
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TOWARDS SIMPLE AND PROVABLE PARAMETER-FREE
ADAPTIVE GRADIENT METHODS

Anonymous authors
Paper under double-blind review

ABSTRACT

Optimization algorithms such as AdaGrad and Adam have significantly advanced
the training of deep models by dynamically adjusting the learning rate during the
optimization process. However, adhoc tuning of learning rates poses a challenge,
leading to inefficiencies in practice. To address this issue, recent research has
focused on developing “learning-rate-free” or “parameter-free” algorithms that
operate effectively without the need for learning rate tuning. Despite these ef-
forts, existing parameter-free variants of AdaGrad and Adam tend to be overly
complex and/or lack formal convergence guarantees. In this paper, we present
AdaGrad++ and Adam++, novel and simple parameter-free variants of AdaGrad
and Adam with convergence guarantees. We prove that AdaGrad++ achieves com-
parable convergence rates to AdaGrad in convex optimization without predefined
learning rate assumptions. Similarly, Adam++ matches the convergence rate of
Adam without relying on any conditions on the learning rates. Experimental re-
sults across various deep learning tasks validate the competitive performance of
AdaGrad++ and Adam++.

1 INTRODUCTION

In recent years, optimization algorithms such as AdaGrad (Duchi et al., 2011) and Adam (Kingma,
2014) have emerged as powerful tools for enhancing the training of deep learning models by ef-
ficiently adapting the learning rate during the optimization process. While these algorithms have
demonstrated remarkable performance gains in various applications, a notable drawback lies in the
necessity of manual tuning for suitable learning rates. The process of learning rate tuning can be
laborious and often requires extensive trial and error, hindering the efficiency and scalability of deep
learning model development.

The intricate nature of learning rate tuning has motivated a large number of recent works to de-
velop “learning-rate-free” or “parameter-free” algorithms that can work well under various differ-
ent settings without learning rate tuning. Among the vast literature of parameter-free optimization
methods, Ivgi et al. (2023) proposed a framework called distance over gradients (DoG), which
gives a parameter-free version of stochastic gradient descent (SGD) that shares certain features
as the AdaGrad-Norm algorithm (Streeter & McMahan, 2010; Ward et al., 2020). Motivated by
AdaGrad-Norm, another recent work (Defazio & Mishchenko, 2023) also gave a framework named
D-adaptation, and parameter-free variants of SGD and Adam were proposed under this framework.
More recently, Defazio et al. (2024) proposed a different approach for schedule-free online optimiza-
tion, based on which the authors developed new variants of schedule-free SGD and Adam/AdamW.

Despite the recent advances of parameter-free optimization algorithms, research on parameter-free
adaptive gradient methods1 remains relatively limited. Specifically, most of the existing parameter-
free algorithms are essentially variants of SGD, and entry-wisely adaptive learning rates in standard
AdaGrad and Adam algorithms are rarely considered in most of the existing parameter-free meth-
ods. Although Defazio & Mishchenko (2023); Mishchenko & Defazio (2023); Defazio et al. (2024)

1Adaptive gradient methods usually have multiple hyperparameters other than learning rates. For example,
Adam implements exponential moving averages of first and second moments of gradients, which are controlled
by parameters β1 and β2. Here we clarify that when discussing parameter-free adaptive gradient methods, we
still allow the algorithm to have such hyperparameters which do not require extensive tuning. This is consistent
with the convention in recent works on parameter-free optimization (Defazio & Mishchenko, 2023; Mishchenko
& Defazio, 2023; Defazio et al., 2024).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

recently proposed variants of parameter-free AdaGrad, Adam and AdamW that implement entry-
wisely adaptive gradients, these algorithms all introduce rather significant modifications to the orig-
inal algorithms, and the parameter-free versions of Adam/AdamW are not backed up by theoretical
convergence guarantees.

Motivated by the limitations of existing studies, in this work, we propose simple but efficient ver-
sions of AdaGrad and Adam with provable convergence guarantees, which we name AdaGrad++
and Adam++ respectively. The main contributions of this work can be summarized as follows:

1. We propose the AdaGrad++ algorithm, which is a parameter-free version of AdaGrad. We
demonstrate that without any assumptions on learning rates, AdaGrad++ can still achieve a
O(1/

√
T) worst-case convergence rate in convex optimization, which is the same as AdaGrad.

This highlights the efficacy and versatility of AdaGrad++ as a more accessible and user-friendly
optimization method.

2. We also introduce the Adam++ algorithm as a parameter-free variant of Adam. By eliminating
the reliance on a well-tuned learning rate schedule, Adam++ offers more enhanced adaptabil-
ity and robustness compared to Adam. Our theoretical results demonstrates the capability of
Adam++ to match the convergence rate of Adam in convex optimization, even in the absence of
any assumptions regarding learning rates.

3. We conduct experiments on image classification and large language model pretraining tasks to
evaluate the performance of the proposed algorithms. For CIFAR-10, with minimal parameter
tuning, Adam++ outperforms Adam by 0.27% using a constant learning rate schedule on ResNet-
50, and by 1.35% using a cosine learning rate schedule on VGG16. For GPT-2 small and medium
tasks, AdamW++ surpasses Adam by 0.02 in both training and test losses. Additionally, we
perform an ablation study on the choice of initial and base learning rates, which confirms our
theoretical findings.

Notation. We denote scalars by lowercase letters, vectors by lowercase boldface letters, and matrices
by uppercase boldface letters. For a positive integer d, we denote [d] = {1, . . . , d}. For a vector
x = [x1, . . . , xd]

⊤ and p ≥ 1, we denote the ℓp norm of x by ∥x∥p =
(∑d

i=1 |xi|p
)1/p

, and the ℓ∞
norm of x by ∥x∥∞ = maxi∈[d] |xi|. Given two sequences {an} and {bn}, we write an = O(bn)

if there exists a constant 0 < C < +∞ such that an ≤ C bn. We use the notation Õ(·) to hide
logarithmic factors.

2 RELATED WORK

In this section, we give a more comprehensive review of the existing literature on parameter-free
optimization and adaptive gradient methods.

Parameter-free optimization. Several recent works have explored parameter-free algorithms based
on modifications of the Polyak step size (Loizou et al., 2021; Gower et al., 2021; Orvieto et al.,
2022; Rolinek & Martius, 2018; Berrada et al., 2020). In addition, several studies have investigated
step-size selection methods derived from Line-Search algorithms (Vaswani et al., 2019; Paquette
& Scheinberg, 2018). Another line of works, including LARS (You et al., 2017a), LAMB (You
et al., 2017b), Adafactor (Simonyan & Zisserman, 2014), and Fromage (Bernstein et al., 2020),
introduced learning rate adjustment schemes based on the norms of iterates. Moreover, Chandra
et al. (2022) proposed a scheme to adjust the learning rates based on certain automatically calculated
hypergradients. Several recent works (Orabona & Tommasi, 2017; Chen et al., 2022) have also
proposed parameter-free algorithms by reducing the optimization process to a game of betting on a
coin. Another recent work (Kleinsorge et al., 2023) proposed a novel rotation invariant parameter-
free algorithm based on exponential learning rate adaption. Finally, a line of recent works (Orabona,
2014; Kempka et al., 2019) have studied parameter-free algorithms in solving specific learning tasks
such as linear and kernel regression.

Adaptive gradient methods. There is a large body of literature on variants of AdaGrad and Adam.
Specifically, RMSProp (Kurbiel & Khaleghian, 2017) was the first work that proposed using an
exponential moving average instead of a cumulative sum to handle the second moment in Ada-
Grad. Reddi et al. (2019) pointed out an extreme case where Adam may face convergence issues,
and proposed AMSGrad accordingly with convergence guarantees. RMSProp, Adam and AMS-
Grad have also inspired many variants, including SC-AdaGrad, SC-RMSprop (Mukkamala & Hein,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2017), Sadagrad (Chen et al., 2018b), YOGI (Zaheer et al., 2018), Padam (Chen et al., 2018a), and
RAdam (Liu et al., 2019). More recently, several works such as STORM (Cutkosky & Orabona,
2019), adaptive normalized SGD (Cutkosky & Mehta, 2020), Adam+ (Liu et al., 2020), SUPER-
ADAM Huang et al. (2021) implemented various variance reduction techniques in Adam. Guo
et al. (2021) presented a novel convergence analysis for a family of Adam-style methods with an
increasing momentum parameter for the first-order moment. Alacaoglu et al. (2020) proposed a new
type of framework to analyze the regret of the Adam style methods. Zhou et al. (2018) established
high-probabiliy convergence guarantees of AdaGrad and Adam in nonconvex optimization.

3 REVIEW OF EXISTING METHODS AND PREVIEW OF PROPOSED METHODS

In this section, we give a brief review of the adaptive gradient methods, and discuss existing literature
of parameter-free adaptive gradient methods, followed by a preview of our proposed methods.

We consider the optimization problem as follows

min
x∈Rd

f(x), (3.1)

where f can be a convex or nonconvex function. In order to optimize (3.1), the standard stochastic
gradient decent (SGD) performs the following update rule

xt+1 = xt − ηtgt, (3.2)

where gt represents the stochastic gradient at the t-th iteration, ηt denotes the learning rate. Adap-
tive gradient methods (Duchi et al., 2011; Hinton et al., 2012; Kingma, 2014; Reddi et al., 2018;
Loshchilov & Hutter, 2019; Chen et al., 2020) aim to give well-designed adjustments to the learning
rate ηt, particularly focusing on applying different learning rates for different entries of the iterates.

Among popular adaptive gradient methods, AdaGrad (Duchi et al., 2011) stands out as one of the
pioneering methods. The update rule for AdaGrad is given by:

xt+1 = xt −
ηt√∑t

i=1 g
2
i + δ

· gt, (3.3)

where δ is a small positive constant, and we use the common notation where the square (·)2 and
square root

√
· operations are performed entry-wisely when applied to a vector.

Adam (Kingma, 2014) is another widely recognized adaptive gradient methods. Compared with
AdaGard, it implements exponential moving averages over g2

t ’s, as well as momentum acceleration,
with the update rule defined as follows:

xt+1 = xt − ηt
mt√
vt + δ

, mt = β1mt−1 + (1− β1)gt, vt = β2vt−1 + (1− β2)g
2
t . (3.4)

Another line of research on parameter-free optimization seeks to reduce or remove the necessity
of learning rate tuning. The distance over gradient (DoG) (Ivgi et al., 2023) framework is popular
method which sets the learning rate ηt in stochastic gradient descent (3.2) as

ηt =
maxi≤t ∥x0 − xi∥2√∑t

i=1 ∥gi∥22
.

