
Rodent-Bench

Anonymous Author(s)
Affiliation
Address
email

Abstract

We present Rodent-Bench, a novel benchmark designed to evaluate the ability1

of Multimodal Large Language Models (MLLMs) to annotate rodent behaviour2

footage. We evaluate state-of-the-art MLLMs, including Gemini-2.5-Pro, Gemini-3

2.5-Flash and Qwen-VL-Max, using this benchmark and find that none of these4

models perform strongly enough to be used as an assistant for this task. Our5

benchmark encompasses diverse datasets spanning multiple behavioral paradigms6

including social interactions, grooming, scratching, and freezing behaviors, with7

videos ranging from 10 minutes to 35 minutes in length. We provide two benchmark8

versions to accommodate varying model capabilities and establish standardized9

evaluation metrics including second-wise accuracy, macro F1, mean average pre-10

cision, mutual information, and Matthew’s correlation coefficient. While some11

models show modest performance on certain datasets (notably grooming detection),12

overall results reveal significant challenges in temporal segmentation, handling13

extended video sequences, and distinguishing subtle behavioral states. Our anal-14

ysis identifies key limitations in current MLLMs for scientific video annotation15

and provides insights for future model development. Rodent-Bench serves as a16

foundation for tracking progress toward reliable automated behavioral annotation17

in neuroscience research.18

1 Introduction19

Behavioral analysis is fundamental to neuroscience and biomedical research, yet manual annota-20

tion of animal behavior videos remains a time-consuming bottleneck that limits research scale and21

reproducibility (Sturm et al., 2020; Mathis & Mathis, 2020). While Multimodal Large Language22

Models (MLLMs) have shown impressive capabilities in vision-language tasks (Fu et al., 2024; Yin23

et al., 2024), their application to specialized scientific domains like behavioral analysis remains24

largely unexplored. MLLMs offer particular promise for scientific annotation tasks as they can poten-25

tially handle diverse behavioral paradigms through natural language instructions without requiring26

specialized model training for each new behavior or experimental setup.27

Unlike general computer vision tasks, behavioral analysis requires models to identify subtle, context-28

dependent actions, maintain temporal coherence across extended sequences, and produce structured29

outputs aligned with ethological frameworks. Traditional computer vision approaches require training30

specialized models for each behavioral task, but MLLMs could streamline this process by accepting31

task descriptions in natural language and adapting to new behaviors without retraining. Existing video32

understanding benchmarks inadequately address these scientific requirements, creating a significant33

gap between current MLLM capabilities and practical research applications.34

We present Rodent-Bench-Short and Rodent-Bench-Long, the first comprehensive benchmarks35

for evaluating MLLMs on rodent behavioral annotation tasks. Our benchmarks encompasse diverse36
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datasets spanning multiple behavioral paradigms and provides standardized evaluation metrics to37

assess current model capabilities. We evaluate state-of-the-art MLLMs including Gemini-2.5-Pro,38

Gemini-2.5-Flash, and Qwen-VL-Max, revealing significant performance gaps that limit their utility39

as research assistants. While some of these models show fair performance on some datasets, our40

analysis identifies specific challenges in temporal segmentation, long video processing, and handling41

varied experimental conditions, providing insights for future improvements in scientific applications42

of multimodal models.43

2 Related Work44

The emergence of Multimodal Large Language Models (MLLMs) has opened new possibilities45

for video understanding tasks across diverse domains. Recent comprehensive benchmarks such as46

Video-MME (Fu et al., 2024) have evaluated state-of-the-art MLLMs including GPT-4 and Gemini47

on video analysis tasks, revealing significant challenges in temporal reasoning and long-form video48

understanding. Surveys on video understanding with large language models (Tang et al., 2025; Wang49

et al., 2024) highlight the emergent capabilities of these systems for multi-granularity reasoning,50

while identifying key limitations in handling long-form videos and maintaining alignment between51

visual and textual modalities. Despite these advances, the application of MLLMs to specialized52

scientific domains remains under-explored, with recent work suggesting significant potential for53

leveraging these models in natural science research (Yin et al., 2024; Testard et al., 2024).54

Traditional animal behavior analysis has undergone significant transformation with the advent of55

deep learning and computer vision techniques. Deep learning-based behavioral analysis systems have56

demonstrated the ability to reach human-level accuracy in recognizing specific ethological behaviors57

