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Abstract:
Reliable scene understanding requires not only accurate predictions but also well-
calibrated confidence estimates to ensure reliable uncertainty estimation, espe-
cially in safety-critical domains like autonomous driving. In this context, seman-
tic segmentation of LiDAR points supports real-time 3D scene understanding,
where reliable uncertainty estimates help identify potentially erroneous predic-
tions. While most existing calibration approaches focus on modeling epistemic
uncertainty, they often overlook aleatoric uncertainty arising from measurement
inaccuracies, which is especially prevalent in LiDAR data and essential for real-
world deployment. In this work, we introduce a sampling-free approach for esti-
mating well-calibrated confidence values by explicitly modeling aleatoric uncer-
tainty in semantic segmentation, achieving alignment with true classification ac-
curacy and reducing inference time compared to sampling-based methods. Evalu-
ated on the real-world SemanticKITTI benchmark, our approach achieves 1.70%
and 1.33% Adaptive Calibration Error (ACE) in semantic segmentation of LiDAR
data using RangeViT and SalsaNext models, and is more than one order of magni-
tude faster than the comparable baseline. Furthermore, reliability diagrams reveal
that our method produces underconfident rather than overconfident predictions —
an advantageous property in safety-critical systems.

Keywords: Confidence Calibration in Deep Learning, Aleatoric Uncertainty Es-
timation, Reliable Semantic Segmentation of LiDAR Point Clouds

1 Introduction

In safety-critical domains such as autonomous driving, deep neural networks (DNNs) must ensure
both high accuracy and well-calibrated confidence estimates to support reliable uncertainty estima-
tion, allowing the system to recognize when it is likely to be wrong and act conservatively. For 3D
scene understanding from LiDAR point clouds, this means identifying points where the predicted
semantic labels may be unreliable. Ideally, confidence values should align with the true likelihood of
correctness; however, modern DNNs often produce overconfident outputs, failing to capture inherent
uncertainties in data and model predictions [1, 2, 3]. Such miscalibration is especially concerning in
safety-critical settings, where high-confidence errors can lead to unsafe decisions. Proper calibration
is thus essential for building trustworthy autonomous systems.

A variety of approaches have been proposed to improve confidence calibration, including post-hoc
techniques and uncertainty quantification methods [4, 5, 6]. Among post-hoc methods, temperature
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scaling is widely used due to its simplicity and effectiveness in calibrating DNNs [1]. However,
uncertainty-aware approaches such as deep ensembles [7] and Monte Carlo Dropout (MC dropout)
[8] have shown better calibration performance [2]. Recent studies have further shown that temper-
ature scaling becomes ineffective when class distributions overlap significantly, particularly as the
number of classes increases [9]. To address this limitation, we propose a method that explicitly
models aleatoric uncertainty by representing each class logit as a Gaussian distribution and incorpo-
rating distributional overlap into confidence estimation. Confidence is estimated as the probability
that the predicted class yields a higher sampled logit than all competing classes, effectively quan-
tifying the likelihood of a correct prediction. While this probability is typically approximated via
inefficient Monte Carlo sampling, we introduce a closed-form lower bound that eliminates the need
for sampling in multi-class settings, making the approach well-suited for real-time applications.

Reliable confidence calibration must account for both aleatoric uncertainty and epistemic uncer-
tainty. Aleatoric uncertainty arises from irreducible inherent noise in the data, such as LiDAR
sensor inaccuracies, varying point cloud density with distance, environmental variability, and sur-
face reflectivity. In contrast, epistemic uncertainty stems from limited model knowledge and can
be reduced with more data [10]. While most existing methods focus primarily on epistemic un-
certainty [7, 8, 11, 12], our approach explicitly incorporates aleatoric uncertainty directly into the
confidence estimation process, leading to better calibration on complex, noisy input data like LiDAR
point clouds. That is, we integrate epistemic uncertainty with our aleatoric uncertainty to produce
well-calibrated confidence estimates.

Our main contribution is a novel confidence estimation method that accounts for the overlap be-
tween logit distributions to compute well-calibrated confidence values. We make three key claims.
First, our proposed approach generates confidence values that closely approximate true confidence
scores, effectively calibrated against the actual classification accuracy. Additionally, our method
produces underconfident rather than overconfident values, making it particularly valuable for safety-
critical decision-making. Second, our approach outperforms the comparable approaches (e.g., tem-
perature scaling) by accounting for the underlying data distribution. Moreover, when combined
with epistemic uncertainty, it achieves the highest calibration performance. Third, our sampling-
free approach reduces inference time compared to sampling methods such as logit-sampling [13]
while maintaining confidence calibration and classification accuracy. These proposed contributions
are validated through experiments conducted on benchmark datasets of SemanticKITTI [14] and
nuScenes [15], evidenced by our performance on the Adaptive Calibration Error (ACE) [16] metric
and further observed in the reliability diagram [1].

