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Abstract

We present Rodent-Bench, a novel benchmark designed to evaluate the ability
of Multimodal Large Language Models (MLLMs) to annotate rodent behaviour
footage. We evaluate state-of-the-art MLLMs, including Gemini-2.5-Pro, Gemini-
2.5-Flash and Qwen-VL-Max, using this benchmark and find that none of these
models perform strongly enough to be used as an assistant for this task. Our
benchmark encompasses diverse datasets spanning multiple behavioral paradigms
including social interactions, grooming, scratching, and freezing behaviors, with
videos ranging from 10 minutes to 35 minutes in length. We provide two benchmark
versions to accommodate varying model capabilities and establish standardized
evaluation metrics including second-wise accuracy, macro F1, mean average pre-
cision, mutual information, and Matthew’s correlation coefficient. While some
models show modest performance on certain datasets (notably grooming detection),
overall results reveal significant challenges in temporal segmentation, handling
extended video sequences, and distinguishing subtle behavioral states. Our anal-
ysis identifies key limitations in current MLLMs for scientific video annotation
and provides insights for future model development. Rodent-Bench serves as a
foundation for tracking progress toward reliable automated behavioral annotation
in neuroscience research.

1 Introduction

Behavioral analysis is fundamental to neuroscience and biomedical research, yet manual annota-
tion of animal behavior videos remains a time-consuming bottleneck that limits research scale and
reproducibility (Sturm et al.| 2020; Mathis & Mathis, 2020). While Multimodal Large Language
Models (MLLMs) have shown impressive capabilities in vision-language tasks (Fu et al.| 2024} Yin
et al., [2024), their application to specialized scientific domains like behavioral analysis remains
largely unexplored. MLLM:s offer particular promise for scientific annotation tasks as they can poten-
tially handle diverse behavioral paradigms through natural language instructions without requiring
specialized model training for each new behavior or experimental setup.

Unlike general computer vision tasks, behavioral analysis requires models to identify subtle, context-
dependent actions, maintain temporal coherence across extended sequences, and produce structured
outputs aligned with ethological frameworks. Traditional computer vision approaches require training
specialized models for each behavioral task, but MLLMs could streamline this process by accepting
task descriptions in natural language and adapting to new behaviors without retraining. Existing video
understanding benchmarks inadequately address these scientific requirements, creating a significant
gap between current MLLM capabilities and practical research applications.

We present Rodent-Bench-Short and Rodent-Bench-Long, the first comprehensive benchmarks
for evaluating MLLMs on rodent behavioral annotation tasks. Our benchmarks encompasse diverse
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datasets spanning multiple behavioral paradigms and provides standardized evaluation metrics to
assess current model capabilities. We evaluate state-of-the-art MLLMs including Gemini-2.5-Pro,
Gemini-2.5-Flash, and Qwen-VL-Max, revealing significant performance gaps that limit their utility
as research assistants. While some of these models show fair performance on some datasets, our
analysis identifies specific challenges in temporal segmentation, long video processing, and handling
varied experimental conditions, providing insights for future improvements in scientific applications
of multimodal models.

2 Related Work

The emergence of Multimodal Large Language Models (MLLMs) has opened new possibilities
for video understanding tasks across diverse domains. Recent comprehensive benchmarks such as
Video-MME (Fu et al., [2024) have evaluated state-of-the-art MLLMs including GPT-4 and Gemini
on video analysis tasks, revealing significant challenges in temporal reasoning and long-form video
understanding. Surveys on video understanding with large language models (Tang et al.| [2025; Wang
et al.| |2024) highlight the emergent capabilities of these systems for multi-granularity reasoning,
while identifying key limitations in handling long-form videos and maintaining alignment between
visual and textual modalities. Despite these advances, the application of MLLMs to specialized
scientific domains remains under-explored, with recent work suggesting significant potential for
leveraging these models in natural science research (Yin et al., 2024} Testard et al., 2024).

