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Omni-SILA: Towards Omni-scene Driven Visual Sentiment
Identifying, Locating and Attributing in Videos

Anonymous Author(s)

… …

Start End

The implicit visual sentiment 

is negative fighting.

Please identify the implicit visual 

sentiment in this surveillance video.

8s 15s

The location of fighting is 

from 8s to 15s.

A strong man twists another man’s 

arm and forces him to the ground.

Please locate the implicit visual 

sentiment in this surveillance video.

Please attribute the implicit visual 

sentiment in this surveillance video.

Figure 1: A sample from our constructed implicit Omni-SILA dataset to illustrate the Omni-SILA task, where the proposed ICM
approach is required to identify, locate and attribute the negative implicit visual sentiment fighting in this surveillance video.

Abstract
Prior studies on Visual Sentiment Understanding (VSU) primar-
ily rely on the explicit scene information (e.g., facial expression)
to judge visual sentiments, which largely ignore implicit scene
information (e.g., human action, objection relation and visual back-
ground), while such information is critical for precisely discovering
visual sentiments. Motivated by this, this paper proposes a new
Omni-scene driven visual Sentiment Identifying, Locating and
Attributing in videos (Omni-SILA) task, aiming to interactively and
precisely identify, locate and attribute visual sentiments through
both explicit and implicit scene information. Furthermore, this pa-
per believes that this Omni-SILA task faces two key challenges:
modeling scene and highlighting implicit scene beyond explicit. To
this end, this paper proposes an Implicit-enhanced Causal MoE
(ICM) approach for addressing the Omni-SILA task. Specifically, a
Scene-BalancedMoE (SBM) and an Implicit-EnhancedCausal (IEC)
blocks are tailored to model scene information and highlight the
implicit scene information beyond explicit, respectively. Extensive
experimental results on our constructed explicit and implicit Omni-
SILA datasets demonstrate the great advantage of the proposed
ICM approach over advanced Video-LLMs.

CCS Concepts
• Computing methodologies→ Artificial intelligence.

Keywords
Omni-Scene Information, Implicit-enhanced Causal MoE Frame-
work, Visual Sentiment Identifying, Locating and Attributing

1 Introduction
Visual Sentiment Understanding (VSU) [54, 68] focuses on leverag-
ing explicit scene information (e.g., facial expression) to understand
the sentiments of images or videos. However, there exist many
surveillance videos in the real world, where implicit scene infor-
mation (e.g., human action, object relation and visual background)

can more truly reflect visual sentiments compared with explicit
scene information. In light of this, this paper defines the need to
rely on implicit scene information to precisely identify visual senti-
ments as implicit visual sentiments, such as robbery, shooting and
other negative implicit visual sentiments under surveillance videos.
More importantly, current VSU studies mainly focus on identifying
the visual sentiments, yet they ignore exploring when and why
these sentiments occur. Nevertheless, this information is critical
for sentiment applications, such as effectively filtering negative or
abnormal contents in the video to safeguard the mental health of
children and adolescents [10, 38, 45].

Building on these considerations, this paper proposes a new
Omni-scene driven visual Sentiment Identifying, Locating and
Attributing in videos (Omni-SILA) task1, which leverages Video-
centred Large Language Models (Video-LLMs) for interactive visual
sentiment identification, location and attribution. This task aims to
identify what is the visual sentiment, locate when it occurs and at-
tribute why this sentiment through both explicit and implicit scene
information. Specifically, the Omni-SILA task identifies, locates and
attributes the visual sentiment segments through interactions with
LLM. As shown in Figure 1, a strong man is fighting another man
during the timestamps from 8s to 15s, where the LLM is asked to
identify, locate and attribute this fighting implicit visual sentiment.
In this paper, we explore two major challenges when leveraging
Video-LLMs to comprehend omni-scene (i.e., both explicit and im-
plicit scene) information for addressing the Omni-SILA task.

On one hand, how to model explicit and implicit scene infor-
mation is challenging. Existing Video-LLMs primarily devote to
modeling general visual information for various video understand-
ing tasks. Factually, while LLMs encode vast amounts of world
knowledge, they lack the capacity to perceive scenes [27, 33]. Com-
pared to general visual information, explicit and implicit scene

1Relevance to theWeb: Omni-SILA task belongs to Enhancement of multimedia topic
of Semantics and Knowledge track, which aims to analyze sentiment from web content,
such as videos from YouTube and Bilibili. The works involved in this paper aim to
make web content more harmless and helpful for online browsers and communication.
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information is crucial in the Omni-SILA task. Taking Figure 1 as
an example, the negative implicit visual sentiment fighting in the
video is clearly conveyed through the action twists an arm and
forces to ground. However, due to the heterogeneity of these omni-
scene information (i.e., various model structures and encoders), a
single, fixed-capacity transformer-based model fails to capitalize on
this inherent redundancy, making Video-LLMs difficult to capture
important scene information. Recently, MoE has shown scalability
in multi-modal heterogeneous representation fusion tasks [41]. In-
spired by this, we take advantage of the MoE architecture to model
explicit and implicit scene information in videos, thereby evoking
the omni-scene perceptive ability of Video-LLMs.

On the other hand, how to highlight the implicit scene infor-
mation beyond the explicit is challenging. Since explicit scene in-
formation (e.g., facial expression) has richer sentiment semantics
than implicit scene information (e.g., subtle actions), it is easier for
models to model explicit scene information, resulting in modeling
bias for explicit and implicit scene information. However, com-
pared with explicit scene information, implicit scene information
has more reliable sentiment discriminability and often reflects real
visual sentiments as reported by Lian et al. [28]. For the example
in Figure 1, the strong man is laughing while twists another man’s
arm and forces him to the ground, where the facial expression laugh-
ing contradicts the negative fighting visual sentiment conveyed by
the actions of twists the arm and forces to ground. Recently, causal
intervention [35] has shown capability in mitigating biases among
different information [57]. Inspired by this, we take advantage of
causal intervention to highlight the implicit scene information be-
yond the explicit, thereby mitigating the modeling bias to improve
a comprehensive understanding of visual sentiments.