2 Related Works

2.1 Confidence calibration

Confidence values were first introduced as Maximum Class Probability (MCP), the highest probabil-
ity in the softmax distribution, based on the assumption that correctly classified samples generally
have higher MCP than misclassified and out-of-distribution examples [17]. However, subsequent
studies have identified major limitations in MCP: it often produces overly confident estimates, high-
lighting the need for confidence calibration [18, 19, 1, 20].

Previous research on confidence calibration of deep learning models typically falls into two cat-
egories. The first involves post-hoc methods that adjust classifier outputs by rescaling the logits
without retraining the model [1, 6, 21]. Temperature scaling [1] exemplifies this by recalibrating
model logits using a single parameter optimized on a validation set.

While temperature scaling and its variants are widely used for post-hoc calibration, they primarily
adjust predicted probabilities without addressing the underlying sources of miscalibration, such as
model uncertainty or data noise. These methods do not modify the model itself and therefore fail
to correct overconfidence that stems from overlapping or noisy class distributions. Recent work by
Chidambaram and Ge [9] has shown, both theoretically and empirically, that temperature scaling be-
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comes increasingly ineffective as class overlap grows, and can asymptotically perform no better than
random guessing in multi-class settings. In contrast, the second category incorporates uncertainty
directly into the training phase, enhancing models’ inherent ability to account for data variability.

2.2 Uncertainty estimation

Methods such as Bayesian neural networks (BNNs) [22] and evidential deep learning (EDL) [23]
equip models to inherently represent uncertainty, providing a more fundamental solution to con-
fidence calibration challenges. While EDL calculates total uncertainty without differentiating be-
tween epistemic and aleatoric, BNNs specifically model epistemic uncertainty by placing a prior dis-
tribution over parameters of a model and approximating the posterior distribution through Bayesian
inference [22, 24]. However, due to the often intractable nature of exact inference, variational meth-
ods such as Bayes by backprop [25] employ an evidence-based lower bound for approximating the
posterior distribution. Several tractable methods for estimating epistemic uncertainty have emerged
in recent years [26, 27, 12], including MC dropout, which applies dropout during inference, and deep
ensembles, which approximate the posterior distribution by training multiple networks with differ-
ent initializations. However, although these models effectively estimate confidence by averaging
softmax outputs from multiple instances, they may still require additional calibration to better align
softmax probabilities. This limitation arises because they primarily rely on the model’s softmax
values without explicitly accounting for aleatoric uncertainty.

To accurately calibrate softmax outputs by accounting for the underlying true distribution, the logit-
sampling approach proposed a method that assumes a Gaussian distribution for the logits of each
class [13]. However, during its inference, the need to perform Monte Carlo sampling across each
distribution to compute calibrated confidence introduces additional computational overhead and in-
creases inference time. Our proposed approach lies in this line of work and quantifies aleatoric
uncertainty from Gaussian logit distributions without sampling, making it suitable for real-time ap-
plications with many classes.

2.3 Semantic segmentation of LiDAR point clouds

3D scene perception using deep learning-based semantic segmentation of LiDAR point clouds can
be classified into two categories based on their underlying 3D representations [28]: The first cat-
egory includes point-wise methods that process 3D data directly, including raw 3D point-based
architectures [29, 30, 31, 32] and voxel-based networks [33, 34, 35, 36, 37]. While voxel-based
methods convert unordered point clouds into structured 3D grids—enabling the use of 3D convo-
lutions to capture geometric features—they are often computationally intensive. In contrast, the
second category comprises projection-based methods, which convert 3D point clouds into 2D repre-
sentations, either as bird’s-eye view maps [38, 39] or spherical range-view images (panoramic view)
[40, 41, 42, 43, 44]. These methods benefit from the structured 2D image representations, enabling
the use of 2D convolutional neural networks (CNNs) and vision transformers (ViTs), which are more
computationally efficient.

In this work, we adopt SalsaNext [40] and RangeViT [44] as projection-based architectures for
LiDAR semantic segmentation, both of which have demonstrated state-of-the-art performance on
standard benchmark datasets.

3 Methodology

Our proposed method is based on the Gaussian distributions over the logits by directly estimating
a mean (µi) and variance (σ2

i ) for each of the C classes before applying the softmax function.
During training, we sample T logit vectors using the reparameterization trick, defined as z(t) =
µ + σ ⊙ ϵ(t), where ϵ(t) ∼ N (0, I) is a standard Gaussian noise vector and ⊙ denotes element-
wise multiplication. For each sampled logit vector, we compute softmax probabilities as p(t) =
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softmax(z(t)), and use their average, p̄ = 1
T

∑T
t=1 p

(t), as the final prediction input to the loss
function.

