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End-to-End Privacy-Preserving Vertical Federated Learning
using Private Cross-Organizational Data Collaboration

Anonymous Author(s)

ABSTRACT
As data utilization in organizations is advancing in various fields,
insights that data brings will be more diverse when it is sourced
through collaboration across different organizations than from a
single organization. However, such data collaboration amongst
organizations raises an issue of privacy protection. Federated learn-
ing, a method of building a machine learning (ML) model with
distributed data across organizations, protects privacy by sharing
only the model parameters and the information necessary for model
update, without having to share the data each organization holds.
On the other hand, it has been pointed out that data used for train-
ing may be leaked even from just the gradient necessary for model
updates. To prevent such privacy leakage, local differential privacy
can be applied where noise is added to the gradient to be shared
in the model training in each organization. However, there is a
problem with local differential privacy, where the amount of noise
increases, leading to the degradation in model accuracy. In this pa-
per, we propose a method of reducing the impact of noise compared
to conventional federated learning by leveraging private cross-
organizational data collaboration, called Private Cross-aggregation
Technology (PCT). PCT combines Private Set Intersection Cardi-
nality, Trusted Execution Environment and Differential Privacy,
and outputs a cross-tabulation table that is private from input to
output. Our method consists of two steps: (1) creating a private
cross-tabulation table using PCT, and (2) training a ML using the
private cross-tabulation table. In our implementation, we train a
Naive Bayes classifier as an ML model. To confirm the effectiveness
of the proposed method, we conducted an accuracy evaluation of
the classification problem using DP-SGD, which is a safe learning
method for deep learning used in federated learning, and the pro-
posed method. We confirmed that the classification accuracy of the
proposed method is higher in situations where the privacy budget
is limited.

CCS CONCEPTS
• Computing methodologies → Distributed algorithms; Ma-
chine learning.
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Vertical Federated Learning
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1 INTRODUCTION
Data-driven decision-making and the utilization of artificial intelli-
gence are advancing in various organizations. While data held by
a single organization only reflects a limited aspect of what to be
captured, e.g. user behavior, cross-organizational data collabora-
tion will bring more diverse insights, enabling us to capture user
behavior in a multifaceted manner.

A method of building a machine learning (ML) model in a sit-
uation where data is distributed across organizations is federated
learning(FL) [17]. FL is categorized into horizontal FL and vertical
FL based on the way the target data is partitioned. In horizontal
FL, each organization has the same data items (features), and FL
is used to increase the number of records in training data. On the
other hand, in vertical FL, each organization has different features
for records with the same identifier (e.g., user ID), and data are
federated to increase the number of features. As mentioned above,
we would like to capture user behavior from multiple perspectives,
therefore in this paper, we focus on vertical FL setting. In FL, data
is not shared between organizations, and only the parameters of
the model and the information necessary for model updates are
shared to protect privacy, which corresponds to the information of
weights and gradients in the case of deep learning. On the other
hand, it has been pointed out that the data used for training may
leak from the gradient information alone [18]. Thus, a method of
securely training the model by adding noise to the shared gradient
on each client (i.e., applying local differential privacy) has been
proposed [3]. However, since noise is added to the gradient on each
client, there is a problem of degradation in model accuracy due to
large amounts of noise.

In this paper, we propose an approach for vertical FL that re-
duces the impact of noise by leveraging private cross-organizational
data collaboration, called Private Cross-aggregation Technology
(PCT). PCT combines Private Set Intersection Cardinality (PSI-CA),
Trusted Execution Environment (TEE), and Differential Privacy
(DP), and outputs a cross-tabulation table that is private from input
to output. Our proposed method consists of two steps: (1) securely
creating cross-tabulation tables across organizations using PCT,
and (2) training a ML using the private cross-tabulation tables. In
our implementation, we train a Naive Bayes classifier as an ML
model because of the following two reasons. First, in the creation of
cross-tabulation tables, if the supervision label is set on the side of
the table and the feature is set on the head of the table, the param-
eters of the Naive Bayes classifier are calculated using the values
of each cell in the cross-tabulation table itself. Secondly, although
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many existing studies on federated learning focus on deep learning
models, it has been pointed out that deep learning is not always
effective for tabular data [4]. As an initial consideration, we as-
sume collaboration between two organizations, with Organization
A holding features and Organization B holding supervision labels.
To confirm the effectiveness of the proposed method, we compared
the proposed method with DP-SGD [1] which is a representative
method combining deep learning with DP. As a result, for small
privacy budgets (e.g.,1 and 0.5), the proposed method had a higher
classification accuracy. In addition, DP-SGD with small privacy
budget (less than 0.5) cannot be trained due to the lack of privacy
budget. These results confirmed the effectiveness of the proposed
method.