To tackle the above challenges, this paper proposes an Implicit-
enhanced CausalMoE (ICM) approach, aiming to identify, locate
and attribute visual sentiments in videos. Specifically, a Scene-
Balanced MoE (SBM) module is designed to model both explicit
and implicit scene information. Furthermore, an Implicit-Enhanced
Causal (IEC) module is tailored to highlight the implicit scene infor-
mation beyond the explicit. Moreover, this paper constructs two ex-
plicit and implicit Omni-SILA datasets to evaluate the effectiveness
of our ICM approach. Comprehensive experiments demonstrate
that ICM outperforms several advanced Video-LLMs across multi-
ple evaluation metrics. This justifies the importance of omni-scene
information for identifying, locating and attributing visual senti-
ment, and the effectiveness of ICM for capturing such information.

2 Related Work
• Visual Sentiment Understanding. Previous studies on Vi-
sual Sentiment Understanding (VSU) utilize multiple affective in-
formation to predict the overall sentiment of images [54, 70] or
videos [60, 63]. For image, traditional studies focus on extracting
sentiment features to analyze sentiments [53, 55, 69], while recent
studies focus on using instructions to fine-tune LLMs to precisely
predict sentiments [51]. For videos, traditional studies require pre-
processing video features and predicting video sentiments by elabo-
rating complex fusion strategies [14, 43, 44, 62] or learning superior
representations [16, 17, 56, 61]. To achieve end-to-end goal, some
studies [2, 49, 68] input the entire videos, and explore the location of

segments that convey different sentiments or anomalies. Recently,
a few studies gradually explore the causes of anomalies [9] and
sentiments [28] via Video-LLMs. However, these efforts have not
addressed visual sentiment identification, location and attribution
of videos at the same time. Different from all the above studies,
this paper proposes a new Omni-SILA task to interactively answer
what, when and why are the visual sentiment through omni-scene
information, aiming to precisely identify and locate, as well as
reasonably attribute visual sentiments in videos.
• Video-centred Large Language Models. Recently, large lan-
guage models (LLMs) [34], such as LLaMA [42] and Vicuna [5],
have shown remarkable abilities in NLP area. Given the multimodal
nature of the world, some studies [3, 23, 30, 73] have explored
using LLMs to enhance visual understanding. Building on these,
Video-LLMs have extended into the more sophisticated video area,
enabling them to process complex interactions between videos
and instructions. According to the role of LLMs, Video-LLMs be
broadly categorized into three types. (1) LLMs as text decoders
means LLMs receive embeddings from the video encoder and de-
code them into text outputs based on instructions, including Video-
ChatGPT [32], Video-LLaMA [65], Valley [31], Otter [22], mPLUG-
Owl [59], Video-LLaVA [29], Chat-UniVi [18], VideoChat [24] and
MiniGPT4-Video [1]. (2) LLMs as regressors means LLMs can pre-
dict continuous values, like bounding boxes for object trajectories,
including TimeChat [37], GroundingGPT [26], HawkEye [47] and
Holmes-VAD [66]. (3) LLMs as hidden layers means LLMs do not
directly output text but connect to a designed task-specific head to
perform tasks, like event time localization, including OneLLM [13],
VITRON [11] and GPT4Video [48]. Although the aforementioned
Video-LLMs studies make significant progress in video understand-
ing, they remain limitations in their ability to perceive omni-scene
information and are unable to analyze harmful video content. There-
fore, this paper proposes the ICM approach, aiming to evoke the
omni-scene perception capabilities of Video-LLMs and highlight
the implicit scenes beyond the explicit.

3 Approach
In this section, we formulate our Omni-SILA task as follows. Given
a video 𝑣 consisting of 𝑁 segments, each segment 𝑛 is labeled with
a time 𝑡 , visual sentiment 𝑠 and cause 𝑐 . The goal of Omni-SILA is
to interactively identify what is the visual sentiment, locate when
it occurs, and attribute why it arises within 𝑣 . Thus, the model
generates a set of segments {(𝑡1, 𝑠1, 𝑐1), ..., (𝑡𝑖 , 𝑠𝑖 , 𝑐𝑖 ), ..., (𝑡𝑛, 𝑠𝑛, 𝑐𝑛)},
where 𝑡𝑖 , 𝑠𝑖 and 𝑐𝑖 denote the time, visual sentiment and cause for
each video segment.

In this paper, we propose an Implicit-enhanced Causal MoE
(ICM) approach to address the Omni-SILA task, which involves
two challenges: modeling scene and highlighting implicit scene
beyond explicit. To address these challenges, we design a Scene-
BalancedMoE (SBM) block and an Implicit-Enhanced Causal (IEC)
block. Particularly, we choose the open-sourced Video-LLaVA [29]
as the backbone, which achieves state-of-the-art performance on
most video understanding benchmarks. The overall framework is
shown in Figure 2. Prior to delving into the intricacies of the core
components within ICM, we provide an overview of the encoding
block of each scene information.
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Figure 2: The overall architecture of our ICM approach, consisting of a Scene-Enriched Modeling (SEM) block and an Implicit-
enhanced Causal MoE framework, which comprises a Scene-Balanced MoE (SBM) block (right, see Section 3.2) and an Implicit-
Enhanced Causal (IEC) block (left, see Section 3.3), where (a) and (b) are causal graphs for IEC block. FEE, HAE, ORE and VBE
represent Facial Expression Expert, Human Action Expert, Object Relation Expert and Visual Background Expert.