During inference, unlike sampling-based approaches, our method performs a single feed-forward
pass and selects the class with the highest predicted mean. We directly compute its well-calibrated
confidence value by evaluating the probability that logit scores from this class exceed those of com-
peting classes. This sampling-free formulation is detailed in the following.

3.1 Confidence computation

3.1.1 Exact and approximate computation

As usual, one would predict the class whose predicted mean is maximal. Let there be C classes,
for each of which a Gaussian distribution N (·|µi, σ

2
i ), 1 ≤ i ≤ C is predicted. Then, without loss

of generality, we may assume µ1 ≥ µi for i ≥ 2, so that class 1 is selected as the predicted class.
The confidence is then defined as the probability that this selection is correct, which, given random
variables Xi ∼ N (·|µi, σ

2
i ), is P (X1 ≥ {Xi}i≥2), equivalent to P (X1 ≥ maxi≥2 Xi).

As there is no closed-form solution to compute this probability in the general case, it may be approx-
imated by computing a relative frequency by simulation. Similar to the training phase, C samples
Xi, 1 ≤ i ≤ C are drawn (one from each Gaussian), and it is determined if X1 is largest. From
repeating this experiment N times, the relative frequency of cases X1 ≥ maxi≥2 Xi is computed.
This method requires NC draws.

It is easily seen that the required probability is given by

P (X1 ≥ max
i≥2

Xi) =

∫ +∞

−∞
φ1(x)

C∏
i=2

Φi(x)dx, (1)

where we have used φi(x) = N (x|µi, σ
2
i ) for the Gaussian densities and Φi(x) for their associated

cumulative distribution functions. This integral can be approximated via Monte Carlo simulation
using

P (X1 ≥ max
i≥2

Xi) ≈
1

N

N∑
k=1

C∏
i=2

Φi(xk), (2)

with xk ∼ φ1, requiring only N samples to be drawn (which in fact can be re-used by scaling and
shifting a fixed set of samples).

3.1.2 Sampling-free confidence quantification

For the special case of two classes, a closed-form solution can be given, because P (X1 ≥ X2) =
P (Z ≥ 0) with Z := X1 −X2. As Z ∼ N (·|µ1 − µ2, σ

2
1 + σ2

2) it follows that

P (X1 ≥ X2) = Φ(µ1 − µ2|0, σ2
1 + σ2

2) =: Φ1,2, (3)

which unfortunately does not extend readily to C > 2 classes. However, using pairwise Φ1,i, i ≥ 2,
the following lower bound holds

P (X1 ≥ max
i≥2

Xi) ≥
C∏
i=2

Φ1,i, (4)

which follows from the fact that the integral in Equation 1 is the expected value E[
∏C

i=2 Φi(X)] un-
der the distribution X ∼ φ1, and since all Φi(x) are strictly monotonically increasing functions of x,
their covariance is non-negative, from which it follows that E[Φi(X)Φj(X)] ≥ E[Φi(X)]E[Φj(X)],
yielding Equation 4. For products of more than two terms, this follows by recursive application,
noting that any product of Gaussian cumulative distribution functions is strictly monotonically in-
creasing as well. A detailed derivation of Equation 4 is provided in Section A.1.

4



To conclude, given the predicted class distributions, a lower bound for the confidence can be com-
puted by simply evaluating C − 1 ‘pairwise’ cumulative distribution functions, requiring no sam-
pling. To give some intuition, if class 1 is a clear winner, the confidence will be 1. If the winner
class is challenged only by one alternative class, the lower bound Equation 4 reduces to Equation 3,
and the bound is exact. If more than one other class challenges the winner class, the lower bound
will underestimate the confidence.

In our experiments, the proposed lower bound exhibits only a negligible difference when compared
to the exact formulation. As demonstrated in Section 5.1, this lower bound provides a close ap-
proximation to the true value obtained through Monte Carlo integration, while exhibiting a slightly
underconfident behavior.

4 Experimental setup

4.1 Datasets and network architectures

We evaluate our approach on two widely used LiDAR semantic segmentation bench-
marks—SemanticKITTI [14] and nuScenes [15]. Each 3D scan from SemanticKITTI and nuScenes
was converted based on their LiDAR beams into a [64 × 2048 × 5] and [32 × 2048 × 5] spheri-
cal range-view image, respectively. Each image contains five channels corresponding to 3D point
coordinates (x, y, z), intensity, and range values, serving as input for semantic segmentation.

We employ SalsaNext [40] as a CNN model, which adopts a U-Net encoder-decoder architecture
enhanced with ResNet blocks for efficient feature extraction, and RangeViT, a transformer-based
model that exploits Vision Transformers (ViTs) for LiDAR semantic segmentation.