The proposed method has three advantages over existing meth-
ods. The first is that there is no need to place a trustworthy external
server. The second is that if there is no fraud by oneself, models can
be trained securely. These two advantages are originated by PCT.
The third is that the proposed method can reduce noise effects by
applying central DP by first performing private data collaboration,
while existing methods have realized secure model training by lo-
cally adding noise (i.e., local DP) based on differential privacy to
the gradient needed for model update at each client.

The contributions of this paper are as follows.

• Wepropose an approach for vertical FL that combines Private
Cross-aggregation Technology that allows for the creation
of private cross-tabulation tables and an ML model that can
be trained from a cross-tabulation table. Our approach has
three advantages: (1) no need to place a trustworthy external
server, (2) if there is no fraud committed by oneself, models
can be trained securely, and (3) the impact of noise is reduced
compared to a local-DP-based method.

• As an example, we demonstrate a case of Naive Bayes clas-
sifier trained from the private cross-tabulation tables. We
leverage the fact that the parameters of the Naive Bayes
classifier can be calculated using the values of each cell in
the cross-tabulation table itself.

• We confirmed the effectiveness of the proposed method by
comparing the proposed method with DP-SGD. The classifi-
cation accuracy of the proposed method is higher than that
of the baseline method when the privacy budget is small
(such as 1 or 0.5) which indicates strong privacy protection.

2 PRELIMINARY AND RELATEDWORK
2.1 Preliminary: Private Cross-aggregation

Technology
In order to securely create statistical information without violating
privacy, based on the data each organization holds across organiza-
tions, the following two requirements need to be met:

(1) The output data should be statistical information that prop-
erly protects privacy.

(2) Unless there is no fraud committed by oneself, information
about their own data will not leak to others beyond the
statistical information produced.

Private Cross-aggregation Technology (PCT) is a method for
creating secure statistical information across organizations without

violating privacy, based on the data held by each organization, by
PSI-CA, TEE, and DP [5, 15]. PCT produces a cross-tabulation table
that meets the differential privacy and consists of the following
three processing steps:

(1) De-identification process that a hash function is applied to
the data because no individuals could be re-identified before
data linking.

(2) Secure aggregation process that aggregates anonymized
hashed data using PSI-CA, aHomomorphic-Encryption-based
method.

(3) Disclosure limitation process that adds noise of DP to aggre-
gated data while being encrypted.

By such processing, PCT enables the creation of secure statistical
information with privacy protection without revealing data to other
organizations. Moreover, PCT ensures information about their own
data will not be leaked to others, except the output statistical infor-
mation, unless it is due to fraud committed by oneself. For technical
details, please refer to [5, 15].

2.2 Related Work
Federated Learning (FL) is a distributed ML method proposed by
Google [14]. FL is used to train deep learning models with data kept
on each client device without aggregating data on a central server,
targeting numerous mobile devices. The scope of FL has since been
expanded to include data collaboration between organizations. The
former problem setting is called cross-device FL, and the latter is
called cross-silo FL [10]. In the cross-device setting, it assumes a
very large number of client devices (e.g., millions or hundreds of
millions), while in the cross-silo setting, it assumes data collabo-
ration between at least two organizations [10]. In this paper, we
assume the cross-silo setting.

In FL, a method called local differential privacy (local DP), which
applies noise based on the differential privacy to the learning data
and the information (gradients) needed for model updates on each
client, is used to securely train an ML model even in situations
where the central server, which updates the model parameters, is
not trustworthy. Although local DP is useful when there is a very
large number of clients, as is assumed in cross-device setting, it has
been pointed out that it is difficult to implement local DP while
maintaining its utility when the number of clients is small [10].
In this regard, several studies have been conducted to reduce the
impact of noise by combining Local DP and secure multi-party
computation [9, 16]. In general, central DP, which applies DP after
aggregating data in one place, has more utility than local DP. It is
problematic, however, in that a trustworthy aggregation server is
needed to apply central DP in existing federated learning [10].