DoG can be treated as a modification on the AdaGrad-Norm algorithm (Duchi et al., 2011; Streeter

& McMahan, 2010; Ward et al., 2020) with ηt = D/
√∑t

i=1 ∥gi∥22, where the parameterD is set as
maxi≤t ∥x0 − xi∥2 in DoG. Several other parameter-free methods (Defazio & Mishchenko, 2023;
Mishchenko & Defazio, 2023) also focused on estimating the parameter D with different criteria.
Notably, these recent studies of parameter-free algorithms focus more on the variants of SGD, which
do not implement the entry-wisely adaptive learning rates in AdaGrad and Adam. Although several
recent works (Defazio & Mishchenko, 2023; Mishchenko & Defazio, 2023; Defazio et al., 2024)
proposed parameter-free variants of AdaGrad or Adam, they are mostly not backed up with theoret-
ical guarantees. Moreover, existing parameter-free variants of AdaGrad and Adam are mostly pretty
complicated, deviating significantly from the standard forms of AdaGrad and Adam.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Preview of our proposed methods. Inspired by DoG (Ivgi et al., 2023), we propose simple
parameter-free variants of AdaGrad and Adam, which we call AdaGrad++ and Adam++ respec-
tively. Specifically, AdaGrad++ follows the update rule of AdaGrad in (3.3), but with

ηt = d−1/2 ·max
i≤t

∥xi − x0∥2,

where d is the dimension of x. Note that ηt is the maximum distance between the initialization x0

and all the iterates along the optimization trajectory normalized by
√
d. Moreover, a specific and

simplified case in Adam++ is directly based on the update rule of Adam in (3.4), with

ηt =
maxi≤t ∥xi − x0∥2√

d(t+ 1)
.

Compared with existing parameter-free versions of AdaGrad and Adam, AdaGrad++ and Adam++
are in much simpler form. Interestingly, despite the simplicity, our analysis demonstrates that Ada-
Grad++ and Adam++ enjoy good theoretical convergence guarantees, and perform surprisingly well
in various experiments. For more details, please refer to Sections 4 and 5.

4 ADAGRAD++: A PARAMETER-FREE VERSION OF ADAGRAD

In this section, we present the details of the AdaGrad++ algorithm, and then give theoretical guar-
antees on its performance in convex optimization.

4.1 ALGORITHM

We consider the optimization problem as introduced in (3.1) in setting of stochastic optimization,
and we assume access to a stochastic gradient oracle G(x) satisfying E[G(x)|x] ∈ ∂f(x). The
AdaGrad++ algorithm is presented in Algorithm 1.

Algorithm 1 Parameter-Free AdaGrad (AdaGrad++)

1: input: x0, η0 = ϵ, δ
2: for t = 0, to n do
3: rt = ∥xt − x0∥2/

√
d

4: ηt = max(ηt−1, rt)
5: gt = G(xt)
6: st = (

∑t
k=0 g

2
k)

1/2

7: Ht = δ + diag(st)
8: xt+1 = xt − ηt ·H−1

t gt
9: end for

In Algorithm 1, it is clear that the key innovation of AdaGrad++ lies in the introduction of the
quantity rt = ∥xt − x0∥2/

√
d, and the definition that ηt = max(ηt−1, rt). These definitions are

inspired by the DoG framework (Ivgi et al., 2023), and are the key to a parameter-free approach.
We would also like to comment that introducing the factor d−1/2 in the definition of rt is crucial in
AdaGrad++, resulting in both strong theoretical guarantees and robust practical performance across
different tasks with varying dimensions. The intuition is that AdaGrad++ implements different
adaptive learning rates for different coordinates, and the d−1/2 factor converts the “total distance”
in DoG to the “mean squared distance (displacement)”, which is more robust to d.

4.2 CONVERGENCE GUARANTEE

In this subsection, we present convergence guarantees of AdaGrad++ (Algorithm 1) under the setting
where f(x) is convex. We first give an assumption on the stochastic gradient G(x).
Assumption 4.1. There exists some continuous function l : Rd → R such that ∥G(x)∥2 ≤ l(x)
almost surely.

Assumption 4.1 states that the stochastic gradients have a deterministic bound l(x) on their norm.
By allowing different bounds at different x, this assumption is much weaker compared to the more
common Lipschitz assumption that directly requires that ∥G(x)∥2∥2 is bounded to a constant. The
same assumption has been made in Ivgi et al. (2023).

Our main result on the convergence of AdaGrad++ is given in the following theorem.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Theorem 4.2. Let x0, . . . ,xT be the iterates of AdaGrad++. Further let τ ∈ argmaxt≤T
∑t−1
i=0

ηi
ηt

and define xτ =
∑τ−1

t=0 ηtxt∑τ−1
t=0 ηt

. Then under Assumption 4.1, for any δ ∈ (0, 1), L > 0 and any

x∗ ∈ Rd, with probability at least 1− δ − P(maxt≤T l(xt) > L), it holds that

f(xτ) ≤ f(x∗) +O

(
D2
τ

√
d · ∥sτ∥2 +Dτη0

√
θτ,δ∥sτ∥22 + L2θ2τ,δ

Tη0
log

(
ηT
η0

))
,

where Dτ = maxt≤τ ∥xt − x∗∥∞, Dτ = maxt≤τ ∥xt − x∗∥2, and θt,δ = log(60 log(6t)
δ).

Theorem 4.2 gives the bound of f(xτ) that is defined by an arbitrarily chosen reference point x∗, and
the bound contains a term f(x∗) as well as several other terms that are related to the distance between
algorithm iterates and x∗. This form of the bound with a reference point matches standard bounds
in convex and Lipschitz/smooth optimization (Bubeck et al., 2015). Moreover, the probability for
the bound in Theorem 4.2 to hold depends on P(maxt≤T l(xt) > L), and the bound holds with
high probability when P(maxt≤T l(xt) > L) is small. It is clear that if l(·) is always bounded,
which corresponds to a Lipschitz f , then P(maxt≤T l(xt) > L) = 0 with an appropriately chosen
constant L. In addition, it is also clear that Theorem 4.2 covers more general and non-Lipschitz
cases as well, since l(·) only needs to be bounded along the optimization trajectory x0, . . . ,xT to
grant P(maxt≤T l(xt) > L) = 0.

Theorem 4.2 reveals that an important term ∥sτ∥2 determines the convergence rate of AdaGrad++.
We note that a similar quantity has been investigated by Zhou et al. (2018) in the study of non-
convex convergence guarantees of adaptive gradient methods. This similarity demonstrates that our
proposed parameter-free algorithm AdaGrad++ still captures the key nature of AdaGrad. Taking a
closer look at the quantity ∥sτ∥2, by definition, we have ∥sτ∥2 =

√∑τ
t=0 ∥gt∥22. When the objec-

tive function is Lipschitz (l(·) is bounded), it is clear that a worst-case upper bound of ∥sτ∥2 is
√
T ,

leading to a 1/
√
T bound on the convergence rate (see Corollary 4.3 below). However, as discussed

in Zhou et al. (2018), here we point out that in practice, we often observe that ∥sτ∥2 ≪
√
T due to

the fact that the algorithm converges and the stochastic gradients ∥gt∥2 may converge to zero. When
∥sτ∥2 = O(T 1/2−α) for some α ∈ (0, 1/2), we will have a better convergence rate of AdaGrad++
(see Corollary 4.4 below).
Corollary 4.3. Suppose that the assumptions in Theorem 4.2 hold. Further assume that l(x) ≤ G
for all x. Then for any x∗ ∈ Rd, with probability at least 1− δ, it holds that

f(xτ) ≤ f(x∗) + Õ

(
D2
τG ·

√
d

T

)
,

where Dτ = maxt≤τ ∥xt − x∗∥∞.

Corollary 4.3 gives a simplified version of Theorem 4.2 under the special case when l(x) ≤ G.
We note that Mishchenko & Defazio (2023) proposed a parameter-free version of AdaGrad named
D-Adapted AdaGrad and established a convergence rate of the order O(dG∞/

√
T), under the as-

sumption that ∥G(x)∥∞ ≤ G∞. Considering ∥G(x)∥2 ≤
√
d · ∥G(x)∥∞, we have G ≤

√
d · G∞,

and therefore our result can be reduced to the bound in Mishchenko & Defazio (2023) when we
ignore the distance factor Dτ .
Corollary 4.4. Suppose that the assumptions in Theorem 4.2 hold. Further assume that there exist
G > 0 such that l(x) ≤ G and ∥sτ∥2 ≤ G · T 1/2−α) for some α ∈ [0, 1/2). Then for any x∗ ∈ Rd,
with probability at least 1− δ, it holds that

f(xτ) ≤ f(x∗) + Õ

(
D2
τG ·

√
d

T 1/2+α

)
,

where Dτ = maxt≤τ ∥xt − x∗∥∞.

Corollary 4.4 is a straightforward simplification of Theorem 4.2 under the additional condition that
∥sτ∥2 ≤ G · T 1/2−α). It verifies that when the key quantity ∥sτ∥2 is smaller than the worst-case
O(

√
T) bound, the convergence rate can be faster than O(1/

√
T).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

5 ADAM++: A PARAMETER-FREE VERSION OF ADAM

In this section, we introduce the Adam++ algorithm together with its theoretical convergence guar-
antees.

5.1 ALGORITHM

We consider the same optimization problem as introduced in (3.1) in the stochastic setting. We also
consider the same stochastic gradient oracle G(x) satisfying E[G(x)|x] ∈ ∂f(x). The Adam++
algorithm is depicted in Algorithm 2.

Algorithm 2 Parameter-Free Adam (Adam++)

1: input: x0, η0 = ϵ, δ, β1, β2, λ
2: for t = 0, to n do
3: rt = ∥xt − x0∥2/

√
d

4: ηt = max(ηt−1, rt)
5: gt = G(xt)
6: β1t = β1λ

t−1

7: mt = β1tmt−1 + (1− β1t)gt
8: Case 1: st = (

∑t
i=0 g

2
i)

1/2

9: Case 2: vt = β2vt−1 + (1− β2)g
2
t , st =

√
(t+ 1) ·maxt′≤t(vt′)

10: Ht = δ + diag(st)
11: xt+1 = xt − ηt ·H−1

t mt

12: end for

There are several key points in Algorithm 2 to note. First of all, Adam++ also implements the
key quantity rt = ∥xt − x0∥2/

√
d introduced in AdaGrad++ to automatically adapt the “learning

rate”. Moreover, Adam++ allows dynamically decaying first-moment parameter β1t = β1λ
t, which

follows the definition in AMSGrad (Reddi et al., 2018). When setting λ = 1, we can recover the
common setup with a constant β1. The introduction of the decaying β1t is due to technical reasons,
and our theoretical analysis on Adam relies on a λ ∈ (0, 1). However, we remark that Adam++ with
λ = 1 can achieve highly competitive performance under various practical settings.

Another key feature of Adam++ is that it covers two cases. In Case 1, we implement entry-wise
adaptive learning rates that are similar to AdaGrad and AdaGrad++. In Case 2, we implement a
more common exponential moving average of the second moment vt but also introduce another
quantity st. Particularly regarding the definition of st =

√
(t+ 1) ·maxt′≤t(vt′), we note that

the factor
√
(t+ 1) ensures reasonable scaling when incorporated with the quantity rt. This factor

makes the scaling of st in Case 2 more compatible with that in Case 1. Moreover, the max operation
maxt′≤t(vt′) is inherited from the AMSGrad modification to Adam (Reddi et al., 2018), which has
been shown to be crucial in ensuring theoretical guarantees. However, experiments have demon-
strated that the simplified version st =

√
(t+ 1) · vt works better in practice. This is consistent

with many empirical observations (Gugger & Howard, 2018).