Traditional animal behavior analysis has undergone significant transformation with the advent of
deep learning and computer vision techniques. Deep learning-based behavioral analysis systems have
demonstrated the ability to reach human-level accuracy in recognizing specific ethological behaviors
(Sturm et al., |2020), with markerless pose estimation tools like DeepLabCut enabling robust tracking
of individual body parts in freely moving rodents (Mathis & Mathis| [2020). Specialized tools such
as DeepBehavior (Arac et al.,[2019), ezTrack (Pennington et al.l [2019), MoSeq (Wiltschko et al.,
2015)), SLEAP |Pereira et al.| (2022) and real-time behavior recognition systems (de Chaumont et al.|
2022) have been developed specifically for automated analysis of animal behavior. However, these
systems typically require task-specific training and lack the flexibility and generalization capabilities
that modern MLLMs potentially offer. The specific application of MLLMs to behavioral annotation
tasks in laboratory settings remains largely unexplored, representing a significant gap that our
Rodent-Bench benchmark aims to address.

3 Rodent-Bench

We produced two benchmarks: Rodent-Bench-Short, with videos up to 10 minutes long; and
Rodent-Bench-Long, with videos up to 35 minutes long. We created these two versions because
current MLLMs have varying video length limitations—while models like Gemini can process videos
up to 1 hour, others like Qwen-VL-Max are restricted to 10 minutes or less. This dual-benchmark
approach ensures compatibility across all evaluated models and enables investigation of how video
length affects annotation performance.

Along with this we suggest evaluation metrics. The task posed to the MLLM is to annotate each video,
determining which of a fixed set of behaviours is occurring and to produce a JSON file segmenting
each video into discrete non-overlapping time segments with behaviour labels.

LLM of choice with

% > 2D]— video capabilities ~

Gemini G}.

JSON annotation file

Figure 1: Workflow for annotating rodent videos.
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Figure 2: Performance metrics for Gemini-2.5-Pro across all datasets. Each metric shows substantial
variation across behavioral paradigms, with the grooming detection dataset achieving the highest
performance across most metrics. Social behaviors (CalMS21) show moderate performance, while
challenging datasets like freezing and scratch detection exhibit poor performance approaching chance
levels. Dashed lines indicate theoretical maximum performance where applicable. Error bars represent
2x standard error across videos within each dataset. The consistently low performance on certain
datasets highlights the difficulty of fine-grained temporal behavioral annotation for current MLLMs.

3.1 Data Collection

We collected our data from several openly available datasets, as well as one private dataset which we
now make freely available.

Caltech Rodent Social Interactions (CalMS21):

The CalMS21 dataset (Sun et al., 2021)) is intended for multi-agent behaviour modelling. It consists
of footage of multiple rodents interacting socially, with 6 million un-labelled frames and 1 million
labelled frames. The labelled frames consist of both frame level behaviour and pose tracking
annotations. For our purposes we use the first 25 labelled videos in the training set.

Rodent Grooming Detection Annotated Dataset:

The rodent grooming dataset (Geuther et al., 2021) was collected in order to train a neural network
rodent grooming classifier. It consists of 1,253 video clips with 2,637,363 frames. Each frame is
labelled “Grooming” or “Not Grooming”. We use the first 25 videos in the training set for our eval.

Mouse-Ventral 1&2: We use the Mouse-Ventral 1&2 subsets of the Deep Ethogram dataset (Bohnslav
et al., 2021)). These consists of 30 minute videos of a rodents shot from below, 16 for MV2 and 28
for MV1, the videos are annotated with behaviour labels. In the Mouse-Ventrall subset the rodents

LLINT EE RT3 LI INT3

are either “grooming”, “digging”, “scratching”, “licking” or “background” (neither scratching nor

99 ¢

licking). In the Mouse-Ventral2 subset the rodents are either “scratching”, “licking” or “background”.

Scratch-AID: The Scratch-AID dataset (Yu et al., 2022) was collected to train a neural network
CRNN rodent scratching classification model. The dataset consists of 40 videos of rodents shot
from below, the rodents were injected with an itching agent causing them to scratch compulsively.
The model trained especially for this task achieved 97.6% recall and 96.9% precision on previously
unseen test videos.

Freezing: Our collaborators have given us access to nine videos of rodents displaying a “freezing”
behaviour. This is a behavior distinct from resting, and is characterised by the ears being oriented
towards the front indicating alert but immobile behavior (Blanchard & Blanchard, [1969). There are
three types of videos, and three videos of each type: Low freezing, high freezing and extinction.
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Extinction is a behavioral paradigm where the conditioned freezing response is gradually reduced
through repeated exposure to the conditioned stimulus without the unconditioned stimulus.