(Sturm et al., 2020), with markerless pose estimation tools like DeepLabCut enabling robust tracking58

of individual body parts in freely moving rodents (Mathis & Mathis, 2020). Specialized tools such59

as DeepBehavior (Arac et al., 2019), ezTrack (Pennington et al., 2019), MoSeq (Wiltschko et al.,60

2015), SLEAP Pereira et al. (2022) and real-time behavior recognition systems (de Chaumont et al.,61

2022) have been developed specifically for automated analysis of animal behavior. However, these62

systems typically require task-specific training and lack the flexibility and generalization capabilities63

that modern MLLMs potentially offer. The specific application of MLLMs to behavioral annotation64

tasks in laboratory settings remains largely unexplored, representing a significant gap that our65

Rodent-Bench benchmark aims to address.66

3 Rodent-Bench67

We produced two benchmarks: Rodent-Bench-Short, with videos up to 10 minutes long; and68

Rodent-Bench-Long, with videos up to 35 minutes long. We created these two versions because69

current MLLMs have varying video length limitations—while models like Gemini can process videos70

up to 1 hour, others like Qwen-VL-Max are restricted to 10 minutes or less. This dual-benchmark71

approach ensures compatibility across all evaluated models and enables investigation of how video72

length affects annotation performance.73

Along with this we suggest evaluation metrics. The task posed to the MLLM is to annotate each video,74

determining which of a fixed set of behaviours is occurring and to produce a JSON file segmenting75

each video into discrete non-overlapping time segments with behaviour labels.76

LLM of choice with
video capabilities

JSON annotation file

Figure 1: Workflow for annotating rodent videos.
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Figure 2: Performance metrics for Gemini-2.5-Pro across all datasets. Each metric shows substantial
variation across behavioral paradigms, with the grooming detection dataset achieving the highest
performance across most metrics. Social behaviors (CalMS21) show moderate performance, while
challenging datasets like freezing and scratch detection exhibit poor performance approaching chance
levels. Dashed lines indicate theoretical maximum performance where applicable. Error bars represent
2× standard error across videos within each dataset. The consistently low performance on certain
datasets highlights the difficulty of fine-grained temporal behavioral annotation for current MLLMs.

3.1 Data Collection77

We collected our data from several openly available datasets, as well as one private dataset which we78

now make freely available.79

Caltech Rodent Social Interactions (CalMS21):80

The CalMS21 dataset (Sun et al., 2021) is intended for multi-agent behaviour modelling. It consists81

of footage of multiple rodents interacting socially, with 6 million un-labelled frames and 1 million82

labelled frames. The labelled frames consist of both frame level behaviour and pose tracking83

annotations. For our purposes we use the first 25 labelled videos in the training set.84

Rodent Grooming Detection Annotated Dataset:85

The rodent grooming dataset (Geuther et al., 2021) was collected in order to train a neural network86

rodent grooming classifier. It consists of 1,253 video clips with 2,637,363 frames. Each frame is87

labelled “Grooming” or “Not Grooming”. We use the first 25 videos in the training set for our eval.88

Mouse-Ventral 1&2: We use the Mouse-Ventral 1&2 subsets of the Deep Ethogram dataset (Bohnslav89

et al., 2021). These consists of 30 minute videos of a rodents shot from below, 16 for MV2 and 2890

for MV1, the videos are annotated with behaviour labels. In the Mouse-Ventral1 subset the rodents91

are either “grooming”, “digging”, “scratching”, “licking” or “background” (neither scratching nor92

licking). In the Mouse-Ventral2 subset the rodents are either “scratching”, “licking” or “background”.93

Scratch-AID: The Scratch-AID dataset (Yu et al., 2022) was collected to train a neural network94

CRNN rodent scratching classification model. The dataset consists of 40 videos of rodents shot95

from below, the rodents were injected with an itching agent causing them to scratch compulsively.96

The model trained especially for this task achieved 97.6% recall and 96.9% precision on previously97

unseen test videos.98

Freezing: Our collaborators have given us access to nine videos of rodents displaying a “freezing”99

behaviour. This is a behavior distinct from resting, and is characterised by the ears being oriented100

towards the front indicating alert but immobile behavior (Blanchard & Blanchard, 1969). There are101

three types of videos, and three videos of each type: Low freezing, high freezing and extinction.102
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Extinction is a behavioral paradigm where the conditioned freezing response is gradually reduced103

through repeated exposure to the conditioned stimulus without the unconditioned stimulus.104