As mentioned so far, while FL usually focuses on deep learning
models, this paper focuses on Naive Bayes classifiers. There has
also been studies targeting Naive Bayes classifiers in the framework
of FL, such as [8, 13]. These studies calculate the co-occurrence
frequency of supervision labels and features at each client in the
framework of horizontal FL, as well as the noise based on DP in
each client. Finally, the the co-occurrence frequencies are summed
up at the aggregation server.

Our study differs from the existing studies because the order
of data collaboration and model training is different from existing

2
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(a) General flow of conventional federated learning

(b) Flow of the proposed approach

Client A

Data Params. + DP
noise

Client B

Data

Central server

Updated 
params

Params
from A

Params
from B

Params. + DP
noise

+ DP
noise

+ DP
noise

aggregate 
params

Private Cross-aggregation Technology
Client A

Data

Client B

Data

ML model trained 
from the cross-
tabulation tableprivate cross-

tabulation table

TEE

De-identification

PSI-CA

DP

Figure 1: (a) General flow of existing FL method and (b) the
flow of the proposed approach. The order of data collabora-
tion and model training is different.

FL methods including deep learning. A general flow of existing
FL methods and the flow of the proposed approach are shown
in Figure 1. A method of federated learning that creates a cross-
tabulation table through private data collaboration and builds a
machine learning model from it in vertical federated learning has
not been proposed so far.

3 PROPOSED METHOD
This section explains the proposed method of safely learning a
machine learning model across organizations. To securely learn the
Naive Bayes classifier in the framework of vertical federated learn-
ing, the process is carried out in the following two steps. In this
paper, assuming collaboration between two organizations, Organi-
zation A holds features and Organization B holds teacher labels.

(1) Secure cross-tabulation table creation across organizations
using secure cross-statistics technology. (3.1 section)

(2) Learning the Naive Bayes classifier from the cross-tabulation
table. (3.2 section)

3.1 Private Cross-Tabulation Table Creation
Across Organizations Using PCT

As mentioned in Section 2, PCT can output securely created cross-
tabulation tables across organizations. In utilizing PCT for federated
learning, it is noted that the input values are limited to discrete
values because it outputs a cross-tabulation table. If the input data is
continuous, it needs to be discretized based on domain knowledge.
For example, when the data is age, it can be cut in 10-year bins,
or if it is assumed that whether or not one is an adult is relevant
to solve a problem, it can be represented as binary as whether
one is over the age of adulthood (such as 18 years old) or older
or not. The output of this step is a cross-tabulation table with the
classification of supervision labels on the side and each feature on

Feat. 3 (Past Purchase)Feat. 2 (Sex)Feat. 1 (Age)ID
YesFemaleAdult1
NoMaleAdult2
YesMaleChild3

LabelID
01
12
13

Create private cross-tabulation 
table using PCT

Org. A Org. B

NoYesFemaleMaleChildAdult
100221Label 0
221202Label 1

Output: cross-tabulation table T (output of PCT which is applied DP)

Feat. 3Feat. 2Feat. 1

Figure 2: Example of a cross-tabulation table output by Se-
cure Cross-Statistics Technology

the head of the table, and noise based on DP is added to each cell of
the cross-tabulation table. Let 𝑐 denote the supervision label (class),
𝑤𝑖 denote 𝑖-th feature, and𝑤𝑖 has 𝑘 (𝑖) types of categorical values.
Then, the output cross-tabulation table is denoted as𝑇𝑖,𝑘 (𝑖 ) ,𝑐 . Figure
2 shows an example of the cross-tabulation table output by PCT.
For example, for the 𝑖 = 1 (Age), assuming 𝑘 = 1 for Adult and 𝑘 = 2
for Child, and the supervision label is 1 (𝑐 = 1), the corresponding
value of the cross-tabulation table is 𝑇1,1,1 = 2.

3.2 Training Naive Bayes Classifier from
Cross-Tabulation Table

In this section, we first explain about the Naive Bayes classifier [12].
Afterwards, we explain how to train the Naive Bayes classifier from
the cross-tabulation table output by PCT and predict for new data.