3.1 Scene-Enriched Modeling Block
Given a set of video segments 𝑣 = [𝑣1, ..., 𝑣𝑖 , ..., 𝑣𝑛], we leverage four
blocks to capture explicit and implicit scene information as shown
in Figure 2. Facial Expression Modeling is used to model and
capture explicit facial expression from individuals by MTCNN [67],
which is a widely-used network to detect and learn the represen-
tation of facial expression. Specifically, MTCNN first detects face
candidate proposals in each video segments 𝑣𝑖 , and then produces
the final face detection results and key point locations, which are
encoded by CNN to obtain the facial expression representation 𝑥f .
Human Action Modeling is used to model and capture implicit
human action from individuals by HigherHRNet [4], which is a
well-studied network to learn scale-aware action representation.
Specifically, HigherHRNet detects the location of action key points
or parts (e.g., elbow, wrist, etc) for each individual in each video
segment 𝑣𝑖 , and employs HRNet [46] and designs a deconvolutional
module to generate higher-resolution action heatmaps to obtain
the human action representation 𝑥a. Object Relation Modeling is
used to model and capture implicit object relations from each video
segment 𝑣𝑖 by RelTR [6], which is a well-studied model to learn the
object relations representation. Specifically, RelTR generates the
relations between subjects and objects, such as <man, holds, gun>,
and extracts the visual feature context and entity representations
to obtain object relations representation 𝑥o. Visual Background
Modeling is used to model and capture implicit visual backgrounds
from each video segment 𝑣𝑖 by ViT [7] and SAM-V1 [20], which are
two advanced visual encoding and segmenting tools. Specifically,
we leverage SAM-V1 to segment the visual backgrounds of each
segment 𝑣𝑖 , with pure black to fill out the masked parts. Then we
transform these processed segments into ViT to obtain the final
visual background representation 𝑥b.

3.2 Scene-Balanced MoE Block
In this study, we take advantage ofMoE [41] architecture and design
a Scene-Balanced MoE (SBM) block to model scene information.
Specifically, we address two crucial questions: (1) how to model
different types of scene information; (2) how to balance the contri-
butions of different scene information for the Omni-SILA task. We
will provide comprehensive answers to these two questions in the
subsequent section, formulated as follows.

Scene Experts are introduced to answer question (1), which
model both explicit and implicit scene information inspired by Han
et al. [13], consisting of Facial Expression Expert (FEE), Human Ac-
tion Expert (HAE), Object Relation Expert (ORE) and Visual Back-
ground Expert (VBE) four scene experts. Each scene expert is a stack
of transformer layers, aiming to dynamically learn different scene in-
formation. As shown in Figure 2, unlike other MoE approaches that
embed several FFNs within LLMs, our four scene experts operate
externally to the LLM, enabling effective alignment of various scene
information. Formally, for the representations 𝑥𝑖 , 𝑖 ∈ {f, a, o, b} of
the four scene modeling blocks, the output representation ℎ𝑖 of
each expert Expert𝑖 can be denotes as: ℎ𝑖 = Expert𝑖 (𝑥𝑖 ), where
Expert𝑖 represents the general term of FEE (f), HAE (a), ORE (o)
and VBE (b) four scene experts.

Balanced MoE is leveraged to answer question (2), which bal-
ances different scene information contributions, managed by a
dynamic scene router R as shown in Figure 2. Balanced MoE is
structured as a straightforward MLP that processes input features ℎ
of four scene experts and computes routing weights for each expert,
effectively functioning as a soft router [36]. Formally, the output
𝑦moe of the balanced MoE can be denoted as follows:

𝑦moe = LayerNorm(
∑︁𝐿

𝑗=1
𝑔 𝑗 (ℎ) × 𝐸 𝑗 (ℎ)) (1)

3
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where 𝑔 𝑗 (ℎ) and 𝐸 𝑗 (ℎ) denote the corresponding weight and the
output of the 𝑗-th scene expert, and 𝐿 is the number of scene experts.

To obtain 𝑔(ℎ), we computer the gating probability 𝑃 of each
scene expert for input ℎ, formulated as follows:

𝑔(ℎ) = P = softmax(W · h) (2)

whereW ∈ R𝐿×𝑑 is a learnable parameter for scene router R, and
𝑑 is the hidden dimension of each expert. P is a vector size 𝐿 and Pj
denotes the probability of the 𝑗-th scene expert 𝐸 𝑗 to process ℎ.

Furthermore, to optimize the scene router R, we design a router
loss with balancing constraints Lrb, encouraging R to dynamically
adjust the contributions of all scene experts, formulated as:

Lrb = −𝛼 ·
∑︁𝐿

𝑗=1
P𝑗 ∗ log(P𝑗 ) + 𝛽 · 𝐿 ·

∑︁𝐿

𝑗=1
G𝑗 ∗ H𝑗 (3)

The first term with the hyper-parameter 𝛼 measures the contribu-
tion of various scene information, encouraging the scene router R
to assign a different weight to each scene expert within the con-
straints of P, thereby preventing R from uniformly assigning the
same weight and leading to wrong visual sentiment judgment. We
expect the routing mechanism to select the scene experts that are
more important for the Omni-SILA task, thus we minimize the
entropy of the gating probability distribution P to ensure that each
input feature ℎ𝑖 could be assigned the appropriate weight coeffi-
cient. The second term with the hyper-parameter 𝛽 balances scene
experts of different sizes (since the output dimension 𝑑 of four
scene modeling blocks are different), forcing the model not to pay
too much attention to scene experts with high dimensions, while
ignoring scene experts with low dimensions during the learning
process.G𝑗 =

1
𝐿

∑𝐿
𝑗=1 1{𝑒 𝑗 ∈ 𝐸 𝑗 } × 𝑑 represents the average dimen-

sion of the hidden state of the scene expert 𝑒 𝑗 on the entire input
ℎ, which imports the influence of scene expert sizes 𝑑 when the
model focuses more on large scene experts, the loss rises, which
direct the model to more economically utilize smaller scene experts.
H𝑗 =

1
𝐿

∑𝐿
𝑗=1 Pj represents the gating probability assigned to 𝑒 𝑗 .

3.3 Implicit-Enhanced Causal Block
In this study, we take advantage of the causal intervention tech-
nique [35] and design an Implicit-Enhanced Causal (IEC) block to
highlight implicit scene beyond explicit. Specifically, there are also
two crucial questions to be answered: (1) how to highlight implicit
scene information through the front-door adjustment strategy [35];
(2) how to implement this front-door adjustment strategy in the
Omni-SILA task. Next, we will answer the two questions.

Causal Intervention Graph is introduced to answer question
(1), which formulates the causal relations among the scene infor-
mation X, the fusion scene features M, visual sentiment outputs Y,
and confounding factors C as shown in Figure 2 (a). In this graph,
X → M → Y represents the desired causal effect from the scene
information X to visual sentiment outputs Y, with the fusion scene
features M serving as a mediator. X ← C → Y represents the
causal effect of the invisible confounding factors C on both scene
information X and visual sentiment outputs Y.

