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ABSTRACT

Direct Preference Optimization (DPO) is widely utilized in the Reinforcement
Learning from Human Feedback (RLHF) phase to align Large Language Models
(LLMs) with human preferences, thereby enhancing both their harmlessness and
efficacy. However, it has been observed that DPO tends to over-optimize for
verbosity, which can detrimentally affect both performance and user experience.
In this paper, we conduct an in-depth theoretical analysis of DPO’s optimization
objective and reveal a strong correlation between its implicit reward and data
length. This correlation misguides the optimization direction, resulting in length
sensitivity during the DPO training and leading to verbosity. To address this
issue, we propose a length-desensitization improvement method for DPO, termed
LD-DPO. The proposed method aims to desensitize DPO to data length by
decoupling explicit length preference, which is relatively insignificant, from
the other implicit preferences, thereby enabling more effective learning of the
intrinsic preferences. We utilized two settings (Base and Instruct) of Llama2-13B,
Llama3-8B, and Qwen2-7B for experimental validation on various benchmarks
including MT-Bench and AlpacaEval 2. The experimental results indicate that
LD-DPO consistently outperforms DPO and other baseline methods, achieving
more concise responses with a 10-40% reduction in length compared to DPO.
We conducted in-depth experimental analyses to demonstrate that LD-DPO can
indeed achieve length desensitization and align the model more closely with
human-like preferences.

“Brevity is the Soul of Wit.”

—William Shakespeare

1 INTRODUCTION

Large Language Models (LLMs) have revolutionized Natural Language Processing (NLP) by em-
powering machines to generate human-like text, comprehend intricate context, and execute a
wide range of linguistic tasks with unprecedented accuracy(Ouyang et al., 2022; Chang et al.,
2024; Liu et al., 2023). Aligning LLMs with human values and preferences through learning

Figure 1: Performance of iterative DPO
model(Chen et al., 2024d) on Arena-Hard
and Alpacaeval 2.

from human feedback is crucial to ensuring these mod-
els are helpful, honest, and harmless. Among the various
methods to achieve effective alignment (Dai et al., 2024;
Yuan et al., 2024a), Direct Preference Optimization
(DPO) has emerged as a promising technique (Rafailov
et al., 2024), giving rise to numerous derivative algo-
rithms (Hong et al., 2024; Chen et al., 2024b; Ethayarajh
et al., 2024). DPO eliminates the reliance on online
Reward Models (RMs) by reparameterizing the reward
function in Reinforcement Learning from Human Feed-
back (RLHF), thereby implementing a simple and stable
offline preference learning paradigm. Among the dimen-
sions of human language preferences, detailedness is one
of the most straightforward categories that current align-
ment algorithms can effortlessly capture, as longer texts tend to be richer in content. However, it has
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been demonstrated that DPO is susceptible to an over-optimization issue in this particular preference
dimension (Xu et al., 2024). As illustrated in Fig.1, the model post-DPO tends to generate longer
responses. However, excessively long responses can result in performance degradation, particularly
impacting its instruction-following and reasoning capabilities (Ding et al., 2023; Yuan et al., 2024b).

The phenomenon of verbose response caused by DPO is often attributed to the presence of length
bias in the training data (Park et al., 2024; Singhal et al., 2023). This bias arises from an inherent
length preference in offline RMs (Wang et al., 2024; Chen et al., 2024c), which results in most pre-
ferred responses (chosen) being significantly longer than the dispreferred ones (rejected). Based on
this assumption, Yuan et al. (2024b) proposed LIFT-DPO to mitigate the length bias in the train-
ing data through a prompt enhancement strategy. Recently, more researchers have questioned the
efficacy of the DPO algorithm itself. Park et al. (2024) introduce a regularization term in the opti-
mization objective to adjust the weight of the gradient according to the length difference between
the preference pairs. Meng et al. (2024) propose a reference-model-free method SimPO, which used
the likelihood averaged by length to eliminate the effect of data length. Lu et al. (2024) introduce
a down-sampling approach on KL divergence to eliminate the length reliance of DPO. Though Lu
et al. (2024) have conducted a statistical analysis of the implicit rewards during the DPO process
and found that the rewards might be overestimated or underestimated due to length, the theoretical
explanation of why DPO encounters this issue remains inadequately explored. Meanwhile, exper-
imental results demonstrate that these methods either fail to achieve significant length control or
compromise the performance to some extent.

In this paper, we attribute the verbosity problem to the length sensitivity of DPO. Specifically, the
partial derivatives of the optimization objective of DPO with respect to the chosen and rejected re-
sponses are inversely proportional to their respective likelihood (Feng et al., 2024a). Since the like-
lihood, which is calculated as the product of the conditional probabilities of each token, decreases
rapidly with increasing sequence length, longer chosen or rejected responses are disproportionately
favored in the optimization process. Moreover, the length disparity between the chosen and re-
jected responses will substantially skew the optimization objective, ultimately biasing the direction
of optimization. Since decreasing the likelihood of any rejected may not affect response length, the
primary cause of the verbosity problem is the model’s tendency to increase the likelihood of longer
chosen responses while ignoring shorter ones.

To address this issue, we propose an offline optimization algorithm for Length Desensitization of
DPO, termed LD-DPO. In this approach, we decompose the likelihood of the longer response in
a preference pair into the product of the likelihood of the public-length portion and the likelihood
of the excessive portion. The excessive portion is further broken down into verbosity preference
(due to excess length) and other preferences. LD-DPO aims to mitigate the verbosity preference
caused by excessively long responses, thereby smoothing the relationship between the likelihood
and response length. This adjustment reduces the influence of length on the optimization direction
in DPO, effectively achieving length desensitization.

We employ two settings (Base and Instruct) of Llama2-13B (Touvron et al., 2023), Llama3-8B
(AI@Meta, 2024), and Qwen2-7B (Yang et al., 2024) for experimental validation on various bench-
marks including MT-Bench (Zheng et al., 2024) and AlpacaEval 2 (Dubois et al., 2024). The ex-
perimental results indicate that LD-DPO consistently outperforms DPO and other baseline methods,
achieving more concise responses with a 10-40% reduction in length compared to DPO. Moreover,
experiment on reasoning-specific benchmarks shows that LD-DPO significantly improves models’
reasoning performance. An interesting phenomenon is also observed: the length sensitivity during
DPO training exhibits a negative correlation with the underlying model capability. we then define
γ as the length sensitivity coefficient and conduct a detailed analysis of the DPO length sensitivity
across models of varying capabilities, we believe γ is instructive for the entire preference optimiza-
tion process. Our contributions are summarized as follows:

• To the best of our knowledge, we are the first to define the length sensitivity of DPO and
provide theoretical validation for this phenomenon.

• We propose LD-DPO, a length-desensitization preference optimization algorithm that mit-
igates length sensitivity by decoupling length preference from the reward.

• We experimentally verify that LD-DPO enables the model to achieve superior results with
more concise responses, reducing response length by 10-40% compared to DPO.
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2 PRELIMINARIES

In this section, we will outline the standard pipeline of Reinforcement Learning From Human Feed-
back (RLHF) (Bai et al., 2022; Ziegler et al., 2019) and the Direct Preference Optimization (DPO)
algorithm (Rafailov et al., 2024), which is essential for the analysis of the length sensitivity of DPO
and the motivation of our method.