3.2.1 Naive Bayes Classifier [12]. We define a data set 𝐷 as 𝐷 =

{(𝑑 (1) , 𝑐 (1) ), (𝑑 (2) , 𝑐 (2) ) · · · , (𝑑 (𝑁 ) , 𝑐 (𝑁 ) )}. Here, 𝑑 (𝑛) is each in-
stance, 𝑐 (𝑛) is the supervision label (class) for each instance, and
the number of instances is |𝐷 | = 𝑁 . Naive Bayes classifier predicts
the class that has the highest posterior probability 𝑃 (𝑐 |𝑑) when an
instance 𝑑 (𝑛) is given. From Bayes’ theorem,

𝑃 (𝑐 |𝑑) = 𝑃 (𝑐)𝑃 (𝑑 |𝑐)
𝑃 (𝑑) (1)

is obtained. The denominator 𝑃 (𝑑) on the right-hand side does not
depend on the class, thus the 𝑐𝑚𝑎𝑥 that maximizes the numerator
is the prediction result.

𝑐𝑚𝑎𝑥 = argmax
𝑐

𝑃 (𝑐)𝑃 (𝑑 |𝑐) (2)

= argmax
𝑐

𝑃 (𝑐)𝑃 (𝑤1,𝑤2, · · · ,𝑤𝑚 |𝑐) (3)

Here, it is assumed that the instance 𝑑 (𝑛) is composed of𝑚 types
of features𝑤 . In Naive Bayes classifier, it is assumed that features
occur independently of the class. Then, the following equation is
obtained.

𝑃 (𝑤1,𝑤2, · · · ,𝑤𝑚 |𝑐) =
𝑚∏
𝑖=1

𝑃 (𝑤𝑖 |𝑐) (4)

3
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From equations (3) and (4),

𝑐𝑚𝑎𝑥 = argmax
𝑐

𝑃 (𝑐)
𝑚∏
𝑖=1

𝑃 (𝑤𝑖 |𝑐) (5)

In multi-variate Bernoulli model, the parameters of Naive Bayes
model can be obtained by maximum likelihood estimation as fol-
lows.

𝑃 (𝑐) = 𝑁𝑐∑
𝑐 𝑁𝑐

(6)

𝑃 (𝑤𝑖 |𝑐) =
𝑁𝑤𝑖 ,𝑐

𝑁𝑐
(7)

Here, 𝑁𝑐 is the number of instances in class 𝑐 , and 𝑁𝑤𝑖 ,𝑐 is the
number of instances that include feature 𝑤 among the instances
belonging to class 𝑐 .

3.2.2 Training and Inference Using Cross-Tabulation Tables. As
mentioned in the previous section, we have to obtain the two pa-
rameters, the number of instances in each class 𝑁𝑐 and the number
of instances which contain a feature in each class 𝑁𝑤𝑖 ,𝑐 . First, 𝑁𝑐

can be calculated by marginalizing in the class direction with the
feature in focus as follows.

𝑃 (𝑐) = 𝑁𝑐∑
𝑐 𝑁𝑐

=

∑
𝑘 𝑇∗,𝑘,𝑐∑

𝑐

∑
𝑘 𝑇∗,𝑘,𝑐

(8)

where ∗ indicates any of the feature values. Next, it is sufficient to
refer to𝑇𝑤(𝑖,𝑘 ) ,𝑐 of the cross-tabulation table to calculate 𝑃 (𝑤𝑖 |𝑐) as
follows.

𝑃 (𝑤𝑖 |𝑐) =
𝑁𝑤𝑖 ,𝑐

𝑁𝑐
=

𝑇𝑖,𝑘,𝑐∑
𝑘 𝑇𝑖,𝑘,𝑐

. (9)

Therefore, we can train a Naive Bayes classifier from the cross-
tabulation table output by PCT. When inferring, we create features
in Organization A to calculate 𝑃 (𝑐)𝑃 (𝑑 |𝑐) for each class, and can
predict by finding the class where the posterior probability is maxi-
mum.

4 EVALUATION EXPERIMENT
In this section, we explain the evaluation conducted to confirm the
effectiveness of the proposed method.

4.1 Evaluation Task
We evaluate the classification performance by classifying annual
income based on user attribute information, which is used in exist-
ing studies on FL [7, 13]. In this task, we use the Adult dataset of
the US Census data that is publicly available in the UCI repository1
to perform binary classification on whether a user’s annual income
exceeds $50,000 based on the user’s age, gender, education level,
etc. If the annual income exceeds $50,000, the label is 1, otherwise
0, and the ratio of labels is 0 : 1 = 76.4% : 23.6%.

