

000 GENATATORS: AB INITIO GENE ANNOTATION WITH 001 DNA LANGUAGE MODELS 002 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

010 Inference of gene structure and location from genome sequences - known as
011 de novo gene annotation - is a fundamental task in biological research. However,
012 sequence grammar encoding gene structure is complex and poorly understood, often
013 requiring costly transcriptomic data for accurate gene annotation. In this work, we
014 revisit standard evaluation protocols, showing that commonly used per-token and
015 per-sequence metrics fail to capture the challenges of real-world gene annotation.
016 We introduce and theoretically justify new biologically grounded interval level
017 metrics, along with benchmarking datasets that better capture annotation quality.
018 We show that pretrained DNA language model (DNA LM) embeddings do not
019 capture the features necessary for precise gene segmentation, and that task specific
020 fine-tuning remains essential. We comprehensively evaluate the impact of model
021 architecture, training strategy, receptive field size, dataset composition, and data
022 augmentations on gene segmentation performance. We show that fine-tuned DNA
023 LMs outperform existing annotation tools, generalizing across species separated
024 by hundreds of millions of years from those seen during training, and providing
025 segmentation of previously intractable non-coding transcripts and untranslated
026 regions of protein-coding genes. Our results thus provide a foundation for new
027 biological applications centered on accurate and scalable gene annotation.

028 029 1 INTRODUCTION 030

031 The rapid development of DNA sequencing technologies, such as third-generation sequencing and
032 Hi-C, has led to an exponential growth in the availability of genome assemblies across the tree of life.
033 This genomic data is invaluable for fundamental research, biotechnology, and biomedicine, but raw
034 DNA sequences alone are insufficient for most applications. In order to interpret these data, genomes
035 must be annotated, which allows the identification of functional elements. Gene annotation is the
036 most important here, since it identifies genes and reveals their structural elements, which is critical
037 for almost all downstream applications.

038 A gene is a continuous subsequence of genomic DNA that serves as the template for transcription,
039 the process by which RNA molecules are synthesized from DNA. Genes are directional, and their
040 direction is defined collinear with the direction of RNA synthesis. Therefore, genes can appear in
041 forward or reverse orientation relative to the reference genome (Appendix A Figure A1A). In the
042 genomes, approximately half of annotated genes are in the forward orientation and half in the reverse.

043 The two largest gene classes are messenger RNAs (mRNAs) and long non-coding RNAs (lncRNAs) —
044 this paper focuses only on them. In the human genome, approximately 40.5% of genes are annotated
045 as mRNAs and 35.2% as lncRNAs. mRNAs encode proteins and their sequence is segmented into
046 exons and introns, with exons containing coding sequence (CDS) and untranslated regions (UTRs)
047 at the 5' and 3' ends (Appendix A Figure A1B). Translation of the CDS provides the amino acid
048 sequence of proteins, each amino acid encoded by three CDS letters (codon); thus, even a single
049 nucleotide shift in an exon boundary can change all downstream codons. By contrast, lncRNAs
050 lack CDS and do not produce proteins, but instead regulate diverse biological processes, including
051 chromatin remodeling, immune response, viral defense, and cancer progression (Mattick et al., 2023;
052 Sharma et al., 2024).

053 Annotating lncRNAs is a qualitatively different task compared to annotating mRNAs. Protein-coding
genes can often be recognized from conserved protein-coding fragments while lncRNAs lack such

signals, evolve more rapidly, and are often expressed only in specific tissues, which makes their detection particularly challenging without additional evidence such as RNA-seq.

Untranslated regions of mRNAs are also essential to annotate. Although they are not translated into proteins, UTRs influence transcript stability, translation efficiency, and localization (Castillo-Hair et al., 2024). They may encode short functional peptides, and mutations in UTRs can be linked to human diseases (Filatova et al., 2023). Thus, a complete view of gene structure requires accurate recovery not only of coding exons but also of UTRs and non-coding genes.

Learning the sequence rules that govern transcription and protein synthesis should, in principle, enable prediction of gene structure directly from DNA sequence. Methods that attempt this are known as *ab initio* gene predictors, yet in practice they underperform approaches that incorporate supplementary evidence beyond the genome sequence (Scalzitti et al., 2020). Common sources of such evidence include gene annotations from closely related species and RNA-sequencing data from the target species (Raghavan et al., 2022). However, these resources are not consistently available across organisms or conditions, which sustains the demand for robust *ab initio* gene annotation methods that deliver high-quality results from sequence alone.

In this work, we address these gaps by applying DNA language models to gene segmentation and developing GENATATORS, a family of fine-tuned models specifically designed for *ab initio* annotation. Using biologically inspired metrics, justified by theoretical analysis and empirical validation, we demonstrate that pretrained DNA language model embeddings are insufficient for precise segmentation, making task-specific fine-tuning necessary. We then investigate how architecture, input context length, species diversity in training data, and augmentation strategies affect performance. Finally, we benchmark GENATATORS against existing methods and evaluate generalization on human and other species, showing that our models achieve state-of-the-art performance in gene segmentation due to capacity to uncover previously untrackable lncRNAs and UTRs of mRNA, while maintaining comparable accuracy to the best existing tools on segmentation restricted to mRNA CDS.

2 RELATED WORK

Early *ab initio* approaches relied on probabilistic models such as AUGUSTUS (Stanke et al., 2004), which is based on HMMs that hardcode biological rules of gene grammar. These models capture statistical patterns of protein-coding genes, including the presence of a start codon to initiate CDS, a stop codon to terminate it, absence of in-frame stops within the CDS, and canonical dinucleotides at splice junctions. Such models are effective for identifying protein-coding genes but fail to capture UTRs and lncRNAs (Scalzitti et al., 2020). To address these gaps, deep learning methods have been introduced to learn gene segmentation rules from DNA sequence. Helixer used CNNs for gene segmentation (Stiehler et al., 2020), and Tiberius integrated CNN layers with a differentiable HMM decoder, achieving state-of-the-art accuracy on protein-coding gene annotation (Gabriel et al., 2024). Although effective, these models remain constrained. Tiberius focuses on protein-coding genes without explicit modeling of UTRs or lncRNAs, and its CNN backbone is restricted to relatively short contexts (up to 10Kb) despite many human genes exceeding 30 Kb and spanning over 1 Mb.

Large DNA LMs have emerged as versatile backbones for genomic predictions (Schiff et al., 2024; Fishman et al., 2025; Dalla-Torre et al., 2024; Marchal, 2024; Bixi et al., 2025; Zhou et al., 2023). Based on transformer or SSM architectures, they can be pretrained on large genomic datasets. DNA LMs have matched or surpassed classical approaches across tasks such as splice-site prediction, promoter identification, and polyA signal detection. SegmentNT (de Almeida et al., 2025), a fine-tuned Nucleotide Transformer DNA LM (Dalla-Torre et al., 2024) with a U-Net head, is a nucleotide-resolution classifier that outputs probabilities for each gene element directly from DNA sequence. Authors of SegmentNT also introduced variants of this model pretrained on expression data — SegmentBorzoi and SegmentEnformer. However, as we demonstrate below, classification performance on individual gene elements does not reliably reflect the accuracy of full gene reconstruction. Consequently, the utility of these models for real-world biological applications remains unclear.

Recently, AlphaGenome has been introduced as a foundation model of the genome that predicts multiple modalities from sequence, including RNA-seq, chromatin accessibility, and splicing-related outputs (Avsec et al., 2025). In the splicing domain, it performs nucleotide-level classification of

108 donor and acceptor sites, prediction of splice-site usage, and quantitative splice-junction prediction.
 109 While not being a gene annotation system, such splicing predictions of the model are directly relevant
 110 to exon–intron boundary detection and therefore to transcript assembly.

111 Alongside these methods, several benchmarks have been proposed to assess gene annotation-related
 112 tasks. GUE (Zhou et al., 2023) includes splice-site prediction; however, it assigns a single label to 400
 113 bp input sequences, which makes it biologically irrelevant: gene annotation requires single-nucleotide
 114 precision in detection of boundary between gene elements. BEND (Marin et al., 2023) instead
 115 operates at the nucleotide level, but it uses short input sequences, relies on metrics that are not
 116 biologically rigorous, and does not evaluate critical elements such as UTRs or lncRNA genes. A
 117 detailed comparison between benchmarks developed in this work, BEND, and GUE is provided in
 118 Appendix B.

119 Building on these observations, it is clear that systematic evaluations of modern DNA LMs for full
 120 gene segmentation are still missing. In particular, SSMs have not been comprehensively benchmarked,
 121 and among transformer-based models, only a single context-extension method (Peng et al., 2023)
 122 has been applied to process genes longer than the default receptive field. A unified benchmark is
 123 therefore needed to clarify how modern DNA LMs perform on gene segmentation, especially for
 124 lncRNAs and UTRs that remain inaccessible to most existing tools.

126 3 FORMAL DEFINITION OF THE PROBLEM AND METRICS

128 We formalize gene segmentation as a multiclass and multilabel nucleotide level classification task.
 129 The objective is to learn a function f that maps an input representation $\mathbf{X} \in \mathbb{R}^{N_l \times H}$ to an output
 130 label matrix $\mathbf{L} \in \mathbb{R}^{N_l \times 5}$, where H is the token embedding dimension, N_l is the input length in
 131 nucleotides, and 5 is the number of target classes which are exon, intron, coding sequence (CDS), 5'
 132 untranslated region, and 3' untranslated region.

134 3.1 SEGMENTATION SCORING

136 Segmentation performance can be assessed using conventional classification metrics such as precision,
 137 recall, f1-score and PR-AUC computed per class at the nucleotide level. However, these metrics
 138 evaluate classification independently for each nucleotide and therefore may not capture biological
 139 dependencies between predictions. For instance, a misclassification of a single nucleotide within a
 140 megabase long gene has negligible impact on the overall metric, while the same error can alter the
 141 interpretation of all downstream sequence, since shifting a protein coding exon boundary by one
 142 nucleotide modifies all downstream trinucleotide blocks and yields a different amino acid sequence, a
 143 frame shift effect known in molecular biology.

144 To address this limitation, we use *interval level* segmentation scoring inspired by prior work (Scalzitti
 145 et al., 2020). In this approach, a target interval is a continuous sequence of nucleotides with identical
 146 ground truth class labels. A predicted interval is counted as a true positive only when it has complete
 147 reciprocal overlap with a ground truth interval, which means that the predicted and true intervals
 148 coincide.

149 Formally, let the ground truth class label sequence be $L = (l_1, l_2, \dots, l_{N_l})$. An interval $I_m = [i, j]$ is
 150 assigned to class K when $l_k = K$ for all $k \in [i, j]$. For each class K , let $\mathcal{I}_{\text{pred}}^K$ be the set of predicted
 151 intervals and let $\mathcal{I}_{\text{true}}^K$ be the set of ground truth intervals. We compute the following quantities.
 152 True positives are the number of predicted intervals that exactly match a ground truth interval. False
 153 positives are the number of predicted intervals without an exact match in $\mathcal{I}_{\text{true}}^K$. False negatives are
 154 the number of ground truth intervals that are not recovered in $\mathcal{I}_{\text{pred}}^K$.