For the loss function, we adopt an equally weighted combination of the multi-class focal loss [45],
with a focusing parameter γ = 2.0 and the Lovász-Softmax loss [46], in order to jointly improve
confidence calibration and segmentation accuracy. All models are trained for 60 epochs using the
Adam optimizer with an initial learning rate of 0.01, which is decayed by a factor of 0.01 after each
epoch.

4.2 Comparative methods

To evaluate our proposed method, we use MCP as the baseline uncalibrated confidence measure,
and apply temperature scaling, logit-sampling, and our approach for confidence calibration. Each
method is further combined with epistemic uncertainty modeling using deep ensembles (DE) and
MC dropout. Additionally, we assess EDL as a competitive calibration strategy. The evaluation of
all methods is summarized in Table 1 of Section 5.1.

4.3 Evaluation metrics

Classification performance is evaluated using the mean Intersection over Union (mIoU) metric. To
evaluate the calibration of the confidence values for predicted classes, we use the ACE [16], com-
plemented by reliability diagrams [1], which illustrate whether the model is underconfident or over-
confident—information that ACE does not provide, as it only quantifies the absolute deviation from
perfect calibration. In contrast to the Expected Calibration Error (ECE) [47], ACE assigns equal
weight to each bin in the reliability diagram, defined as ACE = 1

M

∑M
m=1 |Confm − Accm|, where

M represents the number of non-empty bins, Confm is the average confidence within bin m, and
Accm is the corresponding average accuracy.
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(a) Ours vs. exact (b) Reliability diagram

Figure 1: Comparison of confidence estimation
methods: (a) Scatter plot shows minimal dif-
ference between exact and sampling-free con-
fidences; (b) Reliability diagram indicates our
method produces better calibration compared to
baselines.

(a) SalsaNext (b) RangeViT

Figure 2: Reliability diagrams comparing cali-
bration of our method against temperature scal-
ing (TS) and uncalibrated (MCP) models on Se-
manticKITTI validation set using SalsaNext and
RangeViT. Our method shows better calibration
(closer to perfect calibration).

5 Experiments

5.1 Comparative analysis of sampling-based and sampling-free confidence computations

To support our first claim that the sampling-free lower bound approach closely estimates the true
confidence values, we compare these confidence values with those obtained from the Monte Carlo
integration. They are computed based on Equation 4 and Equation 2, respectively. The scatter plot
in Figure 1a illustrates this comparison on a subset of validation samples of SemanticKITTI with the
SalsaNext model, with x-axis representing the exact confidence values and the y-axis showing the
lower bound estimation. The red dashed line denotes the ideal y = x line, where the lower bound
would match the exact computation.

Figure 1a shows that the lower bound estimation predominantly aligns closely with or slightly under-
estimates the exact values, evidenced by the clustering of points below the y = x line. This pattern
indicates that the lower bound estimation tends to behave conservatively, often yielding slightly
underestimated confidence values across a broad range.

Additionally, Figure 1b contrasts the true classification accuracy (y-axis) with the exact confidence
computation, the sampling-free lower bound approach and the logit-sampling baseline. Here, the
sampling-free lower bound approach, depicted by the green line, aligns more closely with the ideal
red line and consistently shows more conservative confidence estimates relative to the logit-sampling
baseline and the exact values. This visualization highlights the conservative nature of our sampling-
free approach, supporting our first claim that it is not only well-calibrated but also reliably under-
confident for improved safety.

5.2 Confidence calibration analysis

In this section, we provide experimental evidence supporting our second claim that our approach
produces better-calibrated confidence estimates than temperature scaling. Figure 2 presents reliabil-
ity diagrams of our confidence calibration method across two backbone networks—SalsaNext (2a)
and RangeViT (2b)—on the SemanticKITTI dataset, alongside the uncalibrated model (MCP) and
the temperature-scaled variant (TS). While temperature scaling improves the calibration of MCP,
it still deviates noticeably from the perfect calibration (red dashed line). In contrast, our method
consistently remains closer to perfect calibration and displays mild underconfidence in the 0.4 to
0.7 confidence range. On SalsaNext, our approach achieves an ACE of 2.15%, outperforming TS
(3.06%) and MCP (6.30%). Similarly, for RangeViT, our method attains an ACE of 2.06%, com-
pared to 2.97% for TS and 5.77% for MCP. These results confirm the superior calibration perfor-
mance of our approach across both architectures.
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To further support our second claim, that combining epistemic uncertainty with aleatoric uncer-
tainty achieves the highest calibration performance, we conduct further analysis by combining our
aleatoric confidence estimation with two epistemic modeling approaches: DE [7] and MC dropout
[8]. Results in Table 1 demonstrate that once the epistemic uncertainty is incorporated, both our
approach and the logit-sampling (LS) method, paired with either DE or MC dropout, consistently
outperformed all other methods in terms of ACE, achieving the lowest calibration error across both
semantic segmentation networks (1.70% and 1.21% on RangeViT and SalsaNext for SemanticKITTI
and 1.78% on RangeViT for nuScenes). These results highlight the significance of jointly modeling
both aleatoric and epistemic uncertainty for effective confidence calibration.