To highlight implicit scene information, we consider mitigating
the modeling bias between X and C present in the path M → Y,
thus we leverage do-operator [35] to block the back-door path
M← X← C→ Y through conditioning on X as shown in Figure 2

(b). Then, we utilize the front-door adjustment strategy to analyze
the causal effect of X → Y, denoted as: 𝑃 (Y = 𝑦 |𝑑𝑜 (X = 𝑥)) =∑
𝑚 𝑃 (𝑚 |𝑥)∑𝑥 𝑃 (𝑥) [𝑃 (𝑦 |𝑥,𝑚)].
Deconfounded Causal Attention is leveraged to answer ques-

tion (2), which implements the front-door adjustment strategy
through the utilization of attention mechanisms. Given the ex-
pensive computational cost of network forward propagation across
all samples, we use the Normalized Weighted Geometric Mean
(NWGM) [39, 52] approximation. Therefore, we sample X,M and
compute 𝑃 (Y|𝑑𝑜 (X)) through feeding them into the network, and
then leverage NWGM approximation to achieve the goal of decon-
founding explicit and implicit scene biases, represented as follows:

𝑃 (Y|𝑑𝑜 (X)) ≈ softmax[𝑓 (𝑦𝑥 , 𝑦𝑚)] (4)

where 𝑓 (.) followed by a softmax layer is a network, which is used
to parameterize the predictive distribution 𝑃 (𝑦 |𝑥,𝑚). In addition,
𝑦𝑚 =

∑
𝑚 𝑃 (M = 𝑚 |𝑝 (X))𝒎 and 𝑦𝑥 =

∑
𝑥 𝑃 (X = 𝑥 |𝑞(X))𝒙 esti-

mate the self-sampling and cross-sampling respectively, where the
variables𝑚, 𝑥 correspond to the embedding vectors of 𝒎, 𝒙 . 𝑝 (.)
and 𝑞(.) are query embedding functions parameterized as networks,
which are used to transform the input X into two distinct query
sets. Therefore, we utilize the attention mechanism to estimate the
self-sampling 𝑦𝑚 and cross-sampling 𝑦𝑥 as shown in Figure 2:

𝑦𝑚 =

{
V𝑴 · softmax(Q⊤𝑴K𝑴 )
V𝑪 · softmax(Q⊤𝑪K𝑪 )

(5)

where Eq.(5) denotes self-sampling attention to compute intrinsic
effect of fusion scene featuresM and confounding factors C.

𝑦𝑥 = V𝑪 · softmax(Q⊤𝑴K𝑪 ) (6)

where Eq.(6) represents the cross-sampling attention to compute the
mutual effect between the fusion scene featuresM and confounding
factors C. In the implementation of two equations, Q𝑴 and Q𝑪 are
derived from 𝑝 (X) and 𝑞(X). K𝑴 and V𝑴 are obtained from the
current input sample, while K𝑪 and V𝑪 come from other samples in
the training set, serving as the global dictionary compressed from
the whole training dataset. Specifically, we initialize this dictionary
by using K-means clustering [15] on all the embeddings of samples
in the training set. To obtain the final output 𝑦𝑖𝑒𝑐 of the IEC block,
we employ an FFN to integrate the self-sampling estimation 𝑦𝑚 ans
cross-sampling estimation 𝑦𝑥 , formulated as: 𝑦𝑖𝑒𝑐 = FFN(𝑦𝑚 + 𝑦𝑥 ).

3.4 Two-Stage Training Optimization
Due to the lack of scene perception abilities in Video-LLaVA, we
design a two-stage training process, where scene-tuning stage is
pre-tuned to perceive omni-scene information, while Omni-SILA
tuning stage is trained to address the Omni-SILA task better via
the perception abilities of scene information, detailed as follows.

For Scene-Tuning stage, we utilize four manually annotated in-
struction datasets (detailed in Section 4.1) to pre-tune Video-LLaVA,
aiming to evoke the scene perception abilities of Video-LLaVA,
where the model is asked to “Please describe the facial/action/image
region/background”. For Omni-SILA Tuning stage, we meticu-
lously construct an Omni-SILA dataset (detailed in Section 4.1) to
make our ICM approach better tackling theOmni-SILA task through
instruction tuning, where the ICM approach is asked through the
instruction “Please identify and locate the implicit visual sentiment,
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Table 1: Comparison of several Video-LLMs and our ICM approach on Explicit and Implicit Omni-SILA dataset for identifying
and locating sentiments. The ↓ beside FNRs indicates the lower the metric, the better the performance. Bold and underlined
indicate the highest and second-highest performance, respectively (the same below).

Approach
Explicit Omni-SILA Dataset Implicit Omni-SILA Dataset

Acc F2 FNRs↓ mAP@IoU Acc F2 FNRs↓ mAP@IoU
0.1 0.2 0.3 Avg 0.1 0.2 0.3 Avg

mPLUG-Owl 60.33 59.57 71.37 30.30 12.20 3.36 15.29 28.88 30.06 73.98 31.42 13.21 4.46 16.36
PandaGPT 64.22 64.12 49.12 28.28 17.17 7.98 17.81 32.48 33.87 49.62 29.36 18.28 8.87 18.83
Valley 65.75 65.01 56.07 31.35 15.15 6.76 17.75 34.66 35.94 53.49 32.24 16.26 7.66 18.75

VideoChat 66.57 65.80 44.50 30.93 20.62 8.25 22.63 35.12 36.44 50.79 31.96 21.73 9.26 20.98
Video-ChatGPT 67.88 66.84 61.26 25.56 18.89 10.00 18.15 37.82 39.31 61.47 26.65 19.91 11.03 19.19

ChatUniVi 67.23 66.57 61.81 18.82 10.61 9.05 12.83 37.95 38.88 62.52 19.89 11.62 10.02 13.84
Video-LLaVA 68.19 67.08 44.32 31.41 15.78 8.82 18.67 40.02 41.88 50.34 32.41 16.79 9.92 19.71

