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ABSTRACT

Optimization algorithms such as AdaGrad and Adam have significantly advanced
the training of deep models by dynamically adjusting the learning rate during the
optimization process. However, adhoc tuning of learning rates poses a challenge,
leading to inefficiencies in practice. To address this issue, recent research has
focused on developing “learning-rate-free” or “parameter-free” algorithms that
operate effectively without the need for learning rate tuning. Despite these ef-
forts, existing parameter-free variants of AdaGrad and Adam tend to be overly
complex and/or lack formal convergence guarantees. In this paper, we present
AdaGrad++ and Adam++, novel and simple parameter-free variants of AdaGrad
and Adam with convergence guarantees. We prove that AdaGrad++ achieves com-
parable convergence rates to AdaGrad in convex optimization without predefined
learning rate assumptions. Similarly, Adam++ matches the convergence rate of
Adam without relying on any conditions on the learning rates. Experimental re-
sults across various deep learning tasks validate the competitive performance of
AdaGrad++ and Adam++.

1 INTRODUCTION

In recent years, optimization algorithms such as AdaGrad (Duchi et al.,[2011) and Adam (Kingma,
2014) have emerged as powerful tools for enhancing the training of deep learning models by ef-
ficiently adapting the learning rate during the optimization process. While these algorithms have
demonstrated remarkable performance gains in various applications, a notable drawback lies in the
necessity of manual tuning for suitable learning rates. The process of learning rate tuning can be
laborious and often requires extensive trial and error, hindering the efficiency and scalability of deep
learning model development.

The intricate nature of learning rate tuning has motivated a large number of recent works to de-
velop “learning-rate-free” or “parameter-free” algorithms that can work well under various differ-
ent settings without learning rate tuning. Among the vast literature of parameter-free optimization
methods, [Ivgi et al.| (2023) proposed a framework called distance over gradients (DoG), which
gives a parameter-free version of stochastic gradient descent (SGD) that shares certain features
as the AdaGrad-Norm algorithm (Streeter & McMahan, [2010; |Ward et al., [2020). Motivated by
AdaGrad-Norm, another recent work (Defazio & Mishchenkol 2023)) also gave a framework named
D-adaptation, and parameter-free variants of SGD and Adam were proposed under this framework.
More recently, Defazio et al.|(2024) proposed a different approach for schedule-free online optimiza-
tion, based on which the authors developed new variants of schedule-free SGD and Adam/AdamW.

Despite the recent advances of parameter-free optimization algorithms, research on parameter-free
adaptive gradient methodsﬂ remains relatively limited. Specifically, most of the existing parameter-
free algorithms are essentially variants of SGD, and entry-wisely adaptive learning rates in standard
AdaGrad and Adam algorithms are rarely considered in most of the existing parameter-free meth-
ods. Although|Defazio & Mishchenko| (2023);|Mishchenko & Defazio (2023)); Defazio et al.|(2024)

! Adaptive gradient methods usually have multiple hyperparameters other than learning rates. For example,
Adam implements exponential moving averages of first and second moments of gradients, which are controlled
by parameters 5, and [2. Here we clarify that when discussing parameter-free adaptive gradient methods, we
still allow the algorithm to have such hyperparameters which do not require extensive tuning. This is consistent
with the convention in recent works on parameter-free optimization (Defazio & Mishchenko,[2023; Mishchenko!
& Detaziol 2023} Defazio et al.,|2024).
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recently proposed variants of parameter-free AdaGrad, Adam and AdamW that implement entry-
wisely adaptive gradients, these algorithms all introduce rather significant modifications to the orig-
inal algorithms, and the parameter-free versions of Adam/AdamW are not backed up by theoretical
convergence guarantees.

Motivated by the limitations of existing studies, in this work, we propose simple but efficient ver-
sions of AdaGrad and Adam with provable convergence guarantees, which we name AdaGrad++
and Adam-++ respectively. The main contributions of this work can be summarized as follows:

1. We propose the AdaGrad++ algorithm, which is a parameter-free version of AdaGrad. We
demonstrate that without any assumptions on learning rates, AdaGrad++ can still achieve a
O(1/V/T) worst-case convergence rate in convex optimization, which is the same as AdaGrad.
This highlights the efficacy and versatility of AdaGrad++ as a more accessible and user-friendly
optimization method.

2. We also introduce the Adam++ algorithm as a parameter-free variant of Adam. By eliminating
the reliance on a well-tuned learning rate schedule, Adam++ offers more enhanced adaptabil-
ity and robustness compared to Adam. Our theoretical results demonstrates the capability of
Adam-++ to match the convergence rate of Adam in convex optimization, even in the absence of
any assumptions regarding learning rates.

3. We conduct experiments on image classification and large language model pretraining tasks to
evaluate the performance of the proposed algorithms. For CIFAR-10, with minimal parameter
tuning, Adam-++ outperforms Adam by 0.27% using a constant learning rate schedule on ResNet-
50, and by 1.35% using a cosine learning rate schedule on VGG16. For GPT-2 small and medium
tasks, AdamW++ surpasses Adam by 0.02 in both training and test losses. Additionally, we
perform an ablation study on the choice of initial and base learning rates, which confirms our
theoretical findings.

Notation. We denote scalars by lowercase letters, vectors by lowercase boldface letters, and matrices
by uppercase boldface letters. For a positive integer d, we denote [d] = {1,...,d}. For a vector

x = [x1,...,24)" and p > 1, we denote the £, norm of x by ||x||, = (Z?zl |zi|p)1/p, and the /.,
norm of x by ||x[|cc = max;c[q) |z;|. Given two sequences {a,} and {b,}, we write a,, = O(b,)

if there exists a constant 0 < C' < +oo such that a,, < C'b,,. We use the notation 5() to hide
logarithmic factors.

2 RELATED WORK

In this section, we give a more comprehensive review of the existing literature on parameter-free
optimization and adaptive gradient methods.

Parameter-free optimization. Several recent works have explored parameter-free algorithms based
on modifications of the Polyak step size (Loizou et al.| 2021; |Gower et al.| 2021; Orvieto et al.,
2022; Rolinek & Martius| 2018}, Berrada et al., 2020). In addition, several studies have investigated
step-size selection methods derived from Line-Search algorithms (Vaswani et al., 2019; [Paquette
& Scheinberg, 2018). Another line of works, including LARS (You et al., 2017a), LAMB (You
et al} [2017b), Adafactor (Simonyan & Zisserman, 2014}, and Fromage (Bernstein et al., |2020),
introduced learning rate adjustment schemes based on the norms of iterates. Moreover, (Chandra
et al.| (2022)) proposed a scheme to adjust the learning rates based on certain automatically calculated
hypergradients. Several recent works (Orabona & Tommasil, [2017; |Chen et al., 2022)) have also
proposed parameter-free algorithms by reducing the optimization process to a game of betting on a
coin. Another recent work (Kleinsorge et al., 2023) proposed a novel rotation invariant parameter-
free algorithm based on exponential learning rate adaption. Finally, a line of recent works (Orabona,
2014; Kempka et al.,2019) have studied parameter-free algorithms in solving specific learning tasks
such as linear and kernel regression.