155 The final interval level f1-score for class K is

$$157 \text{F1}_{\text{interval}}^K = \frac{2 \text{TP}}{2 \text{TP} + \text{FP} + \text{FN}}. \quad (1)$$

158 This metric penalizes biologically important segmentation errors and provides a realistic assessment
 159 of model performance.

161 We also extend interval level scoring to evaluate overall accuracy of gene structure prediction (defined
 162 as *gene level* metric). In gene level scoring, a gene is counted as a true positive only when all of its

162 intervals are reconstructed correctly. Reference annotations may include multiple valid transcript
 163 structures for the same gene, known as transcription *isoforms*, which define different segmentations.
 164 To account for this ambiguity, we use a gene level rule that accepts a prediction as correct when the
 165 predicted interval set exactly matches the interval set of any annotated isoform of the target gene.
 166 The current models *Tiberius* and *AUGUSTUS* rely on hard coded parameters tailored to coding
 167 sequence identification, which makes them unable to detect exons that include untranslated regions.
 168 Therefore, for protein coding transcripts we report two gene level metrics, one where the complete
 169 exon structure is reconstructed and one where only the coding sequence part is reconstructed. We
 170 compute these metrics separately for exon mRNA and CDS mRNA. For non coding transcripts such
 171 as lncRNA, which have no CDS annotation, we compute gene level metrics using exon intervals only.
 172 To obtain an overall gene level score we sum the number of correctly predicted lncRNA genes by
 173 exon matching and the maximum of exon mRNA and CDS mRNA counts for protein coding genes,
 174 which allows a fair comparison across models

$$\text{Score}_{\text{gene}} = \text{TP}_{\text{exon-lncRNA}} + \max(\text{TP}_{\text{exon-mRNA}}, \text{TP}_{\text{CDS-mRNA}}). \quad (2)$$

177 In Appendix C.1, we present a theoretical analysis that derives how sensitivity of conventional
 178 PR-AUC and interval level metrics scales with boundary errors, justifying the need for the latter. This
 179 is followed by empirical evidence in Appendix C.2, where we demonstrate that relying on PR-AUC
 180 can lead to incorrect model rankings.

182 4 EXPERIMENTS

184 **Input data** The training dataset consists of genes from all human chromosomes except 8, 20, and
 185 21, which were held out for validation during training. When specified, we also included genes
 186 from all chromosomes of 39 additional mammalian species. All models were evaluated on human
 187 chromosome 20, since the human genome provides the most accurate annotation among all available
 188 species. For genes with multiple annotated isoforms, we selected a single isoform per gene with
 189 the longest cumulative length of exons. A detailed description of dataset preparation is provided in
 190 Appendix D.

191 **Models** We evaluated models representing different families of DNA LM architectures. From
 192 the SSM family, we included *Evo2-1B* (Brixi et al., 2025) and *Caduceus* (with PH and PS mod-
 193 ifications) (Schiff et al., 2024). For Transformer-based models, we selected *GENA-LM* equipped
 194 with Recurrent Memory Transformer (RMT), capable of processing sequences comparable in length
 195 to complete genes (Kuratov et al., 2024). *DNABERT-2*, *DNABERT-S*, and similar architectures
 196 were not included due to the limited receptive fields. Additionally, we incorporated previously
 197 developed gene segmentation models based on the Nucleotide Transformer DNA LM:
 198 (*SegmentNT* and *SegmentNT_multispecies*), as well as models pretrained on gene expres-
 199 sion data (*SegmentEnformer* and *SegmentBorzoi*), as well as classical models (HMM-based
 200 *AUGUSTUS* and the CNN&HMM hybrid *Tiberius*), in the final benchmarks. However, we did
 201 not evaluate embeddings, re-optimize dataset preparation or training procedures for these models, as
 202 such studies have been reported previously (de Almeida et al., 2025; Gabriel et al., 2024). We refer to
 203 the Appendix E Table A7 for the summary of all models benchmarked in this study.

204 For models operating at single-nucleotide resolution (*Evo2* and *Caduceus*), we appended a linear
 205 projection layer of shape $(H, 5)$ to map the model outputs to the five target classes. For non single-
 206 nucleotide resolution models (Nucleotide Transformer, *GENA-LM*), token embeddings were
 207 upsampled by repeating each token representation to match its corresponding nucleotide span and
 208 further processed using a U-NET architecture as proposed in de Almeida et al. (2025).

209 All models were trained using cross-entropy loss, and the best-performing checkpoint was selected
 210 based on exon-level f1-score on the validation set. Further details on model architectures and training
 211 protocols are provided in Appendix D.

213 4.1 TRAINING ON EMBEDDINGS

215 DNA language models are expected to capture essential genomic features during pretraining. To
 evaluate whether gene-structure information can be extracted directly from frozen representations,

216 we conducted experiments where the DNA LM weights were fixed and only a shallow classifier was
 217 trained. Specifically, we used a linear projection layer for models operating at nucleotide resolution
 218 (*Evo2*, *Caduceus*) and a U-Net decoder for the token-based *GENA-LM* (byte-pair-encoded inputs).
 219

220 As shown in Appendix F Table A8, none of the models produced embeddings containing sufficient
 221 information for accurate gene segmentation (see Appendix G, Table A9 for detailed metrics). The
 222 slightly higher performance of *GENA-LM* is likely attributable to the U-Net decoder, which, unlike
 223 the linear layer used in *Evo2* and *Caduceus*, can aggregate local contextual signals.
 224

225 To understand why pretrained models fail at segmentation, we analyzed final-layer hidden states on
 226 ten randomly selected human genes (six mRNA and four lncRNA) using *Caduceus* and *GENA-LM*.
 227 For *GENA-LM*, which uses BPE tokens, we expanded each token embedding uniformly across its
 228 nucleotide span to obtain one vector per base for both models. PCA projections of the *Caduceus*
 229 embeddings revealed four distinct clusters corresponding to nucleotide identity (**A**, **C**, **G**, **T**), rather
 230 than gene structure (Appendix H, Fig. A4). *GENA-LM* embeddings formed diffuse clusters that also
 231 did not align with gene elements (Appendix H, Fig. A3). This contrasts sharply with embeddings
 232 obtained after fine-tuning on the gene segmentation task described in Section 4.2, which show
 233 clear separation of gene elements (Appendix H, Fig. A3). Quantitatively, fine-tuning increased the
 234 homogeneity of k -means ($k=5$) clusters with respect to exon, intron, CDS, 5'UTR, and 3'UTR labels
 235 from 0.003 to 0.583 for *Caduceus* and from 0.0 to 0.497 for *GENA-LM*.
 236

237 These probing experiments should be interpreted in the context of our evaluation setup. In contrast
 238 to the BEND (Marin et al., 2023) benchmark, where authors employ task-specific trainable heads
 239 on top of frozen representations, our goal here is to assess what current pretrained encoders capture
 240 without relying on complex decoders. To keep the probing strictly aligned with this goal, we use
 241 only minimal heads (a linear layer for *Evo2* and *Caduceus*, and a shallow U-Net for *GENA-LM* to
 242 enable nucleotide resolution), which reveals the information present in the embeddings themselves
 243 rather than what can be recovered by a powerful decoder.
 244

245 Together, these results indicate that pretraining alone is insufficient to encode the features required
 246 for precise gene segmentation and that task-specific fine-tuning remains essential for achieving high
 247 segmentation accuracy.
 248

249 4.2 FINE-TUNING OF DNA LANGUAGE MODELS

250 We next conducted a series of fine-tuning experiments, where both the DNA LM parameters and the
 251 classification head were trainable. These experiments were designed to systematically investigate
 252 how model architecture and the biological information available during training influence gene
 253 segmentation performance.
 254

255 As a baseline, we considered models trained on human genomic sequences with a model context
 256 length of 4,096 bp. Building on this setup, we explored the effect of extending the model context to
 257 32 Kb, which provided a broader genomic window. We also examined whether expanding the training
 258 data to include genes from 39 additional mammalian species improved performance by leveraging
 259 evolutionary conservation, and we tested the impact of restricting the training set to protein-coding
 260 transcripts while excluding lncRNAs, so that the models were exposed only to sequences with
 261 well-defined coding structures. Finally, in a complementary experiment, we evaluated training on
 262 multiple isoforms per gene vs using single representative isoform per gene in the baseline. In all
 263 experiments we focused on *Caduceus PS* and *Caduceus PH* as representative SSMs, while
 264 *GENA-LM* served as the representative Transformer-based model, and we did not include *Evo2*,
 265 since its larger size exceeded our available resources for running multiple fine-tuning experiments.
 266

267 Our results (Table 1 and Appendix G Table A11) indicate that increasing the input sequence length
 268 yields the most substantial improvement in segmentation performance, with approximately $1.6\text{--}2\times$
 269 gains across models. Incorporating multiple species into the training set improved performance
 270 by approximately $1.2\text{--}1.5\times$. Excluding lncRNAs from the training data resulted in improved CDS
 271 detection for both *Caduceus* models. However, this came at the expense of reduced lncRNA
 272 segmentation performance, although the decrease was not as pronounced. This observation suggests
 273 that the sequence grammar underlying non-coding transcripts can, to large extent, be learned from
 274 protein-coding sequences. In contrast to CDS detection, we did not observe consistent improvements
 275 in exon segmentation for protein-coding genes when excluding lncRNA. Specifically, *GENA-LM* and
 276

270

271
272
273
Table 1: Gene-level performance metrics for dataset and model modifications: absolute number of
correctly reconstructed genes (abs) and differences (diff) compared to baseline (presented in the first
column). The gene type (all+) means that all isoforms of all genes were included to the dataset.