This dataset is particularly important for evaluating MLLMs because freezing behavior presents105

challenges that traditional pose estimation approaches cannot address. While tools like DeepLabCut106

excel at tracking body parts and movements, they cannot distinguish between freezing (an active107

fear response) and other motionless states such as sleeping, resting, or general inactivity. These108

behaviors are not easily distinguishable when relying solely on pose or movement data. MLLMs,109

with their ability to integrate visual context, temporal patterns, and behavioral understanding, may110

offer advantages for this subtle but scientifically important distinction.111

Rodent-Bench-Short: Some MLLMs will not accept long video files (30 minutes to an hour), so to112

evaluate these models we produce a shortened version of the dataset in which any file longer than 10113

minutes is shortened to that length. We evaluate all models on both datasets for comparison.114

3.2 Metrics115

Second-wise accuracy: We treat each second as a binary classification problem: is the behaviour116

in that second correctly classified or not. We then report the proportion of seconds in which the117

behaviour was correctly classified.118

Macro F1: We calculate the F1 score for each class and average with no weighting.119

For each behavior class c:120

Precisionc =
TPc

TPc + FPc
(1)

Recallc =
TPc

TPc + FNc
(2)

F1c =
2 · Precisionc · Recallc
Precisionc + Recallc

(3)

Macro F1 is the unweighted average across all classes:121

Macro F1 =
1

|C|
∑
c∈C

F1c (4)

where |C| is the number of behavior classes, TPc is true positives for class c, FPc is false positives,122

and FNc is false negatives.123

mean Average Precision (mAP): This is calculated by comparing predicted and ground truth124

behaviour segments across a range of IoU (Intersection over Union) thresholds (from 0.1 to 0.9)125

(Henderson & Ferrari, 2016). For each threshold, we match predicted segments to ground truth126

segments of the same behaviour if their IoU exceeds the threshold, counting true positives (TP), true127

negatives (TN), false positives (FP), and false negatives (FN). Precision and recall are computed at128

each threshold, and the average precision is accumulated as the sum of precision values weighted by129

the change in recall, this is to approximate the area under the precision-recall curve. The final mAP is130

the total of these values, providing a single metric that summarizes how well the predictions align131

with the ground truth across different levels of overlap.132

Mutual Information: We calculate the mutual information between the ground-truth second-wise133

labels and the predicted labels.134

Matthew’s Correlation Coefficient (MCC): This is a correlation coefficient between -1 and 1. It is135

calculated:136

MCC =
(TP × TN)− (FP × FN)√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

Dataset label entropy weighted Matthew’s Correlation Coefficient: To provide a singular score137

which takes into account differing datasets “difficulty”:138
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Figure 3: Weighted Matthew’s Correlation Coefficient (MCC) performance across models. (a) Rodent-
Bench-Long: Gemini-2.5-Pro achieves the highest performance with lower variance compared to
Gemini-2.5-Flash. (b) Rodent-Bench-Short: Similar performance hierarchy with Gemini-2.5-Pro
outperforming Flash, while Qwen-VL-Max shows near-chance performance. Error bars represent 2×
standard error across datasets. All models show modest performance levels, indicating substantial
room for improvement in behavioral annotation tasks.

wi =
(Hi + ϵ) · Ti∑
j(Hj + ϵ) · Tj

Where, Hi is the entropy of dataset i, Ti is the duration of dataset i in seconds, ϵ = 10−8 is a small139

constant to avoid zero weights. This weighting scheme assigns higher weight to longer datasets with140

more diverse labels, which should be more challenging.141

We prioritize mutual information, MCC, and mAP metrics for our primary analysis. Mutual informa-142

tion and MCC provide interpretable baselines, both equalling zero when predictions are statistically143

independent of ground truth labels, making chance-level performance easily identifiable across all144

datasets. The mAP metric is valuable for evaluating temporal segmentation quality, as it directly145

measures how well predicted behavioral segments align with ground truth boundaries across multiple146