Adaptive gradient methods. There is a large body of literature on variants of AdaGrad and Adam.
Specifically, RMSProp (Kurbiel & Khaleghianl |2017) was the first work that proposed using an
exponential moving average instead of a cumulative sum to handle the second moment in Ada-
Grad. Reddi et al.|[(2019) pointed out an extreme case where Adam may face convergence issues,
and proposed AMSGrad accordingly with convergence guarantees. RMSProp, Adam and AMS-
Grad have also inspired many variants, including SC-AdaGrad, SC-RMSprop (Mukkamala & Hein}
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2017), Sadagrad (Chen et al.,|2018b)), YOGI (Zaheer et al.l 2018)), Padam (Chen et al., [2018a), and
RAdam (Liu et al 2019). More recently, several works such as STORM (Cutkosky & Orabonal
2019)), adaptive normalized SGD (Cutkosky & Mehtal 2020), Adam+ (Liu et al.| 2020), SUPER-
ADAM Huang et al.| (2021) implemented various variance reduction techniques in Adam. |Guo
et al.| (2021) presented a novel convergence analysis for a family of Adam-style methods with an
increasing momentum parameter for the first-order moment. |Alacaoglu et al.|(2020) proposed a new
type of framework to analyze the regret of the Adam style methods. [Zhou et al.| (2018) established
high-probabiliy convergence guarantees of AdaGrad and Adam in nonconvex optimization.

3 REVIEW OF EXISTING METHODS AND PREVIEW OF PROPOSED METHODS

In this section, we give a brief review of the adaptive gradient methods, and discuss existing literature
of parameter-free adaptive gradient methods, followed by a preview of our proposed methods.

We consider the optimization problem as follows

min f(x), (3.1

x€R4
where f can be a convex or nonconvex function. In order to optimize (3.1)), the standard stochastic
gradient decent (SGD) performs the following update rule
Xi41 = Xt — T8t (3.2)

where g; represents the stochastic gradient at the ¢-th iteration, 7, denotes the learning rate. Adap-
tive gradient methods (Duchi et al., 2011} Hinton et al., [2012} Kingma, 2014} Reddi et al., 2018;
Loshchilov & Hutter,[2019;|Chen et al.| [2020) aim to give well-designed adjustments to the learning
rate 1, particularly focusing on applying different learning rates for different entries of the iterates.

Among popular adaptive gradient methods, AdaGrad (Duchi et al., 2011) stands out as one of the
pioneering methods. The update rule for AdaGrad is given by:

Ui

Xt+1 =Xt — t— 'gt7
\/ > 18 +4

where § is a small positive constant, and we use the common notation where the square (-)? and
square root /- operations are performed entry-wisely when applied to a vector.

(3.3)

Adam (Kingmal 2014)) is another widely recognized adaptive gradient methods. Compared with
AdaGard, it implements exponential moving averages over g;’s, as well as momentum acceleration,
with the update rule defined as follows:

Xip1 = X¢ — m; = Bimy_1 + (1 —B1)g, Vvi=Povioi+ (1 —B2)gi. (34)

my
Vo
Another line of research on parameter-free optimization seeks to reduce or remove the necessity

of learning rate tuning. The distance over gradient (DoG) (Ivgi et al. [2023) framework is popular
method which sets the learning rate 7, in stochastic gradient descent (3.2)) as

maxigt ||X() — XiHQ
t
Y- leill3

DoG can be treated as a modification on the AdaGrad-Norm algorithm (Duchi et al., 2011} Streeter

& McMahan, 2010; Ward et al.,|2020) with , = D/ Z§=1 lg:

max;<¢ ||Xo — X;||2 in DoG. Several other parameter-free methods (Defazio & Mishchenko, 2023}
Mishchenko & Defaziol [2023) also focused on estimating the parameter D with different criteria.
Notably, these recent studies of parameter-free algorithms focus more on the variants of SGD, which
do not implement the entry-wisely adaptive learning rates in AdaGrad and Adam. Although several
recent works (Defazio & Mishchenkol, [2023; IMishchenko & Defazio, 2023} [Defazio et al.l [2024)
proposed parameter-free variants of AdaGrad or Adam, they are mostly not backed up with theoret-
ical guarantees. Moreover, existing parameter-free variants of AdaGrad and Adam are mostly pretty
complicated, deviating significantly from the standard forms of AdaGrad and Adam.

T}t =

%, where the parameter D is set as
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Preview of our proposed methods. Inspired by DoG (Ivgi et al. [2023), we propose simple
parameter-free variants of AdaGrad and Adam, which we call AdaGrad++ and Adam++ respec-
tively. Specifically, AdaGrad++ follows the update rule of AdaGrad in (3:3)), but with

— g-1/2 L
ne=d T?S‘clfHXz Xol|2,

where d is the dimension of x. Note that 7, is the maximum distance between the initialization x
and all the iterates along the optimization trajectory normalized by v/d. Moreover, a specific and
simplified case in Adam++ is directly based on the update rule of Adam in (3.4), with
maxigt ||X1 — XOH2

d(t+1)
Compared with existing parameter-free versions of AdaGrad and Adam, AdaGrad++ and Adam++
are in much simpler form. Interestingly, despite the simplicity, our analysis demonstrates that Ada-
Grad++ and Adam++ enjoy good theoretical convergence guarantees, and perform surprisingly well
in various experiments. For more details, please refer to Sections ] and [5}

N =

4 ADAGRAD++: A PARAMETER-FREE VERSION OF ADAGRAD

In this section, we present the details of the AdaGrad++ algorithm, and then give theoretical guar-
antees on its performance in convex optimization.

4.1 ALGORITHM

We consider the optimization problem as introduced in (3.1)) in setting of stochastic optimization,
and we assume access to a stochastic gradient oracle G(x) satisfying E[G(x)|x] € 0f(x). The
AdaGrad++ algorithm is presented in Algorithm [T}

Algorithm 1 Parameter-Free AdaGrad (AdaGrad++)
1: input: xg,79 = ¢€,6
2: fort =0, ton do
3 1= ||x¢ — Xol]2/Vd

e = maX(Ut—l, Tt

4
50 g = g(’it)

6: S; = (ZI;:O gi)l/Q

7: H; = 0§ + diag(s;)

8  xpp1 =% — 1 Hy gy
9: end for

In Algorithm [T it is clear that the key innovation of AdaGrad++ lies in the introduction of the
quantity r; = ||x; — Xo||2/V/d, and the definition that 7; = max(n;_1,7;). These definitions are
inspired by the DoG framework (Ivgi et al.l [2023), and are the key to a parameter-free approach.
We would also like to comment that introducing the factor d~'/2 in the definition of 7, is crucial in
AdaGrad++, resulting in both strong theoretical guarantees and robust practical performance across
different tasks with varying dimensions. The intuition is that AdaGrad++ implements different
adaptive learning rates for different coordinates, and the d—'/2 factor converts the “total distance”
in DoG to the “mean squared distance (displacement)”, which is more robust to d.

4.2 CONVERGENCE GUARANTEE

In this subsection, we present convergence guarantees of AdaGrad-++ (Algorithm[I)) under the setting
where f(x) is convex. We first give an assumption on the stochastic gradient G(x).

Assumption 4.1. There exists some continuous function [ : RY — R such that [|G(x)|]2 < I(x)
almost surely.

Assumption states that the stochastic gradients have a deterministic bound I(x) on their norm.
By allowing different bounds at different x, this assumption is much weaker compared to the more
common Lipschitz assumption that directly requires that |G (x)]|2||2 is bounded to a constant. The
same assumption has been made in|Ivgi et al.| (2023)).