2.1 REINFORCEMENT LEARNING FROM HUMAN FEEDBACK

The standard pipeline of RLHF aligns LLMs with human preferences in three stages:
Supervised Fine-tuning (SFT) stage: In this stage, labeled data is used to fine-tune the pre-trained
model so that it acquires a basic ability to follow commands and carry on a fluent conversation, to
obtain model πSFT (y|x).
Reward Model (RM) Training stage: In the second stage, πSFT (y|x) is utilized by prompts x to
generate pairs of responses (y1, y2) ∼ πSFT (y|x), which are then labeled by human annotators as a
preferred answer yw and a dispreferred answer yl, denoted as yw > yl. To predict these preferences,
previous works employ the Bradley-Terry (BT) RM (Bradley & Terry, 1952), which essentially
constructs a pairwise contrast:

LRM = − log
exp(rϕ(x, yw))

exp(rϕ(x, yw)) + exp(rϕ(x, yl))
. (1)

Reinforcement Learning (RL) stage: In the Final Stage, the reward function is used to provide
feedback to the language model. The optimization objective is formulated as:

max
πθ

Ex∼D,y∼πθ(y|x)[rϕ(x, y)]− βDKL[πθ(y|x)∥πref (y|x)], (2)

where β is a parameter controlling the deviation from the reference model πref , namely the initial
SFT model πSFT (y|x), and in practice, the language model πθ is also initialized to πSFT (y|x).
This objective is optimized using a general purpose RL algorithm, such as PPO (Wu et al., 2023).

2.2 DIRECT PREFERENCE OPTIMIZATION

Direct Preference Optimization (DPO) is one of the most popular offline preference optimization
methods, which starts with the same objective as Eq.2, reparameterizes the reward function r using
a closed-form expression with the optimal policy:

r(x, y) = β log
πθ(y|x)
πref (y|x)

+ β logZ(x), (3)

where Z(x) =
∑

y πref (y|x)exp( 1β r(x, y)) is the partition function, which is only relevant for πref

and πθ, no additional training of the RM is required. By incorporating Eq.3 into the BT ranking
objective, p(yw > yl|x) = σ(r(x, yw)− r(x, yl)), therefore, the optimization objective becomes:

LDPO(πθ;πref ) = −E(x,yw,yl)∼D[log σ(β log
πθ(yw|x)
πref (yw|x)

− β log
πθ(yl|x)
πref (yl|x)

)]. (4)

DPO replaces the reward model (RM) with an implicit reward, offering enhanced stability and ease
of training compared to traditional reinforcement learning methods such as PPO. Several related
works have validated the effectiveness of this paradigm.

3 METHODOLOGY

In this section, we first conduct a theoretical analysis of the optimization object of DPO and ver-
ify that differences in data length significantly affect the optimization direction during the training
process, demonstrating that DPO is length-sensitive. We then derive our LD-DPO algorithm, which
addresses the length sensitivity problem by reparameterizing the likelihood, thereby preventing the
generation of verbose responses and aligning the model more closely with human-like preferences.

3
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(a) DPO (α = 1) (b) α = 0.7 (c) α = 0.3 (d) α = 0

Figure 2: Comparison of the relationship between the length of preference data pairs and
πθ(yl|x)/πθ(yw|x) under both DPO and LD-DPO. Measured on Llama3-8B-Instruct with Ultra-
Feedback dataset (Cui et al., 2023), and the heatmap values represent log πθ(yl|x)− log πθ(yw|x).

3.1 LENGTH SENSITIVITY OF DPO

According to the optimization objective of DPO in Eq.4, we know that the purpose of DPO is to
make the likelihood of human-preferred response yw given x greater than that of human-dispreferred
response yl, denoted as πθ(yw|x) > πθ(yl|x). Additionally, πθ serves as the actor model, while
πref is introduced to prevent the model from deviating from the reference model. Both models are
tpyically products of the Supervised Fine-Tuning (SFT) phase.

Following Feng et al. (2024a), we provide the theoretical derivation of the optimization objective for
DPO. Firstly, we denote X1 = πθ(yw|x), X2 = πθ(yl|x), K1 = πref (yw|x), K2 = πref (yl|x) and
assuming that the expectation sign is removed in the case of identically distributed training data, the
loss function of DPO can be written as:

LDPO(X1;X2) = − log(
(K2X1)

β

(K2X1)β + (K1X2)β
). (5)

We calculate the partial derivatives of LDPO with respect to X1, and X2:
∂LDPO(X1;X2)

∂X1
= − β(K1X2)

β

X1((K2X1)β + (K1X2)β)
,

∂LDPO(X1;X2)

∂X2
=

βKβ
1X

β−1
2

(K2X1)β + (K1X2)β
,

(6)

then leading to the following result:∣∣∣∣∂LDPO(X1;X2)

∂X1
/
∂LDPO(X1;X2)

∂X2

∣∣∣∣ = X2

X1
=

πθ(yl|x)
πθ(yw|x)

. (7)

Therefore, the partial derivatives of the optimization objective with respect to πθ(yw|x) and πθ(yl|x)
are inversely proportional to their respective values. Furthermore, the derivation process of Eq.7 and
a detailed analysis of the absolute magnitude of the gradient is provided in Appendix A.1. When
πθ(yw|x) is less than πθ(yl|x), DPO tends to increase the likelihood of generating human-preferred
response yw. Conversely, DPO tends to avoid generating human-dispreferred response yl. Based on
this conclusion, we will analyze the length sensitivity of DPO as follows.

In DPO process, the likelihood πθ(y|x) for sequence-level output is obtained by cumulatively mul-
tiplying the conditional probability of each token p(yt|x, y<t) as shown in Eq.8.

πθ(y|x) =
len(y)∏
i=1

p(yi|x, y<i). (8)

As the conditional probability of the current token from the policy p(yt|x, y<t) lies within the range
[0, 1], it follows that as the sentence y consists of more tokens, πθ(y|x) will obviously be smaller.
According to Eq.7, we know that if len(yw) > len(yl), then it is highly likely that πθ(yw|x) <
πθ(yl|x), so the language model tends to generate the longer response yw after DPO; Conversely, if
len(yw) < len(yl), DPO prevents the output of the longer answer yl, but this does not imply that
the shorter answer yw will be preferred, then verbosity arises.

4
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As shown in Fig.2a and based on the above analysis, DPO is more sensitive to data pairs with large
differences in length. Therefore, it tends to guide the model to prioritize length preferences in the
data, ignoring other human-like preferences that are more important.

3.2 DERIVATION OF LD-DPO

Based on the analysis conducted in the preceding section, it is evident that the length sensitivity of
DPO primarily originates from the substantial influence text length exerts on the likelihood πθ(y|x).
This influence consequently biases the optimization process towards favoring data with a length
advantage. To address this issue, Length-Desensitization DPO (LD-DPO) is employed to diminish
the impact of length on the likelihood. This adjustment allows the optimization process to focus
more on the substantive content of the text, thereby better aligning with human preference.

For a pair of preference data (yw, yl) with lengths (lw, ll), we denote lp = min(lw, ll) as the public
length. Then the likelihood of response in DPO can be rewritten as:

πθ(y|x) =
lp∏
i=1

p(yi|x, y<i)

l∏
i=lp+1

p(yi|x, y<i), (9)

where l is the length of y. The second term contains extensive length information, which directly
decreases the reward and further biases the optimization objective. This bias contributes to the
overall length sensitivity of DPO.

In LD-DPO, our objective is to attenuate the sensitivity of DPO by eliminating the verbosity pref-
erences induced by the excessively long portions, while concurrently maintaining the other prefer-
ences, which include a certain degree of length preference. Initially, as demonstrated in Eq.10, we
disassociate the verbosity preferences from the likelihood of over-long portion (second term in Eq.9)
by introducing a hyperparameter α ∈ [0, 1].

l∏
i=lp+1

pα(yi|x, y<i)︸ ︷︷ ︸
other preferences

p1−α(yi|x, y<i)︸ ︷︷ ︸
verbosity preference

. (10)

We then diminish the length sensitivity of DPO by removing verbosity preference from πθ(y|x),
obtaining the modified likelihood π̂θ(y|x) in LD-DPO:

π̂θ(y|x) =
lp∏
i=1

p(yi|x, y<i)

l∏
i=lp+1

pα(yi|x, y<i). (11)

When α = 1, π̂θ(y|x) = πθ(y|x), which is consistent with vanilla DPO. Conversely, when α = 0,
the likelihood of over-length part is equal to 1, meaning that only the public-length part will be
considered. Ultimately, we reformulate π̂θ(yk|x) in Eq.12 to present it in a more elegant form, with
the detailed derivation provided in Appendix A.2.