5.2 CONVERGENCE GUARANTEE OF ADAM++

In this section, we give the convergence guarantee of Adam++. The main result is given in the
following theorem.
Theorem 5.1. Let x0, . . . ,xT be the iterations of Adam++ following either Case 1 or Case 2 in

Algorithm 2. In addition, let τ ∈ argmaxt≤T
∑t−1
i=0

ηi
ηt

and define xτ =
∑T−1

t=0 ηtxτ∑T−1
t=0 ηt

. Suppose

0 < β1 <
√
β2 and 0 < λ < 1. Then under Assumption 4.1, for any δ ∈ (0, 1), L > 0 and any

x∗ ∈ Rd, with probability at least 1− δ − P(maxt≤T l(xt) > L), the following results hold:

f(xτ) ≤f(x∗) +O

((
D2
τ

√
d · ∥sτ∥2
η0T

+
Dτ

√
θτ,δ∥sτ∥22 + L2θ2τ,δ

T

)
log

(
ηT
η0

))
.

Theorem 5.1 gives the convergence guarantee for Adam++. To the best of our knowledge, this is the
first convergence guarantee of a parameter-free version of Adam. Clearly, the bound in Theorem 5.1

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

is of the same form as in Theorem 4.2 for AdaGrad++. Therefore, our comments on Theorem 4.2
also apply to Theorem 5.1: the bound holds with high probability when l(·) is bounded along the
optimization trajectory x0, . . . ,xT . Moreover, similar to the bound for AdaGrad++, the quantity
∥sτ∥2 is a key quantity: when l(x) is bounded, the worst-case bound of ∥sτ∥2 is O(

√
T), leading

to a Õ(1/
√
T) convergence rate. However, if ∥sτ∥2 = O(T 1/2−α) for some α ∈ (0, 1/2), we can

expect a faster convergence rate .

Clearly, we can also establish the counterparts of Corollaries 4.3 and 4.4 for Adam++. However,
to avoid repetitions, here we only give the corollary below as the counterpart of Corollary 4.4. The
counterpart of Corollary 4.3 can be obtrained by setting α = 0.
Corollary 5.2. Suppose that the assumptions in Theorem 5.1 hold. Further assume that there exist
G > 0 such that l(x) ≤ G and ∥sτ∥2 ≤ G · T 1/2−α) for some α ∈ [0, 1/2). Then for any x∗ ∈ Rd,
with probability at least 1− δ, it holds that

f(xτ) ≤ f(x∗) + Õ

(
D2
τG ·

√
d

T 1/2+α

)
,

where Dτ = maxt≤τ ∥xt − x∗∥∞.

6 EXPERIMENTS

In this section, we evaluate the performance of Adam++ across image classification and large lan-
guage model pretraining tasks to test its efficacy. For image classification problems, we train mod-
els on the CIFAR-10 dataset (Krizhevsky et al., 2009). To demonstrate Adam++’s versatility and
stability across different network structures, we apply it to neural network architectures including
VGG16 (Simonyan & Zisserman, 2014), ResNet-18, and ResNet-50 (He et al., 2016). We use Adam
as the baseline, and also compare Adam++ against two state-of-the-art parameter-free algorithms:
D-Adaptation (Defazio & Mishchenko, 2023) and Prodigy (Mishchenko & Defazio, 2023). For
large language model pretraining tasks, we use a reproduced GPT-2 model with 125M and 355M
parameters respectively on the OpenWebText dataset (Gokaslan & Cohen, 2019). Our training set-
tings are based on those from NanoGPT and Sophia (Liu et al., 2023). We omit the experiments
for AdaGrad++ as we found it consistently underperforms compared to Adam and Adam++, despite
being better than AdaGrad.

6.1 IMAGE CLASSIFICATION

We aim to compare the optimization algorithms in a setting with minimal or no parameter tuning.
On ResNet-18 and ResNet-50, we run the baseline Adam optimizer with a default learning rate of
1e−3 and a coupled weight decay of 5e−4. However, for VGG16, the same learning rate fails to
converge, so we adjusted to a smaller learning rate of 1e−4 for Adam. For all parameter-free algo-
rithms, including DAdapt Adam, Prodigy, and Adam++, although there is no learning rate choice
required, we set a base learning rate factor that can be applied on top of the adaptive learning rate,
as introduced in Ivgi et al. (2023); Mishchenko & Defazio (2023); Defazio & Mishchenko (2023).
We set this base learning rate to 1.0 across all parameter-free algorithms, while keeping all other
parameters consistent with those of Adam, ensuring a fair comparison. For model architectures,
we modify the output dimensions of ResNet and VGG networks to 10 to align with the number of
output classes. We provide a detailed list of all training parameters in Appendix D. Variations in set-
tings, especially in weight decay, may prevent Prodigy and DAdapt Adam from achieving optimal
performance, with potential convergence issues on VGG16. In contrast, the results demonstrate that
our algorithm remains robust across all benchmarks, even without any parameter tuning.

Constant Learning Rate Schedule Figure 1 illustrates the training loss and test accuracy curves
against training epochs on the CIFAR-10 dataset for various network architectures and algorithms.
The task is challenging due to the use of a fixed learning rate throughout all epochs. For the Adam++
algorithm, both Case 1 and Case 2 are implemented, with additional implementation details available
in Appendix D. On ResNet-18 and ResNet-50, there is a noticeable performance gap between D-
Adapt Adam, Prodigy, and Adam++ (Case 1) when compared to Adam. Conversely, Adam++ (Case
2) either matches or surpasses Adam’s performance. On VGG16, while D-Adapt Adam and Prodigy
fail to show improvement, Adam++ achieves test accuracies nearly identical to Adam. Furthermore,
Figure 1 also reveals that although the test accuracies of Adam++ and Adam with a constant learning
rate are similar, the training loss of Adam++ decreases faster.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0 25 50 75 100 125 150 175 200
Epoch

10

20

30

40

50

60

70

80

Te
st

 A
cc

ur
ac

y
(%

)
Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

0 25 50 75 100 125 150 175 200
Epoch

10

20

30

40

50

60

70

80

90

Te
st

 A
cc

ur
ac

y
(%

)

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

0 25 50 75 100 125 150 175 200
Epoch

10
20
30
40
50
60
70
80
90

Te
st

 A
cc

ur
ac

y
(%

)

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

0 25 50 75 100 125 150 175 200
Epoch

10 1

100

Tr
ai

n
Lo

ss

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(a) ResNet-18

0 25 50 75 100 125 150 175 200
Epoch

10 1

100

Tr
ai

n
Lo

ss

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(b) ResNet-50

0 25 50 75 100 125 150 175 200
Epoch

10 1

103

107

1011

1015

1019

1023

Tr
ai

n
Lo

ss

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(c) VGG16

Figure 1: The results of training ResNet-18, ResNet-50, and VGG16 on CIFAR-10 with a constant
learning rate schedule. Each curve represents the mean of 8 random runs, with the shaded area
indicating the standard error. The first row presents the test accuracy of different algorithms, and
the second row shows the training losses. Adam++ achieves performance superior or comparable to
Adam.

0 25 50 75 100 125 150 175 200
Epoch

40

50

60

70

80

90

Te
st

 A
cc

ur
ac

y
(%

)

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

0 25 50 75 100 125 150 175 200
Epoch

10

20

30

40

50

60

70

80

90

Te
st

 A
cc

ur
ac

y
(%

)

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

0 25 50 75 100 125 150 175 200
Epoch

10

20

30

40

50

60

70

80

90

Te
st

 A
cc

ur
ac

y
(%

)

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

0 25 50 75 100 125 150 175 200
Epoch

10 2

10 1

100

Tr
ai

n
Lo

ss

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(a) ResNet-18

0 25 50 75 100 125 150 175 200
Epoch

10 2

10 1

100

Tr
ai

n
Lo

ss

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(b) ResNet-50

0 25 50 75 100 125 150 175 200
Epoch

10 2

100

102

104

106

108

Tr
ai

n
Lo

ss

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(c) VGG16

Figure 2: The results of training ResNet-18, ResNet-50, and VGG16 on CIFAR-10 with a cosine
learning rate schedule. Each curve represents the mean of 8 random runs, with the shaded area
indicating the standard error. The first row presents the test accuracy of different algorithms, and the
second row shows the training losses.
Cosine Learning Rate Schedule In addition to the learning rates found by parameter-free algo-
rithms, it is common to apply an additional learning rate schedule on top of that according to (Ivgi
et al., 2023; Mishchenko & Defazio, 2023; Defazio & Mishchenko, 2023). Figure 2 provides a com-
parison of our algorithm with other baselines when utilizing the same cosine learning rate schedule.
This annealed schedule aids in stabilizing training by being more cautious near the optimal point,
thereby yielding better overall performance compared to a constant learning rate schedule. Under
the annealed setting, both Prodigy and D-Adapt Adam exhibit improvement over their counterparts
using a constant learning rate schedule. Notably, the performance enhancement becomes more pro-
nounced in the later stages of training, suggesting that D-Adapt Adam and Prodigy might initially
overestimate the learning rate. Meanwhile, our Adam++ algorithm maintains only a small gap with
Adam. Notably, on VGG16, while the performance of D-Adapt Adam, Prodigy, and Adam++ (Case
2) fails to converge, Adam++ (Case 1) outperforms Adam.

We present the results for both constant and cosine learning rate schedules in Table 1. The reported
values represent the best test accuracy or training loss achieved up to the final epoch. Notably, in
nearly all cases, the top two algorithms in each row are either Adam or Adam++.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: Comparison of test accuracies and training losses for both constant and cosine Learning
Rate Schedules on CIFAR-10 dataset.

Model LR schedule Adam D-Adapt Adam Prodigy Adam++(case 1) Adam++(case 2)

train loss test acc train loss test acc train loss test acc train loss test acc train loss test acc

ResNet-18 Constant 0.0843 85.99 0.2696 80.13 0.4064 76.62 0.0360 80.5 0.0188 85.67
Cosine 0.0015 88.03 0.0512 87.72 0.0416 86.83 0.0019 85.32 0.0018 86.6

ResNet-50 Constant 0.0748 87.1 0.4983 70.3 0.3267 78.94 0.0340 81.2 0.0194 87.37
Cosine 0.0017 89.1 0.2533 81.38 0.1226 86.02 0.0011 82.05 0.0013 88.74

VGG16 Constant 0.0260 89.69 2.2638 10.56 2.2722 15.4 0.0004 88.36 0.0005 88.88
Cosine 0.0001 87.47 1.2814 46.92 1.0421 55.23 0.0001 88.82 2.3016 10

6.2 LARGE LANGUAGE MODEL (LLM) PRETRAINING

In this subsection, we pretrain GPT-2 models with 125M and 355M parameters using the OpenWeb-
Text dataset. For the baseline, we employ the AdamW optimizer instead of Adam, as empirically
AdamW performs better than Adam in LLM tasks . For all parameter-free algorithms, including
our proposed Adam++, we apply decoupled weight decay to align with AdamW, referring to the
adjusted version of Adam++ as AdamW++. In detail, AdamW uses a standard cosine learning rate
schedule with 2000 warm-up steps. The batch size is set to 480, with a learning rate of 6e−4 for
GPT-2 small and 3e−4 for GPT-2 medium, as specified in Liu et al. (2023). All parameter-free algo-
rithms use the same hyperparameters and learning rate schedule as AdamW. Additional details for
pretraining are provided in Appendix D.