This dataset is particularly important for evaluating MLLMs because freezing behavior presents
challenges that traditional pose estimation approaches cannot address. While tools like DeepLabCut
excel at tracking body parts and movements, they cannot distinguish between freezing (an active
fear response) and other motionless states such as sleeping, resting, or general inactivity. These
behaviors are not easily distinguishable when relying solely on pose or movement data. MLLMs,
with their ability to integrate visual context, temporal patterns, and behavioral understanding, may
offer advantages for this subtle but scientifically important distinction.

Rodent-Bench-Short: Some MLLMs will not accept long video files (30 minutes to an hour), so to
evaluate these models we produce a shortened version of the dataset in which any file longer than 10
minutes is shortened to that length. We evaluate all models on both datasets for comparison.

3.2 Metrics

Second-wise accuracy: We treat each second as a binary classification problem: is the behaviour
in that second correctly classified or not. We then report the proportion of seconds in which the
behaviour was correctly classified.

Macro F1: We calculate the F1 score for each class and average with no weighting.

For each behavior class c:
TP,

Precision,. = m (€))]
TP.
Recall, = TP ¥ FN. (2)
. - ;i el
Macro F1 is the unweighted average across all classes:
Macro F1 = ﬁ > Fl, ©)

ceC

where |C| is the number of behavior classes, T'P, is true positives for class ¢, F'P, is false positives,
and F'N. is false negatives.

mean Average Precision (mAP): This is calculated by comparing predicted and ground truth
behaviour segments across a range of IoU (Intersection over Union) thresholds (from 0.1 to 0.9)
(Henderson & Ferrari, [2016). For each threshold, we match predicted segments to ground truth
segments of the same behaviour if their IoU exceeds the threshold, counting true positives (TP), true
negatives (TN), false positives (FP), and false negatives (FN). Precision and recall are computed at
each threshold, and the average precision is accumulated as the sum of precision values weighted by
the change in recall, this is to approximate the area under the precision-recall curve. The final mAP is
the total of these values, providing a single metric that summarizes how well the predictions align
with the ground truth across different levels of overlap.

Mutual Information: We calculate the mutual information between the ground-truth second-wise
labels and the predicted labels.

Matthew’s Correlation Coefficient (MCC): This is a correlation coefficient between -1 and 1. It is
calculated:

(TP x TN) — (FP x FN)
/(TP + FP)(TP+ FN)(TN + FP)(TN + FN)

MCC =

Dataset label entropy weighted Matthew’s Correlation Coefficient: To provide a singular score
which takes into account differing datasets “difficulty”:
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Figure 3: Weighted Matthew’s Correlation Coefficient (MCC) performance across models. (a) Rodent-
Bench-Long: Gemini-2.5-Pro achieves the highest performance with lower variance compared to
Gemini-2.5-Flash. (b) Rodent-Bench-Short: Similar performance hierarchy with Gemini-2.5-Pro
outperforming Flash, while Qwen-VL-Max shows near-chance performance. Error bars represent 2 x
standard error across datasets. All models show modest performance levels, indicating substantial
room for improvement in behavioral annotation tasks.

(Hi+¢€)-T;
> (Hj+e)-T;
Where, H; is the entropy of dataset ¢, T; is the duration of dataset ¢ in seconds, € = 10~8 is a small

constant to avoid zero weights. This weighting scheme assigns higher weight to longer datasets with
more diverse labels, which should be more challenging.

w; =

We prioritize mutual information, MCC, and mAP metrics for our primary analysis. Mutual informa-
tion and MCC provide interpretable baselines, both equalling zero when predictions are statistically
independent of ground truth labels, making chance-level performance easily identifiable across all
datasets. The mAP metric is valuable for evaluating temporal segmentation quality, as it directly
measures how well predicted behavioral segments align with ground truth boundaries across multiple
IoU thresholds. In contrast, metrics like second-wise accuracy and macro F1 have dataset-dependent
chance baselines that vary with class distributions and choice of random baseline strategy (uniform
random vs. frequency-matched random prediction), complicating cross-dataset comparisons and
performance interpretation.