π̂θ(y|x) =
l∏

i=1

pα(yi|x, y<i)

lp∏
i=1

p1−α(yi|x, y<i). (12)

It is observable that π̂θ(y|x) is constituted by the complete sequence and the public-length compo-
nent of the preference data pair. The proportion between these two components can be modulated by
adjusting the hyperparameter α. In scenarios where the length sensitivity during the DPO training
process is relatively pronounced, a smaller α should be opted for in order to decouple the verbosity
preference. Conversely, a larger α should be selected to avert the loss of genuine human preferences.

As shown in Fig.2, compared to DPO (Fig.2a), LD-DPO (Fig.2b, 2c, 2d)) with any α ∈ [0, 1) can
smooth πθ(yl|x)/πθ(yw|x), and this effect is markedly amplified as α diminishes. Based on the
prior analysis and Eq.7, it is evident that the optimization direction of LD-DPO is less affected by
the length disparity within the preferred data pairs. This indicates that, relative to DPO, LD-DPO
has achieved a measure of length desensitization.

5
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4 EXPERIMENTAL SETUP

We follow the experimental setup of SimPO (Meng et al., 2024) to objectively demonstrate the
validity of our method.

Models and training settings. We perform preference optimization using three families of models:
Llama2-13B (Touvron et al., 2023), Llama3-8B (AI@Meta, 2024) and Qwen2-7B (Yang et al.,
2024) under two setups: Base and Instruct/Chat.

For the Base setup, we train a base language model on the UltraChat-200k dataset (Ding et al.,
2023) to obtain an SFT model, which possesses a basic capability for conversation. For the Instruct
setup, we select their corresponding instruct models (i.e., Llama2-13B-Chat, Llama3-8B-Instruct,
and Qwen2-7B-Instruct) as initial models. These models are more powerful and robust compared to
the base models. Both setups ensure a high level of transparency as the models and training data are
open source.

In the preference optimization phase, we utilize UltraFeedback(Cui et al., 2023) as the human pref-
erence dataset. This dataset consists of 60,000 high-quality data pairs (x, yw, yl) designed to align
with human conversational preferences and emphasize helpfulness.

Evaluation benchmarks. We primarily evaluate our models using three of the most popular open-
ended evaluation benchmarks: MT-Bench (Zheng et al., 2024), AlpacaEval 2 (Dubois et al., 2024)
and Arena-Hard (Li et al., 2024). These benchmarks assess the model’s versatile session capabilities
across a wide range of queries and have been widely adopted by the community.

MT-Bench comprises 80 questions spanning 8 categories, whereas AlpacaEval 2 encompasses 805
questions derived from 5 datasets. We present the results in accordance with the evaluation protocol
designated for each benchmark. For MT-Bench, we present the average score and provide a detailed
breakdown of the scores for each capability item in Appendix B.3. In the case of AlpacaEval 2, we
report the length-controlled (LC) win rate against GPT-4-preview-1106, a metric specifically engi-
neered to be resistant to model verbosity. For space reasons, we present the analysis of Arena-Hard
in Appendix B.1 All our evaluations are executed utilizing GPT4-turbo-0409 as the adjudicating
model. Furthermore, we calculate the average response length on each benchmark to compare the
effects of different methods on response length.

Baselines. We compare LD-DPO with five other offline preference optimization techniques. Among
these, DPO serves as our most crucial comparison. R-DPO revises DPO by incorporating a length
regularity term to control the response length. SamPO avoides reward overestimation or underesti-
mation due to length by downsampling the KL dispersion. WPO simulates the on-policy learning
process by adding weights to the optimization objective of DPO. SimPO introduces an optimization
objective that does not rely on a reference model, and mitigates the impact of data length by utilizing
average likelihood.

Phase LR BS Epoch LS WP

SFT 2e-5 128 3 cosine 10%
PO 5e-7 32 1 cosine 10%

Table 1: General training hyperparameters set-
tings for SFT phase and preference optimiza-
tion (PO) phase, including Leaning Rate (LR),
Batch Size (BS), Epoch, Learning rate Sched-
ule (LS), Warmup Phase (WP).

General Training Hyperparameters. The training
hyperparameters are shown in Table.1. Addition-
ally, to ensure the performance of the offline prefer-
ence optimization algorithms, we set the fitting tun-
ing hyperparameters for all methods. In general, we
set β = 0.1 for DPO, R-DPO, SamPO, WPO and
LD-DPO. Specifically, for SimPO, setting β = 2.0
and γ = 1.0, for R-DPO, setting α = 0.05, and
for LD-DPO, we set α = {0.1, 0.2, ..., 1.0} to ex-
plore its effect on generation length and model per-
formance. Finally, all preference optimization train-
ing was conducted on 16 A100-80G GPUs.

5 EXPERIMENTAL RESULTS

In this section, we present the main results of our experiments, demonstrating that LD-DPO achieves
state-of-the-art (SOTA) performance on both MT-Bench and AlpacaEval for all six settings through
effective length control. Building on these results, we further analyze the sensitivity of different
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Method
Llama2-Base (13B) Llama2-Chat (13B)

MT-Bench AlpacaEval 2 MT-Bench AlpacaEval 2

Score Avg. Token LC (%) Avg. Token Score Avg. Token LC (%) Avg. Token

SFT 5.51 170 6.56 220 6.35 326 23.46 452

DPO 5.67 191 6.70 266 6.33 368 25.52 487
R-DPO 5.45 150 7.64 198 6.32 346 26.27 461
SimPO 5.45 180 7.31 246 6.40 351 26.38 471
WPO 5.76 185 9.65 244 6.40 401 26.81 486

SamPO 5.78 183 8.80 259 6.21 390 26.09 484

LD-DPO 5.83 154 10.37 208 6.55 329 28.20 449

Method
Llama3-Base (8B) Llama3-Instruct (8B)

MT-Bench AlpacaEval 2 MT-Bench AlpacaEval 2

Score Avg. Token LC (%) Avg. Token Score Avg. Token LC (%) Avg. Token

SFT 6.08 156 8.40 167 7.36 255 38.28 326

DPO 6.38 178 12.58 235 7.61 323 40.21 393
R-DPO 6.18 137 12.15 155 7.54 248 41.07 318
SimPO 6.24 142 9.96 194 7.36 266 39.14 374
WPO 6.42 179 12.99 226 7.60 320 39.77 386

SamPO 6.12 162 14.62 200 7.50 294 40.77 368

LD-DPO 6.45 153 16.82 144 7.74 247 44.00 308

Method
Qwen2-Base (7B) Qwen2-Instruct (7B)

MT-Bench AlpacaEval 2 MT-Bench AlpacaEval 2

Score Avg. Token LC (%) Avg. Token Score Avg. Token LC (%) Avg. Token

SFT 6.30 160 7.62 173 7.95 359 34.09 373

DPO 6.73 181 10.20 204 7.79 321 35.63 437
R-DPO 6.16 137 8.79 168 7.94 314 38.85 365
SimPO 6.61 154 12.08 181 7.88 352 35.10 430
WPO 6.71 167 11.02 193 7.72 361 37.53 433

SamPO 6.79 180 10.89 187 7.78 343 37.05 399

LD-DPO 6.80 163 12.14 155 8.03 303 40.88 356

Table 2: MT-Bench and AlpacaEval 2 results under six model settings. LC-winrate denotes length-
controlled win rate against the baseline model (GPT-4-1106-preview), which can mitigate the length
preference of the judge model (GPT-4-turbo-0409) compared to the raw win rate. Avg.Token denotes
the average length of the model’s answers.

models to data length. Additionally, our findings show that our method significantly enhances the
model’s reasoning ability, with relevant results presented in Appendix C. Finally, we conduct abla-
tion studys and hyperparameter analysis.

5.1 MAIN RESULTS

As shown in Table.2, LD-DPO exhibits significant improvements in both MT-Bench and AlpacaEval
2 compared to all other baselines. In addition, the average response length is reduced by 7.8% to
37.9% relative to DPO, suggesting higher quality and more concise model outputs after LD-DPO.