In Figures 3 and 4, we observe that AdamW++ outperforms AdamW by 0.02 in both training loss
and validation loss on GPT-2 small and GPT-2 medium. In contrast, Prodigy performs 0.01 worse
than AdamW on GPT-2 small and matches AdamW on GPT-2 medium, while D-Adapt Adam shows
the weakest performance on these tasks. These results emphasize the ability of our algorithm to
effectively handle large-scale language tasks.

5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
Steps

2.80

2.85

2.90

2.95

3.00

3.05

3.10

3.15

3.20

Te
st

 L
os

s

Adam
D-Adapt Adam
Prodigy
Adam++

5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
Steps

2.8 × 100

2.85 × 100

2.9 × 100

2.95 × 100

3 × 100

3.05 × 100

3.1 × 100

3.15 × 100

3.2 × 100

Tr
ai

n
Lo

ss

Adam
D-Adapt Adam
Prodigy
Adam++

Figure 3: Comparison of training GPT-2 Small (155M) on OpenWebText. Left: Test loss. Per-
formance at 50k steps—AdamW: 3.00, D-Adapt AdamW: 3.01, Prodigy: 3.01, Adam++: 2.98.
Right: Train loss. Performance at 50k steps—AdamW: 2.97, D-Adapt AdamW: 2.97, Prodigy:
2.98, AdamW++: 2.95. AdamW++ refers to AdamW++ (Case 2).

10000 20000 30000 40000 50000
Steps

2.60

2.65

2.70

2.75

2.80

2.85

2.90

2.95

3.00

Te
st

 L
os

s

Adam
D-Adapt Adam
Prodigy
Adam++

10000 20000 30000 40000 50000
Steps

2.6 × 100

2.65 × 100

2.7 × 100

2.75 × 100

2.8 × 100

2.85 × 100

2.9 × 100

2.95 × 100

3 × 100

Tr
ai

n
Lo

ss

Adam
D-Adapt Adam
Prodigy
Adam++

Figure 4: Comparison of training GPT-2 Medium (355M) on OpenWebText. Left: Test loss. Per-
formance at 50k steps—AdamW: 2.80, D-Adapt AdamW: 2.87, Prodigy: 2.80, AdamW++: 2.78.
Right: Train loss. Performance at 50k steps—AdamW: 2.75, D-Adapt AdamW: 2.82, Prodigy: 2.75,
AdamW++: 2.73. AdamW++ refers to AdamW++ (Case 2).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

6.3 ABLATION STUDY

We conduct an ablation study to assess the impact of different choices for the base learning rate and
the initial learning rate on training loss and test accuracy using ResNet-50.

Initial learning rate η0 Our theory suggests that the choice of the initial η0 will not influence the
final loss performance, as long as η0 is not too large. We tested this hypothesis by running each
of the problems using values of η0 ranging from 10−6 to 1. Figure 5 validates this conclusion in
practice.

Base learning rate For this experiment alone, we consider Adam++ with different values of the
base learning rate of ηt = c · maxi≤t ∥xi−x0∥2√

d
. According to our theory, our algorithms are expected

to be unstable when c > 1 and slow to converge when c < 1. Figure 6 illustrates the performance
around c = 1.

10 6 10 5 10 4 10 3 10 2 10 1

Initial step size

82

83

84

85

86

87

Te
st

 A
cc

ur
ac

y
(%

)

Adam ++ (Case 2)

10 6 10 5 10 4 10 3 10 2 10 1

Initial step size

0.05

0.10

0.15

0.20

0.25

0.30

Tr
ai

n
Lo

ss

Adam++ (Case 2)

Figure 5: Effect of different choices of η0 on test accuracy and training losses. When η0 is less than
10−1, its influence on final performance is marginal.

10 1 100

Base step size

65

70

75

80

85

Te
st

 A
cc

ur
ac

y
(%

)

Adam ++ (Case 2)

10 1 100

Base step size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Tr
ai

n
Lo

ss

Adam++ (Case 2)

Figure 6: Effect of different choices of c on test accuracy and training losses. When c is between
0.5 and 4, its influence on final performance is limited.

7 CONCLUSIONS

In this paper, we propose two simple but effective algorithms, namely AdaGrad++ and Adam++,
that are parameter-free variants of AdaGrad and Adam respectively. We demonstrate that, despite
the simple intuition, AdaGrad++ and Adam++ are guaranteed to converge with a reasonable conver-
gence rate, and also perform surprisingly well in various experiments. These theroetical and empiri-
cal results highlight the potential of AdaGrad++ and Adam++ to be robust and practical choices for
a wide range of optimization tasks.

Several topics that are not covered in this paper are worth future studies. First of all, the current
convergence analyses of AdaGrad++ and Adam++ are limited to the convex setting. Establishing
convergence guarantees for AdaGrad++ and Adam++ under the setting of nonconvex optimiza-
tion is an important future research direction. Moreover, establishing convergence guarantees for
AdamW++ (which is used in our experiments without proof) is another promising area for future
work.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Ahmet Alacaoglu, Yura Malitsky, Panayotis Mertikopoulos, and Volkan Cevher. A new regret anal-
ysis for adam-type algorithms. In International conference on machine learning, pp. 202–210.
PMLR, 2020.

Jeremy Bernstein, Arash Vahdat, Yisong Yue, and Ming-Yu Liu. On the distance between two neural
networks and the stability of learning. Advances in Neural Information Processing Systems, 33:
21370–21381, 2020.

Leonard Berrada, Andrew Zisserman, and M Pawan Kumar. Training neural networks for and by
interpolation. In International conference on machine learning, pp. 799–809. PMLR, 2020.

Sébastien Bubeck et al. Convex optimization: Algorithms and complexity. Foundations and
Trends® in Machine Learning, 8(3-4):231–357, 2015.

Kartik Chandra, Audrey Xie, Jonathan Ragan-Kelley, and Erik Meijer. Gradient descent: The ulti-
mate optimizer. Advances in Neural Information Processing Systems, 35:8214–8225, 2022.

Jinghui Chen, Dongruo Zhou, Yiqi Tang, Ziyan Yang, Yuan Cao, and Quanquan Gu. Closing the
generalization gap of adaptive gradient methods in training deep neural networks. arXiv preprint
arXiv:1806.06763, 2018a.

Jinghui Chen, Dongruo Zhou, Yiqi Tang, Ziyan Yang, Yuan Cao, and Quanquan Gu. Closing the
generalization gap of adaptive gradient methods in training deep neural networks. In Proceedings
of the Twenty-Ninth International Joint Conference on Artificial Intelligence, 2020.

Keyi Chen, John Langford, and Francesco Orabona. Better parameter-free stochastic optimization
with ode updates for coin-betting. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 36, pp. 6239–6247, 2022.

Zaiyi Chen, Yi Xu, Enhong Chen, and Tianbao Yang. Sadagrad: Strongly adaptive stochastic gradi-
ent methods. In International Conference on Machine Learning, pp. 913–921. PMLR, 2018b.

Ashok Cutkosky and Harsh Mehta. Momentum improves normalized sgd. In International confer-
ence on machine learning, pp. 2260–2268. PMLR, 2020.

Ashok Cutkosky and Francesco Orabona. Momentum-based variance reduction in non-convex sgd.
Advances in neural information processing systems, 32, 2019.

Aaron Defazio and Konstantin Mishchenko. Learning-rate-free learning by d-adaptation. In Inter-
national Conference on Machine Learning, pp. 7449–7479. PMLR, 2023.

Aaron Defazio, Harsh Mehta, Konstantin Mishchenko, Ahmed Khaled, Ashok Cutkosky, et al. The
road less scheduled. arXiv preprint arXiv:2405.15682, 2024.

Alexey Dosovitskiy. An image is worth 16x16 words: Transformers for image recognition at scale.
arXiv preprint arXiv:2010.11929, 2020.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7), 2011.

Aaron Gokaslan and Vanya Cohen. Openwebtext corpus, 2019.

Robert M Gower, Aaron Defazio, and Michael Rabbat. Stochastic polyak stepsize with a moving
target. arXiv preprint arXiv:2106.11851, 2021.

Sylvain Gugger and Jeremy Howard. Adamw and super-convergence is now the fastest way to train
neural nets. last accessed, 19, 2018.

Zhishuai Guo, Yi Xu, Wotao Yin, Rong Jin, and Tianbao Yang. A novel convergence analysis for
algorithms of the adam family and beyond. arXiv preprint arXiv:2104.14840, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. Neural networks for machine learning
lecture 6a overview of mini-batch gradient descent, 2012.

Feihu Huang, Junyi Li, and Heng Huang. Super-adam: faster and universal framework of adaptive
gradients. Advances in Neural Information Processing Systems, 34:9074–9085, 2021.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4700–4708, 2017.

Maor Ivgi, Oliver Hinder, and Yair Carmon. Dog is sgd’s best friend: A parameter-free dynamic
step size schedule. In International Conference on Machine Learning, pp. 14465–14499. PMLR,
2023.

Michal Kempka, Wojciech Kotlowski, and Manfred K Warmuth. Adaptive scale-invariant online
algorithms for learning linear models. In International conference on machine learning, pp. 3321–
3330. PMLR, 2019.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Alexander Kleinsorge, Stefan Kupper, Alexander Fauck, and Felix Rothe. Elra: Exponential learn-
ing rate adaption gradient descent optimization method. arXiv preprint arXiv:2309.06274, 2023.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Thomas Kurbiel and Shahrzad Khaleghian. Training of deep neural networks based on distance
measures using rmsprop. arXiv preprint arXiv:1708.01911, 2017.

Hong Liu, Zhiyuan Li, David Hall, Percy Liang, and Tengyu Ma. Sophia: A scalable stochastic
second-order optimizer for language model pre-training. arXiv preprint arXiv:2305.14342, 2023.

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei
Han. On the variance of the adaptive learning rate and beyond. arXiv preprint arXiv:1908.03265,
2019.

Mingrui Liu, Wei Zhang, Francesco Orabona, and Tianbao Yang. Adam+: A stochastic method
with adaptive variance reduction. arXiv preprint arXiv:2011.11985, 2020.

Nicolas Loizou, Sharan Vaswani, Issam Hadj Laradji, and Simon Lacoste-Julien. Stochastic polyak
step-size for sgd: An adaptive learning rate for fast convergence. In International Conference on
Artificial Intelligence and Statistics, pp. 1306–1314. PMLR, 2021.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019.

Konstantin Mishchenko and Aaron Defazio. Prodigy: An expeditiously adaptive parameter-free
learner. arXiv preprint arXiv:2306.06101, 2023.

Mahesh Chandra Mukkamala and Matthias Hein. Variants of rmsprop and adagrad with logarithmic
regret bounds. In International conference on machine learning, pp. 2545–2553. PMLR, 2017.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Baolin Wu, Andrew Y Ng, et al.
Reading digits in natural images with unsupervised feature learning. In NIPS workshop on deep
learning and unsupervised feature learning, volume 2011, pp. 4. Granada, 2011.