4 Experiments

To provide an idea of how models currently perform we evaluate some of the available MLLM’s on
this benchmark.

4.1 Experimental Setup

Models We evaluate our benchmark on three MLLMs. As of July 2025, a number of MLLMs which
claim support for video actually just sample frames from the video at regular intervals and use these
(e.g. Qwen-VL-Max). We use Gemini-2.5-Flash, Gemini-2.5-Pro and Qwen-VL-Max. Specifications
of these models can be found in Appendix [B]

Prompting Strategy Because our dataset is heterogenous we use different prompts for each of the
sub-datasets, these appear in appendix [G] Despite this we tried to use a similar prompt for each
dataset in the interest of fairness. The same prompt is used for all models.

Computational Cost: For the complete benchmark, costs are approximately $7 for Gemini-2.5-Pro,
$7 for Qwen-VL-Max, and under $1 for Gemini-2.5-Flash.

4.2 Results

We evaluate three MLLMs on our benchmark. Further figures showing individual dataset performance
for each model can be found in appendices D] [E] and [F}
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In figure [3a] you can see that Gemini Pro outperforms Flash in both absolute performance, as well as
variability.

In @], evaluating on the shortened dataset, we see a similar comparison between Pro and Flash, while
Qwen-VL-Max performs no better than chance.

We notice that both Flash and Qwen models struggle with correct formatting, sometimes the wrong
key for certain segments (“end_long_time” instead of “end_time”) or in the case of Qwen-VL it will
simply stop partway through a segment, rendering the JSON file unreadable (without modifications).

We speculate that these models perform strongest on datasets with shorter videos on average, that
have clearly defined labels which depend only on behaviour (i.e do not require the rodent to be in
a particular position in the cage when acting for that label to apply), and have behaviours that last
at least a few seconds. They perform weakly on videos which have visual filters applied but that
require some degree of colour recognition for labelling (i.e “the feeding box is at the back of the
cage and is black”), or that are taken from a “non-standard” (i.e not front facing, from above or from
below) camera angle, or that have very short or ambiguous behaviours. For instance the freezing
dataset features behaviours shorter than a second, and the difference between the rodent “freezing”
and simply not moving is quite subtle.

5 Limitations

Our benchmark has several important limitations. First, ground-truth annotations were taken from
existing datasets with varying labelling schemes and quality standards, potentially containing inconsis-
tencies that affect evaluation reliability. Second, we lack human annotator baselines to contextualize
model performance—while current MLLMs perform poorly, we cannot determine how their accuracy
compares to average human annotators on these specific videos.

Third, our evaluation uses zero-shot inference without fine-tuning or extensive prompt optimization.
While this ensures fair comparison across models, it may underestimate achievable performance
through model adaptation or specialized prompting strategies. Additionally, dataset-specific prompts
introduce variability that could advantage certain models.

Finally, our evaluation is limited to three commercially available models with native video processing,
and the rapid pace of model development means newer capabilities may alter these findings. Despite
these limitations, Rodent-Bench provides a valuable initial assessment of current MLLM capabilities
for scientific behavioral annotation tasks.

6 Conclusion

We introduced Rodent-Bench, the first comprehensive benchmark for evaluating Multimodal Large
Language Models on scientific behavioral annotation tasks. Our evaluation of state-of-the-art
MLLMs—Gemini-2.5-Pro, Gemini-2.5-Flash, and Qwen-VL-Max—reveals that current models
perform substantially below the accuracy levels required for practical deployment as research assis-
tants in behavioral neuroscience.

While MLLMs showed modest success on certain datasets (notably grooming detection), perfor-
mance varied dramatically across behavioral paradigms. Models struggled particularly with subtle
temporal distinctions, brief behavioral episodes, and tasks requiring integration of spatial context
with behavioral understanding. The freezing behavior dataset exemplified these challenges, where
distinguishing between active freezing responses and passive inactivity proved difficult even for
advanced multimodal systems.

Our findings highlight several critical areas for improvement. First, enhanced temporal reasoning
capabilities are needed to handle the fine-grained segmentation required for behavioral analysis.
Second, models must develop better contextual understanding to distinguish between visually similar
but behaviorally distinct states. Finally, output formatting consistency remains a practical barrier,
with some models frequently producing malformed JSON responses that complicate automated
processing.