In the Base setting, we observe that the overall model performance is suboptimal, with responses
tending to be shorter. This phenomenon may be attributed to the model’s performance not being
fully realized during the SFT phase. Conversely, in the Instruct setting, the model demonstrates
greater competence and generates much longer responses than the base model, due to extensive
SFT and RLHF conducted by their publishers. However, in both settings, it is clear that DPO
consistently encourages the model to produce more verbose outputs, with experiments showing
an increase ranging from 10% to 40%, while LD-DPO can significantly alleviate this issue. This
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(a) Llama2-13B-Chat (b) Llama3-8B-Instruct

Figure 3: Exploring the relationship between predicted probability difference log πθ(yw|x) −
log πθ(yl|x) and data length difference under different settings: (a) Llama2-13B-Chat; (b) Llama3-
8B-Instruct. In each subplot, the left image represents data where the chosen is longer, and the right
image represents data where the rejected is longer. DPO-Pub indicates that α = 0 in LD-DPO. The
images depict the true distribution on the UltraFeedback dataset during training.

verbosity can potentially impair model performance, as we will illustrate with several case studies
in Appendix D.

As illustrated in Table.2, we examine the average response length and LC-winrate (which may vary
from public results due to different judge model) of the models on AlpacaEval 2 under six different
settings. Our method achieves the state-of-the-art (SOTA) performance in LC-winrate across all
settings. When comparing the three length control methods (R-DPO, SimPO, and SamPO), We find
that R-DPO demonstrates superior length control under the Base setting, but its overall performance
is suboptimal in terms of LC-winrate. SimPO does not show consistent performance across differ-
ent settings, likely due to the absence of a reference model, which impacts its stability. SamPO’s
performance fluctuates less compared to DPO.

5.2 LENGTH SENSITIVITY ANALYSIS OF VARIED MODEL

The models selected for our experiments vary in their capabilities and, consequently, in their length
sensitivity during the DPO process. Their performance based on the choice of the hyperparameter
alpha is as follows:

In the Instruct setting, Llama2-13B achieves optimal performance at α = 0.3, Llama3-8B at α =
0.5, and Qwen2-7B at α = 0.6. In the Base setting, the optimal α values for these models are
approximately 0.1 to 0.2 lower compared to the Instruct setting. Due to the similarity in performance
between Llama3-8B and Qwen2-7B, we subsequently just conducted an in-depth analysis of the
Llama2-13B and Llama3-8B models to explore the performance differences between these two sizes.
This selection is representative of varying model capacities.

In Fig.3, we plot the distribution of probability difference during preference optimization for
Llama2-13B-Chat (Fig.3a) and Llama3-8B-Instruct (Fig.3b), respectively. The data is differenti-
ated based on the length relationship between the chosen and rejected responses. We will analyze
the training process of the LLMs with different hyperparameter settings:

Under the DPO setting, we can clearly observe that the difference in predicted probability
log πθ(yw|x) − log πθ(yl|x) is influenced by the length of the data, which reflects the implicit re-
ward and determines the optimization direction in DPO. When the chosen is longer, the probability
difference is smaller than 0 and continues decrease. Based on our previous theoretical analysis, we
can infer that it is easier to optimize in the direction of the chosen under these conditions, leading to
verbose outputs. Conversely, when the rejected is longer, the situation is reversed.

Under the DPO-Pub setting, where only the public length portions of the yw and yl are considered,
we find that the the difference in predicted probability is greater than 0 for a larger proportion of the
data. This indicates that the models prefer outputting yw, which suggests that both types of models
possess sizable base capabilities, with Llama3-8B-Instruct being stronger than Llama2-13B-Chat.
Additionally, compared to the DPO setting, the average predicted probability difference of Llama2-
13B-Chat increases (decreases) by 19.66 (14.01) and Llama3-8B-Instruct increases (decreases) by
18.37 (13.68), indicating that the former is more significantly affected by the data length.
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Under the LD-DPO setting, the fact that LD-DPO cannot achieve optimal results in the extreme
case of α = 0 suggests that longer responses are necessary. This is because additional text can
convey more human-like preferences. Furthermore, compared to Llama2-13B-Chat, Llama3-8B-
Instruct is more powerful and can capture more human-like preferences from the text. This capability
can mitigate the negative effects of response length, indicating that setting α to an extreme value may
not be appropriate.

From the above anaylsis, we know that α is actually the result of a compromise to achieve desen-
sitization of DPO based on model capabilities and to prevent the loss of human-like preferences.
In addition, we know that different models have different length sensitivities in the DPO process.
We define γ as the length sensitivity coefficient, where γ = 1 − αs and αs represents the α that
yields the best LD-DPO results. A smaller value of γ in more capable models indicates that such
models are more likely to capture genuine human preferences rather than being influenced by text
length. For example, the length sensitivity coefficient of Llama3-8B-Instruct is 0.5, whereas that of
Llama2-13B-Chat is 0.7. This suggests that the latter is more sensitive to length during DPO.

5.3 ABLATION STUDY

To verify the effect of the relative lengths of yw(chosen) and yl(rejected) in the training data on
LD-DPO, we constructed ablation experiments: The length decoupling strategy, as shown in Eq.12,
was applied to yw and yl separately or simultaneously.

As shown in Table.3, the performance of the LLMs on MT-Bench, AlpacaEval 2 and Arena-Hard,
as well as the length control effect, is inferior to that of LD-DPO under both the chosen and rejected
setups. This suggests that length decoupling is necessary for both chosen and rejected. For more
detail, we have:

• If yw is longer: According to the previous analysis, it is known that DPO is more inclined
to optimize in the direction of yw under the effect of length bias, which results in redundant
output. At this point, length decoupling for yw can alleviate this tendency.

• If yl is longer: DPO tends to block the output of yl. In this case, the decoupling of the
length of yl may redirect the optimization towards a shorter yw, thus reducing redundancy
and improving the quality of the model’s answers.

Therefore, our length desensitization strategy can encourage the model to identify and leverage more
human-like preference gaps in the data samples, rather than optimizing the training process based
on superficial length differences.

Method MT-Bench AlpacaEval 2 Arena-Hard
Score Avg. Token LC (%) Avg. Token Win-Rate Avg. Token

SFT 7.36 255 38.28 326 24.3 470
DPO 7.61 323 40.21 393 27.6 560

chosen 7.67 302(↓21) 43.39 352(↓41) 27.2 526(↓34)
rejected 7.62 283(↓40) 42.23 351(↓42) 27.9 523(↓37)
LD-DPO 7.74 247(↓76) 44.00 308(↓85) 28.0 485(↓75)

Table 3: Ablation study on Llama3-8B-Instruct: chosen denotes length decoupling (Eq.12) applied
only to yw, rejected denotes only to yl, and ↓tokens denotes the Avg. Token drop compared to DPO.

5.4 HYPERPARAMETER ANALYSIS

In this subsection, we verify the effect of the hyperparameter α on the performance of LD-DPO. We
present the experimental results of Llama3-8B-Instruct. In all experiments, we set β = 0.1, though
we encourage researchers to explore the effects of different α selected at various β settings.

When α = 1, LD-DPO is equivalent to DPO. As α gradually decreases, the degree of length de-
coupling increases. At this point, as shown in Fig.4, the sensitivity of the training process to length
begins to decline, resulting in a subsequent reduction in the average output length.
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We find that the decrease in average response length is pronounced as the parameter α decreases
from 1 to 0.5. However, this tendency becomes less significant as α further decreases from 0.5 to 0.

Figure 4: Hyperparametric analysis on α with
Llama3-8B-Instruct on AlpacaEval 2(left) and
MT-Bench(right).

This phenomenon can likely be attributed to the
fact that verbosity preference decoupling is effec-
tively complete when α reaches 0.5.