Francesco Orabona. Simultaneous model selection and optimization through parameter-free
stochastic learning. Advances in Neural Information Processing Systems, 27, 2014.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Francesco Orabona and Tatiana Tommasi. Training deep networks without learning rates through
coin betting. Advances in Neural Information Processing Systems, 30, 2017.

Antonio Orvieto, Simon Lacoste-Julien, and Nicolas Loizou. Dynamics of sgd with stochastic
polyak stepsizes: Truly adaptive variants and convergence to exact solution. Advances in Neural
Information Processing Systems, 35:26943–26954, 2022.

C Paquette and K Scheinberg. A stochastic line search method with convergence rate analysis. arxiv
e-prints, art. arXiv preprint arXiv:1807.07994, 2018.

Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. In
International Conference on Learning Representations, 2018.

Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. arXiv
preprint arXiv:1904.09237, 2019.

Michal Rolinek and Georg Martius. L4: Practical loss-based stepsize adaptation for deep learning.
Advances in neural information processing systems, 31, 2018.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Matthew Streeter and H Brendan McMahan. Less regret via online conditioning. arXiv preprint
arXiv:1002.4862, 2010.

Sharan Vaswani, Aaron Mishkin, Issam Laradji, Mark Schmidt, Gauthier Gidel, and Simon Lacoste-
Julien. Painless stochastic gradient: Interpolation, line-search, and convergence rates. Advances
in neural information processing systems, 32, 2019.

Rachel Ward, Xiaoxia Wu, and Leon Bottou. Adagrad stepsizes: Sharp convergence over nonconvex
landscapes. Journal of Machine Learning Research, 21(219):1–30, 2020.

Yang You, Igor Gitman, and Boris Ginsburg. Large batch training of convolutional networks. arXiv
preprint arXiv:1708.03888, 2017a.

Yang You, Igor Gitman, and Boris Ginsburg. Scaling sgd batch size to 32k for imagenet training.
arXiv preprint arXiv:1708.03888, 6(12):6, 2017b.

Sergey Zagoruyko. Wide residual networks. arXiv preprint arXiv:1605.07146, 2016.

Manzil Zaheer, Sashank Reddi, Devendra Sachan, Satyen Kale, and Sanjiv Kumar. Adaptive meth-
ods for nonconvex optimization. Advances in neural information processing systems, 31, 2018.

Dongruo Zhou, Jinghui Chen, Yuan Cao, Yiqi Tang, Ziyan Yang, and Quanquan Gu. On
the convergence of adaptive gradient methods for nonconvex optimization. arXiv preprint
arXiv:1808.05671, 2018.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A PROOF OF THEOREM 4.2

Proof of Theorem 4.2. We define dt = xt − x∗, and define ψt(x) = ⟨x,Htx⟩ and Bψ(x,y) =
ψ(x − y)/2. Let gt = (gt,1, · · · , gt,d), st = (st,1, · · · , st,d) and dt = (dt,1, · · · , dt,d). From the
definition of xt+1 we have

xk+1 = argmin
x

{ηk⟨gk,x⟩+Bψk
(x,xk)},

which gives

⟨x− xk+1, ηkgk +∇ψk(xk+1)−∇ψk(xk)⟩ ≥ 0 (A.1)

for all x. Setting x = x∗ and rearranging the terms, we can then obtain a bound of ⟨xk+1−x∗,gk⟩.
Thus we have the inequality by denoting the dual norm of ∥ · ∥ψk

by ∥ · ∥ψ∗
k

ηk⟨xk − x∗,gk⟩ = ηk⟨xk+1 − x∗,gk⟩+ ηk⟨xk − xk+1,gk⟩

≤ ⟨x∗ − xk+1,∇ψk(xk+1)−∇ψk(xk)⟩+Bψk
(xk,xk+1) +

η2k
2
∥gk∥2ψ∗

k

= Bψk
(x∗,xk)−Bψk

(x∗,xk+1) +
η2k
2
∥gk∥2ψ∗

k
, (A.2)

where the inequality follows by (A.1) and the Cauchy-Schwarz inequality for ⟨xk−xk+1, ηkgk⟩, and
the second equality follows by the definition of Bψk

(x∗,xk), Bψk
(x∗,xk+1), and Bψk

(xk,xk+1).
Further defining xt :=

1∑t−1
k=0 ηk

∑t−1
k=0 ηkxk, and ∆t := ∇f(xt)− gt, we have

f(xt)− f(x∗) ≤ 1∑t−1
k=0 ηk

t−1∑
k=0

ηk(f(xk)− f(x∗))

≤ 1∑T−1
t=0 ηt

T−1∑
t=0

ηt
(
⟨xt − x∗,gt⟩+ ⟨xt − x∗,∇f(xt)− gt⟩

)
≤ 1∑T−1

t=0 ηt

{
t−1∑
k=0

[Bψk
(x∗,xk)−Bψk

(x∗,xk+1)]︸ ︷︷ ︸
I1

+
1

2

t−1∑
k=0

η2k∥gk∥2ψ∗
k︸ ︷︷ ︸

I2

+

t−1∑
k=0

ηk⟨xk − x∗,∆k⟩︸ ︷︷ ︸
noise

}
, (A.3)

where the first inequality follows by the convexity of f(x) and Jensen’s inequality, the second in-
equality follows again by the convexity of f(x), and the last inequality follows by (A.2). For I1 on
the right-hand side of (A.3), we have

t−1∑
k=0

Bψk
(x∗,xk)−Bψk

(x∗,xk+1) =

d∑
i=1

t−1∑
k=0

sk,i(d
2
k,i − d2k+1,i)/2

≤ D2
t

d∑
i=1

st−1,i. (A.4)

Here, we use the fact of Dt = maxi≤t ∥xi − x∗∥∞,

For I2 on the right-hand side of (A.3), we have
t−1∑
k=0

η2k∥gt∥2ψ∗
k
≤ η2t

d∑
i=1

t−1∑
k=0

g2k,i
sk,i

≤ 2η2t

d∑
i=1

st−1,i ≤ O(D2
t

d∑
i=1

st−1,i). (A.5)

Here the first inequality holds for the nondecreasing of ηt, and the second inequality holds by using
Lemma C.1 for every i = 1, · · · , d. besides, noting that

ηt ≤ max
k≤t

∥xt − x0∥2/
√
d+ ϵ ≤ max

k≤t
∥(xt − x∗)− (x0 − x∗)∥2/

√
d+ ϵ ≤ Dt (A.6)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

, thus we obtain the final inequality. For the noise of (A.3), let

Yk = ηkDk, Xk =

〈
∆k,

xk − x∗

Dk

〉
, and X̂k = −

〈
∇f(xk),

xk − x∗

Dk

〉
.

Thus we get

t−1∑
k=0

YkXk =

t−1∑
k=0

ηk⟨∆k,xk − x∗⟩.

Therefore

P

(
∃t ≤ T :

∣∣∣∣∣
t−1∑
k=0

ηk⟨∆k,xk − x∗⟩

∣∣∣∣∣ ≥ 8ηt−1Dt−1

√√√√θt,δ

d∑
i=1

s2t−1,i + L2θ2t,δ

)

≤ P

(
∃t ≤ T :

∣∣∣∣∣
t−1∑
k=0

YkXk

∣∣∣∣∣ ≥ 8Yt

√√√√θt,δ

t−1∑
k=0

(Xk−1 − X̂k−1)2 + L2θ2t,δ

)
≤ δ + P(lT ≥ L),

(A.7)

where the last inequality uses lemma C.2 and define lT = maxt≤T l(xt).

By substituting (A.5),(A.4) and (A.7) into (A.3) we have that, for all δ ∈ (0, 1) and L > 0, with
probability at least 1− δ − P(lT > L), for all t ≤ T the optimality gap f(xt)− f∗ is

O

(D2
t

∑d
i=1 st,i/ηt + 8Dt

√
θt,δ

∑d
i=1 s

2
t,i + L2θ2t,δ∑t−1

k=0 ηk/ηt

)
.

Further we use the QM-AM inequality to obtain the bound that∥st∥1 ≤
√
d∥st∥2. Finally, applying

Lemma C.1 for ηt∑t−1
k=0 ηk

and using η0 < ηt bound ηt on the molecule finishes the proof.

B PROOF OF THEOREM 5.1

Proof of Theorem 5.1. We define dt = xt − x∗, and let ψt(x) = ⟨x,Htx⟩ and Bψ(x,y) =
ψ(x − y)/2. Let gt = (gt,1, · · · , gt,d), st = (st,1, · · · , st,d),vt = (vt,1, · · · , vt,d) and dt =
(dt,1, · · · , dt,d). From the definition of xk+1 we have

xk+1 = argmin
x

{ηk⟨mk,x⟩+Bψk
(x,xk)},

which gives

⟨x− xk+1, ηkmk +∇ψk(xk+1)−∇ψk(xk)⟩ ≥ 0 (B.1)

for all x. Setting x = x∗ and rearranging the terms, we can then obtain a bound of ⟨xk+1−x∗,mt⟩.
Thus we have the inequality by denoting the dual norm of ∥ · ∥ψk

by ∥ · ∥ψ∗
k

ηk⟨xk − x∗,mk⟩ = ηk⟨xk+1 − x∗,mk⟩+ ηk⟨xk − xk+1,mk⟩

≤ ⟨x∗ − xk+1,∇ψk(xk+1)−∇ψk(xk)⟩+Bψk
(xk,xk+1) +

η2k
2
∥mk∥2ψ∗

k

= Bψk
(x∗,xk)−Bψk

(x∗,xk+1) +
η2k
2
∥mk∥2ψ∗

k
,

where the inqeuality holds by (B.1) and the Cauchy-Schwarz inequality for ⟨xk − xk+1, ηkmk⟩.
Using the fact that mk = β1kmk−1 + (1− β1k)gk we have

ηk⟨xk − x∗,gk⟩ ≤
1

1− β1k
(Bψk

(x∗,xk)−Bψk
(x∗,xk+1))

+
η2k

2(1− β1)
∥mk∥2ψ∗

k
− ηkβ1k

1− β1k
⟨xk − x∗,mk−1⟩

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

≤ 1

1− β1k
(Bψk

(x∗,xk)−Bψk
(x∗,xk+1))

+
η2k

2(1− β1k)
∥mk∥2ψ∗

k
+

η2kβ1k
2(1− β1k)

∥mk−1∥2ψ∗
k
+

β1k
1− β1k

Bψk
(xk,x

∗). (B.2)

Noting that

f(xt)− f(x∗) ≤ 1∑t−1
k=0 ηk

t−1∑
k=0

ηk⟨xk − x∗,∇f(xk)⟩

=
1∑t−1

k=0 ηk
(

t−1∑
k=0

ηk⟨xk − x∗,gk⟩+ ηk⟨xk − x∗,∆k⟩),

where ∆t = ∇f(xt)− gt, thus we can substitute (B.2) into it and lead to

f(xt)− f(x∗) ≤ 1∑t−1
k=0 ηk

{
t−1∑
k=0

(
Bψk

(x∗,xk)−Bψk
(x∗,xk+1)

)
(1− β1k)︸ ︷︷ ︸
I1

+

t−1∑
k=0

β1k
1− β1k

Bψk
(xk,x

∗)︸ ︷︷ ︸
I2

+

t−1∑
k=0

(
η2k

2(1− β1k)
∥mk∥2ψ∗

k
+

η2kβ1k
2(1− β1k)

∥mk−1∥2ψ∗
k
)︸ ︷︷ ︸

I3

+

t−1∑
k=0

ηk⟨xk − x∗,∆k⟩︸ ︷︷ ︸
noise

}
. (B.3)

For I1, we have
t−1∑
k=0

Bψk
(x∗,xk)−Bψk

(x∗,xk+1)

1− β1k
(B.4)

≤
d∑
i=1

t−1∑
k=0

sk,i(d
2
k,i − d2k+1,i)

2(1− β1)

=

d∑
i=1

t−1∑
k=0

sk,iD
2
t

1− β1
. (B.5)

Here the first inequality holds for the reason that β1k ≤ β1, the second inequality holds for the
definition of Dt and thus Dt > dk,i for all k < t

For I2, we have

Bψk
(xk,x

∗) ≤ D2
k

2

d∑
i=1

sk,i.

