to iden- 614

tify examples. When feasible, one should consider 615

incorporating an additional verification step to en- 616

sure the relevance of the retrieved sentences, by 617

human-in-the-loop or automated techniques. 618
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Limitations619

Language Coverage in Experiments Our ex-620

periments were limited to the English-to-German621

language pair due to resource constraints. Experi-622

ments on additional language pairs, especially dis-623

tant ones, would further substantiate the findings.624

Robustness to Irrelevant Examples Our ap-625

proach effectively improves the accuracy of rare626

word translation. However, as elaborated in the re-627

sult discussions, we also observed that incorrectly628

retrieved examples tend to harm translation quality.629

As a next step, we hope to increase the robustness630

of the ST models to irrelevant examples. This could631

for instance be achieved by incorporating incorrect632

rare words during training to enhance the model’s633

resilience to such errors.634
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A Details on Masked Loss1121

During the training of our adapted ST model, ex-1122

ample sentences are prepended to sentences in the1123

reduced training set. The translation of the exam-1124

ple sentence is used as a prefix and masked during1125

loss calculation. The cross-entropy loss function 1126

we use for training can be expressed as Equation 1: 1127

L = −
T∑
t=1

MtlogP (yt|y<t, u
e, ye, u) (1) 1128

With Mt as a mask function Equation 2: 1129

Mt =

{
0 if position t is part of ye

1 if position t is part of y
(2) 1130

B Details of Rare Word Types 1131

The detailed rare word analysis results for Table 2 1132

are in Table 9. 1133

Rare Word Type Frequency

Person 130
Location 72
Technology 29
Food 27
Company 25
Biology 23
Organization 18
Health 18
Culture 14
Transport 14
Religion 14
Fashion 13
Medicine 12
Science 12
Geography 11
Chemics 11
Language 11
History 10
Politics 9
Architecture 9
Military 9
Environment 8
Education 7
Sport 7
Law 6
Society 4
Data 4
Book 4
Physics 4
Game 3
Economy 3
Literature 2
Art 2
Music 1
Entertainment 1
Award 1

Table 9: Detailed NER results on rare words in tst-rare-
word with the number of unique words in each category.

C ST Training and Inference Details 1134

C.1 Training Details 1135

We use the Transformer architecture 1136

S2T_TRANSFORMER_S in FAIRSEQ S2T 1137
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(Wang et al., 2020) For all our ST models, the1138