IoU thresholds. In contrast, metrics like second-wise accuracy and macro F1 have dataset-dependent147

chance baselines that vary with class distributions and choice of random baseline strategy (uniform148

random vs. frequency-matched random prediction), complicating cross-dataset comparisons and149

performance interpretation.150

4 Experiments151

To provide an idea of how models currently perform we evaluate some of the available MLLM’s on152

this benchmark.153

4.1 Experimental Setup154

Models We evaluate our benchmark on three MLLMs. As of July 2025, a number of MLLMs which155

claim support for video actually just sample frames from the video at regular intervals and use these156

(e.g. Qwen-VL-Max). We use Gemini-2.5-Flash, Gemini-2.5-Pro and Qwen-VL-Max. Specifications157

of these models can be found in Appendix B.158

Prompting Strategy Because our dataset is heterogenous we use different prompts for each of the159

sub-datasets, these appear in appendix G. Despite this we tried to use a similar prompt for each160

dataset in the interest of fairness. The same prompt is used for all models.161

Computational Cost: For the complete benchmark, costs are approximately $7 for Gemini-2.5-Pro,162

$7 for Qwen-VL-Max, and under $1 for Gemini-2.5-Flash.163

4.2 Results164

We evaluate three MLLMs on our benchmark. Further figures showing individual dataset performance165

for each model can be found in appendices D, E and F.166
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In figure 3a you can see that Gemini Pro outperforms Flash in both absolute performance, as well as167

variability.168

In 3b, evaluating on the shortened dataset, we see a similar comparison between Pro and Flash, while169

Qwen-VL-Max performs no better than chance.170

We notice that both Flash and Qwen models struggle with correct formatting, sometimes the wrong171

key for certain segments (“end_long_time” instead of “end_time”) or in the case of Qwen-VL it will172

simply stop partway through a segment, rendering the JSON file unreadable (without modifications).173

We speculate that these models perform strongest on datasets with shorter videos on average, that174

have clearly defined labels which depend only on behaviour (i.e do not require the rodent to be in175

a particular position in the cage when acting for that label to apply), and have behaviours that last176

at least a few seconds. They perform weakly on videos which have visual filters applied but that177

require some degree of colour recognition for labelling (i.e “the feeding box is at the back of the178

cage and is black”), or that are taken from a “non-standard” (i.e not front facing, from above or from179

below) camera angle, or that have very short or ambiguous behaviours. For instance the freezing180

dataset features behaviours shorter than a second, and the difference between the rodent “freezing”181

and simply not moving is quite subtle.182

5 Limitations183

Our benchmark has several important limitations. First, ground-truth annotations were taken from184

existing datasets with varying labelling schemes and quality standards, potentially containing inconsis-185

tencies that affect evaluation reliability. Second, we lack human annotator baselines to contextualize186

model performance—while current MLLMs perform poorly, we cannot determine how their accuracy187

compares to average human annotators on these specific videos.188

Third, our evaluation uses zero-shot inference without fine-tuning or extensive prompt optimization.189

While this ensures fair comparison across models, it may underestimate achievable performance190

through model adaptation or specialized prompting strategies. Additionally, dataset-specific prompts191

introduce variability that could advantage certain models.192

Finally, our evaluation is limited to three commercially available models with native video processing,193

and the rapid pace of model development means newer capabilities may alter these findings. Despite194

these limitations, Rodent-Bench provides a valuable initial assessment of current MLLM capabilities195

for scientific behavioral annotation tasks.196

6 Conclusion197

We introduced Rodent-Bench, the first comprehensive benchmark for evaluating Multimodal Large198

Language Models on scientific behavioral annotation tasks. Our evaluation of state-of-the-art199

MLLMs—Gemini-2.5-Pro, Gemini-2.5-Flash, and Qwen-VL-Max—reveals that current models200

perform substantially below the accuracy levels required for practical deployment as research assis-201

tants in behavioral neuroscience.202

While MLLMs showed modest success on certain datasets (notably grooming detection), perfor-203

mance varied dramatically across behavioral paradigms. Models struggled particularly with subtle204

temporal distinctions, brief behavioral episodes, and tasks requiring integration of spatial context205

with behavioral understanding. The freezing behavior dataset exemplified these challenges, where206

distinguishing between active freezing responses and passive inactivity proved difficult even for207

advanced multimodal systems.208

Our findings highlight several critical areas for improvement. First, enhanced temporal reasoning209

capabilities are needed to handle the fine-grained segmentation required for behavioral analysis.210