Chunk length (N_l), bp	4096	4096	32000	4096	4096	4096	4096	4096									
Gene type	all	all+	all	mRNA	all	all	all	all									
Species	human	human	human	human	39 mammals	human	human	human									
Test-time augmentation	no	no	no	no	no	RC	splice-site filter	splice-site filter									
Model/dataset	Gene type	Class	abs	abs	diff	abs	diff	abs	abs	diff	abs	diff					
GENA base	mRNA	exon	31	22	-9	61	30	33	2	45	14	41	10	42	9	57	26
		CDS	1	0	-1	1	0	1	0	5	4	4	3	1	0	6	5
	lncRNA	exon	15	10	-5	24	9	11	-4	18	3	20	5	24	13	29	14
	all RNA	exon	46	32	-14	85	39	44	-2	63	17	61	15	66	22	86	40
Caduceus PH	mRNA	exon	50	41	-9	97	47	46	-4	78	28	85	35	61	15	107	57
		CDS	1	1	0	2	1	11	10	58	57	5	4	4	-7	7	6
	lncRNA	exon	6	4	-2	23	17	5	-1	11	5	8	2	6	1	12	6
	all RNA	exon	56	41	-15	120	64	51	-5	89	33	93	37	67	16	119	63
Caduceus PS	mRNA	exon	68	43	-25	112	44	76	8	91	23	101	33	77	1	126	58
		CDS	20	0	-20	6	-14	32	12	94	74	24	4	23	-9	30	10
	lncRNA	exon	9	2	-7	18	9	4	-5	4	-5	17	13	9	0	18	9
	all RNA	exon	77	45	-32	130	53	80	3	95	18	118	38	86	9	144	67

290

291

292

293 Caduceus PS achieved a modest improvement of approximately 10%, whereas Caduceus PH
294 exhibited a similar decrease in performance. Overall, we concluded that transcript filtering does not
295 substantially improve training performance. We also found that using multiple isoforms per gene
296 slightly reduced accuracy, confirming that the single-isoform strategy remains preferable

297

298 To investigate the biological features underlying model errors, we analyzed the precision and recall
299 of exon interval detection, stratifying exon-intron boundaries based on their flanking dinucleotide
300 sequences (Appendix I, Fig. A5). Although the frequency of predicted boundaries at each dinucleotide
301 generally reflects the true distribution, we identified samples where dinucleotides flanking predicted
302 boundaries never occur at boundary positions in the actual data. Explicitly excluding exons flanked by
303 these “illegal” dinucleotides, designated as a “splice site filter” improves performance of all models
(Table 1).

303

304 As noted in the Introduction (Fig. A1A), genes occur in both orientations relative to the reference
305 genome, and for this reason we apply a test-time reverse-complement (RC) augmentation in which
306 each sequence is processed in its reference and RC orientations and the predictions are averaged.
307 As shown in Table 1, this approach yields substantial improvements in performance for all models.
308 Notably, Caduceus PS, whose architecture explicitly enforces RC equivariance in the DNA input
309 representation, still benefits significantly from test-time RC augmentation and achieves a $\approx 1.5 \times$
310 improvement in performance. This effect arises because sequences are segmented into fixed-size
311 chunks and opposite orientations induce different chunkings, so averaging behaves like an ensembling.
312 Furthermore, RC augmentation provides greater performance gains than applying a splice-site filter
313 for both Caduceus models. To the best of our knowledge, this is the first study applying reverse-
314 complement augmentation in the context of the gene segmentation task.

314

315 Finally, we compared performance across model architectures. Consistent with previous bench-
316 marks (Schiff et al., 2024), Caduceus PS outperformed Caduceus PH in all experimental
317 settings. The Transformer-based GENA-LM exhibited superior performance in lncRNA detection,
318 whereas the SSM Caduceus detected a substantially higher number of protein-coding genes and
319 achieved markedly better CDS segmentation compared to GENA-LM. We hypothesized that nu-
320 cleotides counting is required to identify triplet-organized CDS. Whereas GENA-LM utilizes variable-
321 length BPE tokens, making counting task challenging, Caduceus employs single-nucleotide to-
322 kenization, which may explain improved performance for the CDS class. In contrast, GENA-LM
323 consistently outperformed Caduceus in lncRNA segmentation, a task that is more challenging
than mRNA for both models, and this advantage aligns with model capacity, since GENA base has
approximately 120M parameters compared to 16M in Caduceus. When we trained the same base

324 setup but with the larger 360M parameter GENA-LM, lncRNA segmentation performance improved
 325 by 25%, further highlighting the benefits of model scaling for this task (Appendix G, Table A10).
 326

328 4.3 SCALING

330 To further improve model performance, we scaled and combined the features identified as most
 331 impactful for gene segmentation. Specifically, we increased the input sequence length to 250 Kb,
 332 utilized data from 39 mammalian species, and included all gene types in the training set. For the
 333 Transformer-based architecture, we employed a larger instance of GENA-LM with an increased
 334 number of parameters (GENA large), while for the SSM we used the Caduceus PS variant,
 335 which consistently demonstrated performance superior to Caduceus PH in our benchmarks. We
 336 deliberately conducted most experiments on a small dataset with downscaled models to conserve
 337 computational resources while reporting detailed usage statistics (see Appendix J).
 338

339 At test time we applied both the splice-site filtering and RC augmentation strategies. We refer to the
 340 resulting models as GENATATORS, a DNA language model-based family of gene annotators.
 341

342 Both GENA large and Caduceus PS show significant performance improvements after scaling
 343 (Figure 1). Interestingly, the performance gain was more pronounced for GENA large, resulting
 344 in a higher overall segmentation accuracy compared to Caduceus PS. This contrast in model
 345 ranking after scaling may be attributed to two factors. First, the increase in model size was fea-
 346 sible only for GENA-LM because a larger pre-trained instance was available, whereas no larger
 347 variant of Caduceus currently exists. Second, the Recurrent Memory Transformer architecture
 348 employed in GENA-LM provides a superior ability to handle long input sequences in comparison
 349 with SSMs (Rodkin et al., 2025).
 350

351 Among gene types, the previously observed specificity of each model remained consistent after
 352 scaling. GENA large achieved superior performance in the segmentation of lncRNAs, while
 353 Caduceus PS continued to outperform in the detection of protein-coding gene structure and in the
 354 accurate annotation of CDS (Figure 1 and Appendix G Table A14).
 355

356 4.4 BENCHMARKING GENATATOR AGAINST OTHER GENE-ANNOTATION TOOLS

357 We evaluated the performance of the GENATATOR models in comparison with several state-of-the-art
 358 gene annotation tools, including the HMM-based AUGUSTUS (Stanke et al., 2004), the CNN+HMM
 359 model Tiberius (Gabriel et al., 2024), the DNA LM-based SegmentNT (with variants trained
 360 on human-only and multispecies data) (de Almeida et al., 2025), and transformer-based models
 361 pretrained on gene expression, namely SegmentEnformer and SegmentBorzoi (de Almeida
 362 et al., 2025). We also included the recently developed AlphaGenome in the comparison (Avsec
 363 et al., 2025).
 364

365 We first compared models using the conventional PR-AUC metric (Appendix G Table A12). Ac-
 366 cording to this evaluation, GENATATORS slightly outperform SegmentNT, SegmentBorzoi,
 367 and SegmentEnformer, with an improvement of about 10% between the best-performing
 368 GENATATOR and the best-performing SegmentNT.
 369

370 We then assessed performance using gene level metrics described above, reporting results as the total
 371 number of correctly segmented genes (Figure 1, detailed metrics and model usage in Appendix K).
 372 Under this scoring scheme, GENATATORS identify substantially more genes, with more than a
 373 threefold difference compared to previously developed alternatives. Visual inspection of predicted
 374 gene structures reveals that SegmentNT frequently extends exon boundaries by several nucleotides,
 375 which in the case of mRNA leads to reading-frame shifts and translates to biologically invalid
 376 truncated peptides. This observation underscores the importance of gene level evaluation metrics for
 377 capturing biologically meaningful segmentation accuracy.
 378

379 We attribute the improved performance of GENATATORS to a combination of training optimizations,
 380 including the use of multispecies data, extended input context lengths, and data augmentation
 381 strategies. As shown in Table 1, a basic training configuration with human-only data, a 4,096 bp
 382 input length, and no augmentations, or isolated modifications of this setup, produces results that are
 383 comparable to or worse than those achieved by SegmentNT.
 384

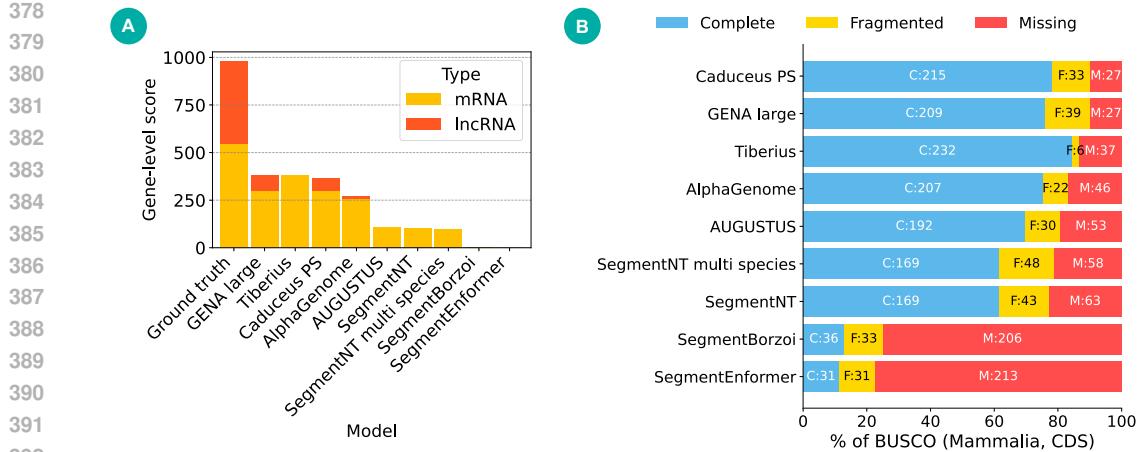


Figure 1: GENATATORS are top-ranked in gene segmentation benchmarks. A. Gene-level metrics. B. BUSCO metrics

GENATATORS also outperform AUGUSTUS in the total number of correctly segmented genes and perform on par with the current state-of-the-art model Tiberius. Specifically, the GENA-based GENATATOR marginally outperforms Tiberius, while the Caduceus-based variant performs slightly below it.

Stratifying performance by transcript type reveals that Tiberius outperforms both GENATATORS in the number of correctly segmented protein-coding regions of genes, which stem from its superior performance in CDS classification. However Tiberius completely fails to identify lncRNA genes and UTRs within mRNA genes, resulting in slightly lower total number of correctly segmented genes.

The common metric for assessing the completeness of genome annotation is BUSCO (Manni et al., 2021). To compute BUSCO, the predicted exon-intron structure of a gene is used to generate an amino acid sequence, which is then compared to a set of proteins that are specific to a particular taxonomy group. The results of BUSCO are presented as a number of proteins that were identified from a selected dataset. These proteins are divided into two categories: Complete and Fragmented, where fragmented proteins have some segments missing.

Using the mammalia-specific BUSCO dataset, GENATATORS identified 246 orthologs, outperforming all other models. Tiberius detected 238 orthologs, but with a higher number of complete genes (232 for Tiberius vs. 210 for GENATATOR). Similar trends were observed using the primates BUSCO dataset.

Other models, including SegmentNT, SegmentBorzoi, and SegmentEnformer, showed substantially lower BUSCO recovery rates, consistent with their lower gene level segmentation performance. These results further reinforce the conclusion that conventional classification metrics such as PR-AUC are poor proxies for evaluating biological utility of the models.