ICM 71.41 70.21 33.38 31.91 23.39 18.75 25.21 47.39 48.36 32.76 34.79 26.14 19.08 27.88
w/o SBM 69.32 68.36 37.92 30.33 22.23 15.59 22.72 43.18 44.52 40.11 32.44 23.49 15.65 23.68
w/o IEC 69.71 68.82 35.85 31.27 23.23 16.53 23.68 44.12 45.08 38.62 33.18 24.20 16.23 24.54

w/o scene-tuning 67.87 66.32 43.59 26.80 18.51 12.05 19.12 39.64 40.76 49.74 27.88 19.65 13.14 20.23

and attribute it” as shown in Figure 2. Note that the instruction will
be text tokenized inside Video-LLaVA to obtain the textual token
𝑦𝑡 , which is added with the normalized combination of the SBM
block output 𝑦moe and IEC block output 𝑦iec. Thus, the input of
the LLM inside Video-LLaVA will be “Norm(𝑦moe +𝑦iec) +𝑦𝑡 +𝑦𝑣”,
where 𝑦𝑣 denotes the visual features encoded by intrinsic visual
encoder LanguageBind [72] of Video-LLaVA. Moreover, the whole
loss of our ICM approach can be represented as L = Llm + Lrb,
where Llm is the original language modeling loss of the LLM.

4 Experimental Settings
4.1 Datasets Construction
To assess the effectiveness of our ICM approach for the Omni-SILA
task, we construct instruction datasets for two stages.

For Scene-Tuning stage, we aim to improve Video-LLaVA’s
ability to understand scenes, including facial expression, human
action, object relations and visual backgrounds. Specifically, we
choose four datasets, CMU-MOSEI [63], HumanML3D [12], Ref-
COCO [19] and Place365 [71], to manually construct instructions
for each video or image. For instance in Figure 2, with the instruc-
tion “Please describe the facial/action/image region/background”, the
responses are “A woman with sad face./A person waves his hand./A
dog <0.48,2.23,1.87,0.79> on the grass./A blue sky.”. Particularly, we
use SAM-V2 [20] to segment objects and capture visual backgrounds
in Place365. Since CMU-MOSEI and HumanML3D contain over 20K
videos, we sample frames at an appropriate rate to obtain 200K
frames. To ensure scene data balance, we randomly select 200K
images from RefCOCO and Place365.

For Omni-SILA Tuning stage, we aim to train our ICM ap-
proach to address the Omni-SILA task through instruction tun-
ing. We construct an Omni-SILA tuning dataset consisting of 202K
video clips, and we sample 8 frames for each video clip, resulting
in 1.62M frames. This dataset consists of an explicit Omni-SILA
dataset (training: 52K videos, test: 25K videos) and an implicit Omni-
SILA dataset2 (training: 102K videos, test: 23K videos). The explicit

2Implicit Omni-SILA dataset contains mainly audio-free surveillance video, and the
open-sourced Video-LLMs generally do not support audio. Therefore, to ensure model
consistency and fair comparison, this paper focuses on visual sentiment understanding.

Omni-SILA dataset is based on public TSL-300 [68], which con-
tains explicit positive, negative and neutral three visual sentiment
types. Due to its lack of sentiment attributions, we leverage GPT-
4V [58] to generate the description of each frame from four aspects:
facial expression, human action, object relations and visual back-
grounds, and then again use GPT-4V to summarize visual sentiment
attributions. Finally, we manually check and adjust inappropriate at-
tributions. Implicit Omni-SILA dataset is based on public CUVA [9],
which contains implicit Fighting (1), Animals Hurting People (2),
Water Incidents (3), Vandalism (4), Traffic Accidents (5), Robbery (6),
Theft (7), Traffic Violations (8), Fire (9), Pedestrian Incidents (10), For-
bidden to Burn (11), Normal twelve visual sentiment types. Further,
we manually construct instructions for each video clip. Specifically,
with the beginning of instruction “You will be presented with a video.
After watching the video”, we ask the model to identify “please iden-
tify the explicit/implicit visual sentiments in the video”, locate “please
locate the timestamp when ...”, and attribute “please attribute ... con-
sidering facial expression, human action, object relations and visual
backgrounds” visual sentiments. The corresponding responses are
“The explicit/implicit visual sentiment is ...”, “The location of ... is from
4s to 18s.”, “The attribution is several ...”.

For inference, we evaluate the effectiveness of our ICM approach
on both explicit and implicit Omni-SILA datasets. Particularly, due
to the goal of identifying, locating and attributing visual sentiments,
we infer three tasks with the same instruction in Omni-SILA tuning
stage as described before.

4.2 Baselines
Due to the requirement of interaction and pre-processing videos, tra-
ditional VSU approaches are not directly suitable for our Omni-SILA
task. Therefore, we choose several advanced Video-LLMs as base-
lines.mPLUG-Owl [59] equips LLMs with multimodal abilities via
modular learning. PandaGPT [40] shows impressive and emergent
cross-modal capabilities across six modalities: image/video, text,
audio, depth, thermal and inertial measurement units. Valley [31]
introduces a simple projection to unify video, image and language
modalities with LLMs. VideoChat [24] designs a VideoChat-Text
module to convert video streams into text and a VideoChat-Embed
module to encode videos into embeddings. Video-ChatGPT [32]
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Table 2: Comparison of several Video-LLMs and our ICM approach on Explicit and Implicit Omni-SILA datasets for visual
sentiments attributing, where GPT-based and Human indicate two methods to evaluate the Atr-R metric.