Our main result on the convergence of AdaGrad++ is given in the following theorem.
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Theorem 4.2. Let xo, ..., xr be the iterates of AdaGrad++. Further let 7 € arg max; <7 Zz;é %
T—1

and define X, = % Then under Assumption for any 6 € (0,1), L > 0 and any
t=0 "It

X, € R%, with probability at least 1 — § — P(max;<7 [(x;) > L), it holds that

D2V s 2 + Drio, f0r sl I3 +L293,51 -
oo (M
Tno & <770>

7

f(xr) Sf(x*)+0<

where D, = maxi<, [ — X*[|oc, Dr = maxi<, [[x; — X. |2, and 6, 5 = log( 21,
Theorem4.2|gives the bound of f (X, ) that is defined by an arbitrarily chosen reference point x.., and
the bound contains a term f(x, ) as well as several other terms that are related to the distance between
algorithm iterates and x,. This form of the bound with a reference point matches standard bounds
in convex and Lipschitz/smooth optimization (Bubeck et al., [2015). Moreover, the probability for
the bound in Theorem {4.2|to hold depends on P(max;<7 (x;) > L), and the bound holds with
high probability when P(max;<7 {(x;) > L) is small. It is clear that if {(-) is always bounded,
which corresponds to a Lipschitz f, then P(max,;<7 I(x;) > L) = 0 with an appropriately chosen
constant L. In addition, it is also clear that Theorem [4.2] covers more general and non-Lipschitz
cases as well, since {(-) only needs to be bounded along the optimization trajectory Xo, . . ., X7 to
grant P(max,<7 I(x;) > L) = 0.

Theorem [4.2] reveals that an important term |[s-||> determines the convergence rate of AdaGrad++.
We note that a similar quantity has been investigated by [Zhou et al.| (2018) in the study of non-
convex convergence guarantees of adaptive gradient methods. This similarity demonstrates that our
proposed parameter-free algorithm AdaGrad++ still captures the key nature of AdaGrad. Taking a
closer look at the quantity [|s |2, by definition, we have ||s;||2 = \/>_;_, [|&¢]3. When the objec-
tive function is Lipschitz (I(-) is bounded), it is clear that a worst-case upper bound of ||s |2 is v/T',
leading toa 1/ /T bound on the convergence rate (see Corollarybelow). However, as discussed

in|Zhou et al.| (2018), here we point out that in practice, we often observe that ||s,||2 < /T due to
the fact that the algorithm converges and the stochastic gradients ||g;||2 may converge to zero. When

s |l = O(T*/?2=) for some o € (0,1/2), we will have a better convergence rate of AdaGrad++
(see Corollary 4.4 below).

Corollary 4.3. Suppose that the assumptions in Theorem hold. Further assume that [(x) < G
for all x. Then for any x* € R%, with probability at least 1 — 9, it holds that

d

fmwﬂm+%m0 J7

where D, = max;<. [|X¢ — Xu||0o-

Corollary gives a simplified version of Theorem under the special case when [(x) < G.
We note that | Mishchenko & Defazio| (2023)) proposed a parameter-free version of AdaGrad named

D-Adapted AdaGrad and established a convergence rate of the order O(dGw./+/T), under the as-
sumption that [|G(x)||ee < Goo. Considering ||G(x)[l2 < Vd - [|G(X)]| oo, We have G < Vd - G,

and therefore our result can be reduced to the bound in [Mishchenko & Defazio| (2023) when we
ignore the distance factor D .

Corollary 4.4. Suppose that the assumptions in Theorem 4.2 hold. Further assume that there exist
G > O such that [(x) < G and ||s, |2 < G - TY/?~%) for some a € [0,1/2). Then for any x* € R,
with probability at least 1 — 4, it holds that

~{ D2G -
f&0<f@0+0<3ﬁpl?>

where D, = max;<. [|X¢ — Xu||0o-

Corollary [4.4]is a straightforward simplification of Theorem [4.2under the additional condition that
Isrlla < G- TY?=%), It verifies that when the key quantity ||s || is smaller than the worst-case
O(V/T) bound, the convergence rate can be faster than O(1/v/T).
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5 ADAM++: A PARAMETER-FREE VERSION OF ADAM

In this section, we introduce the Adam++ algorithm together with its theoretical convergence guar-
antees.

5.1 ALGORITHM

We consider the same optimization problem as introduced in (3.1 in the stochastic setting. We also
consider the same stochastic gradient oracle G(x) satisfying E[G(x)|x] € 0f(x). The Adam++
algorithm is depicted in Algorithm 2]

Algorithm 2 Parameter-Free Adam (Adam++)

1: input: xg, 79 = €, J, B1, B2, A
2: fort =0, ton do

3: Tt:”Xt_XOHQ/\/;i

7y = max(ne_1,7¢)
gt = g(Xt)
Bt = Br1AT!

m; = fymy_1 + (1 — Big)ge

Casel:s; = (Y/_,g?)'/?

9:  Case2: v, = fovi_1+ (1 — Bo)g? s = /(t+ 1) maxy<(vy)
10: Ht =0 + diag(st)

11: Xt4+1 :Xt—nt-H;lmt

12: end for

IR AR

There are several key points in Algorithm [2] to note. First of all, Adam++ also implements the
key quantity 7, = ||x; — Xo||2/V/d introduced in AdaGrad++ to automatically adapt the “learning
rate”. Moreover, Adam++ allows dynamically decaying first-moment parameter 31; = (1A, which
follows the definition in AMSGrad (Reddi et al., 2018). When setting A = 1, we can recover the
common setup with a constant 3;. The introduction of the decaying (3, is due to technical reasons,
and our theoretical analysis on Adam relies on a A € (0, 1). However, we remark that Adam++ with
A = 1 can achieve highly competitive performance under various practical settings.

Another key feature of Adam++ is that it covers two cases. In Case 1, we implement entry-wise
adaptive learning rates that are similar to AdaGrad and AdaGrad++. In Case 2, we implement a
more common exponential moving average of the second moment v; but also introduce another
quantity s;. Particularly regarding the definition of s; = /(¢ + 1) - maxy <;(vy), we note that
the factor /(¢ + 1) ensures reasonable scaling when incorporated with the quantity ;. This factor
makes the scaling of s; in Case 2 more compatible with that in Case 1. Moreover, the max operation
maxy <¢(vy) is inherited from the AMSGrad modification to Adam (Reddi et al., 2018), which has
been shown to be crucial in ensuring theoretical guarantees. However, experiments have demon-
strated that the simplified version s; = /(¢ + 1) - v; works better in practice. This is consistent
with many empirical observations (Gugger & Howard, [2018).

5.2 CONVERGENCE GUARANTEE OF ADAM++

In this section, we give the convergence guarantee of Adam++. The main result is given in the

following theorem.