We next investigated whether segmentation errors made by different tools are shared or model-specific. Shared errors would suggest the presence of genes with structural features that are out-of-distribution relative to the training data, while model-specific errors would indicate that each tool fails on a unique subset of genes. To explore this, we analyzed the overlap of correctly segmented genes among the three top-performing models: the two GENATATOR variants and Tiberius. As shown in Appendix G Figure A2, there is a substantial intersection of correctly segmented genes across all models, supporting the hypothesis that certain genes present a challenge to all tools. At the same time, each model also segments a distinct subset of genes not correctly annotated by the others. In comparisons between GENATATORS and Tiberius, the unique gene set recovered by GENATATORS is largely composed of lncRNAs, which Tiberius is not designed to annotate. These findings suggest that model ensembling is currently the most effective strategy for maximizing gene annotation coverage across both coding and non-coding transcripts.

Overall, our results position GENATATORS as state-of-the-art models for gene annotation, with particular strength in the detection of non-coding genes and UTRs.

432 4.5 GENATATORS GENERALIZE ACROSS UNSEEN SPECIES AT LARGE EVOLUTIONARY
433 DISTANCES
434
435

436 Table 2: Gene-level performance of different models on evolutionarily distant species.

Species	Chromosome	Gene type	Class	Caduceus PS (%)	GENA large (%)	Tiberius (%)	AUGUSTUS (%)
<i>A. thaliana</i>	NC_003075.7	mRNA	EXON	26.56	30.59	0.10	7.59
			CDS	14.80	8.43	14.06	55.33
		lncRNA	EXON	41.13	60.04	0.00	0.39
		all RNA	EXON	28.16	33.81	0.09	6.80
<i>S. cerevisiae</i>	NC_001136.10	mRNA	EXON	96.21	90.99	0.00	0.00
			CDS	94.13	89.95	0.00	46.74
		lncRNA	EXON	NA	NA	NA	NA
		all RNA	EXON	96.21	90.99	0.00	0.00

444 A key application of *ab initio* gene predictors is the annotation of genomes from previously unan-
445notated species. To evaluate the cross-species generalization of our models, we first evaluated
446 performance using gene-level metric on two evolutionarily remote species representing different
447kingdoms of life: the flowering plant *Arabidopsis thaliana* (GCF_000001735.4) and the budding
448yeast *Saccharomyces cerevisiae* (GCF_000146045.2) (Table 2). At the nucleotide level, there is
449effectively no sequence homology between their genes and those of mammalian species included in
450the training dataset, and thus the models had never encountered any comparable sequences during
451training. Despite this extreme divergence, the models retained reasonable accuracy. For *A. thaliana*,
452GENA large correctly reconstructed approximately one-third of all exons and over 60% of lncRNA
453exons, far surpassing AUGUSTUS and Tiberius. For *S. cerevisiae*, whose compact genome lacks
454spliceosomal introns, Caduceus PS achieved 96% exon recall and 94% CDS recall, substantially
455outperforming both baselines. NA entries in the lncRNA row of Table 2 indicate the absence of
456annotated lncRNAs in the reference genome. Same results were obtained when we excluded all genes
457with detectable protein-level similarity to mammals, to ensure that model’s can not find homology
458even after internally translating DNA to amino acid code. Under this stringent setting, GENATATORS
459reconstructed more than twice as many genes as AUGUSTUS, despite the latter being run with a
460species-specific profile (Appendix L). Thus, although not tuned for plants or fungi, the models were
461able to produce useful first-pass annotations in such genomes, providing strong evidence that their
462capabilities extend beyond mere memorization of homologous patterns.

462 In addition to this extreme test, we benchmarked the models across a spectrum of animal species,
463ranging from primates closely related to humans to distant lineages such as insects (Appendix M). The
464relative ranking of methods remained consistent across these taxa: GENATATORS and Tiberius
465consistently outperformed other baselines, with DNA LMs showing superior generalization on
466more distant organisms. For protein-coding genes, segmentation accuracy gradually decreased with
467evolutionary distance, whereas for lncRNAs, performance remained in the range of 10-30% across
468all species, with GENA-based architectures consistently outperforming Caduceus-based ones.

469 CONCLUSIONS

470 In this work, we comprehensively evaluated the utility of DNA LMs for the gene segmentation
471task. We show, both theoretically and empirically, that interval level metrics better reflect biological
472relevance than conventional token level classifiers and introduce dedicated benchmark to score gene
473segmentation models.

474 We demonstrated that embeddings from pretrained DNA LMs do not contain sufficient information
475for accurate gene segmentation. However, by identifying optimal training regimes, datasets, augmenta-
476tions, and output filters, we enabled efficient fine-tuning and inference of gene structure. We further
477showed that scaling DNA LMs under these conditions substantially improves performance leading to
478state-of-the-art results.

479 We found that sensitivity to different functional gene elements—such as CDS and UTRs—varies
480across DNA LM architectures. Nonetheless, all evaluated DNA LMs were capable of detecting
481lncRNA genes, which remain inaccessible to current state-of-the-art tools such as Tiberius.

483 Furthermore, GENATATORS, our fine-tuned DNA LM-based models, generalize effectively to unseen
484species across large evolutionary distances. These results highlight the potential of DNA LMs to
485serve as powerful tools for *de novo* genome annotation in a wide range of biological and evolutionary
486studies. We discuss limitations of this work in Appendix N.

486 REFERENCES
487

488 Žiga Avsec, Natasha Latysheva, Jun Cheng, Guido Novati, Kyle R Taylor, Tom Ward, Clare Bycroft,
489 Lauren Nicolaisen, Eirini Arvaniti, Joshua Pan, et al. Alphagenome: advancing regulatory variant
490 effect prediction with a unified dna sequence model. *bioRxiv*, pp. 2025–06, 2025.

491 Garyk Brixi, Matthew G Durrant, Jerome Ku, Michael Poli, Greg Brockman, Daniel Chang, Gabriel A
492 Gonzalez, Samuel H King, David B Li, Aditi T Merchant, et al. Genome modeling and design
493 across all domains of life with evo 2. *BioRxiv*, pp. 2025–02, 2025.

494

495 Sebastian Castillo-Hair, Stephen Fedak, Ban Wang, Johannes Linder, Kyle Havens, Michael Certo,
496 and Georg Seelig. Optimizing 5'utr for mrna-delivered gene editing using deep learning. *Nature
497 Communications*, 15(1):5284, 2024.

498 Hugo Dalla-Torre, Liam Gonzalez, Javier Mendoza-Revilla, Nicolas Lopez Carranza, Adam Henryk
499 Grzywaczewski, Francesco Oteri, Christian Dallago, Evan Trop, Bernardo P de Almeida, Hassan
500 Sirelkhatim, et al. Nucleotide transformer: building and evaluating robust foundation models for
501 human genomics. *Nature Methods*, pp. 1–11, 2024.

502

503 Bernardo P de Almeida, Hugo Dalla-Torre, Guillaume Richard, Christopher Blum, Lorenz Hexemer,
504 Maxence Gélard, Javier Mendoza-Revilla, Ziqi Tang, Frederikke I Marin, David M Emms, et al.
505 Annotating the genome at single-nucleotide resolution with dna foundation models. *Nature
506 Methods*, pp. 1–15, 2025.

507

508 Alexandra Filatova, Ivan Reveguk, Maria Piatkova, Daria Bessonova, Olga Kuziakova, Victoria
509 Demakova, Alexander Romanishin, Veniamin Fishman, Yerzhan Imanmalik, Nikolay Chekanov,
510 et al. Annotation of uorfs in the omim genes allows to reveal pathogenic variants in 5' utrs. *Nucleic
511 Acids Research*, 51(3):1229–1244, 2023.

512 Veniamin Fishman, Yuri Kuratov, Aleksei Shmelev, Maxim Petrov, Dmitry Penzar, Denis Shepelin,
513 Nikolay Chekanov, Olga Kardymon, and Mikhail Burtsev. Gena-lm: a family of open-source
514 foundational dna language models for long sequences. *Nucleic Acids Research*, 53(2):gkae1310,
515 2025.

516 Lars Gabriel, Felix Becker, Katharina J Hoff, and Mario Stanke. Tiberius: end-to-end deep learning
517 with an hmm for gene prediction. *Bioinformatics*, 40(12):btae685, 2024.

518

519 Yuri Kuratov, Aleksei Shmelev, Veniamin Fishman, Olga Kardymon, and Mikhail Burtsev. Recurrent
520 memory augmentation of GENA-LM improves performance on long DNA sequence tasks. In
521 *ICLR 2024 Workshop on Machine Learning for Genomics Explorations*, 2024. URL <https://openreview.net/forum?id=K6711CX90x>.

522

523 Mosè Manni, Matthew R Berkeley, Mathieu Seppey, and Evgeny M Zdobnov. Busco: assessing
524 genomic data quality and beyond. *Current Protocols*, 1(12):e323, 2021.

525

526 Iris Marchal. Evo learns biological complexity from the molecular to genome scale. *nature biotechnology*,
527 42(12):1793–1793, 2024.

528

529 Frederikke Isa Marin, Felix Teufel, Marc Horlacher, Dennis Madsen, Dennis Pultz, Ole Winther, and
530 Wouter Boomsma. Bend: Benchmarking dna language models on biologically meaningful tasks.
531 *arXiv preprint arXiv:2311.12570*, 2023.

532

533 John S Mattick, Paulo P Amaral, Piero Carninci, Susan Carpenter, Howard Y Chang, Ling-Ling Chen,
534 Runsheng Chen, Caroline Dean, Marcel E Dinger, Katherine A Fitzgerald, et al. Long non-coding
535 rnas: definitions, functions, challenges and recommendations. *Nature reviews Molecular cell
biology*, 24(6):430–447, 2023.

536

537 Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and Enrico Shippole. Yarn: Efficient context window
538 extension of large language models. *arXiv preprint arXiv:2309.00071*, 2023.

539 Venket Raghavan, Louis Kraft, Fantin Mesny, and Linda Rigerte. A simple guide to de novo
transcriptome assembly and annotation. *Briefings in bioinformatics*, 23(2):bbab563, 2022.

540 Ivan Rodkin, Yuri Kuratov, Aydar Bulatov, and Mikhail Burtsev. Associative recurrent memory
 541 transformer, 2025. URL <https://arxiv.org/abs/2407.04841>.

542

543 Nicolas Scalzitti, Anne Jeannin-Girardon, Pierre Collet, Olivier Poch, and Julie D Thompson. A
 544 benchmark study of ab initio gene prediction methods in diverse eukaryotic organisms. *BMC*
 545 *genomics*, 21:1–20, 2020.

546 Yair Schiff, Chia-Hsiang Kao, Aaron Gokaslan, Tri Dao, Albert Gu, and Volodymyr Kuleshov.
 547 Caduceus: Bi-directional equivariant long-range dna sequence modeling, 2024. URL <https://arxiv.org/abs/2403.03234>.