Despite current limitations, Rodent-Bench establishes a foundation for tracking progress in scientific
applications of multimodal AI. The benchmark’s diverse behavioral paradigms and standardized
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evaluation framework provide a testbed for future model improvements. As MLLMs advance,
their potential to democratize behavioral annotation, eliminating the need for specialized model
training for each experimental paradigm, remains promising. Rodent-Bench will enable researchers
to objectively assess when these models achieve the reliability threshold necessary for practical
scientific deployment.

The gap between current capabilities and scientific requirements underscores the need for continued
research at the intersection of multimodal AI and domain-specific applications. Our benchmark con-
tributes to this effort by providing concrete evaluation targets and highlighting the unique challenges
that scientific video understanding presents to current generation models.
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A Implementation Details

A.1 Model Access and Configuration

Gemini Models: We access Gemini-2.5-Pro and Gemini-2.5-Flash through Google’s Vertex Al
GenAlI SDK. Videos are processed directly from Google Cloud Storage URIs using the native video
input capabilities. The response format is constrained to JSON using structured output schemas
specific to each dataset’s behavior categories.

Qwen-VL-Max: We access Qwen-VL-Max through Alibaba’s DashScope API using the OpenAl-
compatible interface.

A.2  Video Processing Pipeline

Each video is processed independently with dataset-specific prompts that include behavior definitions,
temporal annotation requirements, and output format specifications.

Structured Output Schemas: We define Pydantic models for each dataset’s behavior categories to
ensure consistent JSON output formatting. The following is the model for CaLMS21:

class RodentBehaviorSegment (BaseModel) :

segment_number: int = Field (..., description="Segment number in
order")

start_time: str = Field(..., description="Start time in MM:SS
format")

end_time: str = Field(..., description="End time in MM:SS format")

behavior: str Field (..., description="Behavior label (e.g.,
attack, investigation, mount, other)")

A.3 Batch Processing Implementation

For Gemini models, we implement both individual and batch processing modes. Batch mode generates
JSONL files conforming to Gemini’s batch API requirements, uploads input files to Google Cloud
Storage, and monitors job completion through the batch API. This approach significantly reduces
API costs for large-scale evaluations while maintaining identical model configurations.

Error Handling: The system logs all API responses, including malformed outputs, to facilitate
debugging. For models producing incomplete JSON (particularly Qwen-VL-Max), we save raw
responses to text files for manual inspection. Output validation ensures all required fields are present
and temporal segments are non-overlapping.
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B Model Specifications

We evaluate three state-of-the-art multimodal large language models with native video understanding
capabilities.

B.1 Gemini-2.5-Pro
Key Specifications:

* Maximum video length: 1 hour (without audio), 45 minutes (with audio)
* Context window: 1,048,576 tokens (input), Maximum 65,535 tokens (output)
¢ Maximum video file size: 2 GB

B.2 Gemini-2.5-Flash
Key Specifications:

* Maximum video length: 1 hour (without audio), 45 minutes (with audio)
* Context window: 1,048,576 tokens (input), Maximum 65,535 tokens (output)
e Maximum video file size: 2 GB

B.3 Qwen-VL-Max

Qwen-VL-Max is Alibaba Cloud’s most advanced vision-language model. Unlike the Gemini models
which process video natively, Qwen-VL extracts frames from video files for analysis, extracting one
frame every 0.5 seconds when using the OpenAl SDK.

Key Specifications:

e Maximum video length: 10 minutes (Qwen2.5-VL series)
» Context window: 129,024 input tokens, 8,192 output tokens
e Maximum video file size: 1 GB (via URL), 10 MB (Base64 encoded)

* Video processing: Frame extraction (no audio support)

B.4 Model Selection Rationale
We selected these models based on three criteria: (1) native video processing capabilities, (2)

availability through stable APIs for reproducible evaluation, and (3) demonstrated performance on
complex reasoning tasks.
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sss C Datasets

337 We include screenshots from each dataset, demonstrating each behavior. We additionally include a
sss chart showing the proportion of each behavior in each dataset.