Theorem 5.1. Let xg, ..., x7 be the iterations of Adam++ following either Case 1 or Case 2 in

T-—1

Algorithm In addition, let 7 € argmax;<rp Zf;é % and define X, = %
. t=0 "It

0 < 1 < +/P2and 0 < A < 1. Then under Assumption for any § € (0,1), L > 0 and any

x* € RY, with probability at least 1 — § — P(max;<7 [(x;) > L), the following results hold:

2 202
D2V - s- |2 DT\/QWHST”2 L 97,5) (nT)
X)) <f(x:)+ O z + 1 — .
f(Xr) <f(xx) (( ~ T o8\ 3

Theorem[5.T| gives the convergence guarantee for Adam++. To the best of our knowledge, this is the
first convergence guarantee of a parameter-free version of Adam. Clearly, the bound in Theorem[5.1]

. Suppose
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is of the same form as in Theorem [.2] for AdaGrad++. Therefore, our comments on Theorem [£.2]
also apply to Theorem the bound holds with high probability when () is bounded along the
optimization trajectory Xo, ..., Xy. Moreover, similar to the bound for AdaGrad++, the quantity
s+ |2 is a key quantity: when I(x) is bounded, the worst-case bound of ||s, |2 is O(v/T), leading
to a O(1/+/T) convergence rate. However, if ||s, |2 = O(T*/2~) for some o € (0,1/2), we can
expect a faster convergence rate .

Clearly, we can also establish the counterparts of Corollaries [4.3] and [4.4] for Adam++. However,
to avoid repetitions, here we only give the corollary below as the counterpart of Corollary #.4] The
counterpart of Corollary 4.3]can be obtrained by setting ov = 0.

Corollary 5.2. Suppose that the assumptions in Theorem [5.1] hold. Further assume that there exist
G > O such that[(x) < G and ||s, |2 < G - T/?~%) for some a € [0,1/2). Then for any x* € R,
with probability at least 1 — 4, it holds that

(%) < Fx) +6<M),

T1/2+a
where D, = max;<; ||x; — X«|oo-

6 EXPERIMENTS

In this section, we evaluate the performance of Adam++ across image classification and large lan-
guage model pretraining tasks to test its efficacy. For image classification problems, we train mod-
els on the CIFAR-10 dataset (Krizhevsky et al., 2009). To demonstrate Adam++’s versatility and
stability across different network structures, we apply it to neural network architectures including
VGG16 (Simonyan & Zisserman, |2014), ResNet-18, and ResNet-50 (He et al.L[2016). We use Adam
as the baseline, and also compare Adam++ against two state-of-the-art parameter-free algorithms:
D-Adaptation (Defazio & Mishchenko), [2023) and Prodigy (Mishchenko & Defazio, 2023). For
large language model pretraining tasks, we use a reproduced GPT-2 model with 125M and 355M
parameters respectively on the OpenWebText dataset (Gokaslan & Cohen, [2019). Our training set-
tings are based on those from NanoGPT and Sophia (Liu et al., [2023). We omit the experiments
for AdaGrad++ as we found it consistently underperforms compared to Adam and Adam++, despite
being better than AdaGrad.

6.1 IMAGE CLASSIFICATION

We aim to compare the optimization algorithms in a setting with minimal or no parameter tuning.
On ResNet-18 and ResNet-50, we run the baseline Adam optimizer with a default learning rate of
le~2 and a coupled weight decay of 5¢=*. However, for VGG16, the same learning rate fails to
converge, so we adjusted to a smaller learning rate of 1e~* for Adam. For all parameter-free algo-
rithms, including DAdapt Adam, Prodigy, and Adam++, although there is no learning rate choice
required, we set a base learning rate factor that can be applied on top of the adaptive learning rate,
as introduced in Ivgi et al.| (2023)); Mishchenko & Defazio| (2023)); [Defazio & Mishchenko| (2023).
We set this base learning rate to 1.0 across all parameter-free algorithms, while keeping all other
parameters consistent with those of Adam, ensuring a fair comparison. For model architectures,
we modify the output dimensions of ResNet and VGG networks to 10 to align with the number of
output classes. We provide a detailed list of all training parameters in Appendix D] Variations in set-
tings, especially in weight decay, may prevent Prodigy and DAdapt Adam from achieving optimal
performance, with potential convergence issues on VGG16. In contrast, the results demonstrate that
our algorithm remains robust across all benchmarks, even without any parameter tuning.

Constant Learning Rate Schedule Figure |1| illustrates the training loss and test accuracy curves
against training epochs on the CIFAR-10 dataset for various network architectures and algorithms.
The task is challenging due to the use of a fixed learning rate throughout all epochs. For the Adam++
algorithm, both Case 1 and Case 2 are implemented, with additional implementation details available
in Appendix [D| On ResNet-18 and ResNet-50, there is a noticeable performance gap between D-
Adapt Adam, Prodigy, and Adam++ (Case 1) when compared to Adam. Conversely, Adam++ (Case
2) either matches or surpasses Adam’s performance. On VGG16, while D-Adapt Adam and Prodigy
fail to show improvement, Adam++ achieves test accuracies nearly identical to Adam. Furthermore,
Figure[T]also reveals that although the test accuracies of Adam++ and Adam with a constant learning
rate are similar, the training loss of Adam++ decreases faster.
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Figure 1: The results of training ResNet-18, ResNet-50, and VGG16 on CIFAR-10 with a constant
learning rate schedule. Each curve represents the mean of 8 random runs, with the shaded area
indicating the standard error. The first row presents the test accuracy of different algorithms, and

the second row shows the training losses. Adam++ achieves performance superior or comparable to
Adam.
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Figure 2: The results of training ResNet-18, ResNet-50, and VGG16 on CIFAR-10 with a cosine
learning rate schedule. Each curve represents the mean of 8 random runs, with the shaded area

indicating the standard error. The first row presents the test accuracy of different algorithms, and the
second row shows the training losses.

Cosine Learning Rate Schedule In addition to the learning rates found by parameter-free algo-
rithms, it is common to apply an additional learning rate schedule on top of that according to (Ivgi
let al| 2023} Mishchenko & Defazio} 2023}, [Defazio & Mishchenko, [2023). Figure[2]provides a com-
parison of our algorithm with other baselines when utilizing the same cosine learning rate schedule.
This annealed schedule aids in stabilizing training by being more cautious near the optimal point,
thereby yielding better overall performance compared to a constant learning rate schedule. Under
the annealed setting, both Prodigy and D-Adapt Adam exhibit improvement over their counterparts
using a constant learning rate schedule. Notably, the performance enhancement becomes more pro-
nounced in the later stages of training, suggesting that D-Adapt Adam and Prodigy might initially
overestimate the learning rate. Meanwhile, our Adam++ algorithm maintains only a small gap with
Adam. Notably, on VGG16, while the performance of D-Adapt Adam, Prodigy, and Adam++ (Case
2) fails to converge, Adam++ (Case 1) outperforms Adam.

We present the results for both constant and cosine learning rate schedules in Table[I] The reported
values represent the best test accuracy or training loss achieved up to the final epoch. Notably, in
nearly all cases, the top two algorithms in each row are either Adam or Adam-++.
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Table 1: Comparison of test accuracies and training losses for both constant and cosine Learning
Rate Schedules on CIFAR-10 dataset.