548

549 Siddhant Sharma, Aicha Asma Houfani, and Leonard J Foster. Pivotal functions and impact of long
 550 con-coding rnas on cellular processes and genome integrity. *Journal of Biomedical Science*, 31(1):
 551 52, 2024.

552

553 Mario Stanke, Rasmus Steinkamp, Stephan Waack, and Burkhard Morgenstern. Augustus: a web
 554 server for gene finding in eukaryotes. *Nucleic acids research*, 32(suppl_2):W309–W312, 2004.

555

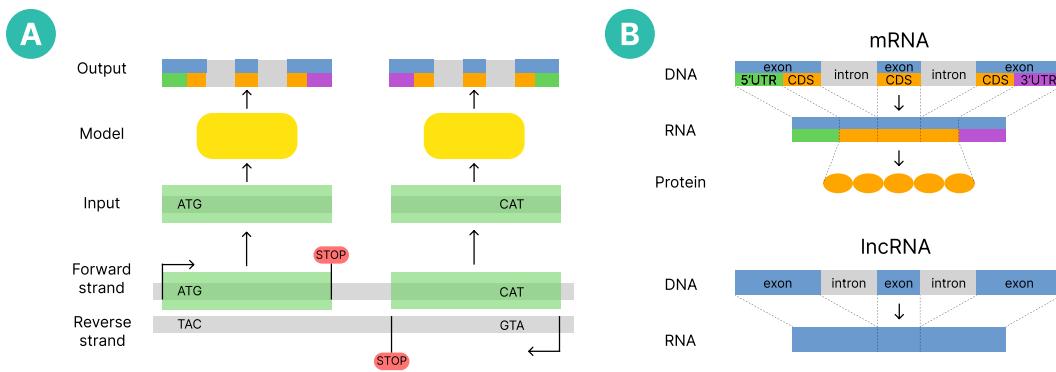
556 Felix Stiehler, Marvin Steinborn, Stephan Scholz, Daniela Dey, Andreas PM Weber, and Alisandra K
 557 Denton. Helixer: cross-species gene annotation of large eukaryotic genomes using deep learning.
 558 *Bioinformatics*, 36(22–23):5291–5298, 2020.

559

560 Zhihan Zhou, Yanrong Ji, Weijian Li, Pratik Dutta, Ramana Davuluri, and Han Liu. Dnabert-2: Effi-
 561 cient foundation model and benchmark for multi-species genome. *arXiv preprint arXiv:2306.15006*,
 562 2023.

563

APPENDIX A. GENE STRUCTURE AND SEGMENTATION PROBLEM.



578 Figure A1: Gene structure and segmentation problem. Panel A shows transcript types in the
 579 dataset, where the model predicts all five classes but only intron and exon labels are relevant for
 580 lncRNAs, while all five are meaningful for mRNAs. Panel B illustrates that the model always receives
 581 DNA sequence from the forward strand (light green box) during training, yet these sequences may
 582 correspond to genes located on either strand.

583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593

594 APPENDIX B. DIFFERENCES BETWEEN OUR BENCHMARK AND OTHERS.
595596 This appendix compares our benchmark with BEND (Marin et al., 2023) and with GUE introduced
597 alongside DNABERT-2 (Zhou et al., 2023), focusing on input length coverage, task granularity, and
598 the biological meaning of reported metrics. Table A1 summarizes the design choices in each suite,
599 and Table A2 reports human training-set lengths that illustrate coverage differences.
600601
602 Table A1: Design comparison of benchmarks.
603

Benchmark	Input scope	Typical length	Granularity	Evaluation scope	Metrics
GUE (Zhou et al., 2023)	short sequences	70–1000 bp; splice sites 400 bp; GUE+ 5–10 kb	sequence-level	local classification tasks	task-specific (MCC / F1)
BEND (Marin et al., 2023)	gene snippets	up to 13 kb	nucleotide-level	nucleotide classification of gene-structure labels; no full-gene segmentation; no UTR / lncRNA	MCC only
Ours	full genes via tiling	train 4 096 or 32 k or 250 k nt; full gene length evaluation	nucleotide-level	end-to-end segmentation with full gene reconstruction; with UTR and lncRNA	interval-, gene-level

611 A key difference is length coverage and how it affects evaluation. As summarized in Table A2, our
612 training data span substantially longer transcripts than BEND, preserving the long tail of gene lengths;
613 in fact, 17,737 human transcripts in our set exceed 13,000 nt, whereas BEND truncates at this length.
614 In addition, sequence-level suites such as GUE emphasize short-range classification and report scores
615 that do not capture boundary accuracy, while BEND, although nucleotide-level, uses metrics that
616 are not biologically rigorous for full gene structures and does not assess UTRs or lncRNA genes.
617 By contrast, our evaluation targets complete gene structures with interval- and gene-level metrics; a
618 detailed analysis of metric sensitivity appears in Appendix C.
619620
621 Table A2: Statistics of training datasets for BEND and our benchmark (human).
622

Dataset	# Transcripts	Mean length (nt)	Median (nt)	95th perc. (nt)	Max (nt)
BEND (human)	4,783	7,474	7,355	12,414	13,000
Our (human)	33,367	37,366	14,651	176,543	250,000

632
633 **Benchmarking on BEND** For comparability we also report results on BEND. Unlike the probing
634 setup in the original BEND paper that assesses the quality of the embeddings in different pretrained
635 models, we fine-tuned our models until convergence using the official train, validation, and test splits.
636 This decision was deliberate: BEND compared all models against AUGUSTUS, which is a trained
637 HMM genome annotation tool (it saw all human genes in the BEND benchmark during training). To
638 ensure fairness we therefore also trained our models. Because sequences in BEND are short, all of
639 our models can handle the full length of each sample, so no chunking was applied at either training
640 or validation. The reported metric is MCC, as specified in the BEND paper.
641642 **Comparison of our benchmark with G3PO and Tiberius approaches** The G3PO benchmark
643 (Scalzitti et al., 2020) is constructed from 1,793 UniProt proteins grouped into twenty orthologous
644 families selected to represent complex protein-coding genes across 147 species. For each protein, the
645 corresponding genomic locus and exon map are retrieved from Ensembl, and evaluation is carried
646 out at nucleotide, exon, and protein levels against a single reference protein per gene. Consequently,
647 G3PO covers only protein-coding genes, excludes lncRNA, and does not assess complete gene
648 structure across multiple transcript isoforms.

648

649 Table A3: BEND gene-finding results (MCC) with fine-tuned models using official splits and full-
650 sequence inference.

651

652

653

654

655

656

657

Model	MCC
Caduceus PS	0.83
AUGUSTUS	0.80
Caduceus PH	0.72
GENA base	0.65

658

Tiberius (Gabriel et al., 2024) is trained on mammalian protein-coding genes and uses convolutional
659 and recurrent layers combined with a differentiable HMM. To obtain unambiguous labels, only the
660 transcript with the longest coding sequence is retained for each gene, and evaluation is performed
661 against this single coding isoform. As a result, exon- and gene-level metrics for Tiberius are computed
662 relative to one reference isoform rather than across the full isoform set.

663

In contrast, our benchmark evaluates complete exon structures for all supported transcript types,
664 including UTR exons, coding exons, and exons of lncRNAs. A prediction is counted as correct
665 only when the full set of predicted exons matches the exon set of at least one annotated isoform,
666 which allows transcripts containing both coding and non-coding segments to be evaluated faithfully.
667 Together with CDS-based metrics comparable to those used in Scalzitti et al. (2020), our interval- and
668 gene-level metrics provide a more biologically aligned assessment of complete gene reconstruction
669 for both coding and non-coding genes.

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

APPENDIX C. PR-AUC SENSITIVITY AND SUPPORTING EVIDENCE.

C.1 THEORETICAL EVIDENCE

Per nucleotide metrics such as precision, recall, f1 and PR-AUC treat each base independently, which can hide small local mistakes that have large biological impact. We provide theoretical evidence of this discrepancy between nucleotide and interval level metrics using a binary setup with two mutually exclusive classes, exon coded as 1 and intron coded as 0. For a single gene containing p positive exon bases and n negative intron bases with positive scores s_i , PR-AUC equals Average Precision and can be written using the ranks of positives in the list sorted by s_i in descending order

$$\text{PR-AUC} = \text{AP} = \frac{1}{p} \sum_{k \in R_+} \text{Pr}(k), \quad \text{Pr}(k) = \frac{\#\text{positives in top } k}{k}, \quad (3)$$

where R_+ is the set of positions in the sorted list that are occupied by positives. This depends only on the ordering of scores, so any monotone transformation that preserves order keeps PR-AUC unchanged.

We now carry one simple example through the derivation so that each step is explicit. Consider a short gene with a single exon block followed by an intron block. The targets and baseline scores are

$$y = [1, 1, 1, 1, 0, 0, 0, 0] \quad \text{and} \quad s = [0.99, 0.95, 0.92, 0.91, 0.40, 0.35, 0.31, 0.20].$$

This is a good prediction because exons receive higher scores than introns. The scores are already in descending order, so the cumulative number of exons in the top k positions is

$$T(1) = 1, T(2) = 2, T(3) = 3, T(4) = 4, T(5) = 4, T(6) = 4, T(7) = 4, T(8) = 4,$$

and the corresponding precision values are

$$\text{Pr}(1) = \frac{1}{1}, \text{Pr}(2) = \frac{2}{2}, \text{Pr}(3) = \frac{3}{3}, \text{Pr}(4) = \frac{4}{4}, \text{Pr}(5) = \frac{4}{5}, \text{Pr}(6) = \frac{4}{6}, \text{Pr}(7) = \frac{4}{7}, \text{Pr}(8) = \frac{4}{8}.$$

Average Precision averages these precision values only at the positive positions $k \in \{1, 2, 3, 4\}$, hence

$$\text{AP} = \frac{1}{4} \left(1 + \frac{2}{2} + \frac{3}{3} + \frac{4}{4} \right) = 1. \quad (4)$$

If we apply a monotone change to all scores, for example $s \mapsto s^2$ or $s \mapsto s + 5$, the order does not change and equation 4 remains the same, which illustrates the order invariance of PR-AUC in equation 3.