In terms of the performance on AlpacaEval 2 and
MT-Bench, the trend is to first increase and then
decrease as α decreases, with the best performance
observed at α = 0.5. This indicates that when α is
too large, the model’s performance is constrained
by DPO’s length sensitivity, resulting in verbose,
poor-quality content. Conversely, when α is too
small, excessive length decoupling leads to a loss
of human-like preferences in the text, thereby re-
ducing the optimization effectiveness.

6 RELATED WORKS

6.1 OFFLINE PREFERENCE OPTIMIZATION

In practice, traditional RLHF paradigms are more complex in terms of coding and hyperparame-
ter tuning, requiring four models simultaneously, which makes them more resource-intensive and
difficult to train stably. Due to the lack of online reward models, DPO needs to construct artificial
preference datasets in advance, and many works have proposed different data construction strategies
to enable the model to better learn human preferences (An et al., 2023; Gallego, 2024; Khaki et al.,
2024). Meanwhile, another research direction is to improve the preference optimization objective,
including the necessity of the reference model, the selection of the reward fitting function, and the
adjustment of the update weights, and derive a variety of offline optimization strategies, including
ORPO (Hong et al., 2024), KTO (Ethayarajh et al., 2024), NCA (Chen et al., 2024b), IPO (Azar
et al., 2024), WPO (Zhou et al., 2024), etc.

6.2 LENGTH CONTROL STRATEGY

Recent research has shown that DPO may lead to biased results, such as models producing lengthy
outputs, which affects the model’s ability to follow instructions and reasoning. To address this prob-
lem, Park et al. (2024) proposed R-DPO, which suppresses the model from producing excessively
long answers by introducing a rule term, which is a intuitive scheme followed by several algorithms
(Zhou et al., 2024; Chen et al., 2024a). Meng et al. (2024) proposed an optimization strategy that
does not rely on the reference model, called SimPO, which uses length-normalized rewards to pre-
vent the model from generating excessively long but low-quality answers. Lu et al. (2024) argued
that the phenomenon of lengthy outputs in DPO is due to the overestimation or underestimation of
implicit rewards caused by the length of the training data. Based on this, they proposed SamPO,
which mitigates the length bias by down-sampling the KL divergence to ensure that implicit rewards
are not affected by length.

7 CONCLUSION

In this work, we propose for the first time that the optimization process of DPO is length-sensitive
and provide a theoretical proof. Based on this, we design a length-desensitization algorithm based
on DPO: LD-DPO, which achieves length desensitization by reparameterizing the likelihood to de-
couple verbosity preferences from complete information while preserving human-like preferences.
Through extensive experimental analysis, LD-DPO consistently outperforms existing algorithms in
various training settings, achieving performance improvements with a 10-40% reduction in output
length, especially in reasoning ability. This suggests that previous optimization algorithms have
overemphasized length at the expense of quality, validating the value of our work. Furthermore, we
perform a comparative analysis of length sensitivity across models with different capabilities, which
may provide new insights into the preference optimization process.
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(a) LDPO(X1;X2) (b) ∂LDPO(X1;X2)/∂X1 (c) ∂LDPO(X1;X2)/∂X2

Figure 5: (a)The optimization objective of DPO (b)The partial derivative of LDPO(X1;X2) with
respect to X1 (c)The partial derivative of LDPO(X1;X2) with respect to X2, where we denote
πθ(yw|x) by X1 and πθ(yl|x) by X2.

A MATHEMATICAL DERIVATIONS

A.1 DERIVATION OF OPTIMIZATION DIRECTION IN DPO

LDPO(πθ;πref ) = −E(x,yw,yl)∼D[log σ(β log
πθ(yw|x)
πref (yw|x)

− β log
πθ(yl|x)
πref (yl|x)

)]. (13)

The optimization objective of DPO is presented in Eq.13 and its image is shown in Fig.5a. We
define X1 = πθ(yw|x),X2 = πθ(yl|x) and K1 = πref (yw|x),K2 = πref (yl|x), where K1 and K2

can be regarded as constants and the optimization process of DPO is only related to X1,X2. We can
rewrite the loss of DPO as:

LDPO(X1;X2) =− log σ(β log
X1

K1
− β log

X2

K2
)

=− log
1

1 + exp{−β log(K2X1/K1X2})

=− log
1

1 + (K1X2/K2X1)β

=− log
(K2X1)

β

(K2X1)β + (K1X2)β
.

(14)

As shown in the Eq.15, the partial differentiation of LDPO(X1;X2) with respect to X1 indicates that
the model is oriented in the chosen direction, the function image is showen in Fig.5b.

∂LDPO(X1;X2)

∂X1
=− βKβ

2X
β−1
1 [(K2X1)

β + (K1X2)
β ]− (K2X1)

ββKβ
2X

β−1
1

[(K2X1)β + (K1X2)β ]2
(K2X1)

β + (K1X2)
β

(K2X1)β

=− βKβ
2X

β−1
1 (K2X1)

β + βKβ
2X

β−1
1 (K1X2)

β − (K2X1)
ββKβ

2X
β−1
1

[(K2X1)β + (K1X2)β ](K2X1)β

=− βKβ
2X

β−1
1 (K1X2)

β

[(K2X1)β + (K1X2)β ](K2X1)β

=− β(K1X2)
β

X1[(K2X1)β + (K1X2)β ]
.

(15)

As shown in the Eq.16, the partial differentiation of LDPO(X1;X2) with respect to X2 indicates that
the model is oriented in the rejected direction, the function image is showen in Fig.5c.

∂LDPO(X1;X2)

∂X2
=− −(K2X1)

ββKβ
1X

β−1
2

[(K2X1)β + (K1X2)β ]2
(K2X1)

β + (K1X2)
β

(K2X1)β

=
βKβ

1X
β−1
2

(K2X1)β + (K1X2)β
.

(16)
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(a) ∂G1(X1;X2)
∂X1

(b) ∂G1(X1;X2)
∂X2

(c) ∂G2(X1;X2)
∂X1

(d) ∂G2(X1;X2)
∂X1

Figure 6: (a)The partial derivative of G1(X1;X2) with respect to X1; (b)The partial derivative of
G1(X1;X2) with respect to X2; (c)The partial derivative of G2(X1;X2) with respect to X1; (d)The
partial derivative of G2(X1;X2) with respect to X2.

According to the Eq.15 and Eq.16, we can obtain Eq.17, which implies that the value of the gradient
of the DPO loss function in the preference direction, compared to the non-preference direction, is
inversely proportional to its prediction probability.∣∣∣∣∂LDPO(X1;X2)

∂X1
/
∂LDPO(X1;X2)

∂X2

∣∣∣∣ = X2

X1
=

πθ(yl|x)
πθ(yw|x)

. (17)

Next, we analyze the relationship between the partial gradient values ∂LDPO(X1;X2)
∂X1

,∂LDPO(X1;X2)
∂X2

and X1,X2, and we denote ∂LDPO(X1;X2)
∂X1

as G1(X1;X2) and ∂LDPO(X1;X2)
∂X2

as G2(X1;X2). In
addition, it is known that X1,X2,K1,K2 all represent likelihood, each taking values in the range
(0, 1), and β is a hyperparameter that is range from (0, 1) in DPO. We solve for the partial derivatives
with respect to X1 and X2 for G1(X1;X2) and G2(X1;X2) between Eq.18 and Eq.21, and their
images are shown in Fig. 6.

∂G1(X1;X2)

∂X1
=
β(K1X2)

β [(K2X1)
β + (K1X2)

β + X1βKβ
2X

β−1
1 ]

X 2
1 [(K2X1)β + (K1X2)β ]2

=
β(K1X2)

2β + β(β + 1)(K1X2)
β(K2X1)

β

X 2
1 [(K2X1)β + (K1X2)β ]2

> 0.

(18)

∂G1(X1;X2)

∂X2
=− β2Kβ

1X
β−1
2 X1[(K2X1)

β + (K1X2)
β ]− β(K1X2)

ββKβ
1X1X β−1

2

X 2
1 [(K2X1)β + (K1X2)β ]2

=− β2Kβ
1X

β−1
2 X1(K2X1)

β

X 2
1 [(K2X1)β + (K1X2)β ]2

< 0.