Model LR schedule Adam D-Adapt Adam Prodigy Adam++(case 1) Adam++(case 2)

train loss test acc train loss testacc trainloss testacc trainloss testacc trainloss testacc

ResNet-18 Constant  0.0843  85.99 0.2696  80.13  0.4064 76.62  0.0360 80.5 0.0188  85.67
Cosine  0.0015  88.03 0.0512 87.72 0.0416 86.83 0.0019 8532 0.0018 86.6

ResNet-50 Constant  0.0748  87.1  0.4983 70.3 0.3267 7894  0.0340 812  0.0194 87.37
Cosine  0.0017 89.1 0.2533 8138 0.1226  86.02 0.0011 82.05 0.0013 88.74

VGG16 Constant  0.0260  89.69  2.2638  10.56  2.2722 154 0.0004 8836 0.0005 88.88
Cosine  0.0001 87.47 1.2814 4692 1.0421 5523 0.0001 88.82 23016 10

6.2 LARGE LANGUAGE MODEL (LLM) PRETRAINING

In this subsection, we pretrain GPT-2 models with 125M and 355M parameters using the OpenWeb-
Text dataset. For the baseline, we employ the AdamW optimizer instead of Adam, as empirically
AdamW performs better than Adam in LLM tasks . For all parameter-free algorithms, including
our proposed Adam++, we apply decoupled weight decay to align with AdamW, referring to the
adjusted version of Adam++ as AdamW++. In detail, AdamW uses a standard cosine learning rate
schedule with 2000 warm-up steps. The batch size is set to 480, with a learning rate of 6e~* for
GPT-2 small and 3e~* for GPT-2 medium, as specified in|Liu et al.|(2023). All parameter-free algo-
rithms use the same hyperparameters and learning rate schedule as AdamW. Additional details for
pretraining are provided in Appendix

In Figures [3]and ] we observe that AdamW++ outperforms AdamW by 0.02 in both training loss
and validation loss on GPT-2 small and GPT-2 medium. In contrast, Prodigy performs 0.01 worse
than AdamW on GPT-2 small and matches AdamW on GPT-2 medium, while D-Adapt Adam shows
the weakest performance on these tasks. These results emphasize the ability of our algorithm to
effectively handle large-scale language tasks.
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—— Adam++

Test Loss
Train Loss
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Figure 3: Comparison of training GPT-2 Small (155M) on OpenWebText. Left: Test loss. Per-
formance at 50k steps—AdamW: 3.00, D-Adapt AdamW: 3.01, Prodigy: 3.01, Adam++: 2.98.
Right: Train loss. Performance at 50k steps—AdamW: 2.97, D-Adapt AdamW: 2.97, Prodigy:
2.98, AdamW++: 2.95. AdamW++ refers to AdamW++ (Case 2).
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Figure 4: Comparison of training GPT-2 Medium (355M) on OpenWebText. Left: Test loss. Per-
formance at 50k steps—AdamW: 2.80, D-Adapt AdamW: 2.87, Prodigy: 2.80, AdamW++: 2.78.
Right: Train loss. Performance at 50k steps—AdamW: 2.75, D-Adapt AdamW: 2.82, Prodigy: 2.75,
AdamW++: 2.73. AdamW++ refers to AdamW++ (Case 2).
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6.3 ABLATION STUDY

We conduct an ablation study to assess the impact of different choices for the base learning rate and
the initial learning rate on training loss and test accuracy using ResNet-50.

Initial learning rate 7, Our theory suggests that the choice of the initial 7y will not influence the
final loss performance, as long as 7 is not too large. We tested this hypothesis by running each

of the problems using values of 7 ranging from 1076 to 1. Figure [5| validates this conclusion in
practice.

Base learning rate For this experiment alone, we consider Adam++ with different values of the

base learning rate of ), = c- maxice xi=xoll2 According to our theory, our algorithms are expected

to be unstable when ¢ > 1 and slow to converge when ¢ < 1. Figure [§illustrates the performance
around ¢ = 1.

©
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v o
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o
w

©
w
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Figure 5: Effect of different choices of 7 on test accuracy and training losses. When 7 is less than
1071, its influence on final performance is marginal.
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Figure 6: Effect of different choices of ¢ on test accuracy and training losses. When c is between
0.5 and 4, its influence on final performance is limited.

7 CONCLUSIONS

In this paper, we propose two simple but effective algorithms, namely AdaGrad++ and Adam-++,
that are parameter-free variants of AdaGrad and Adam respectively. We demonstrate that, despite
the simple intuition, AdaGrad++ and Adam++ are guaranteed to converge with a reasonable conver-
gence rate, and also perform surprisingly well in various experiments. These theroetical and empiri-
cal results highlight the potential of AdaGrad++ and Adam++ to be robust and practical choices for
a wide range of optimization tasks.

Several topics that are not covered in this paper are worth future studies. First of all, the current
convergence analyses of AdaGrad++ and Adam++ are limited to the convex setting. Establishing
convergence guarantees for AdaGrad++ and Adam++ under the setting of nonconvex optimiza-
tion is an important future research direction. Moreover, establishing convergence guarantees for

AdamW++ (which is used in our experiments without proof) is another promising area for future
work.

10
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A PROOF OF THEOREM

Proof of Theorem[d.2] We define d; = x; — x,, and define ;(x) = (x, H;x) and By (x,y) =

w(x - Y)/Z Let 8t = (gt,l; e ?gt,d)a St = (St,17 e 78t,d) and dt = (dt,la e ’dt7d)- From the
definition of x;1 we have

Xp41 = argmin{ry (g, X) + By, (56, %k) },
which gives
(X = Xpy 1, M8k + Vi (Xp11) — Vi (xx)) > 0 (A.1)

for all x. Setting x = x* and rearranging the terms, we can then obtain a bound of (xj1 — X*, gk ).
Thus we have the inequality by denoting the dual norm of | - ||, by [| - [y

(X — X, 8k) = Mk (Xp1 — X7, 8k) + M (Xk — Xit1, 8k)

<X = Xpp1, VYR (Xpy1) — Vor(xk)) + By, Xk, Xpt1)

= By, (X", x1,) — By, (X", Xp11) (A2)

where the inequality follows by (A.T)) and the Cauchy-Schwarz inequality for (X, —Xk+1, NxEk ), and
the second equality follows by the definition of By, (x*,Xy), By, (X*, Xk+1), and By, (Xk, Xk+1)-

Further defining X; := ZZ% Zz;lo Xk, and Ay := V f(x¢) — g, we have
f&) — f(x7) < e (f f(x%))
Zk onk k=0
Ne((Xe — X, 1) + (X — X, V(%) — 81))
Zt =0 "t =0
1 t—1 =
> [Buyy (x*,%%) — By (X", x41)] + 5 > 717
Zt =0 Mt k=0 2k:0
11 12
t—1
+ ) mxk — X", Ag) } (A3)
k=0

noise
where the first inequality follows by the convexity of f(x) and Jensen’s inequality, the second in-

equality follows again by the convexity of f(x), and the last inequality follows by (A.2). For I; on
the right-hand side of (A.3)), we have

t—1 d t—1
ZBU% (x*, xx) — By, (x*, Xp+1) Zzskﬂ dk i dk-i—l i)/2
k=0 i=1 k=0
d
< Df Zst—l,i- (A.4)
Here, we use the fact of D; = maxigt 1% — x* || 00>
For I on the right-hand side of (A3), we have
d_t=1 g2
k,
anHgt <77tz;kzos z<277t225t 1 <O(D Zst 1) (A.5)
1= 7

Here the first 1nequahty holds for the nondecreasing of 7, and the second 1nequal1ty holds by using
Lemma [C.I|for every i = 1, - - , d. besides, noting that

e < max ke — xoll/ Vi + € < max (e —x) — (x0 = x)o/VA+e <D (AG)

14



Under review as a conference paper at ICLR 2025

, thus we obtain the final inequality. For the noise of (AJ3)), let

Yy, = muDi, Xp = <Ak, Xk — X >’ and X = —<Vf(xk), H>
Dk Dk
Thus we get
t—1 t—1
> VieXe = mk(A, Xk — x.).
k=0 k=0
Therefore
t—1 d
IP’(EIt <T: an<Ak,xk — X )| > 8—1Di—14 | Or5 ZS?_M + L29t276>
k=0 i=1
t—1 t—1
< P(ﬂt ST\ Y YiXi| 28Yey |05 ) (Xpo1 = Xjm1)? + L2a§,5> <6+ P(r > L),
k=0 k=0

(A7)

where the last inequality uses lemma and define [ = maxy< ! (x¢).