We now introduce a boundary error at the exon edge before sorting and we make the modification explicit. Keep the targets y fixed and lower the scores of the last two exon bases so that they fall below all intron scores. Define the modified score vector

$$\tilde{s} = [0.99, 0.95, \underline{0.19}, \underline{0.18}, 0.40, 0.35, 0.31, 0.20],$$

where the underlined entries mark the two exon bases affected by the boundary error. This change is applied before sorting by score. After sorting \tilde{s} in descending order, the new score order is

$$\tilde{s}_{\text{sorted}} = [0.99, 0.95, 0.40, 0.35, 0.31, 0.20, 0.19, 0.18],$$

and the corresponding sorted labels become

$$y'_{\text{sorted}} = [1, 1, 0, 0, 0, 0, 1, 1].$$

Thus the two undemoted exons stay at ranks 1 and 2, the four introns occupy ranks 3 through 6, and the two demoted exons move to ranks 7 and 8. The cumulative positives for the modified order are

$$T'(1) = 1, T'(2) = 2, T'(3) = 2, T'(4) = 2, T'(5) = 2, T'(6) = 2, T'(7) = 3, T'(8) = 4,$$

and the Average Precision after the error averages the precision values at the positive ranks 1, 2, 7, 8

$$\text{AP}' = \frac{1}{4} \left(\frac{1}{1} + \frac{2}{2} + \frac{3}{7} + \frac{4}{8} \right) = \frac{1}{4} \left(1 + 1 + \frac{3}{7} + \frac{1}{2} \right) = \frac{41}{56} \approx 0.7321.$$

We now connect this explicit computation with the general formula. In the general case with p exon nucleotides and n intron nucleotides, if δ exon bases near the boundary are lowered below all intron

756 scores before sorting, the sorted list contains $p - \delta$ exons first, then n introns, then the δ demoted
 757 exons. The r th demoted exon occupies rank

$$759 \quad k_r = n + (p - \delta) + r \quad \text{for } r = 1, \dots, \delta,$$

760 because the top contains $p - \delta$ undemoted exons and n introns before the first demoted exon appears.
 761 At rank k_r the prefix contains $(p - \delta) + r$ exons, so its precision equals

$$762 \quad \Pr(k_r) = \frac{p - \delta + r}{n + p - \delta + r}.$$

764 All remaining $p - \delta$ exons at ranks 1 through $p - \delta$ have precision 1. Plugging these two groups into
 765 equation 3 gives the exact PR-AUC after the boundary error

$$767 \quad \text{PR-AUC}' = \frac{1}{p} \left[(p - \delta) \cdot 1 + \sum_{r=1}^{\delta} \frac{p - \delta + r}{n + p - \delta + r} \right]. \quad (5)$$

770 For the example with $p = 4$, $n = 4$ and $\delta = 2$ this yields

$$771 \quad \text{PR-AUC}' = \frac{1}{4} \left[2 \cdot 1 + \frac{3}{7} + \frac{4}{8} \right] = \frac{41}{56},$$

773 which is exactly the value computed from the sorted example above.

774 The corresponding loss is

$$776 \quad \Delta \text{PR-AUC} = 1 - \text{PR-AUC}' = \frac{1}{p} \sum_{r=1}^{\delta} \left(1 - \frac{p - \delta + r}{n + p - \delta + r} \right) \\ 777 \\ 778 \\ 779 \\ 780 \\ 781 \\ 782 \\ 783 \\ 784 \quad = \frac{1}{p} \sum_{r=1}^{\delta} \frac{n}{n + p - \delta + r} \\ \leq \frac{1}{p} \sum_{r=1}^{\delta} \frac{n}{n + 1} = \frac{\delta n}{p(n + 1)} \leq \frac{\delta}{p}. \quad (6)$$

785 The last two inequalities hold because each denominator satisfies $n + p - \delta + r \geq n + 1$, hence each
 786 summand is at most $n/(n + 1) < 1$, so the sum of δ such terms is at most $\delta n/(n + 1) < \delta$, and
 787 dividing by p yields the stated bound $\Delta \text{PR-AUC} \leq \delta/p$.

788 Under the same error the interval and gene views behave differently. If the gene has m true exon
 789 intervals and the boundary of one interval moves by one base, that interval no longer matches exactly.
 790 True positives drop from m to $m - 1$ and at least one false positive and one false negative appear.
 791 Substituting into Eq. equation 1 yields

$$792 \quad F1_{\text{interval}}^{\text{exon}} = \frac{2(m - 1)}{2(m - 1) + 2} = 1 - \frac{1}{m}. \quad (7)$$

794 Define the interval drop as the difference between the perfect and the post error score. With one
 795 boundary shift that breaks exactly one interval and introduces exactly one false positive and one false
 796 negative, the drop is

$$797 \quad \Delta F1_{\text{interval}}^{\text{exon}} = 1 - \left(1 - \frac{1}{m} \right) = \frac{1}{m}, \quad (8)$$

799 and it can be larger if the prediction creates additional spurious or missed intervals.

800 At gene level the same single boundary shift breaks the exact match for all isoforms, so the gene
 801 contributes 1 before the error and 0 after

$$803 \quad \Delta \text{Score}_{\text{gene}} = 1. \quad (9)$$

804 Given equation 6, equation 8 and equation 9, the sensitivity fractions for the same local error satisfy

$$806 \quad \frac{\Delta \text{PR-AUC}}{\Delta \text{Score}_{\text{gene}}} \leq \frac{\delta}{p} \quad \text{and} \quad \frac{\Delta \text{PR-AUC}}{\Delta F1_{\text{interval}}^{\text{exon}}} \leq \frac{\delta}{p} m. \quad (10)$$

808 With m fixed and p large the right hand sides are small. Therefore, given the same boundary mistake,
 809 PR-AUC changes by at most δ over p and becomes negligible on long exons, while the interval score
 and the gene score incur fixed drops per affected interval and per affected gene.

810 C.2 EMPIRICAL EVIDENCE
811812 We complement the theory with experiments scoring models with PR-AUC and interval level metrics
813 (Table A4). These results show that model ranking depends on the metrics used..
814815 Table A4: Why gene level metrics matter, comparison of mean PR-AUC and fully reconstructed
816 genes
817

model	PR-AUC mean	gene level all
Caduceus PH 32 kb	0.656	120
Caduceus PS 32 kb	0.668	130
GENA-LM 250 kb	0.635	383

822 Both Caduceus variants exceed GENA-LM by PR-AUC mean, yet they reconstruct about three times
823 fewer genes, since 130 versus 383. Across all models the spread in mean PR-AUC is about 0.16,
824 for example Caduceus PS 0.680, SegmentNT 0.611, SegmentEnformer 0.520, while the difference
825 in fully reconstructed genes ranges from 0 to 383. With these numbers in mind, optimizing only
826 PR-AUC during early experiments can reward architectures that seem promising while failing to
827 assemble biologically valid transcripts, which slows progress.
828829 We further trained models on a human gene set with the same labels but one label per BPE token and
830 varied input length from 4k BPE tokens which is approximately 32k nucleotides to 32k tokens which
831 is approximately 250k nucleotides.
832833 Table A5: Effect of input length and output granularity on PR-AUC mean and gene level all for
834 GENA large
835

setting	input length nt	PR-AUC mean	gene level all
4 k	≈ 32k	0.628	44
16 k	≈ 128k	0.642	66
32 k (BPE)	≈ 250k	0.648	106
32 k (nucleotide, human)	≈ 250k	0.672	208

840 Mean PR-AUC differs by about 0.020 between the 4k and 32k BPE models, yet the gene level score
841 rises from 44 to 106 which is a factor of about 2.5. Switching from BPE outputs to nucleotide
842 outputs by stacking a UNET on top of the trained model changes PR-AUC from 0.648 to 0.672,
843 while the number of fully reconstructed genes increases by 102 which is a factor of about 2. With
844 the arguments provided in Section C.1 and these empirical trends, we get that context length and
845 boundary precision both matter for transcript assembly and that interval and gene level evaluation is
846 needed when developing annotation models.
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

864 APPENDIX D. DATASET PREPARATION, MODEL TRAINING AND ARCHITECTURE
 865 DETAILS
 866

867 The dataset was constructed using the human genome assembly GCF_009914755.1. Chromosomes
 868 8, 20 and 21 were designated as the validation set, but only chromosome 20 was used to compute
 869 final metrics for computational efficiency. We did not use a separate test set. The dataset contains
 870 all mRNA and lncRNA genes, and all sequences were exclusively from the forward strand. The
 871 dataset was filtered via selecting one representative transcript per gene, choosing the longest transcript
 872 available. Only transcripts with a length of up to 250 Kb were included.

873 Below we provide details of modifications in dataset, training regime or architecture for specific
 874 models:
 875

- 876 1. For the mRNA-only dataset, we selected samples corresponding exclusively to protein-
 877 coding genes from the original dataset.
- 878 2. For the multispecies dataset, we processed data for 39 species (38 plus human) using the
 879 same strategy as for human samples. The list of species is provided in Table A6. It's
 880 important to note that only the human genome is fully assembled, therefore samples from
 881 other species containing 'N' characters (indicating unknown sequences) were excluded.
- 882 3. All models were trained using flash attention support (if supported by the model) to improve
 883 computational efficiency.
- 884 4. For training BPE-based GENA models at nucleotide-level resolution, embeddings derived
 885 from the token-level models were employed, omitting memory, CLS, and SEP tokens. The
 886 primary distinction between handling embeddings from GENA-LM versus other models
 887 arises from GENA-LM's use of BPE tokens, necessitating additional steps before U-Net
 888 usage, whereas models like Caduceus and Evo2 already operate directly at nucleotide
 889 resolution. Specifically, for GENA-LM, token embeddings were upsampled, meaning each
 890 embedding was replicated according to how many nucleotides it covered. Subsequently,
 891 nucleotide-specific embeddings (one per nucleotide type, totally four different learnable
 892 embeddings) were concatenated to these upsampled token embeddings. For computational
 893 efficiency, those embeddings were segmented into non-overlapping chunks of 8192 base
 894 pairs (along sequence length axis), which were individually fed into the U-Net model. In
 895 contrast, for models that can directly utilize nucleotide resolution, we simply included an
 896 additional fully connected layer to convert embeddings into class probability vectors.
- 897 5. A learning rate of 5×10^{-5} and weight decay of 1×10^{-4} with AdamW optimizer was
 898 discovered to be the optimal trade-off between prediction accuracy (particularly for splice site
 899 boundary detection) and convergence speed, as lower values adversely impacted prediction
 900 quality.
- 901 6. Training of each model was performed on 8 Nvidia GPUs (either A100 or H100), except
 902 for Evo2, which specifically required Nvidia H100 GPUs due to compatibility constraints
 903 (GPU compatibility > 8.9). All models were trained until convergence was observed
 904 using an exon-level validation metric. Typically, training with frozen embeddings required
 905 approximately half a day, while low-scale finetuning took about two days, with slight
 906 variations depending on the specific model. It took us one week to train the final models
 907 presented in our benchmark section.
- 908 7. In training and internal validation we do not always take nucleotides from the beginning of
 909 a gene. Instead, we choose a random starting position and extract at most N nucleotides to
 910 the right, where N is the model's context length (4096, 32k, or 250k as reported in the main
 911 text). We also ensure that the selected subsequence is at least 512 nucleotides long, so that
 912 the model always receives enough context. Each gene contributes a single subsequence of
 913 this form, with no splitting. Metrics computed in this setup, such as AUC and interval level
 914 scores, are used only to select the best checkpoint for later evaluation.
- 915 8. For the final validation reported in the paper we evaluate complete genes. Here, sequences
 916 are divided into non-overlapping chunks of the same length that the model was trained on.
 917 Predictions are made for each chunk, then concatenated to recover the full gene, and metrics
 918 are calculated on the full-gene predictions. This guarantees consistency with training while
 919 still allowing evaluation of arbitrarily long genes.