(19)

∂G2(X1;X2)

∂X1
=− βKβ

1X
β−1
2 βKβ

2X
β−1
1

[(K2X1)β + (K1X2)β ]2

=− β2Kβ
1X

β−1
2 Kβ

2X
β−1
1

[(K2X1)β + (K1X2)β ]2
< 0.

(20)

∂G2(X1;X2)

∂X2
=
β(β − 1)Kβ

1X
β−2
2 [(K2X1)

β + (K1X2)
β ]− βKβ

1X
β−1
2 βKβ

1X
β−1
2

[(K2X1)β + (K1X2)β ]2

=
β(β − 1)Kβ

1X
β−2
2 Kβ

2X
β
1 − βK2β

1 K2β−2
2

[(K2X1)β + (K1X2)β ]2
< 0.

(21)

Based on the analysis of the aforementioned function trend, we can draw the following conclu-
sion: When X1 decreases, both

∣∣∣∂LDPO(X1;X2)
∂X1

∣∣∣ and
∣∣∣∂LDPO(X1;X2)

∂X2

∣∣∣ increase. When X2 decreases,
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∣∣∣∂LDPO(X1;X2)
∂X1

∣∣∣ decreases and
∣∣∣∂LDPO(X1;X2)

∂X2

∣∣∣ increases. According to the analysis in Subsection
3.1, when the training data is more extensive, the parameters will be updated at a faster rate, thereby
exacerbating the sensitivity of the DPO.

A.2 DERIVATION OF THE MODIFIED LIKELIHOOD IN LD-DPO

π̂θ(y|x) =
lp∏
i=1

p(yi|x, y<i)

l∏
i=lp+1

pα(yi|x, y<i)

=

lp∏
i=1

pα(yi|x, y<i)p
1−α(yi|x, y<i)

l∏
i=lp+1

pα(yi|x, y<i)

=

lp∏
i=1

pα(yi|x, y<i)

l∏
i=lp+1

pα(yi|x, y<i)

lp∏
i=1

p1−α(yi|x, y<i)

=

l∏
i=1

pα(yi|x, y<i)

lp∏
i=1

p1−α(yi|x, y<i).

(22)

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 ARENA-HARD RESULTS

To comprehensively validate the effectiveness of LD-DPO, we conduct experimental evaluations on
Arena-Hard(Li et al., 2024), an enhanced version of MT-Bench. Arena-Hard consists of 500 well-
defined technical problem-solving queries and presents more complex problem scenarios compared
to MT-Bench and AlpacaEval, thereby posing a greater challenge to model performance. We select
the Instruct model, known for its superior modeling capabilities, as the initial model to compare the
performance differences between LD-DPO and five other offline optimization algorithms.

As shown in Table.4, the overall performance of LD-DPO surpasses the five offline preference opti-
mization strategies, including DPO, with a significant decrease in average response length compared
to DPO. For Llama2-13B-Chat and Llama3-8B-Instruct, LD-DPO performs suboptimally; however,
the average response length is more than 10% shorter compared to the SOTA algorithm. In the case
of Qwen2-Instruct, LD-DPO achieves the highest Win rate of 31.2% (exceeding DPO by 7.8%), and
the average response length is 10% shorter. Notably, GPT-4-turbo-0409, the judge model, exhibits a
clear length preference, favoring longer responses when calculating win rate. Despite this, LD-DPO
achieves high win rates with shorter responses, which strongly indicates its effectiveness in aligning
with human-like preferences.

Method Llama2-Chat (13B) Llama3-Instruct (8B) Qwen2-Instruct (7B) Avg.WR(%)
WR(%) Avg. Token WR(%) Avg. Token WR(%) Avg. Token

SFT 9.6 635 24.3 470 22.9 533 18.9

DPO 10.2 661 27.6 560 23.4 576 20.4
R-DPO 9.8 607 27.1 455 29.1 538 22.0
SimPO 10.1 620 23.9 495 26.0 603 20.0
WPO 9.6 665 28.8 553 24.6 579 21.0

SamPO 9.7 637 28.2 533 25.6 580 21.2

LD-DPO 10.1 603 28.0 485 31.2 516 23.1

Table 4: Arena-Hard results under Instruct model setting: WR denotes the win rate against the base-
line model (GPT-4-0314) as judged by GPT-4-turbo-0409. Avg.Token denotes the average length of
the model’s answers. Avg.WR denotes the average win rate of three models.
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Method GSM8K BBH WinoGrande CSQA ARC MMLU HellaSwag ProofWriter Average

Llama2-13B-Base

SFT 34.18 37.61 53.08 69.37 73.51 50.79 36.38 48.69 50.45
DPO 35.64 37.95 53.20 69.33 73.41 50.68 37.37 47.89 50.68

R-DPO 32.53 37.68 53.12 68.84 73.03 50.52 38.13 48.19 50.26
SimPO 32.68 36.70 52.29 66.75 72.88 50.53 36.26 47.92 49.50
WPO 35.03 37.26 53.12 69.29 73.35 50.57 36.95 47.67 50.40

SamPO 34.33 37.22 53.20 69.08 73.30 50.39 37.15 48.50 50.40
LD-DPO 35.07 37.97 53.16 69.16 73.55 50.91 39.10 48.83 50.97

Llama2-13B-Chat

SFT 43.96 44.69 50.99 64.05 73.22 55.28 49.00 47.08 53.53
DPO 44.11 44.98 51.50 64.91 73.14 55.40 49.20 47.72 53.87

R-DPO 43.73 44.35 51.78 65.27 73.05 54.68 49.45 47.42 53.72
SimPO 44.02 44.91 50.95 64.21 71.53 54.65 48.90 47.50 53.33
WPO 43.65 44.64 51.42 64.78 73.19 55.14 48.81 47.56 53.65

SamPO 44.73 44.57 51.46 64.74 73.00 55.36 48.95 47.94 53.84
LD-DPO 43.80 44.70 51.78 65.32 73.09 55.21 49.64 47.89 53.93

Llama3-8B-Base

SFT 56.27 45.53 54.03 70.68 83.10 61.61 43.66 52.75 58.45
DPO 56.66 46.49 54.70 71.70 83.23 62.29 46.42 48.89 58.80

R-DPO 53.58 45.67 54.30 71.25 83.35 62.46 48.70 50.61 58.74
SimPO 54.43 45.94 54.18 71.50 83.53 62.17 46.70 51.56 58.75
WPO 56.74 46.27 54.06 71.74 83.37 62.35 46.32 50.50 58.92

SamPO 57.74 45.69 54.38 71.66 83.44 62.55 46.75 49.61 58.98
LD-DPO 58.12 46.39 54.54 71.62 83.56 62.58 49.33 51.39 59.69

Llama3-8B-Instruct

SFT 82.60 62.07 61.33 76.17 87.87 69.40 58.70 55.19 69.17
DPO 82.68 61.24 60.89 75.76 87.65 67.65 58.82 56.14 68.85

R-DPO 83.53 60.21 59.75 75.35 86.56 66.68 58.44 57.19 68.47
SimPO 83.22 58.54 59.94 75.76 86.60 66.87 59.55 53.69 68.02
WPO 82.37 61.18 61.52 76.78 87.76 70.01 59.63 56.47 69.47

SamPO 83.83 61.73 60.34 75.88 87.38 67.76 58.87 57.42 69.15
LD-DPO 83.76 62.10 60.97 76.41 87.41 67.79 59.66 58.72 69.61

Qwen2-7B-Base

SFT 82.53 50.30 62.98 76.41 89.48 69.59 56.12 54.50 67.74
DPO 82.91 50.83 62.15 76.00 89.75 69.05 55.22 51.64 67.20

R-DPO 83.53 49.52 62.08 76.00 89.53 68.99 55.62 51.58 67.11
SimPO 82.72 48.22 62.67 76.45 89.52 68.80 57.07 53.42 67.36
WPO 84.30 49.86 62.12 75.76 89.74 68.87 55.24 54.06 67.41

SamPO 83.37 49.92 62.15 75.96 89.66 68.95 55.26 52.97 67.28
LD-DPO 84.06 50.46 62.47 76.29 89.74 69.12 56.37 54.61 67.88

Qwen2-7B-Instruct

SFT 88.61 57.82 66.02 78.54 89.77 71.06 70.43 58.14 72.55
DPO 87.84 58.27 65.79 78.42 89.74 71.39 69.73 59.11 72.54

R-DPO 88.99 56.99 65.98 78.05 89.69 70.73 71.06 58.31 72.48
SimPO 88.14 59.32 66.30 78.13 89.83 71.08 71.75 58.03 72.83
WPO 87.84 58.72 65.90 78.21 89.80 71.09 69.62 57.97 72.40

SamPO 87.84 58.27 65.79 78.42 89.83 71.39 69.73 59.58 72.61
LD-DPO 88.99 58.07 66.34 78.46 89.75 70.84 71.16 59.69 72.90

Table 5: Results on downstream tasks on the Huggingface OpenLLM Leaderboard.