Overall, Table 1 shows that the lowest calibration errors are achieved by methods that incorpo-
rate aleatoric uncertainty, with further improvements when epistemic uncertainty is jointly mod-
eled—whether via DE or MC dropout. These approaches consistently outperform EDL, temperature
scaling and uncalibrated baselines. Notably, for both datasets with RangeViT, the best ACE (1.70%
and 1.73%) is achieved by our sampling-free method combined with DE, a trend that also holds
for SalsaNext, where the same combination yields an ACE of 1.33%. Qualitative results detailed
in Section A.2 demonstrate that our proposed approach, combined with DE, estimates predictive
uncertainty that closely follows the error map, thereby producing uncertainty-aware semantic seg-
mentation of LiDAR scans.

Qualitative results in Figure 3 support our findings. Three misclassified objects, indicated by red
dashed boxes, exhibit low uncertainty in the maps produced by the uncalibrated model (MCP; Fig-
ure 3h) and temperature scaling (Figure 3g). In contrast, our proposed method (Figure 3c) and
the competitive logit-sampling approach (Figure 3d) assign higher uncertainty to these samples and
demonstrate improved accuracy, as evident from the comparison of the corresponding error maps.
Additional qualitative examples are provided in Section A.2.

Table 1: Comparative analysis of inference time (s)↓, mIoU (%)↑, and ACE (%)↓ across confi-
dence calibration methods on the SemanticKITTI and nuScenes validation sets using SalsaNext and
RangeViT. The best-performing results are highlighted in bold, and the second-best are shown in
blue.

Method Uncertainty Type RangeViT (SemanticKITTI) SalsaNext (SemanticKITTI) RangeViT (nuScenes)

Aleatoric Epistemic mIoU ACE Time mIoU ACE Time mIoU ACE Time

MCP 58.40 5.77 0.09 50.06 6.30 0.12 73.81 3.71 0.04
MCP + DE ✓ 60.24 4.63 0.48 51.80 5.01 0.67 74.21 2.90 0.26
MCP + MC dropout ✓ 59.93 4.71 0.54 51.23 4.60 0.63 73.88 3.27 0.31

TS 58.40 2.97 0.11 50.06 3.06 0.15 73.81 2.66 0.06
TS + DE ✓ 60.24 2.21 0.61 51.80 2.84 0.81 74.21 2.31 0.34
TS + MC dropout ✓ 59.93 2.97 0.67 51.23 2.26 0.73 73.88 2.23 0.40

LS ✓ 60.21 2.11 3.61 51.03 2.03 4.80 74.92 2.11 2.01
LS + DE ✓ ✓ 60.54 1.83 20.01 51.42 1.21 26.00 75.01 1.78 12.01
LS + MC dropout ✓ ✓ 60.33 1.81 27.11 51.70 1.63 29.60 74.95 2.01 14.00

Our approach ✓ 60.21 2.06 0.25 51.03 2.15 0.28 74.92 2.18 0.11
Our approach + DE ✓ ✓ 60.54 1.70 1.33 51.42 1.33 1.46 75.01 1.73 0.73
Our approach + MC dropout ✓ ✓ 60.33 1.95 1.48 51.70 1.91 1.90 74.95 1.94 0.88

EDL ✓ ✓ 57.33 5.83 0.18 48.30 5.32 0.15 68.01 2.91 0.09

5.3 Inference time analysis

To validate our third claim, that our proposed confidence estimation method reduces inference time
compared to sampling-based approaches for modeling aleatoric uncertainty, Table 2 compares infer-
ence time and floating point operations (FLOPs) between our sampling-free method and the logit-
sampling approach. As shown, our method achieves a substantial reduction in inference time, de-
creasing it by a factor of 15 times for RangeViT and 18 times for SalsaNext, while incurring only
minimal computational overhead. Specifically, the logit-sampling method adds 6.82G FLOPs to
both models due to 50 times sampling per pixel, whereas our method increases the total FLOPs by
just 0.07G FLOPs through pairwise CDF computations. All results are measured on a GeForce RTX
3060 GPU.
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(a) Our prediction map.

(b) Our error map.

(c) Our uncertainty map.

(d) Logit-sampling uncertainty map.

Ground truth.

(e) Temperature scaling prediction map.

(f) Temperature scaling error map.

(g) Temperature scaling uncertainty map.