Approach
Explicit Omni-SILA Dataset Implicit Omni-SILA Dataset

Sem-R Sem-C Sen-A Atr-R Sem-R Sem-C Sen-A Atr-R
GPT-based Human GPT-based Human

mPLUG-Owl 0.216 42.06 53.23 6.57 2.92 0.506 59.65 69.68 5.51 2.09
PandaGPT 0.231 43.12 56.72 6.73 3.08 0.516 60.47 72.65 5.68 2.68
Valley 0.252 45.41 57.93 6.94 3.36 0.535 63.36 70.72 6.07 2.46

VideoChat 0.243 45.06 58.16 7.06 3.51 0.527 63.79 71.65 6.29 2.95
Video-ChatGPT 0.272 48.55 60.54 7.39 3.89 0.558 65.53 75.37 6.75 3.42

ChatUniVi 0.254 46.69 59.33 7.24 3.72 0.532 63.57 74.54 6.87 3.15
Video-LLaVA 0.266 47.27 61.40 7.95 4.05 0.547 64.45 74.12 7.04 3.38

ICM 0.290 54.79 65.38 9.02 4.95 0.599 73.57 81.94 8.89 4.74
w/o SBM 0.275 49.76 63.44 8.36 4.21 0.561 68.07 77.22 7.51 3.77
w/o IEC 0.280 50.22 63.62 8.52 4.26 0.567 69.65 78.66 7.87 3.95

w/o scene tuning 0.252 45.92 60.53 7.76 3.96 0.539 63.79 73.63 6.86 3.19

combines the capabilities of LLMs with a pre-trained visual en-
coder optimized for spatio-temporal video representations. Chat-
UniVi [18] uses dynamic visual tokens to uniformly represent
images and videos, and leverages multi-scale representations to
capture both high-level semantic concepts and low-level visual de-
tails. Video-LLaVA [29] aligns the representation of images and
videos to a unified visual feature space, and uses a shared projection
layer to map these unified visual representations to the LLMs.

4.3 Implementation Details
Since the above models target different tasks and employ differ-
ent experimental settings, for a fair and thorough comparison, we
re-implement these models and leverage their released codes to
obtain experimental results on our Omni-SILA datasets. In our ex-
periments, all the Video-LLMs size is 7B. The hyper-parameters of
these baselines remain the same setting reported by their public
papers. The others are tuned according to the best performance. For
ICM approach, during the training period, we use AdamW as the
optimizer, with an initial learning rate 2e-5 and a warmup ratio 0.03.
We fine-tune Video-LLaVA (7B) using LoRA for both scene-tuning
stage and Omni-SILA stage, and we set the dimension, scaling fac-
tor, dropout rate of the LoRA matrix to be 16, 64 and 0.05, while
keeping other parameters at their default values. The parameters of
MTCNN, HigherHRNet, RelTR and ViT are frozen during training
stages. The number of experts in Causal MoE is 4, and the layers
of each expert are set to be 8. The hyper-parameters 𝛼 and 𝛽 of
L𝑟𝑏 are set to be 1e-4 and 1e-2. ICM approach is trained for three
epochs with a batch size of 8. All training runs on 1 NVIDIA A100
GPU with 40GB GPU memory. It takes around 18h for scene-tuning
stage, 62h for training Omni-SILA stage and 16h for inference. To
facilitate the corresponding research in this direction, all codes
together with datasets will be released.

4.4 Evaluation Metrics
To comprehensively evaluate the performance of various models
on the Omni-SILA task, we use commonly used metrics and de-
sign additional task-specific ones. We categorized these evaluation
metrics into three tasks, as described below.
• Visual Sentiment Identifying (VSI). We leverage Accuracy

(Acc) to evaluate the performance of VSI following Yang et al. [56].
Besides, we prioritize Recall over Precision and report F2-score [68].

• Visual Sentiment Locating (VSL). Following prior stud-
ies [21, 64], we use mAP@IoU metric to evaluate VSL performance.
This metric is calculated as the mean Average Precision (mAP) un-
der different intersections over union (IoU) thresholds (0.1, 0.2
and 0.3). More importantly, we emphasize false-negative rates
(FNRs) [25], denoted as: 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑓 𝑎𝑙𝑠𝑒−𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑓 𝑟𝑎𝑚𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑓 𝑟𝑎𝑚𝑒𝑠
, which re-

fer to the rates of “misclassifying a positive/normal frame as nega-
tive”. FNRs indicate that it is preferable to classify all timestamps
as negative than to miss any timestamp associated with negative
sentiments, as this could lead to serious criminal events.
•Visual Sentiment Attributing (VSA). We design four specific

metrics to comprehensively evaluate the accuracy and rationality of
generated sentiment attributions. Specifically, semantic relevance
(Sem-R) leverages the Rouge score to measure the relevance be-
tween generated attribution and true cause. Semantic consistency
(Sem-C) leverages cosine similarity to assess the consistency of
generated attribution and true cause. Sentiment accuracy (Sen-A)
calculates the accuracy between generated attribution and true sen-
timent label. Attribution rationality (Atr-R) employs both automatic
and human evaluations to assess the rationality of generated attri-
butions. For automatic evaluation, we use ChatGPT [34] to score
based on two criteria: sentiment overlap and sentiment clue overlap,
on a scale of 1 to 10. For human evaluation, three annotators are
recruited to rate the rationality of the generated attributions on a
scale from 1 to 6, where 1 denotes “completely wrong” and 6 denotes
“completely correct”. After obtaining individual scores, we average
all the scores to report as the final results. Moreover, 𝑡-test3 is used
to evaluate the significance of the performance.

5 Results and Discussion
5.1 Experimental Results
Table 1 and Table 2 show the performance comparison of different
approaches on our Omni-SILA task (including VSI, VSL and VSA).
From this table, we can see that: (1) For VSI, our ICM approach
outperforms all the Video-LLMs on the implicit Omni-SILA dataset,
and achieves comparable results on the explicit Omni-SILA dataset.
For instance, compared to the best-performing Video-LLaVA, ICM
achieves average improvements by 6.93% (𝑝-value<0.01) on implicit

3https://docs.scipy.org/doc/scipy/reference/stats.html
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Table 3: The effectiveness study of various scenes in Omni-SILA, where!means that we capture the current scene. All the
experiments are conducted on Explicit and Implicit Omni-SILA datasets and evaluate VSI, VSL and VSA three tasks. Fac, Act,
Obj and Back are short for facial expression, human action, object relation and visual background scene, respectively.