By substituting (A.5),(A.4) and (A.7) into (A.3) we have that, for all § € (0,1) and L > 0, with
probability at least 1 — 6 — P(I7 > L), for all t < T the optimality gap f(X;) — f« is

o (D? S sei/ne + 8Dy \/9t,6 Sy 8P+ L29?,5>
71 .
22:0 Mk /M
Further we use the QM-AM inequality to obtain the bound that||s;||; < v/d||s;||o. Finally, applying
O

Lemma for E,ﬁ’i ; and using 79 < 7, bound 7); on the molecule finishes the proof.
k=0 "lk

B PROOF OF THEOREM

Proof of Theorem[5.1} We define d; = x¢ — X, and let ¢4(x) = (x,H;x) and By(x,y) =

)
Y(x — }’)/2- Let g = (gt,h'" 7gt,d)7st = (St,la"' ,St,d),Vt = (Ut,la"' 7'Ut,d) and d; =
(dia,- -+ ,di,q). From the definition of xj41 we have

X1 = arg m)in{n“mk, X) + By, (x,x1)},
which gives
(X — Xpg1, e + Vo (Xp41) — Vop(xz)) >0 (B.1)

for all x. Setting x = x* and rearranging the terms, we can then obtain a bound of (X1 —x*, m;).
Thus we have the inequality by denoting the dual norm of | - [[4, by [ - [|y;

e (X — X°,my) = N (Xppp1 — X5, M) + 96X — Xp41, My)

2
< " = X1, V() = Vi () + By, %k, K1) + 5 [

2
i

2
n
= By, (" 35) = By (" 3xi0) + 2 g 2

where the ingeuality holds by (B:I) and the Cauchy-Schwarz inequality for (X — Xp1, 7xImg).
Using the fact that my, = S1xmg_1 + (1 — B1x)gr We have

77k<Xk - X*agk> S (B¢k (X*7X]€) - Bwk (X*7Xk+l))

1— B

2
Ui
by -

2(1 = p1)
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1
< By (X7, %) = By (X7 Xk41))
1— Bk
2 2
U 2 NPk 9 Bik .
+ T g+ iy |2 + By, (x,%*). (B.2)
2(1_51k)|| k|w’“ 2(1_51k)” k 1|7/}k 1— B 1/%( k )
Noting that
1 t—1
&) = F(x7) < == D> (X — X7, V(i)
Zk 0"k k—o
1 t—1
Nl Z”’f Xk — X", 8k) + k(XK — X, Ag)),
k Onk k=0

where A, = V f(x;) — g, thus we can substitute (B.2) into it and lead to

t—1 *
F(%) — f(x*) < 1 {Z (By, (x*,%1) = By, (X", X141)) Z Bik By, (xp, X%

721@ 0"k \ k=0 (1= Fix) 01— Bk
I, Iz
t—1 2 2
M 2 Ukﬂlk 2
=+ ——— |myg|| s + ———————||my _ *
];0(2(1 — ﬂlk:) ” k”wk 2(1 — Blk) || wk)
I3
t—1
) melxe — x*, Ag) } (B.3)
k=0
For I, we have
= Bﬂ’k (X*vxk) - Bwk (X*vxk-‘rl)
Z (B.4)
P 1 — Bk

d
- Sk_’iDtQ
7221—6{ (B.5)

Here the first inequality holds for the reason that 51 < [, the second inequality holds for the
definition of D, and thus D; > dy, ; forall k < ¢

For I, we have

p2 4
Bwk (Xkﬂ >~ i Z
And use the fact of Blkz = B1\* we have that
51k 51D2
B _ i B.6
Z i (%) < g Zsu (B.6)

For I in the inequality (B-3), we give the proofs for the two cases in Algorithm 3 separately.

Casel:s, = (3;_,g7)"/>
If we choose the first definition of s; we have the fact that

, »
) (o (1= B Br(i—ar1)95.)°
||mt||¢; = Z : 5
=1 Z]:O g_],l
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d t t—j t t—j 9
<3 (im0 i Br(i—s11)) (0 st Br(e—s+1)97.4)

t
i=1 > =093
d t t—j t t—j
< Z (0B )0 B ’97:)
= t
i=1 Zj:o gj2',i

d t—j 2

t
< : 16 Z Ej:() By 95
- t
Li=1 > §=0 ggzz
The first inequality follows from Cauchy-Schwarz inequality. The second inequality is due to the

fact that 31; < f; for all 7 < t. The third inequality follows from the inequality 22:1 f_j <
1/(1 — f1). Summarizing the inequalities we have

t—1 d t—1 k k—j 2 d t—1 k k—j 2

1 1P g5 1 Bi g5
> Hmk|12p;:§1_ﬂ > > T= 2“:1—5§: YA
k=0 Vislk=0 \/2i2097 =1 k=05=0 1/ > 5o gg,i

d t—1t—1 k—j 2

~ By /92" 1 1 Y5
PRI

; — £ . i2
i=1k=0j=0 \/D i3, i=1j=0k=j \/ D 20 9cs

IA
—
=
@
M-

Moreover, we have

t—1 k k*j 2 t—1 k k*j 2 t—1 k
PO S S o)
k

2 k 2 ° 2 ° J 2
k=0 ijo 95 k=0 Zs:() 9s.,i k=0 j=1 2570 9s;  k=0j=1 Zs:() Ys.,i
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Therefore, noting that ﬁ < 2(\/2%:0 95— \/Zi;é g3 ;) we have
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Case2: s, = /(t + 1) - maxy<;(vg).
If we choose the second form of s;, suppose v = 31/v/B2 < 1, and we have

d 2

mi : d my ;
2, = A ki
v ; St ; &+ Dors
: (2?20(1 B ﬂ1j>H§;{ﬁl(k—s+l)gj,i)2
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For the definition of s;. Further using the Cauchy-Schwarz inequality and the fact that 51; < 31 we
have

i < Zd: (g T By o)) (2 T2 By 1) 92)
P VE+ D= B) S B g2,
i S B B2
S B T )

And then for the inequality that E?:o BE=1 <1/(1 — By) we have

L < 1 d Z] Oﬂk ]g?z
T =BV R+ - B) = > Oﬂk Jjg2

1 LB ]951
(1-751) (k+1)(1—52);jz::0 N JQ?L

1

d k
< (1—B1)\/(k+1)(1— ) ;g I1g5,4]-

i: can further be bounded as follows:

Thus the sum of ||m;|

t

2 1 2 & k
k=0 / g \/ k+1)(1_62);j§7

I } Loyt
_(1—51)@;;\9k,2|;m

=5 )FZZ‘Q’“'ZW

=1 k=0
1 18pllx
(B.8)
(1—51)\/1—52;0 1—79)/(k+1)
For the noise term, we define D; = max k < t||dy||2, and let
Y = muDi, Xi = <Ak7 % >, and X), = —<Vf(Xk), Xk_x*>
Dy, Dy,
Thus we get
t—1 t—1
D ViXe =D me(Ag,xk — x.).
k=0 k=0
Therefore
t—1 B d
]P(E't <T: ZUHAk,Xk —X,)| 2> 8ni—1Di—14| 015 Z 57, + LQ@&;)
k=0 i=1
t—1 t—1 R .
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k=0 k=0
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where the last inequality uses lemma and define [; = maxy<¢ [(xy). Therefore we have that,
forall § € (0,1) and L > 0, with probability at least 1 — § — P(Iz > L), for all t < T we have

= d
—_ 8D
f(xt) — fi < (Il + I, + 13) + 4Zt7t177;k 015,5 § S?,i + L29t2,6' (B.9)
k=0 i

Thus substitute (B.3)),(B.6) and(B.7)/(B8) into (B.9) we have that for all t < T

D (+Bume
f&) = f. < Zk r k(( o sl g sl
51Dt\|5t71||1 —
+ 2(1— B1) (L — N + 8Dt\/0t,5||st||§ + L29§,6)
for case 1, and
_ nt DtZ (1+/81 i t—1 ||gk||1
RS S k((l—ﬂl)mlst_1||1+ (1-B1)2VI-_Fa(l—~ ,;)ﬁ
B1D7|Ise-1 1 —
A g D sl + D)

for case 2 with probability at least 1 — § — P(I7 > L). We use the QM-AM inequality to obtain

the bound that||s; [, < v/d||s;||2, and ||g; |1 < V/d||g;]|2, and use (A.6) to bound 7. Further we use

nt
Lemmafor s and use 779 < 1; bound 77; on the molecule and thus

J(%) — f* so<1og(77 )(D Vdls:le | (1+5)DVE

(1= B1)mo (1—p1)3

S1D2Vd|s |2
2(1 - 51)(1 - >\)770

+8D, \/9T,5||STH§ + LQGE,(;) /T)

for the Case 1 and

o e\ (D2Vd|ls: > (1+8)DVd = gl
&) = §O<log<n0>( (1= B1)no +(1—51)2v1—52(1 20) z;)\/l€+1

51D3-\/g||s‘r”2
2(1 - ﬁl)(l - )\)770

for the Case 2 with probability at least 1 — 6 — P(I7 > L).

8D, ficalls [+ 262, ) /1

C AUXILIARY LEMMAS
In this section, we present and summarize two auxiliary lemmas provided by |Ivgi et al.| (2023)) that
provide tools for our proof of the main theorems.

Lemma C.1. [Lemmas 3 and 4 in|Ivgi et al.| (2023)] Suppose that 0 < ag < a3 < --- < ap. Then
the following two inequalities hold:

ar 1 T ap — ak 1
T (—2 < 2(Va; — Vao).
Hr i e <log+<aT/ao> ) 3 <ty - v

k=1

Lemma C.2. [Lemma 7 in [Ivgi et al.| (2023)] Consider a filtration 7 = {F;}:>¢ in a probability
space. Let S be the set of nonnegative and nondecreasing sequences. Suppose that C; € F;_q
and that { X, };>0 is a martingale difference sequence adapted to {F; };>o such that | X;| < C; with
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probability 1 for all + > 0. Then, for all 6 € (0,1), ¢ > 0, T > 0, and X; € F;_; such that
| X¢| < C; with probability 1, it holds that

t
Zini

i=1

]P’(Elt < T,3{y;};2; € S such that

t
> 8yiy | Ors D (Xi — Xi)2 + CQ@?,&)

i=1
<O+PEt<T:C>c),

where 0; 5 = log(%g(&)).

D PARAMETER SETTINGS

Throughout the training, the base learning rate is fixed at 1.0, and the initial learning rate of Adam++
is setto 1e6(1+ ||z ||3) for image classification tasks, as suggested by Ivgi et al.| (2023). For GPT-2
small and GPT-2 medium tasks, the initial learning rates of AdamW++ are 6e=*(1 + ||z||3) and
3e4(1 + ||lzo||3), respectively, where 6e~* and 3e~* correspond to the default learning rates for
AdamW training. The initial learning rates of Prodigy and D-Adapt Adam are set as the default
le~% as the algorithms did not suggest any modification of this parameter.

In addition, we list the parameters, architectures and hardware that we used for the experiments. All
other parameters not listed are set as default. The information is collected in Tables 2H3]

Table 2: CIFAR10 experiment. Table 3: Large language model experiment

Hyper-parameter Value Hyper-parameter Value
Architecture ResNet 18, Resnet 50, VGG16 Arclslig;csture GPT-2 Smalls/g]IET-Z Medium
%’;{Ih: : XZAO? T GPUs 8XAT00
Baich size 756 Batch size 480
LR schf;dule Constant/Cosine Deca Context Length 1024
. Y LR schedule Cosine Decay with Warmup
Seeds 1234+offset Soeds 3000+0msel
weight decay Se-4 weight decay 0.1
Decoupled No Decoupled ves
(B, B2) (0.9, 0.999) (B1, 52) (0.9, 0.95)
Adam LR 0.001 Adam LR 6e-473c-4

E ADDITIONAL EXPERIMENTS
In this section, we present some additional experiment results.
E.1 COMPARISONS TO ADAM WITH DIFFERENT INITIAL LEARNING RATES

Here, we present the results on training a VGG16 network on CIFAR-10 dataset with Adam imple-
menting cosine learning rate schedule with different initial learning rates {le — 4, 5e — 4, le — 3},
and compare the results with the Adam++ algorihtm. All other hyperparameters are set according
to the main paper, including a weight decay of 5e — 4.

Figure[7]shows the experiment results. These experiments are based on runs with 8 different random
seeds, and both the mean and confidence intervals are shown in the plots. From the results, we can
see that, as a parameter-free algorithm, Adam++ consistently delivers stable performance with ¢ = 1
across various problems. Conversely, Adam requires meticulous tuning for each specific problem
to achieve optimal results. For instance, when tuning Adam’s learning rate for VGG16 within the
range of {1le — 4, 5e¢ — 4, 1le — 3} , we found that Adam fails to converge at both 1e — 3 and 5e — 4.
This result demonstrates that learning rate tuning is indeed important for Adam to achieve good
performance and there is no simple golden choice of hyperparameters.

E.2 RESULTS ON MORE NETWORK MODELS AND DATASETS

In this section, we expand our training to include additional network architectures and datasets. The
architectures include a small Vision Transformer (ViT) with 820k parameters (Dosovitskiy} 2020), a
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Figure 7: The results of training VGG16 on CIFAR-10 with cosine constant learning rate schedule.
Each curve represents the mean of 8 random runs, with the shaded area indicating the standard error.
The first figure shows the test accuracy, and the second figure shows the training losses. Based on
these results, it is clear that Adam++ achieves performance superior or comparable to Adam with
learning rate 1le — 4, but Adam with learning rate le — 3 or 5e — 4 fails to converge.