(h) MCP uncertainty map.

Camera image.

Figure 3: Qualitative comparison of uncertainty maps from the logit-sampling baseline
and our sampling-free method (a-d). Both align with misclassifications, but our method
shows higher uncertainty in error-prone regions, reflecting more underconfident estimation.
Uncertainty maps are compared to those from temperature scaling and an uncalibrated
model (e-h), which has not detected those misclassifications as high-uncertainty regions.
outlier , car , road , sidewalk , building , fence , vegetation , trunk , terrain , pole , traffic-sign .

Table 2: Comparison of inference time and FLOPs between our proposed sampling-free approach
and logit-sampling for aleatoric uncertainty consideration in confidence estimation on the validation
set of SemanticKITTI.

Method SalsaNext RangeViT

Inference time FLOPs Inference time FLOPs
Original model 0.12 ms 62.62G 0.09 ms 52.01G
+ logit-sampling approach 4.80 ms 69.44G 3.61 ms 58.83G
+ our sampling-free approach 0.28 ms 62.69G 0.25 ms 52.08G

6 Conclusion

We have developed a method to estimate the likelihood that the predicted class is correct, by ex-
amining the distributions of all possible class outcomes. We validated our sampling-free confi-
dence estimation method on public datasets for LiDAR scene semantic segmentation, a field where
safety-critical responses and real-time processing for large-scale data are crucial. Our comprehen-
sive analysis comparing the lower bound confidences with the exact ones approximated through
Monte Carlo integration, demonstrates a negligible discrepancy, confirming the robustness of our
sampling-free lower bound confidence calibration approach for practical applications. Furthermore,
when compared to the baseline approaches during inference, our proposed method consistently gen-
erates well-calibrated confidence values, exhibiting low ACE, calibrated reliability diagrams and
fast inference. Moreover, our proposed method often tends to be slightly underconfident across a
broader range of regions. In conclusion, our proposed approach effectively performs semantic seg-
mentation, ensuring well-calibrated confidence computation and efficient performance, while also
providing detailed uncertainty maps for pixel-wise semantic segmentation of LiDAR data.
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7 Limitations

Our results confirm that while our approach performs accurately and confidently on major classes
well-represented during training—such as cars, roads, sidewalks, buildings, fences, and vegeta-
tion—it may struggle to distinguish between classes with similar features, occasionally confusing
poles with thin trunks or bicycles with bicyclists. The proximity between Gaussian distributions
does not necessarily result in misclassification if the predicted class maintains the highest mean.
However, the closeness to another class’s distribution increases predictive uncertainty, leading the
model to be underconfident even when the object is correctly classified.

Another limitation of this approach is the increase in training time compared to the original model,
as it predicts the mean and variance to model Gaussian distributions over the logits for each class,
which may require additional computational cost.

As a direction for future work, it would be valuable to investigate the use of normalizing flows as
a more flexible alternative to directly predicting mean and variance for modeling class-conditional
distributions. Additionally, evaluating the proposed approach for out-of-distribution detection and
assessing its robustness under domain shift scenarios would further demonstrate its applicability to
real-world settings.
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A Supplementary Material

A.1 Derivation of the lower bound formula

This derives the lower bound formula (Equation 4) of the main paper.

Given two Gaussians, X ∼ N (x|µa, σ
2
a) =: φa(x) and Y ∼ N (µb, σ

2
b ), the probability P (X > Y )

is easily seen to be P (X > Y ) = Eφa
[Φb(X)] = Φ(µa − µb|0, σ2

a + σ2
b ), where φ(x) and Φ(x)

denote the Gaussian PDF and CDF, respectively, and Eφa
[·] is the expectation over the distribution

φa.

Figure 4: Illustration for three classes X ∼ N (µa = 4, σ2
a = 1), Y ∼ N (µb = 1, σ2

b = 1), and
Z ∼ N (µc = −1, σ2

c = 42). As µa > µb, µc, class A (rightmost peak) will be the predicted
class. The pairwise confidences are P (X > Y ) = 0.9831 and P (X > Z) = 0.8874 (so although
µc < µb, it is more likely to confuse A with C than A with B, due to the large σc). The lower bound
is P (X > Y ) ·P (X > Z) = 0.8723, whereas the exact value is P (X > Y,Z) = 0.8740 ≥ 0.8723,
as expected.

For three Gaussians (see Figure 4), we are interested in P (X > Y,Z) = P (X > max(Y, Z)) =
Eφa

[Φb(X)Φc(X)], for which there exists no closed-form solution. However, given the pairwise
probabilities P (X > Y ) and P (X > Z), their product is a lower bound, i.e., Eφa

[Φb(X)Φc(X)] ≥
Eφa

[Φb(X)] · Eφa
[Φc(X)], as stated in Equation 4 of the main paper and shown in the following.