Fac Act Obj Back Explicit Omni-SILA Dataset Implicit Omni-SILA Dataset
Acc F2 FNRs↓ mAP@tIoU Sen-A Atr-R Acc F2 FNRs↓ mAP@tIoU Sen-A Atr-R

! ! ! 68.81 67.79 36.65 23.25 63.29 12.38 46.18 45.93 34.52 25.77 79.26 12.70
! ! ! 68.66 67.87 37.52 22.64 63.48 12.16 43.89 44.97 37.89 24.62 77.78 11.36
! ! ! 70.03 69.06 34.97 24.07 64.15 13.01 45.34 46.22 34.54 26.31 79.41 12.39
! ! ! 69.16 68.32 36.07 23.01 63.62 12.66 44.57 45.49 35.86 25.39 78.36 11.78
! ! ! ! 71.41 70.21 33.38 25.51 65.38 13.97 47.39 48.36 32.76 27.88 81.94 13.63
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Figure 3: Two line charts to compare several well-performing
Video-LLMs with our ICM approach on 11 implicit visual
sentiments of FNRs (a) and Atr-R (b) two metrics, and the red
boxes indicate the categories Vandalism of FNRs and Fire of
Atr-R where the performance difference is biggest.

Omni-SILA dataset and 3.18% (𝑝-value<0.05) on explicit Omni-SILA
dataset. This indicates that identifying implicit visual sentiments
is more challenging than the explicit, and justifies the effective-
ness of ICM in identifying what is visual sentiment. (2) For VSL,
similar to the results on VSI task, our ICM approach outperforms
all the baselines on the implicit Omni-SILA dataset while achieves
comparable results on the explicit. For instance, compared to the
best-performing results underlined, ICM achieves the average im-
provements by 5.44% (𝑝-value<0.01) on the implicit and 3.65% (𝑝-
value<0.05) on the explicit. Particularly, our ICM approach sur-
passes all the Video-LLMs on FNRs by 17.58% (𝑝-value<0.01) on the
implicit and 10.94% (𝑝-value<0.01) on explicit compared with the
best results underlined. This again justifies the challenge in locating
the implicit visual sentiments, and demonstrates the effectiveness
of ICM in locating when the visual sentiment occurs. (3) For VSA,
our ICM approach outperforms all the Video-LLMs on both im-
plicit and explicit Omni-SILA datasets. Specifically, compared to
the best-performing approach on all VSA metrics, ICM achieves
total improvements of 5.9%, 14.28%, 10.55% and 5.18 on Sem-R, Sem-
C, Sen-A and Atr-R in two datasets. Statistical significance tests
show that these improvements are significant (𝑝-value<0.01). This
demonstrates that ICM can better attribute why are both explicit
and implicit visual sentiments compared to advanced Video-LLMs,
and further justifies the importance of omni-scene information.

5.2 Contributions of Key Components
To further study the contribution of the key components in our ICM
approach, we conduct a series of ablations studies, the results of
which are detailed in Table 1 and Table 2. From these tables, we can
see that: (1) w/o IEC block shows inferior performance compared to
ICM, with an average decrease of VSI, VSL and VSA three tasks by
4.82%(𝑝-value<0.05), 6.6%(𝑝-value<0.01) and 10.37%(𝑝-value<0.01).
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Figure 4: Two statistical charts to illustrate the efficiency of
our ICM approach. The histogram (a) compares the inference
time of ICMwith baselines, while the line chart (b) shows the
convergence of training losses of ICM, two well-performing
Video-LLMs and the variants of ICM across training steps.

This indicates the existence of bias between explicit and implicit
information, and further justifies the effectiveness of IEC block to
highlight the implicit scene information beyond the explicit. (2)
w/o SBM block shows inferior performance compared to ICM, with
an average decrease of VSI, VSL and VSA three tasks by 5.99%(𝑝-
value<0.01), 9.29%(𝑝-value<0.01) and 13.12%(𝑝-value<0.01). This
indicates the effectiveness of SBM block in modeling and balancing
the explicit and implicit scene information via the MoE architec-
ture, encouraging us to model heterogeneous information via MoE.
(3) w/o scene tuning exhibits obvious inferior performance com-
pared to ICM, with an average decreases of VSI, VSL and VSA three
tasks by 11.39%(𝑝-value<0.01), 20.47%(𝑝-value<0.01) and 23.72%(𝑝-
value<0.01). This confirms that the backbone lacks the ability to
understand omni-scene information. This further demonstrates the
necessity and effectiveness of pre-tuning, and encourages us to
introduce more high-quality datasets to improve the scene under-
standing ability of Video-LLMs.

5.3 Effectiveness Study of Scene Information
To delve deeper into the impact of various scene information, we
conduct a series of ablations studies, the results of which are detailed
in Table 3. From this table, we can see that: (1) w/o Facial Expres-
sionModeling showsmore obvious inferior performance on the ex-
plicit than the implicit Omni-SILA dataset, with the total decrease of
VSI, VSL and VSA by 5.02%(𝑝-value<0.01), 5.53%(𝑝-value<0.01) and
3.68%(𝑝-value<0.05) on the explicit; 3.64%(𝑝-value<0.05), 3.87%(𝑝-
value<0.05) and 3.61%(𝑝-value<0.05) on the implicit. This is rea-
sonable that most of videos in the implicit dataset may have no
visible faces, making it difficult to capture facial expression. (2)
w/o Human Action Modeling exhibits obvious inferior perfor-
mance on both explicit and implicit Omni-SILA datasets, with the
total decrease of VSI, VSL and VSA by 5.99%(𝑝-value<0.01), 7.7%(𝑝-
value<0.01) and 5.07%(𝑝-value<0.01). This indicates that human
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action information is important to recognize explicit and implicit
visual sentiments. For example, we can precisely identify, locate
and attribute the theft via an obvious human action of stealing. (3)
w/o Object Relation Modeling shows slight inferior performance
on both explicit and implicit Omni-SILA datasets. This is reasonable
that objects are objective exists, and the visual sentiment of visual
object relations is very subtle, unless a specific scene like <a man,
holding, guns> can be identified as robbery. (4) w/o Visual Back-
ground Modeling exhibits obvious inferior performance on both
explicit and implicit Omni-SILA datasets, with the total decrease of
VSI, VSL and VSA by 4.92%(𝑝-value<0.05), 5.39%(𝑝-value<0.01) and
4.25%(𝑝-value<0.05). This indicates that video background is also
important to recognize explicit and implicit visual sentiments. For
example, we can precisely identify, locate and attribute the fire via
the forest on fire with flames raging to the sky background.