And use the fact of β1k = β1λ
k we have that

t−1∑
k=0

β1k
1− β1k

Bψk
(xk,x

∗) ≤ β1D
2
t

2(1− β1)(1− λ)

d∑
i=1

st−1,i. (B.6)

For I3 in the inequality (B.3), we give the proofs for the two cases in Algorithm 3 separately.

Case 1: st = (
∑t
k=0 g

2
k)

1/2.
If we choose the first definition of st we have the fact that

∥mt∥2ψ∗
t
=

d∑
i=1

(
∑t
j=0(1− β1j)Π

t−j
s=1β1(t−s+1)gj,i)

2√∑t
j=0 g

2
j,i

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

≤
d∑
i=1

(
∑t
j=0 Π

t−j
s=1β1(t−s+1))(

∑t
j=0 Π

t−j
s=1β1(t−s+1)g

2
j,i)√∑t

j=0 g
2
j,i

≤
d∑
i=1

(
∑t
j=0 β

t−j
1)(

∑t
j=0 β

t−j
1 g2j,i)√∑t

j=0 g
2
j,i

≤ 1

1− β1

d∑
i=1

∑t
j=0 β

t−j
1 g2j,i√∑t

j=0 g
2
j,i

The first inequality follows from Cauchy-Schwarz inequality. The second inequality is due to the
fact that β1j ≤ β1 for all j ≤ t. The third inequality follows from the inequality

∑t
j=1 β

t−j
1 ≤

1/(1− β1). Summarizing the inequalities we have

t−1∑
k=0

∥mk∥2ψ∗
k
≤ 1

1− β1

d∑
i=1

t−1∑
k=0

∑k
j=1 β

k−j
1 g2j,i√∑k

j=0 g
2
j,i

=
1

1− β1

d∑
i=1

t−1∑
k=0

k∑
j=0

βk−j1 g2j,i√∑k
s=0 g

2
s,i

≤ 1

1− β1

d∑
i=1

t−1∑
k=0

k∑
j=0

βk−j1 g2j,i√∑j
s=0 g

2
s,i

=
1

1− β1

d∑
i=1

t−1∑
j=0

t−1∑
k=j

βk−j1 g2j,i√∑j
s=0 g

2
s,i

.

Moreover, we have
t−1∑
k=0

∑k
j=1 β

k−j
1 g2j,i√∑k

j=0 g
2
j,i

=

t−1∑
k=0

∑k
j=1 β

k−j
1 g2j,i√∑k

s=0 g
2
s,i

=

t−1∑
k=0

k∑
j=1

βk−j1 g2j,i√∑k
s=0 g

2
s,i

≤
t−1∑
k=0

k∑
j=1

βk−j1 g2j,i√∑j
s=0 g

2
s,i

=
∑

k≥j,0≤k≤t−1

βk−j1 g2j,i√∑j
s=0 g

2
s,i

=

t−1∑
j=0

t−1∑
k=j

βk−j1 g2j,i√∑j
s=0 g

2
s,i

=

t−1∑
j=0

t−1−j∑
k=0

βk1 g
2
j,i√∑j

s=0 g
2
s,i

=

t−1∑
j=0

(

t−1−j∑
k=0

βk1)
g2j,i√∑j
s=0 g

2
s,i

.

Therefore, noting that
g2j,i√∑j
k=0 g

2
j,i

≤ 2(
√∑j

k=0 g
2
j,i −

√∑j−1
k=0 g

2
j,i), we have

t−1∑
k=0

∥mk∥2ψ∗
j
≤ 1

1− β1

d∑
i=1

t−1∑
j=0

(

t−1−j∑
k=0

βk1)
g2j,i√∑j
s=0 g

2
s,i

≤ 2

1− β1

d∑
i=1

t−1∑
j=0

βt−1−j
1

√√√√ j∑
s=0

g2s,i.

≤ 2

(1− β1)2
∥st−1∥1 (B.7)

Case 2: st =
√
(t+ 1) ·maxk≤t(vk).

If we choose the second form of st, suppose γ = β1/
√
β2 < 1, and we have

∥mk∥2ψ∗
k
=

d∑
i=1

m2
k,i

sk,i
≤

d∑
i=1

m2
k,i√

(k + 1)vk,i

=

d∑
i=1

(
∑k
j=0(1− β1j)Π

k−j
s=1β1(k−s+1)gj,i)

2√
(k + 1)((1− β2)

∑k
j=0 β

k−j
2 g2j,i)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

For the definition of st. Further using the Cauchy-Schwarz inequality and the fact that β1t ≤ β1 we
have

∥mk∥2ψ∗
k
≤

d∑
i=1

(
∑k
j=0 Π

k−j
s=1β1(k−s+1))(

∑k
j=0 Π

k−j
s=1β1(k−s+1)g

2
j,i)√

(k + 1)((1− β2)
∑k
j=0 β

k−j
2 g2j,i

≤
d∑
i=1

(
∑k
j=0 β

k−j
1)(

∑k
j=0 β

k−j
1 g2j,i)√

(k + 1)((1− β2)
∑k
j=0 β

k−j
2 g2j,i)

.

And then for the inequality that
∑k
j=0 β

k−j
1 ≤ 1/(1− β1) we have

∥mk∥2ψ∗
k
≤ 1

(1− β1)
√

(k + 1)(1− β2)

d∑
i=1

∑k
j=0 β

k−j
1 g2j,i√∑k

j=0 β
k−j
2 g2j,i

≤ 1

(1− β1)
√

(k + 1)(1− β2)

d∑
i=1

t∑
j=0

βk−j1 g2j,i√
βk−j2 g2j,i

≤ 1

(1− β1)
√

(k + 1)(1− β2)

d∑
i=1

k∑
j=0

γk−j |gj,i|.

Thus the sum of ∥mt∥2ψ∗
t

can further be bounded as follows:

t∑
k=0

∥mk∥2ψ∗
k
≤

t∑
k=0

1

(1− β1)
√
(k + 1)(1− β2)

d∑
i=1

k∑
j=0

γk−j |gj,i|

=
1

(1− β1)
√
1− β2

d∑
i=1

t∑
k=0

|gk,i|
t∑

j=k

γj−t√
j + 1

≤ 1

(1− β1)
√
1− β2

d∑
i=1

t∑
k=0

|gk,i|
t∑

j=k

γj−k√
k + 1

≤ 1

(1− β1)
√
1− β2

t∑
k=0

∥gp∥1
(1− γ)

√
(k + 1)

(B.8)

For the noise term, we define Dt = max k ≤ t∥dk∥2, and let

Yk = ηkDk, Xk =

〈
∆k,

xk − x∗

Dk

〉
, and X̂k = −

〈
∇f(xk),

xk − x∗

Dk

〉
.

Thus we get

t−1∑
k=0

YkXk =

t−1∑
k=0

ηk⟨∆k,xk − x∗⟩.

Therefore

P

(
∃t ≤ T :

∣∣∣∣∣
t−1∑
k=0

ηk⟨∆k,xk − x∗⟩

∣∣∣∣∣ ≥ 8ηt−1Dt−1

√√√√θt,δ

d∑
i=1

s2t,i + L2θ2t,δ

)

≤ P

(
∃t ≤ T :

∣∣∣∣∣
t−1∑
k=0

YkXk

∣∣∣∣∣ ≥ 8Yt

√√√√θt,δ

t−1∑
k=0

(Xk − X̂k)2 + L2θ2t,δ

)
≤ δ + P(lT ≥ L),

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

where the last inequality uses lemma C.2 and define lt = maxk≤t l(xk). Therefore we have that,
for all δ ∈ (0, 1) and L > 0, with probability at least 1− δ − P(lT > L), for all t ≤ T we have

f(xt)− f∗ ≤ (I1 + I2 + I3) +
8Dtηt∑t−1
k=0 ηk

√√√√θt,δ

d∑
i=1

s2t,i + L2θ2t,δ. (B.9)

Thus substitute (B.5),(B.6) and(B.7)/(B.8) into (B.9) we have that for all t < T

f(xt)− f∗ ≤ ηt∑t−1
k=0 ηk

(
D2
t

(1− β1)ηt
∥st−1∥1 +

(1 + β1)ηt
(1− β1)3

∥st−1∥1

+
β1D

2
t ∥st−1∥1

2(1− β1)(1− λ)ηt
+ 8Dt

√
θt,δ∥st∥22 + L2θ2t,δ

)
for case 1, and

f(xt)− f∗ ≤ ηt∑t−1
k=0 ηk

(
D2
t

(1− β1)ηt
∥st−1∥1 +

(1 + β1)ηt

(1− β1)2
√
1− β2(1− γ)

t−1∑
k=0

∥gk∥1√
k + 1

+
β1D

2
t ∥st−1∥1

2(1− β1)(1− λ)ηt
+ 8Dt

√
θt,δ∥st∥22 + L2θ2t,δ

)
for case 2 with probability at least 1 − δ − P(lT > L). We use the QM-AM inequality to obtain
the bound that∥st∥1 ≤

√
d∥st∥2, and ∥gt∥1 ≤

√
d∥gt∥2, and use (A.6) to bound ηt. Further we use

Lemma C.1 for ηt∑t−1
k=0 ηk

and use η0 < ηt bound ηt on the molecule and thus

f(xτ)− f∗ ≤O

(
log

(
ηT
η0

)(
D2
τ

√
d∥sτ∥2

(1− β1)η0
+

(1 + β1)Dτ

√
d

(1− β1)3
∥sτ∥2

+
β1D

2
τ

√
d∥sτ∥2

2(1− β1)(1− λ)η0
+ 8Dτ

√
θτ,δ∥sτ∥22 + L2θ2τ,δ

)
/T

)

for the Case 1 and

f(xτ)− f∗ ≤O

(
log

(
ηT
η0

)(
D2
τ

√
d∥sτ∥2

(1− β1)η0
+

(1 + β1)Dτ

√
d

(1− β1)2
√
1− β2(1− γ)

τ−1∑
k=0

∥gk∥2√
k + 1

+
β1D

2
τ

√
d∥sτ∥2

2(1− β1)(1− λ)η0
+ 8Dτ

√
θτ,δ∥sτ∥22 + L2θ2τ,δ

)
/T

)

for the Case 2 with probability at least 1− δ − P(lT > L).