Behavior Proportions Across Datasets
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Figure 4: Behavior Proportions for each dataset.
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333 C.1 Rodent-Bench

Table 1: Timing Statistics by Dataset

Dataset Average Time Minimum Time Maximum Time Total Time
(Mins) (Mins) (Mins) (Mins)
CalMS21 4.41 1.02 11.87 110.22
Freezing 14.35 4.01 32.67 129.17
Grooming 1.32 0.34 5.99 32.88
Rodent Ventral 1 8.33 8.28 8.33 233.25
Rodent Ventral 2 29.97 29.97 29.97 479.57
Scratch-AID 20.00 20.00 20.00 300.03

30 C.2 Rodent-Bench Short

Table 2: Timing Statistics by Dataset

Dataset Average Time Minimum Time Maximum Time Total Time
(Mins) (Mins) (Mins) (Mins)
CalMS21 4.30 1.02 9.98 107.57
Freezing 9.04 4.01 9.98 81.33
Grooming 2.87 0.44 9.98 71.68
Rodent Ventral 1 6.57 0.34 8.33 183.89
Rodent Ventral 2 9.26 8.33 9.98 148.19
Scratch-AID 9.98 9.98 9.99 149.77
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a1 C3 CalLMS21

Dataset:

attack

investigation

mount

calms

Figure 5: CaLMS21 Behaviors

a2 C.4 Rodent Grooming

Dataset:

grooming

grooming

Figure 6: Rodent Grooming Behaviors
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343 C.5 Mouse-Ventral 1&2

Dataset: mouse_ventrali

dig

groom

lick

scratching

Figure 7: Mouse-Ventral 1 Behaviors
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Dataset: mouse_ventralZ

lick

scratch

Figure 8: Mouse-Ventral 2 Behaviors

344 C.6 Scratch-AID

Dataset: Scratch—AID

— s 'R

B
scratching ‘ ‘\ ‘

" 4

Figure 9: Scratch-AID Behaviors

a5 C.7 Freezing
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Dataset: freezing

Freezing

Figure 10: Freezing Behaviors

us D Gemini-Pro Results

347 D.1 Rodent-Bench

Second-wise Accuracy
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Figure 11: Per second accuracy
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Macro F1 (Unweighted)
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Figure 12: Macro F1 score
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Figure 13: Per second accuracy
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Matthew's Correlation Coefficient (MCC)
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Figure 14: Matthew’s Correlation Coefficient
Mutual Info (GT vs Pred)
1.0
== Chance Performance _——— = -
0.8 == = Max Possible
0.6 4 —
0.4 ————
0.2
0.0
. ()
\(\Q AC IL\(\Q (’o\\' (0\7' 2
& <@ «e® NN 4e® &7

Figure 15: Mutual information between ground truth and predictions
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348 D.2 Rodent-Bench-Short

Second-wise Accuracy
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Figure 17: Macro F1 score
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mean Average Precision (mAP)
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Figure 19: Matthew’s Correlation Coefficient
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s E Gemini-Flash Results

350 E.1 Rodent-Bench
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Figure 20: Per second accuracy
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Figure 21: Macro F1 score

21



mean Average Precision (mAP)
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Figure 23: Matthew’s Correlation Coefficient
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Mutual Info (GT vs Pred)
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Figure 24: Mutual information between ground truth and predictions
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351 E.2 Rodent-Bench-Short

Second-wise Accuracy
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Figure 25: Per second accuracy
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Figure 26: Macro F1 score
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mean Average Precision (mAP)
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Figure 28: Matthew’s Correlation Coefficient
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Mutual Info (GT vs Pred)
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Figure 29: Mutual information between ground truth and predictions
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353
354

355

F Qwen-VL-Max Results

Because the Qwen-VL-Max can’t ingest videos longer than 10 minutes we only have results for

Rodent-Bench-Short.

F.1 Rodent-Bench-Short

Second-wise Accuracy

== (Chance Performance

Figure 30: Per second accuracy
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Figure 31: Macro F1 score
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mean Average Precision (mAP)
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Figure 32: Per second accuracy
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Figure 33: Matthew’s Correlation Coefficient
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Mutual Info (GT vs Pred)
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Figure 34: Mutual information between ground truth and predictions
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G Prompt Templates

We provide the complete prompt templates used for each dataset. All prompts follow a consistent
structure: role definition, task description, available behavior labels, formatting requirements, and
JSON output schema.