Second, models must develop better contextual understanding to distinguish between visually similar211

but behaviorally distinct states. Finally, output formatting consistency remains a practical barrier,212

with some models frequently producing malformed JSON responses that complicate automated213

processing.214

Despite current limitations, Rodent-Bench establishes a foundation for tracking progress in scientific215

applications of multimodal AI. The benchmark’s diverse behavioral paradigms and standardized216
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evaluation framework provide a testbed for future model improvements. As MLLMs advance,217

their potential to democratize behavioral annotation, eliminating the need for specialized model218

training for each experimental paradigm, remains promising. Rodent-Bench will enable researchers219

to objectively assess when these models achieve the reliability threshold necessary for practical220

scientific deployment.221

The gap between current capabilities and scientific requirements underscores the need for continued222

research at the intersection of multimodal AI and domain-specific applications. Our benchmark con-223

tributes to this effort by providing concrete evaluation targets and highlighting the unique challenges224

that scientific video understanding presents to current generation models.225
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A Implementation Details280

A.1 Model Access and Configuration281

Gemini Models: We access Gemini-2.5-Pro and Gemini-2.5-Flash through Google’s Vertex AI282

GenAI SDK. Videos are processed directly from Google Cloud Storage URIs using the native video283

input capabilities. The response format is constrained to JSON using structured output schemas284

specific to each dataset’s behavior categories.285

Qwen-VL-Max: We access Qwen-VL-Max through Alibaba’s DashScope API using the OpenAI-286

compatible interface.287

A.2 Video Processing Pipeline288

Each video is processed independently with dataset-specific prompts that include behavior definitions,289

temporal annotation requirements, and output format specifications.290

Structured Output Schemas: We define Pydantic models for each dataset’s behavior categories to291

ensure consistent JSON output formatting. The following is the model for CaLMS21:292

1 class RodentBehaviorSegment(BaseModel):293

2 segment_number: int = Field (..., description="Segment number in294

order")295

3 start_time: str = Field (..., description="Start time in MM:SS296

format")297

4 end_time: str = Field (..., description="End time in MM:SS format")298

5 behavior: str = Field (..., description="Behavior label (e.g.,299

attack , investigation , mount , other)")300

A.3 Batch Processing Implementation301

For Gemini models, we implement both individual and batch processing modes. Batch mode generates302

JSONL files conforming to Gemini’s batch API requirements, uploads input files to Google Cloud303

Storage, and monitors job completion through the batch API. This approach significantly reduces304

API costs for large-scale evaluations while maintaining identical model configurations.305

Error Handling: The system logs all API responses, including malformed outputs, to facilitate306

debugging. For models producing incomplete JSON (particularly Qwen-VL-Max), we save raw307

responses to text files for manual inspection. Output validation ensures all required fields are present308

and temporal segments are non-overlapping.309
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B Model Specifications310

We evaluate three state-of-the-art multimodal large language models with native video understanding311

capabilities.312

B.1 Gemini-2.5-Pro313

Key Specifications:314

• Maximum video length: 1 hour (without audio), 45 minutes (with audio)315

• Context window: 1,048,576 tokens (input), Maximum 65,535 tokens (output)316

• Maximum video file size: 2 GB317

B.2 Gemini-2.5-Flash318

Key Specifications:319

• Maximum video length: 1 hour (without audio), 45 minutes (with audio)320

• Context window: 1,048,576 tokens (input), Maximum 65,535 tokens (output)321

• Maximum video file size: 2 GB322

B.3 Qwen-VL-Max323

Qwen-VL-Max is Alibaba Cloud’s most advanced vision-language model. Unlike the Gemini models324

which process video natively, Qwen-VL extracts frames from video files for analysis, extracting one325

frame every 0.5 seconds when using the OpenAI SDK.326

Key Specifications:327

• Maximum video length: 10 minutes (Qwen2.5-VL series)328

• Context window: 129,024 input tokens, 8,192 output tokens329

• Maximum video file size: 1 GB (via URL), 10 MB (Base64 encoded)330

• Video processing: Frame extraction (no audio support)331

B.4 Model Selection Rationale332

We selected these models based on three criteria: (1) native video processing capabilities, (2)333

availability through stable APIs for reproducible evaluation, and (3) demonstrated performance on334

complex reasoning tasks.335
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C Datasets336