C AUXILIARY LEMMAS

In this section, we present and summarize two auxiliary lemmas provided by Ivgi et al. (2023) that
provide tools for our proof of the main theorems.

Lemma C.1. [Lemmas 3 and 4 in Ivgi et al. (2023)] Suppose that 0 < a0 ≤ a1 ≤ · · · ≤ aT . Then
the following two inequalities hold:

max
t≤T

∑
τ<t

aτ
at

≥ 1

e

(
T

log+(aT /a0)
− 1

)
,

t∑
k=1

ak − ak−1√
ak

≤ 2(
√
at −

√
a0).

Lemma C.2. [Lemma 7 in Ivgi et al. (2023)] Consider a filtration F = {Ft}t≥0 in a probability
space. Let S be the set of nonnegative and nondecreasing sequences. Suppose that Ct ∈ Ft−1

and that {Xt}t≥0 is a martingale difference sequence adapted to {Ft}t≥0 such that |Xt| ≤ Ct with

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

probability 1 for all t ≥ 0. Then, for all δ ∈ (0, 1), c > 0, T > 0, and Xt ∈ Ft−1 such that
|Xt| ≤ Ct with probability 1, it holds that

P

(
∃t ≤ T, ∃{yi}∞i=1 ∈ S such that

∣∣∣∣ t∑
i=1

yiXi

∣∣∣∣ ≥ 8yt

√√√√θt,δ

t∑
i=1

(Xi −Xi)2 + c2θ2t,δ

)
≤ δ + P(∃t ≤ T : Ct ≥ c),

where θt,δ = log(60 log(6t)
δ).

D PARAMETER SETTINGS

Throughout the training, the base learning rate is fixed at 1.0, and the initial learning rate of Adam++
is set to 1e−6(1+∥x0∥22) for image classification tasks, as suggested by Ivgi et al. (2023). For GPT-2
small and GPT-2 medium tasks, the initial learning rates of AdamW++ are 6e−4(1 + ∥x0∥22) and
3e−4(1 + ∥x0∥22), respectively, where 6e−4 and 3e−4 correspond to the default learning rates for
AdamW training. The initial learning rates of Prodigy and D-Adapt Adam are set as the default
1e−6 as the algorithms did not suggest any modification of this parameter.

In addition, we list the parameters, architectures and hardware that we used for the experiments. All
other parameters not listed are set as default. The information is collected in Tables 2–3.

Table 2: CIFAR10 experiment.

Hyper-parameter Value
Architecture ResNet 18, Resnet 50, VGG16

Epochs 200
GPUs 1×A100

Batch size 256
LR schedule Constant/Cosine Decay

Seeds 1234+offset
weight decay 5e-4
Decoupled No
(β1, β2) (0.9, 0.999)

Adam LR 0.001

Table 3: Large language model experiment

Hyper-parameter Value
Architecture GPT-2 Small/GPT-2 Medium

Steps 50K
GPUs 8×A100

Batch size 480
Context Length 1024

LR schedule Cosine Decay with Warmup
Seeds 5000+offset

weight decay 0.1
Decoupled yes
(β1, β2) (0.9, 0.95)

Adam LR 6e-4/3e-4

E ADDITIONAL EXPERIMENTS

In this section, we present some additional experiment results.

E.1 COMPARISONS TO ADAM WITH DIFFERENT INITIAL LEARNING RATES

Here, we present the results on training a VGG16 network on CIFAR-10 dataset with Adam imple-
menting cosine learning rate schedule with different initial learning rates {1e − 4, 5e − 4, 1e − 3},
and compare the results with the Adam++ algorihtm. All other hyperparameters are set according
to the main paper, including a weight decay of 5e− 4.

Figure 7 shows the experiment results. These experiments are based on runs with 8 different random
seeds, and both the mean and confidence intervals are shown in the plots. From the results, we can
see that, as a parameter-free algorithm, Adam++ consistently delivers stable performance with c = 1
across various problems. Conversely, Adam requires meticulous tuning for each specific problem
to achieve optimal results. For instance, when tuning Adam’s learning rate for VGG16 within the
range of {1e− 4, 5e− 4, 1e− 3} , we found that Adam fails to converge at both 1e− 3 and 5e− 4.
This result demonstrates that learning rate tuning is indeed important for Adam to achieve good
performance and there is no simple golden choice of hyperparameters.

E.2 RESULTS ON MORE NETWORK MODELS AND DATASETS

In this section, we expand our training to include additional network architectures and datasets. The
architectures include a small Vision Transformer (ViT) with 820k parameters (Dosovitskiy, 2020), a

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

0 25 50 75 100 125 150 175 200
Epoch

10

20

30

40

50

60

70

80

90

Te
st

 A
cc

ur
ac

y
(%

)
Adam 1e-3
Adam 5e-4
Adam 1e-4
Adam++

0 25 50 75 100 125 150 175 200
Epoch

10 3

10 2

10 1

100

Tr
ai

n
Lo

ss

Adam 1e-3
Adam 5e-4
Adam 1e-4
Adam++

Figure 7: The results of training VGG16 on CIFAR-10 with cosine constant learning rate schedule.
Each curve represents the mean of 8 random runs, with the shaded area indicating the standard error.
The first figure shows the test accuracy, and the second figure shows the training losses. Based on
these results, it is clear that Adam++ achieves performance superior or comparable to Adam with
learning rate 1e− 4, but Adam with learning rate 1e− 3 or 5e− 4 fails to converge.

Wide ResNet-50-2 model (Zagoruyko, 2016), and a DenseNet-121 (Huang et al., 2017). Addition-
ally, we train on the CIFAR-100 and SVHN datasets (Netzer et al., 2011). For hyperparameters, we
run the baseline Adam optimizer with a default learning rate of 1e−3 with cosine decay schedule.
For all parameter-free algorithms including D-Adapt Adam, Prodigy, and our Adam++, we set the
base learning rate as 1.0 and use the same cosine decay schedule. All other hyperparameters remain
consistent with those detailed in Section 6.1 and are unchanged throughout this section.

In Figure 8, 9 and 10, we present the performance comparisons across various models. For the
Vision Transformer architecture, Adam++ (Case 1) consistently outperforms Adam. Notably, when
training on the SVHN dataset, Adam, Prodigy, and D-Adapt Adam all fail to converge, whereas
Adam++ (Case 1) achieves superior performance. In the case of the Wide ResNet-50-2, Adam++
(Case 2) surpasses the performance of Adam++ (Case 1), Prodigy, and D-Adapt Adam, and matches
the performance of Adam with the default learning rate. For DenseNet-121, both Adam++ (Case
1) and Adam++ (Case 2) converge comparably to Adam. However, Prodigy and D-Adapt Adam
exhibit weaker performance.

We note that throughout all image classification experiments, the base learning rate of Adam++ are
kept as 1.0, while still demonstrating a strong and consistent performance across different scenarios.
This consistency highlights Adam++’s robustness and its ability to perform reliably without the need
for frequent adjustments or tuning.

E.3 RESULTS ON ADAGRAD++

In Figures 11, 12, and 13, we evaluate the performance of AdaGrad++ in comparison to AdaGrad,
Adam, Adam++, and other baselines including Prodigy and D-Adapt Adam. The hyperparame-
ters for AdaGrad are aligned with those of Adam, using a learning rate of 1e−3 with a cosine de-
cay schedule. While AdaGrad often significantly underperforms compared to Adam, AdaGrad++
demonstrates competitive or superior performance. It matches or exceeds the performance of both
Adam and Adam++, and significantly outperforms AdaGrad.

E.4 COMPUTATIONAL OVERHEAD

In this section, we analyze computational overhead by plotting training loss and test accuracy against
wall-clock time, as shown in Figure 14. The results in Figure 14 are shown on the tasks of training
ResNet-18 and ResNet-50 on CIFAR-10. Adam++ incurs less computational overhead compared to
Prodigy and D-Adapt Adam, while delivering comparable or superior performance.

E.5 ENLARGED VERSIONS OF FIGURES 1 AND 2

Here, we provide enlarged versions of Figures 1 and 2 to improve clarity. Figure 15 gives the
enlarged figures in Figure 1, and Figure 16 gives the enlarged figures in Figure 2.

F DISCUSSION ON THE MEMORY USAGE OF ADAGRAD++ AND ADAM++

In this section, we briefly discuss the memory usage of AdaGrad++ and Adam++. Specifically, we
note that, compared to vanilla AdaGrad and Adam, AdaGrad++ and Adam++ require the storage

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

0 25 50 75 100 125 150 175 200
Epoch

10

20

30

40

50

60

70

80

Te
st

 A
cc

ur
ac

y
(%

)

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(a) CIFAR-10, test accuracy

0 25 50 75 100 125 150 175 200
Epoch

100

3 × 10 1

4 × 10 1

6 × 10 1

2 × 100

Tr
ai

n
Lo

ss

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(b) CIFAR-10, training loss

0 25 50 75 100 125 150 175 200
Epoch

0

10

20

30

40

50

Te
st

 A
cc

ur
ac

y
(%

)

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(c) CIFAR-100, test accuracy

0 25 50 75 100 125 150 175 200
Epoch

2 × 100

3 × 100

4 × 100

Tr
ai

n
Lo

ss

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(d) CIFAR-100, training loss

0 25 50 75 100 125 150 175 200
Epoch

20

30

40

50

60

70

80

90

Te
st

 A
cc

ur
ac

y
(%

)

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(e) SVHN, test accuracy

0 25 50 75 100 125 150 175 200
Epoch

100

Tr
ai

n
Lo

ss

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(f) SVHN, training loss

Figure 8: The results of training Vision Transformer on CIFAR-10, CIFAR-100, and SVHN with a
consine learning rate schedule. Each curve represents the mean of 8 random runs, with the shaded
area indicating the standard error. Adam++ achieves performance superior or comparable to Adam.

of an additional set of parameters, x0, resulting in slightly higher memory usage. However, it is
important to highlight that, compared to existing parameter-free adaptive gradient methods such as
Prodigy (Mishchenko & Defazio, 2023) and D-adaptation (Defazio & Mishchenko, 2023), which
necessitate storing multiple intermediate quantities of the same size as the number of parameters,
our proposed algorithms are more efficient in terms of memory usage.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

0 25 50 75 100 125 150 175 200
Epoch

0

20

40

60

80

Te
st

 A
cc

ur
ac

y
(%

)

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(a) CIFAR-10, test accuracy

0 25 50 75 100 125 150 175 200
Epoch

10 3

10 2

10 1

100

101

Tr
ai

n
Lo

ss

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(b) CIFAR-10, training loss

0 25 50 75 100 125 150 175 200
Epoch

0

10

20

30

40

50

60

Te
st

 A
cc

ur
ac

y
(%

)

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(c) CIFAR-100, test accuracy

0 25 50 75 100 125 150 175 200
Epoch

10 2

10 1

100

101

Tr
ai

n
Lo

ss

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(d) CIFAR-100, training loss