In general, if f and g are strictly monotonically increasing functions over their full domain, then for
a random variable X , the covariance of f(X) and g(X) will be non-negative. This is intuitively
clear, since due to the monotonicity of the functions and their inverses, increasing or decreasing
f(X) will imply increasing or decreasing g(X).

To prove, for the covariance of two random variables Y , Z, it generally holds that
cov(Y,Z) ≜ E[(Y − E[Y ]) · (Z − E[Z])]

= E[(Y − E[Y ]) · Z]

= E[(Y − E[Y ]) · (Z − a)]

for any constant a. Setting Y = f(X), Z = g(X), and a = g(f−1(E[f(X)])), we get:
cov(f(X), g(X))

≜ E [(f(X)− E[f(X)]) · (g(X)− E[g(X)])]

= E
[
(f(X)− E[f(X)]) · (g(X)− g(f−1(E[f(X)])))

]
.

Since f(X) is strictly monotonically increasing, the first term f(X) − E[f(X)] is positive if X >
f−1(E[f(X)]) (due to strict monotonicity, f−1(y) is unique), and by construction, this also holds
for the second term g(X) − g(f−1(E[f(X)])), so that their product is always non-negative. It
follows that cov(f(X), g(X)) ≥ 0 and thus since in general, cov(Y,Z) = E[Y Z] − E[Y ]E[Z], it
follows that E[Y Z] ≥ E[Y ]E[Z].

As Φ(x) are Gaussian CDFs, they are strictly monotonically increasing over the domain x ∈
(− inf,+ inf), and thus by setting f(x) = Φb(x), g(x) = Φc(x) and taking the expectation over
φa, we obtain the claimed result Eφa

[Φb(X)Φc(X)] ≥ Eφa
[Φb(X)] · Eφa

[Φc(X)].
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For more than three Gaussians, the result is obtained recursively, noting that the product of any two
Gaussian CDFs is also strictly monotonically increasing (which follows from the product rule and
Φ(x) > 0 for all x ∈ R).

Please note that the fact that we are computing P (X > Y,Z) does not imply any limitation of
our algorithm. Especially, there is no similarity to cases where a ‘one versus all’ approach is used
instead of ‘all versus all’, leading to sub-optimal results (as in support vector machines). In our case,
the winner class is determined by having the largest µ, and we are only interested in the confidence
associated with picking this winner class, which subsequently results in pairwise computations.

A.2 Uncertainty-aware LiDAR semantic segmentation: qualitative analysis

This section presents qualitative evaluations of uncertainty maps generated by our sampling-free
method combined with deep ensembles—the configuration achieving the lowest calibration error
while maintaining competitive mIoU and fast inference. Overall, we observe high uncertainty not
only at misclassified points but also along class boundaries (e.g., sidewalk–street transitions), be-
neath vehicles—where it is often ambiguous whether to label regions as vehicle or ground, even in
manual annotations—around tree trunks, and in distant areas where LiDAR measurements become
sparse and noisy. These observations demonstrate the effectiveness of our method in producing re-
liable uncertainty estimates, which are critical for safety-sensitive applications such as autonomous
driving.

Figure 5 presents the predicted segmentation, corresponding uncertainty map, and error map for a
representative LiDAR scan. A region enclosed by a dashed red box—labeled as sidewalk in the
ground truth—is ambiguously classified as street, likely because it is also accessible to vehicles in
this area, as seen in the camera image (Figure 5e). However, for safety reasons, it is important to
distinguish this shared area between pedestrians and cars from the normal street. This semantic
ambiguity is effectively captured by our method, which assigns high uncertainty in this region. In
contrast, the model calibrated with temperature scaling fails to reflect this ambiguity, assigning no
uncertainty despite the misclassification (Figure 5f).

Another example, shown in Figure 6, highlights a common challenge in autonomous driving:
accurately identifying parking areas. In this case, the model exhibits uncertainty among three
classes—road, terrain, and parking—and assigns high uncertainty to the region, effectively signaling
that the classification in this area is unreliable.

Figure 7 highlights an uncertain region in the dashed red box that appears in the camera image(7d)
as a mixture of fence and vegetation, but is labeled solely as vegetation in the ground truth (7c).
Our proposed approach (7a) correctly identifies this area as highly uncertain, reflecting the semantic
ambiguity. In contrast, the temperature scaling method (7b) assigns low uncertainty to most of
the region, with only a few isolated points marked as uncertain, despite the overall unreliability of
the classification. This example also shows classes with low uncertainty, such as street, cars and
sidewalk, which are classified correctly and achieving low uncertainty prediction.