We include screenshots from each dataset, demonstrating each behavior. We additionally include a337

chart showing the proportion of each behavior in each dataset.338
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Figure 4: Behavior Proportions for each dataset.
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C.1 Rodent-Bench339

Table 1: Timing Statistics by Dataset
Dataset Average Time Minimum Time Maximum Time Total Time

(Mins) (Mins) (Mins) (Mins)
CalMS21 4.41 1.02 11.87 110.22
Freezing 14.35 4.01 32.67 129.17
Grooming 1.32 0.34 5.99 32.88
Rodent Ventral 1 8.33 8.28 8.33 233.25
Rodent Ventral 2 29.97 29.97 29.97 479.57
Scratch-AID 20.00 20.00 20.00 300.03

C.2 Rodent-Bench Short340

Table 2: Timing Statistics by Dataset
Dataset Average Time Minimum Time Maximum Time Total Time

(Mins) (Mins) (Mins) (Mins)
CalMS21 4.30 1.02 9.98 107.57
Freezing 9.04 4.01 9.98 81.33
Grooming 2.87 0.44 9.98 71.68
Rodent Ventral 1 6.57 0.34 8.33 183.89
Rodent Ventral 2 9.26 8.33 9.98 148.19
Scratch-AID 9.98 9.98 9.99 149.77
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C.3 CaLMS21341

Figure 5: CaLMS21 Behaviors

C.4 Rodent Grooming342

Figure 6: Rodent Grooming Behaviors
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C.5 Mouse-Ventral 1&2343

Figure 7: Mouse-Ventral 1 Behaviors
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Figure 8: Mouse-Ventral 2 Behaviors

C.6 Scratch-AID344

Figure 9: Scratch-AID Behaviors

C.7 Freezing345
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Figure 10: Freezing Behaviors

D Gemini-Pro Results346

D.1 Rodent-Bench347
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Figure 11: Per second accuracy
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Figure 12: Macro F1 score
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Figure 13: Per second accuracy
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Figure 14: Matthew’s Correlation Coefficient
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Figure 15: Mutual information between ground truth and predictions
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D.2 Rodent-Bench-Short348
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Figure 17: Macro F1 score
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Figure 18: Per second accuracy
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Figure 19: Matthew’s Correlation Coefficient
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E Gemini-Flash Results349

E.1 Rodent-Bench350
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Figure 20: Per second accuracy
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Figure 21: Macro F1 score
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Figure 22: Per second accuracy
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Figure 23: Matthew’s Correlation Coefficient
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Figure 24: Mutual information between ground truth and predictions
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E.2 Rodent-Bench-Short351
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Figure 25: Per second accuracy
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Figure 26: Macro F1 score
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Figure 27: Per second accuracy
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Figure 28: Matthew’s Correlation Coefficient

25



grooming_short

calms_sh
ort

scra
tch_aid_short

freezing_short

mouse_ventral2_short

mouse_ventral1_short
0.0

0.2

0.4

0.6

0.8

1.0

0.195
0.130

0.010 0.012 0.006
0.085

Mutual Info (GT vs Pred)

Chance Performance
Max Possible

Figure 29: Mutual information between ground truth and predictions
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F Qwen-VL-Max Results352

Because the Qwen-VL-Max can’t ingest videos longer than 10 minutes we only have results for353

Rodent-Bench-Short.354

F.1 Rodent-Bench-Short355
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Figure 30: Per second accuracy
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Figure 31: Macro F1 score
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Figure 33: Matthew’s Correlation Coefficient
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Figure 34: Mutual information between ground truth and predictions
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G Prompt Templates356

We provide the complete prompt templates used for each dataset. All prompts follow a consistent357

structure: role definition, task description, available behavior labels, formatting requirements, and358