encoder-decoder architecture consists of 121139

transformer encoder blocks and 6 transformer1140

decoder blocks, with a model dimension of 2561141

and an inner dimension (FFN) of 2,048.1142

We initialized the ST model from a pre-trained1143

ASR model6. Subsequently, we fine-tuned the pre-1144

trained model for the ST task with hyperparameters1145

following (Wang et al., 2020), specifically, we set1146

dropout rate 0.1 and label smoothing 0.1. The ST1147

training used a tokenizer with a vocabulary size of1148

8,000. To prevent the tokenizer from seeing the rare1149

words during its training, which will cause an unfair1150

test condition, we train the SentencePiece (Kudo1151

and Richardson, 2018) tokenizer on the reduced1152

train set after the utterances containing rare words1153

are moved to other splits as discussed in §3.1.1154

During the training of the adapted ST model with1155

examples, we doubled the effective batch size to1156

maintain a comparable loss scale since the prefix1157

tokens do not contribute to the overall loss. Ad-1158

ditionally, we set dropout rate to 0.2 after doing1159

a search in {0.1, 0.2, 0.3} based on the dev loss1160

during the training of the adapted ST model. The1161

training was stopped after the validation perfor-1162

mance did not improve for 30 consecutive epochs1163

(patience 30). For evaluation, we averaged the last1164

10 checkpoints.1165

C.2 Inference Details1166

The inference uses a beam size of 5. Since the1167

rare-word-tst dataset includes example-prepended1168

sentences, the sentences are longer than typical1169

translation sentences. To keep all utterances in the1170

rare-word-tst set, we set a large allowed source size1171

with –max-source-positions 30000. This ensures1172

that even the longest utterances are not excluded1173

from the rare-word-tst set.1174

D Retriever Training and Inference1175

Details1176

D.1 Training Details1177

Our retriever is based on the DPR (Karpukhin et al.,1178

2020) architecture, where a dense passage encoder1179

EP and a question encoder EQ is constructed to1180

map candidate input c and query input q to latent1181

representation vectors respectively. The similarity1182

between the candidate representation and the query1183

representation is defined as the dot-product of their1184

6https://dl.fbaipublicfiles.com/fairseq/s2t/
mustc_de_asr_transformer_s.pt

vectors as shown in Equation 3: 1185

sim(q, c) = EQ(q)
TEP (c) (3) 1186

The encoders EP and EQ of DPR are initialized 1187

with SpeechT5 encoder(Ao et al., 2022) or SONAR 1188

encoder (Duquenne et al., 2023). 1189

Speech T5 The SpeechT5 speech/text encoder 1190

transforms speech or text input into a 768- 1191

dimensional embedding vector. It comprises 12 1192

Transformer encoder blocks, each with a model di- 1193

mension of 768 and an inner feed-forward network 1194

(FFN) dimension of 3,072. Before the encoder, 1195

a speech/text-encoder pre-net preprocesses the in- 1196

put. The speech-encoder pre-net includes the con- 1197

volutional feature extractor of wav2vec (Baevski 1198

et al., 2020) for waveform downsampling. The 1199

text-encoder pre-net applies positional encoding 1200

to convert character-level tokenized indices into 1201

embedding vectors. 1202

SONAR The SONAR speech/text encoder en- 1203

codes speech/text input to an embedding vector 1204

of 1,024. The encoder consists of 24 transformer 1205

encoder blocks with a model dimension of 1,024 1206

and an inner dimension (FFN) of 8,192. The 1207

speech encoder-frontend applies the wav2vec fea- 1208

ture extractor (Baevski et al., 2020), while the text 1209

encoder-frontend uses a position encoder. 1210

Training The dual encoders in DPR are trained 1211

on a reduced training set with prepended examples. 1212

Each sentence’s example works as a positive ex- 1213

ample, while examples from other sentences in the 1214

batch serve as in-batch negatives. We set a batch 1215

size of 4 and a learning rate of 2e-5 for training. 1216

Given the large size of the SONAR encoder, for 1217

memory efficiency, only the top layer of the en- 1218

coder is trained. This approach is not only for 1219

memory efficiency but also because the lower lay- 1220

ers likely extract low-level acoustic features, which 1221

are less relevant for our retrieval task focused on 1222

word-level information. We further investigate the 1223

retrieval accuracy under different numbers of train- 1224

able parameters. As shown in Figure 2. We use the 1225

settings with the best retrieval accuracy for our ST 1226

task. which are: 1227

• For the speech-to-speech retriever, the top 2 1228

layers of both speech encoders are trained, 1229

resulting in 205 million trainable parameters. 1230

• For the speech-to-text retriever, the top 8 lay- 1231

ers of both the text and speech encoders are 1232

trained, with 422 million trainable parameters. 1233
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• For the text-to-text retriever, the top 8 layers1234

of both text encoders are trainable, totaling1235

335 million trainable parameters.1236

D.2 Inference Details1237

During inference time, we apply the passage en-1238

coder EP to all the candidates in the rare-word1239

pool. Given a question q, we can derive its em-1240

bedding vq = EQ(q) and then retrieve the top-11241

candidate whose embedding is the closest to vq1242

from the rare-word pool.1243

E Comparison to Existing Results1244

We confirm that our baseline model performs on1245

par with those reported in the literature with the1246

results in Table 10.1247

BLEU

FAIRSEQ S2T (Wang et al., 2020) 22.7
Our baseline model 23.6

Table 10: The performance of our baseline model on
the tst-COMMON split of MuST-C is comparable to
existing baselines. Both models have the identical archi-
tecture using S2T_TRANSFORMER_S.

F Additional Examples1248

Here we present two additional translation exam-1249

ples for comparison among the baseline model,1250

the model trained with an additional rare-word1251

pool, and our approach. In the first example, our1252

approach successfully translates a zero-shot word1253

perfectly. In the second example, we demonstrate1254

a case where our approach does not perform well.1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

source (transcript): Murali Krishna (Murali Krishna)
comes from one of those villages.
baseline model (on train-reduced) (Table 3 row
(1)):Moralische Christen (Moral Christians) sind aus
einem dieser Dörfer.
train on {train-reduced + rare-word pool} (Table 3 row
(4)): Das Marate Krishna (Marate Krishna) kommt aus
einem dieser Dörfer.
speech→speech example (Table 4 row (5)): Sie arbeitet
mit Leuten wie Murali Krishna. (She works with people
like Murali Krishna.).
adapted + speech→speech (Table 3 row (7)): Murali
Krishna (Murali Krishna) kommt aus einem dieser Dörfer.
target: Murali Krishna (Murali Krishna) kommt aus einer
dieser Dörfer.
source (transcript): The McLaren (McLaren) just popped
off and scratched the side panel.
baseline model (on train-reduced) (Table 3 row (1)):Und
der Klient (client) stoppte ab und kratzte die Seite des
Paddels.
train on {train-reduced + rare-word pool} (Table 3 row
(4)): Und der Spieler (player) stürzte einfach ab und kratzte
auf den Bürgersteig.
speech→speech example (Table 4 row (5)): Aber als
Nebeneffekt sammelt er Kornette. (But as a sideline, he
happens to collect cornets.)
adapted + speech→speech (Table 3 row (7)): Als der
Klairner (Klairner) gerade ankam, stopfte er ein Nebenpan-
del.
target: Der McLaren (McLaren) bekam eine Beule und
einen Kratzer an der Seitenkarosserie.

Table 11: Additional examples of our retrieval-and-
demonstration approach.

1273

1274

1275

1276

1277
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