G.1 CalMS21 Social Behaviors

You are a Rodent Behavior Labeler specializing in rodent social
behavior.
Your task is to analyze a video of rodents and segment it into periods
of distinct behaviors.

Available behavior labels:

- attack - when the black rodent is attacking another rodent

- investigation - when the black rodent is investigating another
rodent

- mount - when the black rodent is mounting another rodent

- other - when the black rodent is doing something else

Important:

You must use ONLY the labels listed above. Do not create new labels or
modify existing ones.

Start your analysis from the start of the video and continue until the
end of the video.

For each segment, provide:

- segment number (in order)

- start and end time in MM:SS format

- behavior label (must be one of the above labels)

Your response must be in JSON format with the following structure:
{
"segments": [
{
"start_time": MM:SS,
"end_time": MM:SS,
"behavior": "behavior_label",
"segment_number": INTEGER,

G.2 Scratch-AID

You are a Rodent Behavior Labeler specializing in telling when a
rodent is scratching.
Your task is to analyze a video of rodents and segment it into periods
of distinct behaviors.

Available behavior labels:

- scratching - when the rodent is scratching, usually with the hind
legs

- not scratching - when the rodent is not scratching.

Important:

You must use ONLY the labels listed above. Do not create new labels or
modify existing ones.

Start your analysis from the start of the video and continue until the
end of the video.
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41412
41513
41614
41715
41816
41917
42018
42119
4220
4231
4242
4253
42604
42725
4286
4297
43028
43129

432

433 1
434

4352
436

437 3
438 4
439 5
440 6
441

442 7
443

444 8
4459
44610
447

4481 1
44912
45013
45114
45215
45316
45417
455

45618
45719
4580
4591
46022
46123
46204
46325
4640
4657
46628
46729
46830
46931
47032
47133
47234
47335

The video is of a rodent and is taken from below.

For each segment, provide:
- start and end time in MM:SS format
- segment number (in order)

Your response must be in JSON format with the following structure:
{
"segments": [
{

"segment_number": INTEGER,
"start_time": MM:SS,
"end_time": MM:SS,
"behavior": "behavior_label",

G.3 Rodent Grooming Detection

You are a Rodent Behavior Labeler specializing in identifying grooming
behaviors in rodents.

Your task is to analyze a video of rodents and segment it into periods
of distinct behaviors.

The video shows a rodent from above.

Available behavior labels:

- grooming - when the rodent is actively grooming itself (e.g.,
licking, scratching, cleaning fur)
- other - when the rodent is not grooming (e.g., walking, exploring,

resting)

Important:

You must use ONLY the labels listed above. Do not create new labels or
modify existing ones.

Grooming behaviors are characterized by:

- Repetitive movements of paws over the face or body

- Licking of fur or paws

- Scratching with hind legs

- Cleaning of specific body parts

Start your analysis from the start of the video and continue until the
end of the video.

For each segment, provide:

- segment number (in order)

- start and end time in MM:SS format

- behavior label (must be one of the above labels)

Your response must be in JSON format with the following structure:
{
"segments": [
{
"segment_number": INTEGER,
"start_time": MM:SS,
"end_time": MM:SS,
"behavior": "behavior_label",

}
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474

475 1

50020
50121
50222
50323
50424
50525
50626
50727
50828
50929
51030

G.4 Freezing Behavior

You are a Rodent Behavior Labeler specializing in identifying freezing
behaviors in rodents.

Your task is to analyze a video of rodents and segment it into periods
of distinct behaviors.

The video shows a rodent from above.

Available behavior labels:

- Freezing - when the rodent is Freezing, i.e characterized by the
complete cessation of movement, except for respiratory-related
movements so no head twitching for instance.

- Not Freezing - when the rodent is not Freezing

Important:
You must use ONLY the labels listed above. Do not create new labels or
modify existing ones.

Start your analysis from the start of the video and continue until the
end of the video.

For each segment, provide:

- segment number (in order)

- start and end time in MM:SS format

- behavior label (must be one of the above labels)

Your response must be in JSON format with the following structure:
{
"segments": [
{
"segment_number": INTEGER,
"start_time": MM:SS,
"end_time": MM:SS,
"behavior": "behavior_label",
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