B.2 RESULTS ON DOWNSTREAM TASKS

We evaluate the performances of LD-DPO and all baselines on various tasks on OpenLLM leader-
board (Beeching et al., 2023), including MMLU (Hendrycks et al., 2021), ARC (Clark et al., 2018),
BBH (Suzgun et al., 2023), GSM8K (Cobbe et al., 2021), CommonsenseQA (Talmor et al., 2019),
WinoGrande (Sakaguchi et al., 2021), HellaSwag (Zellers et al., 2019) and ProofWriter (Tafjord
et al., 2021). The results are shown in Table 5, from where we find that:

• LD-DPO outperforms SFT, DPO, and all other baselines on the average score across all
benchmarks in all settings.

• Preference optimization, whose goal is to align LLMs with human preference, may not
significantly improve the performance on all downstream tasks.
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• All preference optimization methods perform comparably to SFT model on MMLU and
CommonsenseQA(CSQA), with slight fluctuations, showing that knowledge is maintained
during the preference optimization stage.

• Compared to SFT, DPO, and other baselines, LD-DPO significantly improves the perfor-
mance on HellaSwag and ProofWriter, indicating that LD-DPO can enhance the reasoning
capability of LLMs.

Method Writing Roleplay Reasoning Math Coding Extraction STEM Humanities Average

Llama2-13B-Base

SFT 8.15 6.20 4.35 1.65 2.95 6.75 5.90 8.15 5.51
DPO 7.55 7.05 4.95 1.70 3.00 6.55 6.30 8.30 5.67

R-DPO 8.05 5.90 3.80 2.10 2.90 6.35 6.10 8.40 5.45
SimPO 7.95 6.30 4.60 1.70 3.05 6.60 5.75 8.05 5.50
WPO 7.75 6.70 4.60 1.80 2.85 7.55 6.30 8.55 5.76

SamPO 7.85 6.55 4.75 1.35 3.05 8.05 6.40 8.25 5.78
LD-DPO 7.80 6.50 4.75 1.60 3.65 7.40 6.55 8.45 5.83

Llama2-13B-Chat

SFT 8.45 7.20 5.35 3.30 2.75 7.30 7.50 9.00 6.35
DPO 7.90 7.50 5.40 2.95 3.15 7.05 7.30 9.40 6.33

R-DPO 8.75 7.05 5.65 3.05 3.00 7.25 6.80 9.05 6.32
SimPO 8.90 7.25 5.55 3.05 3.50 6.75 7.15 9.05 6.40
WPO 8.50 6.65 5.60 2.60 3.05 7.95 7.60 9.25 6.40

SamPO 8.20 7.05 5.45 2.70 3.00 7.85 6.55 8.90 6.21
LD-DPO 8.60 7.30 6.05 3.20 3.25 7.20 7.65 9.15 6.55

Llama3-8B-Base

SFT 7.80 6.25 3.90 3.05 4.25 8.40 6.55 8.50 6.08
DPO 7.95 6.80 4.05 3.20 4.45 8.75 7.25 8.65 6.38

R-DPO 8.30 6.30 4.00 2.65 4.10 8.30 7.45 8.35 6.18
SimPO 8.10 6.30 4.40 3.05 4.35 8.35 7.15 8.20 6.24
WPO 8.45 6.60 4.10 3.45 4.60 8.50 7.10 8.50 6.42

SamPO 8.15 6.40 4.40 2.75 4.30 8.50 6.40 8.20 6.12
LD-DPO 8.15 7.40 4.45 3.15 4.40 8.55 7.15 8.35 6.45

Llama3-8B-Instruct

SFT 8.95 8.45 4.60 5.05 5.35 9.10 8.10 9.30 7.36
DPO 9.05 8.55 5.55 5.30 5.45 9.00 8.70 9.35 7.61

R-DPO 8.85 8.00 5.75 5.50 6.15 8.75 7.70 9.65 7.54
SimPO 9.05 7.40 5.45 5.30 5.75 8.60 7.90 9.45 7.36
WPO 8.20 8.55 5.50 5.20 6.20 9.25 8.50 9.40 7.60

SamPO 9.20 8.65 5.30 3.55 6.15 9.25 8.45 9.50 7.50
LD-DPO 8.95 8.35 5.90 5.35 6.75 8.70 8.55 9.40 7.74

Qwen2-7B-Base

SFT 7.45 6.35 4.65 6.05 4.45 6.85 6.50 8.15 6.30
DPO 7.65 7.30 4.70 6.95 5.00 7.35 6.65 8.25 6.73

R-DPO 7.40 6.30 4.50 6.30 3.95 6.70 6.15 8.00 6.16
SimPO 7.75 6.60 4.70 5.95 5.45 6.60 7.60 8.30 6.61
WPO 7.85 6.75 4.85 6.75 5.10 6.75 7.25 8.45 6.71

SamPO 7.95 7.35 4.85 6.70 4.50 7.15 7.20 8.65 6.79
LD-DPO 8.20 6.85 5.05 7.45 4.85 6.70 6.80 8.50 6.80

Qwen2-7B-Instruct

SFT 9.10 8.95 6.30 6.35 6.45 8.05 9.05 9.40 7.95
DPO 9.15 9.05 6.45 6.40 4.85 7.90 9.05 9.45 7.79

R-DPO 8.80 8.50 6.80 6.25 6.10 8.60 8.90 9.60 7.94
SimPO 8.85 8.90 6.20 6.55 6.00 8.00 9.05 9.50 7.88
WPO 9.00 8.80 6.80 6.40 4.90 8.10 8.20 9.55 7.72

SamPO 8.90 8.80 6.50 6.15 5.70 8.45 8.35 9.40 7.78
LD-DPO 8.90 8.55 7.25 6.25 5.90 8.75 9.05 9.55 8.03

Table 6: Scores for each capability item on the MT-Bench.

B.3 MT-BENCH RESULT

We provide a detailed presentation of the MT-Bench results in Table 6. MT-Bench comprises 80
questions specifically designed to evaluate the model’s proficiency across 8 dimensions: writing,
roleplay, reasoning, math, coding, extraction, stem, humanities. To further assess the model’s capa-
bility in multi-round interactions and bolster the validity of the results, each question in MT-Bench
undergoes two rounds of Q&A. The scores reported for each dimension are the averages derived
from these two rounds.
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Generally, we find that LD-DPO outperforms SFT, DPO, and all other baselines on average in all
settings. In the case of slight fluctuations in performance across other dimensions, LD-DPO signif-
icantly outperforms all baselines in reasoning, indicating that LD-DPO can enhance the reasoning
capability of LLMs.

C IMPROVEMENT OF REASONING CAPABILITY

In further analysis of the MT-Bench, we found that the reasoning ability of the model significantly
improved after applying LD-DPO, compared to both the SFT and DPO models. To further validate
this conclusion, we conducted experiments on ProofWriter. ProofWriter is a specialized dataset
designed to evaluate the reasoning capabilities of large language models. It comprises a broad range
of problems, from direct reasoning tasks to those requiring more than five steps, and distinguishes
between open-world assumptions (OWA) and closed-world assumptions (CWA), resulting in a total
of 14 data subsets.