0 25 50 75 100 125 150 175 200
Epoch

0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y
(%

)

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(e) SVHN, test accuracy

0 25 50 75 100 125 150 175 200
Epoch

10 2

10 1

100

101

Tr
ai

n
Lo

ss

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(f) SVHN, training loss

Figure 9: The results of training Wide ResNet-50-2 on CIFAR-10, CIFAR-100, and SVHN with a
consine learning rate schedule. Each curve represents the mean of 8 random runs, with the shaded
area indicating the standard error. Adam++ achieves performance superior or comparable to Adam.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

0 25 50 75 100 125 150 175 200
Epoch

0

20

40

60

80

Te
st

 A
cc

ur
ac

y
(%

)

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(a) CIFAR-10, test accuracy

0 25 50 75 100 125 150 175 200
Epoch

10 2

10 1

100

101

Tr
ai

n
Lo

ss

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(b) CIFAR-10, training loss

0 25 50 75 100 125 150 175 200
Epoch

0

10

20

30

40

50

60

Te
st

 A
cc

ur
ac

y
(%

)

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(c) CIFAR-100, test accuracy

0 25 50 75 100 125 150 175 200
Epoch

10 2

10 1

100

Tr
ai

n
Lo

ss

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(d) CIFAR-100, training loss

0 25 50 75 100 125 150 175 200
Epoch

0

10

20

30

40

50

60

Te
st

 A
cc

ur
ac

y
(%

)

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(e) SVHN, test accuracy

0 25 50 75 100 125 150 175 200
Epoch

10 2

10 1

100

Tr
ai

n
Lo

ss

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(f) SVHN, training loss

Figure 10: The results of training DenseNet-121 on CIFAR-10, CIFAR-100, and SVHN with a
consine learning rate schedule. Each curve represents the mean of 8 random runs, with the shaded
area indicating the standard error. Adam++ achieves performance superior or comparable to Adam.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

0 25 50 75 100 125 150 175 200
Epoch

10

20

30

40

50

60

70

80

Te
st

 A
cc

ur
ac

y
(%

)

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)
AdaGrad
AdaGrad++

(a) CIFAR-10, test accuracy

0 25 50 75 100 125 150 175 200
Epoch

100

3 × 10 1

4 × 10 1

6 × 10 1

2 × 100

Tr
ai

n
Lo

ss

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)
AdaGrad
AdaGrad++

(b) CIFAR-10, training loss

0 25 50 75 100 125 150 175 200
Epoch

0

10

20

30

40

50

Te
st

 A
cc

ur
ac

y
(%

)

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)
AdaGrad
AdaGrad++

(c) CIFAR-100, test accuracy

0 25 50 75 100 125 150 175 200
Epoch

2 × 100

3 × 100

4 × 100

Tr
ai

n
Lo

ss

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)
AdaGrad
AdaGrad++

(d) CIFAR-100, training loss

0 25 50 75 100 125 150 175 200
Epoch

10

20

30

40

50

60

70

80

90

Te
st

 A
cc

ur
ac

y
(%

)

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)
AdaGrad
AdaGrad++

(e) SVHN, test accuracy

0 25 50 75 100 125 150 175 200
Epoch

100

Tr
ai

n
Lo

ss

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)
AdaGrad
AdaGrad++

(f) SVHN, training loss

Figure 11: The performance comparison of various optimizers—Adam, D-Adapt Adam, Prodigy,
Adam++ (Case 1), Adam++ (Case 2), AdaGrad, and AdaGrad++—conducted for training a Vision
Transformer on CIFAR-10, CIFAR-100, and SVHN datasets using a cosine learning rate schedule.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

0 25 50 75 100 125 150 175 200
Epoch

0

20

40

60

80

Te
st

 A
cc

ur
ac

y
(%

)

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)
AdaGrad
AdaGrad++

(a) CIFAR-10, test accuracy

0 25 50 75 100 125 150 175 200
Epoch

10 3

10 2

10 1

100

101

Tr
ai

n
Lo

ss

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)
AdaGrad
AdaGrad++

(b) CIFAR-10, training loss

0 25 50 75 100 125 150 175 200
Epoch

0

10

20

30

40

50

60

Te
st

 A
cc

ur
ac

y
(%

)

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)
AdaGrad
AdaGrad++

(c) CIFAR-100, test accuracy

0 25 50 75 100 125 150 175 200
Epoch

10 2

10 1

100

101

Tr
ai

n
Lo

ss

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)
AdaGrad
AdaGrad++

(d) CIFAR-100, training loss

0 25 50 75 100 125 150 175 200
Epoch

0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y
(%

)

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)
AdaGrad
AdaGrad++

(e) SVHN, test accuracy

0 25 50 75 100 125 150 175 200
Epoch

10 2

10 1

100

101

Tr
ai

n
Lo

ss

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)
AdaGrad
AdaGrad++

(f) SVHN, training loss

Figure 12: The performance comparison of various optimizers—Adam, D-Adapt Adam, Prodigy,
Adam++ (Case 1), Adam++ (Case 2), AdaGrad, and AdaGrad++—conducted for training a Wide
ResNet-50-2 on CIFAR-10, CIFAR-100, and SVHN datasets using a cosine learning rate schedule.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

0 25 50 75 100 125 150 175 200
Epoch

0

20

40

60

80

Te
st

 A
cc

ur
ac

y
(%

)

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)
AdaGrad
AdaGrad++

(a) CIFAR-10, test accuracy

0 25 50 75 100 125 150 175 200
Epoch

10 2

10 1

100

101

Tr
ai

n
Lo

ss

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)
AdaGrad
AdaGrad++

(b) CIFAR-10, training loss

0 25 50 75 100 125 150 175 200
Epoch

0

10

20

30

40

50

60

Te
st

 A
cc

ur
ac

y
(%

)

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)
AdaGrad
AdaGrad++

(c) CIFAR-100, test accuracy

0 25 50 75 100 125 150 175 200
Epoch

10 2

10 1

100

101

Tr
ai

n
Lo

ss

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)
AdaGrad
AdaGrad++

(d) CIFAR-100, training loss

0 25 50 75 100 125 150 175 200
Epoch

0

10

20

30

40

50

60

Te
st

 A
cc

ur
ac

y
(%

)

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)
AdaGrad
AdaGrad++

(e) SVHN, test accuracy

0 25 50 75 100 125 150 175 200
Epoch

10 2

10 1

100

101

Tr
ai

n
Lo

ss

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)
AdaGrad
AdaGrad++

(f) SVHN, training loss

Figure 13: The performance comparison of various optimizers—Adam, D-Adapt Adam, Prodigy,
Adam++ (Case 1), Adam++ (Case 2), AdaGrad, and AdaGrad++—conducted for training a
DenseNet-121 on CIFAR-10, CIFAR-100, and SVHN datasets using a cosine learning rate schedule.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

0 200 400 600 800 1000
Time

40

50

60

70

80

90

Te
st

 A
cc

ur
ac

y
(%

)

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(a) ResNet-18, CIFAR-10, test accuracy

0 200 400 600 800 1000
Time

10 2

10 1

100

Tr
ai

n
Lo

ss
Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(b) ResNet-18, CIFAR-10, training loss

0 500 1000 1500 2000 2500
Time

10

20

30

40

50

60

70

80

90

Te
st

 A
cc

ur
ac

y
(%

)

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(c) ResNet-50, CIFAR-10, test accuracy

0 500 1000 1500 2000 2500
Time

10 2

10 1

100

Tr
ai

n
Lo

ss

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(d) ResNet-50, CIFAR-10, training loss

Figure 14: Test accuracy and training loss with respect to wall-clock time for different algorithms in
training ResNet-18 and ResNet-50 on CIFAR-10 dataset.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

0 25 50 75 100 125 150 175 200
Epoch

10

20

30

40

50

60

70

80

Te
st

 A
cc

ur
ac

y
(%

)

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(a) ResNet-18, test accuracy

0 25 50 75 100 125 150 175 200
Epoch

10 1

100

Tr
ai

n
Lo

ss

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(b) ResNet-18, training loss

0 25 50 75 100 125 150 175 200
Epoch

10

20

30

40

50

60

70

80

90

Te
st

 A
cc

ur
ac

y
(%

)

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(c) ResNet-50, test accuracy

0 25 50 75 100 125 150 175 200
Epoch

10 1

100

Tr
ai

n
Lo

ss

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(d) ResNet-50, training loss

0 25 50 75 100 125 150 175 200
Epoch

10
20
30
40
50
60
70
80
90

Te
st

 A
cc

ur
ac

y
(%

)

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(e) VGG16, test accuracy

0 25 50 75 100 125 150 175 200
Epoch

10 1

103

107

1011

1015

1019

1023

Tr
ai

n
Lo

ss

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(f) VGG16, training loss

Figure 15: Enlarged version of Figure 1 on the results of training ResNet-18, ResNet-50, and VGG16
on CIFAR-10 with a constant learning rate schedule. Each curve represents the mean of 8 random
runs, with the shaded area indicating the standard error. Adam++ achieves performance superior or
comparable to Adam.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

0 25 50 75 100 125 150 175 200
Epoch

40

50

60

70

80

90

Te
st

 A
cc

ur
ac

y
(%

)

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(a) ResNet-18, test accuracy

0 25 50 75 100 125 150 175 200
Epoch

10 2

10 1

100

Tr
ai

n
Lo

ss

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(b) ResNet-18, training loss

0 25 50 75 100 125 150 175 200
Epoch

10

20

30

40

50

60

70

80

90

Te
st

 A
cc

ur
ac

y
(%

)

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(c) ResNet-50, test accuracy

0 25 50 75 100 125 150 175 200
Epoch

10 2

10 1

100

Tr
ai

n
Lo

ss

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(d) ResNet-50, training loss

0 25 50 75 100 125 150 175 200
Epoch

10

20

30

40

50

60

70

80

90

Te
st

 A
cc

ur
ac

y
(%

)

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(e) VGG16, test accuracy

0 25 50 75 100 125 150 175 200
Epoch

10 2

100

102

104

106

108

Tr
ai

n
Lo

ss

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(f) VGG16, training loss

Figure 16: Enlarged version of Figure 2 on the results of training ResNet-18, ResNet-50, and VGG16
on CIFAR-10 with a cosine learning rate schedule. Each curve represents the mean of 8 random runs,
with the shaded area indicating the standard error.

30

	Introduction
	Related Work
	Review of existing methods and preview of proposed methods
	AdaGrad++: a parameter-free version of AdaGrad
	Algorithm
	Convergence Guarantee

	Adam++: a parameter-free version of Adam
	Algorithm
	Convergence Guarantee of Adam++

	Experiments
	Image Classification
	Large Language Model (LLM) Pretraining
	Ablation Study

	Conclusions
	Proof of Theorem 4.2
	Proof of Theorem 5.1
	Auxiliary lemmas
	Parameter settings
	Additional Experiments
	Comparisons to Adam with Different Initial Learning Rates
	Results on More Network Models and Datasets
	Results on AdaGrad++
	Computational Overhead
	Enlarged versions of Figures 1 and 2

	Discussion on the Memory Usage of AdaGrad++ and Adam++