5.4 Applicative Study of ICM Approach
To study the applicability of ICM, we compare the FNRs and Atr-R
of ICM with other Video-LLMs. From Table 1, we can see that ICM
approach performs the best on the metric of FNRs. For example,
ICM outperforms the best-performing Video-LLaVA by 10.94% (𝑝-
value<0.01) and 17.58% (𝑝-value<0.01) on the explicit and implicit
Omni-SILA dataset respectively. From Table 2, our ICM approach
achieves state-of-the-art performance on both implicit and explicit
Omni-SILA datasets. These results indicate that ICM is effective in
reducing the rates of FNRs and providing reasonable attributions,
which is of great importance in application. Furthermore, recog-
nizing that the implicit Omni-SILA dataset comprises 11 distinct
real-world crimes, we perform a detailed analysis of each negative
implicit visual sentiment on the performance of FNRs (Figure 3 (a))
and Atr-R (Figure 3 (b))4. From these figures, we can see that ICM
surpasses all other Video-LLMs across 11 crimes. Particularly, ICM
performs best on Vandalism (4) in FNRs and Fire (9) in Atr-R. This
indicates that ICM is effective in reducing FNRs and improving the
interpretability of negative implicit visual sentiments, encouraging
us to consider the omni-scene information, such as human action in
Vandalism and visual background in Fire, for precisely identifying,
locating and attributing visual sentiments.

5.5 Efficiency Analysis of ICM Approach
To study the efficacy of our ICM approach, we compare the infer-
ence time of ICM with other Video-LLMs (Figure 4 (a)), and analyze
the convergence of training loss for two advanced Video-LLMs
(i.e., Video-ChatGPT and Video-LLaVA), ICM and its variants over
different training steps (Figure 4 (b)). As shown in Figure 4 (a), we
can see that ICM achieves little difference in inference time com-
pared with other Video-LLMs. This is reasonable because MoE can
improve the efficiency of inference [8, 50], which encourages us to
model omni-scene information via MoE architecture. From Figure 4
(b), we can see that: (1) ICM shows fast convergence compared to
Video-LLMs. At the convergence fitting point, the loss of ICM is
0.97, while Video-LLaVA is 2.21. This indicates that ICM has more
high efficiency than other Video-LLMs, which further shows the
potential of ICM for quicker training times and less source use,

4Due to the space limit, we do not illustrate other metrics on these 11 negative implicit
visual sentiment. Actually, ICM is still the best-performing approach.

Please identify and locate the explicit/implicit visual sentiment in the following video, and attribute this sentiment. 

Example 1 (Explicit Visual Sentiment: Positive) Example 2 (Implicit Visual Sentiment: Traffic Accident)

⛰️

… … … …

5s 23s 3s 15s

Positive.

A woman stands on the stairs of a room and hugs a 

man, with exciting and surprise face.

Location: 5s , 23s

ICM

Positive.

A woman smile at another man on the stairs.

Location: 4s , 21s

Video

LLaVA

Positive.

A woman introduces a man to others with happiness.

Location: 0s , 28s

Valley

Traffic accident.

A black car speeds into pedestrians on the sidewalk, 

hitting several pedestrians.

Location: 3s , 15s

ICM

Traffic violations.

A car parks next to the sidewalk.

Location: 5s , 17s
Video

LLaVA

Normal.

A car drives on the road with several people.

Location: None , 0s
Panda

GPT

Figure 5: Two samples to compare ICM with other baselines.

thereby improving its applicative use in real-world applications. (2)
ICM shows fast convergence compared to its variants, indicating
that the integration of MoE architecture and causal intervention
can accelerate the convergence process. (3) ICM shows fast conver-
gence compared to without scene-tuning, where the loss is 3.95 at
the convergence fitting point. This again justifies the importance
of scene understanding before Omni-SILA tuning.

5.6 Qualitative Analysis
As illustrated in Figure 5, we provide a qualitative analysis to intu-
itively compare the performance of ICM with other Video-LLMs on
the Omni-SILA task. Specifically, we randomly select two samples
from each of explicit and implicit Omni-SILA datasets, asking these
approaches to “Identify and locate the visual sentiment in the follow-
ing video, and attribute this sentiment”. Due to the space limit, we
choose the top-3 well-performing approaches. From this figure, we
can see that: (1) Identifying and locating implicit visual sentiment is
more challenging than the explicit. For instance, Video-LLaVA can
roughly locate and precisely identify positive sentiment in Example
1, but has difficulties in locating traffic accident in Example 2. How-
ever, ICM can precisely identify and locate the traffic accident. (2)
Attributing both explicit and implicit visual sentiments is challeng-
ing. All the advanced Video-LLMs are difficult to attribute visual
sentiments, even some approaches are nonsense. While ICM can
provide reasonable attributions due to the capture of omni-scene
information, such as surprise face, hugging action in Example 1, and
speeds, hitting action, pedestrians visual background in Example 2.
This again justifies the importance of omni-scene information, and
effectiveness of ICM for capturing such information.

6 Conclusion
In this paper, we address a new Omni-SILA task, aiming to identify
what is the visual sentiment, locate when it occurs and attribute
why this sentiment in videos. In particular, we propose an ICM ap-
proach to address this task by leveraging both explicit and implicit
scene information. The core components of ICM involve a SBM
block and an IEC block to effectively model scene information and
highlight the implicit scene information beyond the explicit. Exper-
imental results on our constructed explicit and implicit Omni-SILA
datasets demonstrate the superior performance of ICM over several
advanced Video-LLMs. In our future work, we would like to train
a Video-LLM supporting more signals like audio from scratch to
further boost the performance of sentiment identifying, locating
and attributing in videos. In addition, we would like to leverage
some light-weighting technologies (e.g., LLM distillation and com-
pression) to further improve the efficiency of our ICM apporoach.
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