JSON output schema.359

G.1 CalMS21 Social Behaviors360

1 You are a Rodent Behavior Labeler specializing in rodent social361

behavior.362

2 Your task is to analyze a video of rodents and segment it into periods363

of distinct behaviors.364

3365

4 Available behavior labels:366

5 - attack - when the black rodent is attacking another rodent367

6 - investigation - when the black rodent is investigating another368

rodent369

7 - mount - when the black rodent is mounting another rodent370

8 - other - when the black rodent is doing something else371

9372

10 Important:373

11 You must use ONLY the labels listed above. Do not create new labels or374

modify existing ones.375

12376

13 Start your analysis from the start of the video and continue until the377

end of the video.378

14379

15 For each segment , provide:380

16 - segment number (in order)381

17 - start and end time in MM:SS format382

18 - behavior label (must be one of the above labels)383

19384

20 Your response must be in JSON format with the following structure:385

21 {386

22 "segments ": [387

23 {388

24 "start_time ": MM:SS ,389

25 "end_time ": MM:SS,390

26 "behavior ": "behavior_label",391

27 "segment_number ": INTEGER ,392

28 },393

29 ...394

30 ]395

31 }396

G.2 Scratch-AID397

1 You are a Rodent Behavior Labeler specializing in telling when a398

rodent is scratching.399

2 Your task is to analyze a video of rodents and segment it into periods400

of distinct behaviors.401

3402

4 Available behavior labels:403

5 - scratching - when the rodent is scratching , usually with the hind404

legs405

6 - not scratching - when the rodent is not scratching.406

7407

8 Important:408

9 You must use ONLY the labels listed above. Do not create new labels or409

modify existing ones.410

10411

11 Start your analysis from the start of the video and continue until the412

end of the video.413
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12 The video is of a rodent and is taken from below.414

13415

14 For each segment , provide:416

15 - start and end time in MM:SS format417

16 - segment number (in order)418

17419

18 Your response must be in JSON format with the following structure:420

19 {421

20 "segments ": [422

21 {423

22 "segment_number ": INTEGER ,424

23 "start_time ": MM:SS ,425

24 "end_time ": MM:SS,426

25 "behavior ": "behavior_label",427

26 },428

27 ...429

28 ]430

29 }431

G.3 Rodent Grooming Detection432

1 You are a Rodent Behavior Labeler specializing in identifying grooming433

behaviors in rodents.434

2 Your task is to analyze a video of rodents and segment it into periods435

of distinct behaviors.436

3 The video shows a rodent from above.437

4438

5 Available behavior labels:439

6 - grooming - when the rodent is actively grooming itself (e.g.,440

licking , scratching , cleaning fur)441

7 - other - when the rodent is not grooming (e.g., walking , exploring ,442

resting)443

8444

9 Important:445

10 You must use ONLY the labels listed above. Do not create new labels or446

modify existing ones.447

11 Grooming behaviors are characterized by:448

12 - Repetitive movements of paws over the face or body449

13 - Licking of fur or paws450

14 - Scratching with hind legs451

15 - Cleaning of specific body parts452

16453

17 Start your analysis from the start of the video and continue until the454

end of the video.455

18456

19 For each segment , provide:457

20 - segment number (in order)458

21 - start and end time in MM:SS format459

22 - behavior label (must be one of the above labels)460

23461

24 Your response must be in JSON format with the following structure:462

25 {463

26 "segments ": [464

27 {465

28 "segment_number ": INTEGER ,466

29 "start_time ": MM:SS ,467

30 "end_time ": MM:SS,468

31 "behavior ": "behavior_label",469

32 },470

33 ...471

34 ]472

35 }473

31



G.4 Freezing Behavior474

1 You are a Rodent Behavior Labeler specializing in identifying freezing475

behaviors in rodents.476

2 Your task is to analyze a video of rodents and segment it into periods477

of distinct behaviors.478

3 The video shows a rodent from above.479

4480

5 Available behavior labels:481

6 - Freezing - when the rodent is Freezing , i.e characterized by the482

complete cessation of movement , except for respiratory -related483

movements so no head twitching for instance.484

7 - Not Freezing - when the rodent is not Freezing485

8486

9 Important:487

10 You must use ONLY the labels listed above. Do not create new labels or488

modify existing ones.489

11490

12 Start your analysis from the start of the video and continue until the491

end of the video.492

13493

14 For each segment , provide:494

15 - segment number (in order)495

16 - start and end time in MM:SS format496

17 - behavior label (must be one of the above labels)497

18498

19 Your response must be in JSON format with the following structure:499

20 {500

21 "segments ": [501

22 {502

23 "segment_number ": INTEGER ,503

24 "start_time ": MM:SS ,504

25 "end_time ": MM:SS,505

26 "behavior ": "behavior_label",506

27 },507

28 ...508

29 ]509

30 }510
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