Wide ResNet-50-2 model 2016), and a DenseNet-121 (Huang et al.,[2017). Addition-
ally, we train on the CIFAR-100 and SVHN datasets (Netzer et al.,[2011). For hyperparameters, we

run the baseline Adam optimizer with a default learning rate of 1e > with cosine decay schedule.
For all parameter-free algorithms including D-Adapt Adam, Prodigy, and our Adam++, we set the
base learning rate as 1.0 and use the same cosine decay schedule. All other hyperparameters remain
consistent with those detailed in Section[6.1] and are unchanged throughout this section.

In Figure [8] 0] and [T0] we present the performance comparisons across various models. For the
Vision Transformer architecture, Adam++ (Case 1) consistently outperforms Adam. Notably, when
training on the SVHN dataset, Adam, Prodigy, and D-Adapt Adam all fail to converge, whereas
Adam++ (Case 1) achieves superior performance. In the case of the Wide ResNet-50-2, Adam++
(Case 2) surpasses the performance of Adam++ (Case 1), Prodigy, and D-Adapt Adam, and matches
the performance of Adam with the default learning rate. For DenseNet-121, both Adam++ (Case
1) and Adam++ (Case 2) converge comparably to Adam. However, Prodigy and D-Adapt Adam
exhibit weaker performance.

We note that throughout all image classification experiments, the base learning rate of Adam++ are
kept as 1.0, while still demonstrating a strong and consistent performance across different scenarios.
This consistency highlights Adam++’s robustness and its ability to perform reliably without the need
for frequent adjustments or tuning.

E.3 RESULTS ON ADAGRAD++

In Figures [[T] [12] and [I3] we evaluate the performance of AdaGrad++ in comparison to AdaGrad,
Adam, Adam++, and other baselines including Prodigy and D-Adapt Adam. The hyperparame-
ters for AdaGrad are aligned with those of Adam, using a learning rate of 1e~2 with a cosine de-
cay schedule. While AdaGrad often significantly underperforms compared to Adam, AdaGrad++
demonstrates competitive or superior performance. It matches or exceeds the performance of both
Adam and Adam++, and significantly outperforms AdaGrad.

E.4 COMPUTATIONAL OVERHEAD

In this section, we analyze computational overhead by plotting training loss and test accuracy against
wall-clock time, as shown in Figure[T4] The results in Figure [I4]are shown on the tasks of training
ResNet-18 and ResNet-50 on CIFAR-10. Adam-++ incurs less computational overhead compared to
Prodigy and D-Adapt Adam, while delivering comparable or superior performance.

E.5 ENLARGED VERSIONS OF FIGURESAND

Here, we provide enlarged versions of Figures [T] and [2] to improve clarity. Figure [T3] gives the
enlarged figures in Figure[T] and Figure [I6] gives the enlarged figures in Figure 2}

F DISCUSSION ON THE MEMORY USAGE OF ADAGRAD++ AND ADAM++

In this section, we briefly discuss the memory usage of AdaGrad++ and Adam++. Specifically, we
note that, compared to vanilla AdaGrad and Adam, AdaGrad++ and Adam++ require the storage
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Figure 8: The results of training Vision Transformer on CIFAR-10, CIFAR-100, and SVHN with a
consine learning rate schedule. Each curve represents the mean of 8 random runs, with the shaded
area indicating the standard error. Adam++ achieves performance superior or comparable to Adam.

of an additional set of parameters, xg, resulting in slightly higher memory usage. However, it is
important to highlight that, compared to existing parameter-free adaptive gradient methods such as
Prodigy (Mishchenko & Defaziol [2023)) and D-adaptation (Defazio & Mishchenko} [2023)), which
necessitate storing multiple intermediate quantities of the same size as the number of parameters,
our proposed algorithms are more efficient in terms of memory usage.
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Figure 9: The results of training Wide ResNet-50-2 on CIFAR-10, CIFAR-100, and SVHN with a
consine learning rate schedule. Each curve represents the mean of 8 random runs, with the shaded
area indicating the standard error. Adam++ achieves performance superior or comparable to Adam.
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Figure 10: The results of training DenseNet-121 on CIFAR-10, CIFAR-100, and SVHN with a
consine learning rate schedule. Each curve represents the mean of 8 random runs, with the shaded
area indicating the standard error. Adam++ achieves performance superior or comparable to Adam.
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Figure 11: The performance comparison of various optimizers—Adam, D-Adapt Adam, Prodigy,
Adam++ (Case 1), Adam++ (Case 2), AdaGrad, and AdaGrad++—conducted for training a Vision
Transformer on CIFAR-10, CIFAR-100, and SVHN datasets using a cosine learning rate schedule.
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Figure 12: The performance comparison of various optimizers—Adam, D-Adapt Adam, Prodigy,
Adam++ (Case 1), Adam++ (Case 2), AdaGrad, and AdaGrad++—conducted for training a Wide
ResNet-50-2 on CIFAR-10, CIFAR-100, and SVHN datasets using a cosine learning rate schedule.

26



Under review as a conference paper at ICLR 2025

10!
80
S m 100
< Al
>.60 v 0
S 3
g —— Adam - 10-1] —
940 —— D-Adapt Adam % —— D-Adapt Adam
< —— Prodigy = —— Prodigy
@ —— Adam++ (Case 1) ] — Adam++ (Case 1)
220 —— Adam++ (Case2) | 107°1 —— Adam++ (Case2)
—— AdaGrad —— AdaGrad
0 —— AdaGrad++ —— AdaGrad++
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
Epoch Epoch
(a) CIFAR-10, test accuracy (b) CIFAR-10, training loss
10t
60
gSO 10°
540 e | 8
g —— Adam - —_
g 30 ~— D-AdaptAdam | £ | —— D-AdaptAdam
< —— Prodigy = —— Prodigy
720 —— Adam++ (Case 1) —— Adam++ (Case 1)
& 10 —— Adam++ (Case 2) —— Adam++ (Case 2)
—— AdaGrad 1072 — AdaGrad
0 —— AdaGrad++ —— AdaGrad++
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
Epoch Epoch
(c) CIFAR-100, test accuracy (d) CIFAR-100, training loss
10t
60
550 10°
240 g
o 3 J—
g 30 D-AdaptAdam | £, | —— D-Adapt Adam
< Prodigy = —— Prodigy
720 Adam++ (Case 1) —— Adam++ (Case 1)
& 10 Adam++ (Case 2) —— Adam++ (Case 2)
AdaGrad 102 — AdaGrad
0 AdaGrad++ —— AdaGrad++
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
Epoch Epoch

(e) SVHN, test accuracy

(f) SVHN, training loss

Figure 13: The performance comparison of various optimizers—Adam, D-Adapt Adam, Prodigy,
Adam++ (Case 1), Adam++ (Case 2), AdaGrad, and AdaGrad++—conducted for training a
DenseNet-121 on CIFAR-10, CIFAR-100, and SVHN datasets using a cosine learning rate schedule.
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Figure 14: Test accuracy and training loss with respect to wall-clock time for different algorithms in
training ResNet-18 and ResNet-50 on CIFAR-10 dataset.
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Figure 15: Enlarged version of Figureon the results of training ResNet-18, ResNet-50, and VGG16
on CIFAR-10 with a constant learning rate schedule. Each curve represents the mean of 8 random
runs, with the shaded area indicating the standard error. Adam++ achieves performance superior or
comparable to Adam.
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Figure 16: Enlarged version of Figureon the results of training ResNet-18, ResNet-50, and VGG16
on CIFAR-10 with a cosine learning rate schedule. Each curve represents the mean of 8 random runs,
with the shaded area indicating the standard error.
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