A.3 Evaluation of our approach on classification tasks

We evaluated our experiments on CIFAR-10 and CIFAR-100 [48] as benchmark datasets for classi-
fication, each containing 60, 000 [32× 32× 3] color images, with CIFAR-10 divided into 10 classes
and CIFAR-100 into 100 classes, providing a robust test of our approach with a varying number of
classes. For these classification tasks, we utilized VGG-16 [49] and Wide-ResNet-28-10 architec-
tures [49].
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(a) Ground truth.

(b) Our prediction.

(c) Our error map. correct classifications , wrong classifications .

(d) Our uncertainty map, from low to high uncertainty.

(e) Error map for temperature scaling. correct classifications , wrong classifications .

(f) Uncertainty map for temperature scaling, from low to high uncertainty.

(g) Camera image.

Figure 5: Example of significant uncertainty arising from the confusion between the side-
walk and the street. The misclassified region (dashed red box) is labeled as a sidewalk in the
ground truth but is also traversed by vehicles, causing overlapping classifications of street and
sidewalk, which results in high uncertainty. Classes are represented with corresponding colors:
outlier , parking , car , road , sidewalk , building , fence , vegetation , trunk , terrain , pole , traffic-sign .
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(a) Ground truth.

(b) Prediction.

(c) Error map. correct classifications , wrong classifications .

(d) Uncertainty map, from low to high uncertainty.

(e) Camera image.

Figure 6: Example of a misclassified ground region with high uncertainty. Un-
certainty map highlights classification ambiguity, showing high uncertainty in re-
gions with unclear ground class (e.g., terrain, sidewalk, or parking) due to over-
lapping Gaussian distributions. Classes are represented with corresponding colors:
outlier , parking , car , road , sidewalk , building , fence , vegetation , trunk , terrain , pole , traffic-sign .

Table 3: Comparative analysis of inference time, Accuracy, and ACE across various confidence
calibration approaches for classification tasks on CIFAR-10 and CIFAR-100 using both the VGG-
16 and WideResNet models.

CIFAR-10, VGG-16 CIFAR-10, Wide-ResNet-28-10 CIFAR-100, VGG-16 CIFAR-100, Wide-ResNet-28-10

Method Accuracy(%) ↑ ACE (%) ↓ Time (s) ↓ Accuracy(%) ↑ ACE (%) ↓ Time (s) ↓ Accuracy(%) ↑ ACE (%) ↓ Time (s) ↓ Accuracy(%) ↑ ACE (%) ↓ Time (s) ↓
MCP 93.40 8.66 0.02 95.12 5.21 0.03 72.81 9.01 0.08 79.01 6.06 0.13
MCP + DE 94.01 6.89 0.13 95.70 3.38 0.18 75.68 7.86 0.50 80.23 5.43 0.84
MCP + MC dropout 93.47 6.71 0.21 95.87 3.30 0.23 75.01 7.40 0.73 80.74 5.21 1.20

logit-sampling (50 samples) 93.78 5.16 0.25 95.07 2.07 0.31 73.44 6.74 1.80 80.13 4.31 2.61
logit-sampling (50 samples)+DE 94.40 1.66 1.32 96.50 1.23 1.50 75.07 1.16 10.00 81.46 4.01 12.08
logit-sampling (50 samples)+MC dropout 93.93 1.40 2.70 96.10 1.20 2.20 76.50 1.23 10.80 81.08 3.98 12.28

Our sampling-free approach 93.10 5.76 0.03 95.60 1.91 0.06 73.44 6.98 0.24 80.10 4.09 0.37
Our sampling-free approach+DE 94.81 1.21 0.17 96.66 0.81 0.31 77.03 1.80 1.45 82.16 3.61 1.99
Our sampling-free approach+MC dropout 93.91 1.40 0.33 95.82 0.89 0.47 75.02 1.43 1.45 81.70 3.89 2.20

Temperature Scaling 93.40 1.60 0.03 95.12 2.40 0.05 72.81 2.08 0.10 79.01 4.68 0.18
EDL 92.02 4.30 0.06 94.70 3.66 0.11 73.40 5.26 0.10 78.50 5.01 0.23
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(a) Predicted segmentation map, corresponding error map, and uncertainty
map from our approach.

(b) Predicted segmentation map, corresponding error map, and uncertainty
map from temperature scaling.

(c) Ground truth.

(d) Camera image.

Figure 7: Comparison of uncertainty estimates for a semantically ambiguous region appear-
ing as a mixture of fence and vegetation in the camera image (7d) but labeled solely as
vegetation in the ground truth (7c). Our approach (7a) effectively assigns high uncertainty
to the entire region, while temperature scaling (7b) underestimates uncertainty, predicting
only a few points with high uncertainty. Classes are represented with corresponding colors:
outlier , parking , car , road , sidewalk , building , fence , vegetation , trunk , terrain , pole , traffic-sign .
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