Figure 7: Performance of var-
ious methods on 14 subsets
of ProofWriter dataset for the
Llama3-8B-Instruct setting.

We conducted experiments on ProofWriter and the results are shown
in Table.5. Fig.7 displays the results corresponding to the Llama3-
8B-Instruct, with the scatter indicating the score for each data subset.
After applying LD-DPO, the model shows an overall improvement
across 14 data subsets. Compared to Llama3-8B-Instruct, the aver-
age score increases from 55.19 to 58.72, outperforming five classes
of preference optimization algorithms, including DPO, indicating a
significant improvement in reasoning. Detailed results of MT-Bench
shown in the Appendix B.3 also prove this point, and a case study of
the reasoning problems in Appendix D.

In fact, verbose responses negatively impact the reasoning abilities
of language models, particularly smaller models. Unlike Chain of
Thought (CoT), which is considered an excellent reasoning paradigm
(Feng et al., 2024b), overly lengthy responses tend to include incor-
rect derivations or meaningless descriptions, which interfere with the
model’s ability to make the next step in the reasoning process or to
reach the correct conclusion. Our approach enables the model to
learn a concise CoT style while preventing overly lengthy answers,
thereby improving the model’s reasoning capabilities.

D CASE STUDIES

In Fig.8, we present two examples from AlpacaEval 2, where LD-DPO generates comparably accu-
rate outputs with less tokens compared to vanilla DPO, showing that LD-DPO can generate more
concise outputs without sacrificing performance. Since longer outputs are not necessarily more ac-
curate or informative, sometimes they may contain more redundant and unimportant information,
making the outputs verbose and lengthy. We believe that providing concise and clear outputs can
also reflect the expressive capability of LLMs.

We also present two examples from ProofWriter in Fig.9, where LD-DPO generates more concise
and direct chain-of-thought (CoT). From the cases we find that DPO generates complex and verbose
CoTs, ultimately resulting in incorrect answers. By contrast, LD-DPO provides more direct and
clearer CoTs, resulting in correct answers. The experimental results show that overly lengthy CoTs
may detract from the accuracy of reasoning, whereas LD-DPO can improve the reasoning capability
of LLMs by producing more concise and clearer CoTs.
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Q: What language does Argentina people speak?Input

In Argentina, the official language is Spanish. It's the most 
widely spoken language in the country, and it's used as the 
primary language for government, education, media, and daily 
life.

However, Argentina is a country with a rich cultural diversity, 
and you may also hear other languages being spoken, such as:
1. Italian: Many Argentines have Italian ancestry, and you may 
hear Italian being spoken, especially in the north of the 
country.
2. German: German is also a common language in Argentina, 
particularly in the Pampa region.
3. English: English is widely taught in schools, and many 
Argentines speak some English, especially in the service 
industry, tourism, and business.
4. Indigenous languages: There are also several indigenous 
languages spoken in Argentina, such as Quechua, Guarani, and 
Mapudungun, which are spoken by the country's indigenous 
communities.

Overall, Spanish is the dominant language in Argentina, and it's 
the language you'll most likely hear and use during your visit.

Llama3-8B-Instruct 
DPO

(209 tokens)

In Argentina, the official language is Spanish. It's the most 
widely spoken language in the country and is used as the primary 
language for government, education, media, and daily life. In 
fact, Argentine Spanish has its own unique dialect and accent, 
which is influenced by Italian, German, and other immigrant 
languages that have been incorporated into the culture over 
time.

Llama3-8B-Instruct 
LD-DPO

(72 tokens)

Q: Give a brief description of the given category of movies and 
shows: Period Dramas.

Input

Period dramas are a category of movies and shows that are set in 
a specific historical time period, often featuring elaborate 
costumes, settings, and storylines. These productions typically 
take place in the past, often in Europe or North America, and may 
be based on real events, literary works, or fictional stories. 
Period dramas often focus on the lives of aristocrats, royalty, 
or other members of high society, exploring themes such as social 
class, politics, romance, and personal struggles. The genre often 
features grand estates, opulent costumes, and meticulous 
attention to historical detail, transporting viewers to a bygone 
era. Examples of period dramas include "Downton Abbey", "Pride 
and Prejudice" and "The Crown".

Llama3-8B-Instruct 
DPO

(146 tokens)

Period Dramas refer to films and television shows that are set in 
a specific historical time period, often featuring elaborate 
costumes, settings, and cultural references from that era. These 
dramas typically recreate historical events, figures, or 
lifestyles with a focus on storytelling, character development, 
and atmospheric authenticity. They can range from epic historical 
epics to intimate character studies, and often explore themes 
such as love, power, class, and social change. Examples of Period 
Dramas include films like "Downton Abbey" and "Pride and 
Prejudice", as well as TV shows like "Outlander" and "Victoria".
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(123 tokens)

Figure 8: Comparing generations of AlpacaEval 2 prompts from Llama3-8B trained based on DPO
and LD-DPO.
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Q: Anne is cold. Bob is big. Dave is rough. Gary is cold. Cold 
people are furry. Big people are rough. If someone is white then 
they are big. White people are cold. Red people are big. If 
someone is blue then they are white. Anne is furry? Options: A. 
True B. False

Input

1. Anne is cold, so according to the given statement, cold 
people are furry. Therefore, Anne is furry. 
2. Bob is big, but being big does not necessarily make someone 
furry. So, we cannot say whether Bob is furry or not. 
3. Dave is rough, but being rough also does not indicate whether 
someone is furry or not. So, we cannot say whether Dave is furry 
or not. 
4. Gary is cold, so he is furry according to the given 
statement. 
5. The statement "Big people are rough" does not indicate 
whether big people are furry or not. So, we cannot say whether 
white people are furry or not. 
6. The statement "White people are cold" does not indicate 
whether white people are furry or not. So, we cannot say whether 
red people are furry or not. 
7. The statement "If someone is blue then they are white" does 
not indicate whether blue people are furry or not. 
So, we cannot say whether Anne is furry or not. Therefore, we 
cannot conclude whether Anne is furry or not. The answer is 
"Cannot be determined."
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Let's break it down step by step. 
We know Anne is cold. From the statement "Cold people are 
furry", we can conclude that Anne is furry. 
So, the answer is: A. True
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Q: Bob is blue. Fiona is round. Harry is big. If someone is blue 
and cold then they are not big. Fiona is not big? Options: A. 
True B. False C. Unknown

Input

Let's break down the information given in the passage:
1. We are given the following statements: 
* Bob is blue. 
* Fiona is round. 
* Harry is big. 
2. We are also given a conditional statement: "If someone is blue 
and cold then they are not big." 
3. We are asked to determine the truth value of the statement 
"Fiona is not big." 
To do this, we need to analyze the given statements and the 
conditional statement. 
From the given statements, we know that Fiona is round, but we 
don't have any information about her size. Therefore, we cannot 
conclude that Fiona is big or not big. 
The conditional statement "If someone is blue and cold then they 
are not big" does not provide any information about Fiona's size 
or color. It only talks about someone who is both blue and cold, 
and in that case, they are not big. 
Since we don't have any information about Fiona's size or color, 
we cannot conclude that she is not big. 
Therefore, the correct answer is: B. False
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Let's break it down step by step. 
We are given the following statements: 
1. Bob is blue. 
2. Fiona is round. 
3. Harry is big. 
4. If someone is blue and cold then they are not big. 
From statement 3, we know Harry is big. 
The question asks if Fiona is not big. To determine this, let's 
analyze the information: We don't have any information about 
Fiona's size. The only characteristic we know about Fiona is that 
she is round (from statement 2). We don't have any information 
about her size being big or not big. 
Therefore, the correct answer is: C. Unknown

Llama3-8B-Instruct 
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(139 tokens)

Figure 9: Comparing generations of ProofWriter prompts from Llama3-8B trained based on DPO
and LD-DPO.
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