918
 919 Table A6: List of genomic assemblies used to create the multispecies training dataset. List of genomic
 920 assemblies used to create the multispecies training dataset. Assembly names correspond to the
 921 annotation and genome names. The annotation files have been received by the NCBI Eukaryotic
 922 Genome Annotation Pipeline.

923	Assembly	Species
924	GCF_000952055.2	Aotus nancymaae
925	GCF_002263795.3	Bos taurus
926	GCF_000767855.1	Camelus bactrianus
927	GCF_000002285.3	Canis lupus familiaris
928	GCF_000151735.1	Cavia porcellus
929	GCF_001604975.1	Cebus imitator
930	GCF_000283155.1	Ceratotherium simum simum
931	GCF_000276665.1	Chinchilla lanigera
932	GCF_000260355.1	Condylura cristata
933	GCF_002940915.1	Desmodus rotundus
934	GCF_000151885.1	Dipodomys ordii
935	GCF_002288905.1	Enhydra lutris kenyon
936	GCF_000308155.1	Eptesicus fuscus
937	GCF_000002305.2	Equus caballus
938	GCF_018350175.1	Felis catus
939	GCF_000247695.1	Heterocephalus glaber
940	GCF_009914755.1	Homo sapiens
941	GCF_000236235.1	Ictidomys tridecemlineatus
942	GCF_000280705.1	Jaculus jaculus
943	GCF_000001905.1	Loxodonta africana
944	GCF_001458135.1	Marmota marmota
945	GCF_000165445.2	Microcebus murinus
946	GCF_000317375.1	Microtus ochrogaster
947	GCF_000001635.26	Mus musculus
948	GCF_900095145.1	Mus pahari
949	GCF_002201575.1	Neomonachus schauinslandi
950	GCF_000292845.1	Ochotona princeps
951	GCF_000260255.1	Octodon degus
952	GCF_000321225.1	Odobenus rosmarus divergens
953	GCF_009806435.1	Oryctolagus cuniculus
954	GCF_000181295.1	Otolemur garnettii
955	GCF_016772045.2	Ovis aries
956	GCF_000956105.1	Propithecus coquereli
957	GCF_003327715.1	Puma concolor
958	GCF_036323735.1	Rattus norvegicus
959	GCF_000235385.1	Saimiri boliviensis boliviensis
960	GCF_000181275.1	Sorex araneus
961	GCF_000003025.6	Sus scrofa
962	GCF_000243295.1	Trichechus manatus latirostris

APPENDIX E. COMPARISON OF MODELS FOR *de novo* GENE ANNOTATION

Table A7: Comparison of Classical, State-of-the-Art, and Emerging Models for *de novo* Gene Annotation

Model	Architecture (details)	N params, Input, M Kb			Tokenization	Released
		M	Kb	Tokenization		
AUGUSTUS	HMM	N/A	N/A	1-bp	(Stanke et al., 2004)	
Tiberius	CNN+HMM	8	10	1-hot	(Gabriel et al., 2024)	
SegmentNT	Transformer (RoPE) + UNET	500	50	6-mer	(de Almeida et al., 2025)	
SegmentEnformer/Borzoi	Transformer + UNET	200	50	1-bp	(de Almeida et al., 2025)	
AlphaGenome	CNN + Transformer	450	1000	1-bp	(Avsec et al., 2025)	
GENATATOR (GENA large)	Transformer (RMT) + UNET	360	250	BPE		this work
GENATATOR (GENA base)	Transformer (RMT) + UNET	120	32	BPE		this work
GENATATOR (Caduceus PH)	SSM	15	250	nucleotide		this work
GENATATOR (Caduceus PS)	SSM (+RC equivalent)	15	250	nucleotide		this work
GENATATOR (Evo)	SSM (S3 layers)	1000	32	nucleotide		(probing only)
SegmentBorzoi	CNN + UNET	323	196	nucleotide		this work
SegmentEnformer	Transformer + UNET	379	196	nucleotide		this work

APPENDIX F. TRAINING ON EMBEDDINGS.

Table A8: Gene-level metric after training on frozen embeddings of different DNA LM models.

APPENDIX G. MODELS SCORING AND BENCHMARKING.

Table A9: Interval level metrics related to Table A8 (embedding training). Data shown for exon and CDS class.

Model/train setup			4096			32000		
			precision	recall	f1	precision	recall	f1
GENA base	mRNA	exon	0.0077	0.1124	0.0145	0.0023	0.0096	0.0037
		CDS	0.0197	0.0655	0.0303	0.0013	0.0029	0.0018
	lncRNA	exon	0.0032	0.0440	0.0060	0.0011	0.0059	0.0019
	all RNA	exon	0.0068	0.0969	0.0127	0.0020	0.0088	0.0032
Caduceus PH	mRNA	exon	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
		CDS	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	lncRNA	exon	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	all RNA	exon	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Caduceus PS	mRNA	exon	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
		CDS	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	lncRNA	exon	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	all RNA	exon	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Evo2	mRNA	exon	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
		CDS	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	lncRNA	exon	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	all RNA	exon	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Table A10: Comparison of GENA base (Table 1) and GENA large in the baseline setup.

Model	Category	Gene-level		
		EXON mRNA + lncRNA	46	
GENA base	EXON mRNA	31		
	EXON lncRNA	15		
	CDS mRNA	1		
	EXON mRNA + lncRNA	61		
GENA large	EXON mRNA	42		
	EXON lncRNA	19		
	CDS mRNA	5		

Table A11: Interval level performance metrics for small-scale finetunning experiments with dataset and model modifications (absolute scores obtained for each setup), related to Table 1. Data shown for exon and CDS classes.

Sequence length	4096			32000			4096			
	Gene type	all			all			mRNA		
		human			human			human		
Species										
Test-time augmentation	no	no	no	no	no	no	no	39 mammals	no	
Model/dataset	precision	recall	f1	precision	recall	f1	precision	recall	f1	
GENA base	mRNA	0.0452	0.4110	0.0615	0.1746	0.5908	0.2696	0.0340	0.3890	0.0625
	CDS	0.0489	0.4452	0.0881	0.1976	0.6570	0.3038	0.0394	0.4448	0.0723
	lncRNA	0.0327	0.2945	0.0588	0.1016	0.3636	0.1588	0.0166	0.1986	0.0307
	all RNA	0.0821	0.1875	0.1142	0.2876	0.5178	0.3698	0.0538	0.3616	0.0936
Caduceus PH	mRNA	0.1168	0.5595	0.1932	0.1912	0.6251	0.2928	0.2060	0.5602	0.3012
	CDS	0.1524	0.6642	0.2479	0.2577	0.7263	0.3804	0.2719	0.6884	0.3899
	lncRNA	0.0322	0.2018	0.0566	0.0581	0.2794	0.0961	0.0363	0.1233	0.0560
	all RNA	0.2338	0.5619	0.3202	0.2928	0.6035	0.3943	0.2788	0.6347	0.3974
Caduceus PS	mRNA	0.1222	0.6024	0.2032	0.2044	0.6326	0.3089	0.2562	0.5987	0.3571
	CDS	0.1576	0.7123	0.2581	0.3206	0.7460	0.4485	0.3459	0.7344	0.4682
	lncRNA	0.0359	0.2268	0.0619	0.0429	0.2452	0.0730	0.0418	0.1349	0.0626
	all RNA	0.3298	0.6429	0.4360	0.3566	0.6608	0.4632	0.4290	0.6831	0.5270
Sequence length										
Species	4096	4096	4096	4096	4096	4096	4096	4096	4096	
	Test-time augmentation	all	all	all	all	all	all	all	all	
	Model/dataset	precision	recall	f1	precision	recall	f1	precision	recall	
GENA base	rev comp	splice site filter	splice site filter	splice site filter	rev comp	splice site filter	splice site filter	rev comp	splice site filter	
	precision	recall	f1	precision	recall	f1	precision	recall	f1	
	mRNA	0.0381	0.4774	0.0706	0.2426	0.4109	0.3051	0.2298	0.4770	0.3102
	CDS	0.0409	0.5206	0.0759	0.2656	0.4450	0.3327	0.2526	0.5200	0.3400
Caduceus PH	lncRNA	0.0279	0.3300	0.0514	0.1677	0.2945	0.2137	0.1548	0.3300	0.2108
	all RNA	0.1477	0.2712	0.1912	0.3708	0.1809	0.2432	0.4550	0.2807	0.3315
	mRNA	0.1687	0.6251	0.2657	0.6143	0.5883	0.5849	0.6897	0.6241	0.6553
	CDS	0.2296	0.7375	0.3502	0.6940	0.6626	0.6780	0.7768	0.7361	0.7559
Caduceus PS	lncRNA	0.0448	0.2413	0.0755	0.2694	0.2018	0.2304	0.3180	0.2413	0.2744
	all RNA	0.3355	0.6035	0.4313	0.6383	0.5572	0.5950	0.6890	0.6017	0.6424
	mRNA	0.1604	0.6467	0.2570	0.6408	0.6010	0.6203	0.6795	0.6454	0.6620
	CDS	0.2174	0.7614	0.3383	0.7272	0.7105	0.7188	0.7692	0.7596	0.7644
Caduceus PS	lncRNA	0.0436	0.2551	0.0745	0.2821	0.2286	0.2515	0.3106	0.2551	0.2801
	all RNA	0.3781	0.6668	0.4826	0.7285	0.6392	0.6809	0.7472	0.6833	0.7028

1080

1081

Table A12: PR AUC benchmark, related to Figure 1.