4.2 Evaluation Settings
4.2.1 Details of Comparison Method and Implementation. Since
most existing studies on FL target deep learning models, we use
deep learning models as our baseline models. Additionally, because
central DP generally has more utility than local DP, if it is more
accurate than central DP, it is more accurate than LDP. Thus, we
1https://archive.ics.uci.edu/dataset/2/adult

Table 1: The target and ranges of hyper-parameters in DP-
SGD

Parameter Range

Learning rate 1e-3, 5e-3, 1e-2, 5e-2, 1e-1, 5e-1, 1
Dim. of the hidden layer 8, 16, 32, 64
Batch size 16, 32, 64, 128, 256

use DP-SGD [1] in central DP as the baseline method which is
a method to apply DP to deep learning models. DP-SGD applies
noise based on Gaussian mechanism to gradient in the training
phase. For the model in DP-SGD, we use a multilayer perceptron
(MLP) with three layers. For the features, the categorical features
and numerical features were pre-processed using one-hot encoding
and min-max normalization, respectively. In deep learning models,
data is used not only for learning the model, but also for tuning
hyper-parameters. Therefore, in our evaluation, we conducted ex-
periments under the condition that half of the given privacy budget
is used for hyper-parameter tuning and the remaining half is used
for model training. The model training uses a method of adding
noise to the gradient of the stochastic gradient descent (SGD) pro-
posed in DP-SGD. Hyper-parameters include the learning rate, the
dimension of the hidden layer of MLP, and the batch size. Table
1 shows the target hyper-parameters and target ranges for tun-
ing. We used Optuna [2] to efficiently carry out parameter tuning.
Because both the proposed method and DP-SGD have random vari-
able in each method, we evaluated the performance three times
by changing the random seed and calculated averages for each
method.

4.3 Evaluation Results and Discussion
We set the privacy budget 𝜖 to 0.01, 0.05, 0.1, 0.5, 1, 2, 5, 10, and
applied noise to the data based on the Gaussian mechanism for the
baseline method (DP-SGD) and the Laplace mechanism for the pro-
posed method. The accuracy for each privacy budget obtained from
the evaluation is shown in Figure 3 The dashed lines in the figure
indicate the accuracy of each method with no addtiion of noise. Fig-
ure 3 shows that the proposed method has a higher accuracy when
𝜖 is 1 or lower, while the baseline method has a higher accuracy
when 𝜖 is 2 or higher. In addition, our results show that while the
proposed method is able to train the model at any privacy budget
despite a decrease in accuracy due to the influence of noise, this is
not the case with DP-SGD, which failed to train the model when 𝜖

was smaller than 0.5 (i.e., 0.01, 0.05, 0.1). These results confirm the
effectiveness of the proposed method.

There is no clear consensus, either theoretically or practically,
on the optimal value of the privacy budget, and it is generally set
to around 0.1 [11]. For example, in [6], it is mentioned that 𝜖 ≥ 3 is
weak privacy protection and 𝜖 ≤ 0.1 is strong privacy protection.
It should be noted that there is little decrease in the accuracy up to
𝜖 = 0.05 in the proposed method. In light of the descriptions in [6],
it can be considered that the proposed method can maintain utility
better than the baseline method under strong privacy protection.
However, in this paper, our evaluation is limited to one dataset,

4
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Figure 3: Evaluation Results

thus we need to perform further evaluation with various datasets
in the future and verify the generality of the proposed method.

5 CONCLUSION
In this paper, we have proposed an approach for vertical FL that re-
duces the impact of noise by leveraging private cross-organizational
data collaboration, called Private Cross-aggregation Technology
(PCT). PCT integrates Private Set Intersection Cardinality (PSI-CA),
Trusted Execution Environment (TEE), and Differential Privacy
(DP) to generate a secure cross-tabulation table while preserving
privacy from input to output. The method involves two main steps:
securely creating cross-tabulation tables across organizations us-
ing PCT, and training a machine learning model (ML) using this
private cross-tabulation data. We have demonstrated that the pro-
posed approach achieves higher classification accuracy, especially
for small private budgets which indicates strong privacy protec-
tion, in comparison with DP-SGD, a representative deep learning
method incorporating DP. In the future, we would like to conduct
further evaluation with more datasets and verify the generality of
the usefulness of the proposed method. We believe that this study
opens up a novel federated learning approach for vertical setting.
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