1082

1083

	Caduceus PS	GENA large	SegmentNT	SegmentNT multi species	SegmentBorzoi	SegmentEnformer
Mean	0.6799	0.6348	0.6110	0.6095	0.5329	0.5200
5UTR	0.5173	0.5003	0.3752	0.3721	0.1910	0.1914
Exon	0.9545	0.9493	0.7674	0.7683	0.6954	0.6755
Intron	0.9360	0.9296	0.8421	0.8396	0.8391	0.8382
3UTR	0.5425	0.5312	0.4594	0.4581	0.4060	0.3749
CDS	0.4492	0.2637	-	-	-	-

1089

1090

1091

Table A13: BUSCO completeness computed on hold-out gene set (human chromosome 20). Related to A13

1092

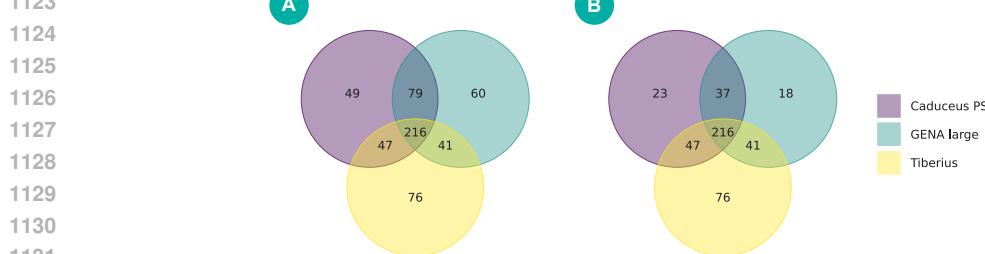
1093

Model	BUSCO dataset	Class	Complete	Fragmented	Ground truth Complete	Ground truth Fragmented
Caduceus PS	Mammalia	EXON	210	36	275	3
		CDS	215	33	275	3
	Primates	EXON	322	40	409	4
		CDS	323	41	409	4
	GENA large	Mammalia	206	35	275	3
		CDS	209	39	275	3
		Primates	300	48	409	4
		CDS	307	49	409	4
SegmentNT	Mammalia	EXON	166	46	275	3
		CDS	169	43	275	3
	Primates	EXON	237	60	409	4
		CDS	247	58	409	4
SegmentNT multi species	Mammalia	EXON	168	48	275	3
		CDS	169	48	275	3
	Primates	EXON	232	70	409	4
		CDS	237	70	409	4
SegmentBorzoi	Mammalia	EXON	36	33	275	3
		CDS	36	33	275	3
	Primates	EXON	54	39	409	4
		CDS	53	38	409	4
SegmentEnformer	Mammalia	EXON	31	27	275	3
		CDS	31	31	275	3
	Primates	EXON	40	28	409	4
		CDS	39	28	409	4
Tiberius	Mammalia	EXON	232	6	275	3
		CDS	232	6	275	3
	Primates	EXON	347	3	409	4
		CDS	347	3	409	4
AUGUSTUS	Mammalia	EXON	194	27	275	3
		CDS	192	30	275	3
	Primates	EXON	278	46	409	4
		CDS	279	54	409	4

1120

1121

1122



1132

1133

Figure A2: Each model provides unique set of annotated genes, yet large portion of errors are shared across models. Overlap of correctly segmented genes shown for protein-coding and lncRNA genes together (A), and for protein-coding genes only (B).

1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144

Table A14: Exon- and CDS-level benchmark. Related to Figure 1

Model	Gene type	Class	precision	recall	f1
Caduceus PS	mRNA	EXON	0.9215	0.8763	0.8983
		CDS	0.8928	0.8562	0.8741
	lncRNA	EXON	0.5232	0.4293	0.4717
		CDS	0.8412	0.7750	0.8068
GENA large	mRNA	EXON	0.8877	0.8778	0.8827
		CDS	0.8350	0.8156	0.8252
	lncRNA	EXON	0.5208	0.5174	0.5191
		CDS	0.8043	0.7962	0.8002
SegmentNT	mRNA	EXON	0.3303	0.7554	0.4597
		CDS	0.0722	0.6697	0.1304
	lncRNA	EXON	0.0044	0.0797	0.0084
		CDS	0.1030	0.6025	0.1760
SegmentNT multi species	mRNA	EXON	0.1893	0.7577	0.3029
		CDS	0.0353	0.6707	0.0671
	lncRNA	EXON	0.0027	0.0889	0.0052
		CDS	0.0568	0.6064	0.1039
SegmentBorzoi	mRNA	EXON	0.0203	0.0647	0.0309
		CDS	0.0038	0.0488	0.0070
	lncRNA	EXON	0.0006	0.0039	0.0011
		CDS	0.0129	0.0509	0.0206
SegmentEnformer	mRNA	EXON	0.0008	0.0037	0.0013
		CDS	0.0002	0.0021	0.0003
	lncRNA	EXON	0.0000	0.0007	0.0000
		CDS	0.0003	0.0030	0.0006
Tiberius	mRNA	EXON	0.7484	0.5930	0.6617
		CDS	0.9288	0.7880	0.8526
	lncRNA	EXON	0.5439	0.0204	0.0393
		CDS	0.7456	0.4633	0.5715
AUGUSTUS	mRNA	EXON	0.6710	0.6018	0.6345
		CDS	0.7539	0.6911	0.7211
	lncRNA	EXON	0.3118	0.0381	0.0680
		CDS	0.6572	0.4742	0.5509

1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

Table A15: Gene level metrics computed on a gene set assembled from 14 animal species. Metrics are calculated for protein-coding and non-coding genes in a gene set from a single chromosome for each species. MRCA MYA - million years from most recent common ancestor with *Homo sapiens*.

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

Species	MRCA (MYA)	Chromosome	Gene type	Class	Caduceus PS	GENA large	Tiberius	AUGUSTUS	SegmentINT	SegmentNT multi species	Ground truth
<i>Anopheles funestus</i>	686	NC_064599.1	mRNA	EXON	1142	1533	0	44	286	298	4821
			CDS	639	322	970	1907	0	0	0	243
			lncRNA	EXON	15	27	0	0	0	0	5064
			all RNA	EXON	1157	1560	0	44	286	298	
<i>Drosophila melanogaster</i>	686	NT_033779.5	mRNA	EXON	955	1079	0	135	391	482	2657
			CDS	661	462	843	1431	0	0	0	526
			lncRNA	EXON	239	256	0	0	87	2	3183
			all RNA	EXON	1194	1335	0	135	478	484	
<i>Danio rerio</i>	429	NC_007114.7	mRNA	EXON	480	467	5	0	91	185	1325
			CDS	262	139	420	0	0	0	0	222
			lncRNA	EXON	48	91	0	0	3	4	1547
			all RNA	EXON	528	558	0	0	94	189	
<i>Mugil cephalus</i>	429	NC_061770.1	mRNA	EXON	613	681	0	0	118	166	2119
			CDS	386	219	775	3	0	0	0	293
			lncRNA	EXON	71	92	0	0	7	8	2412
			all RNA	EXON	684	773	0	0	125	174	
<i>Paralichthys olivaceus</i>	429	NC_091093.1	mRNA	EXON	321	317	0	0	76	109	944
			CDS	222	98	404	0	0	0	0	129
			lncRNA	EXON	15	22	0	0	0	0	1073
			all RNA	EXON	336	339	0	0	0	0	
<i>Xenopus laevis</i>	352	NC_054386.1	mRNA	EXON	426	440	3	10	90	106	1463
			CDS	248	106	487	164	0	0	0	161
			lncRNA	EXON	30	46	0	1	2	2	1624
			all RNA	EXON	456	466	0	11	92	108	
<i>Anas platyrhynchos</i>	319	NC_092591.1	mRNA	EXON	449	429	2	0	124	104	1002
			CDS	310	166	624	285	0	0	0	412
			lncRNA	EXON	34	43	0	0	0	0	1414
			all RNA	EXON	483	472	0	0	124	104	
<i>Gallus gallus</i>	319	NC_052536.1	mRNA	EXON	463	422	0	0	166	116	1036
			CDS	331	191	614	295	0	0	0	314
			lncRNA	EXON	26	34	0	0	1	0	1350
			all RNA	EXON	489	456	0	0	167	116	
<i>Taeniopygia guttata</i>	319	NC_133030.1	mRNA	EXON	472	423	0	0	127	127	976
			CDS	325	173	596	261	0	0	0	245
			lncRNA	EXON	31	40	0	0	0	0	1221
			all RNA	EXON	503	463	0	0	127	127	
<i>Bubalus bubalis</i>	94	NC_059174.1	mRNA	EXON	658	673	3	17	161	147	1239
			CDS	482	355	745	240	0	0	0	331
			lncRNA	EXON	47	69	0	0	0	1	1570
			all RNA	EXON	705	742	0	17	161	148	
<i>Panthera tigris</i>	94	NC_056673.1	mRNA	EXON	580	627	0	42	223	193	1136
			CDS	491	402	681	214	0	0	0	284
			lncRNA	EXON	36	62	0	0	2	0	1420
			all RNA	EXON	616	689	0	42	225	193	
<i>Tursiops truncatus</i>	94	NC_047043.1	mRNA	EXON	486	498	0	20	162	134	1079
			CDS	380	287	624	194	0	0	2	214
			lncRNA	EXON	29	22	0	0	0	2	1293
			all RNA	EXON	515	520	0	20	162	136	
<i>Pan troglodytes</i>	6.4	NC_072417.2	mRNA	EXON	630	692	11	20	208	165	1304
			CDS	501	371	797	232	0	0	1	284
			lncRNA	EXON	37	57	0	0	0	1	1588
			all RNA	EXON	667	749	0	20	208	166	
<i>Homo sapiens</i>	0	NC_060944.1	mRNA	EXON	297	299	0	11	105	97	546
			CDS	204	130	380	106	0	0	0	434
			lncRNA	EXON	68	84	0	0	0	0	980
			all RNA	EXON	365	299	0	11	105	97	

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

Table A16: Exon- and CDS-level computed on a gene set assembled from 14 animal species. Metrics are calculated for protein-coding and non-coding genes in a gene set from a single chromosome for each species. MRCA MYA - million years from most recent common ancestor with *Homo sapiens*.

Species	MRCA (MYA)	Chromosome	Gene type	Class	Codon-level			Gene-level			Transcript-level			AUGUSTUS			SegmentN ¹			SegmentN ¹ full species		
					precision	f1	precision	recall	f1	precision	recall	f1	precision	recall	f1	precision	recall	f1	precision	recall	f1	
<i>Anopheles funestus</i>	686	NC_004591	mRNA	EXON	0.6512	0.6048	0.8271	0.6086	0.6775	0.6025	0.2657	0.1950	0.2319	0.4647	0.4771	0.4708	0.3276	0.3651	0.3277	0.5105	0.2043	
			CDS	0.5972	0.5594	0.7707	0.5591	0.6250	0.5416	0.2657	0.1950	0.2319	0.4647	0.4771	0.4708	0.3276	0.3651	0.3277	0.4175	0.2055		
			lncRNA	EXON	0.6132	0.5713	0.7913	0.5905	0.7495	0.2455	0.2657	0.2000	0.2319	0.2108	0.4647	0.4771	0.4708	0.3276	0.3651	0.3277	0.4042	0.2060
			al mRNA	EXON	0.6354	0.5916	0.8127	0.5912	0.5956	0.3768	0.3842	0.1950	0.2319	0.2484	0.4647	0.4771	0.4708	0.3276	0.3651	0.3277	0.3773	0.4964
<i>Drosophila melanogaster</i>	686	NT_033779.5	mRNA	EXON	0.6802	0.7250	0.8500	0.6802	0.7811	0.2455	0.2657	0.2000	0.2319	0.2791	0.4647	0.4771	0.4708	0.3276	0.3651	0.3277	0.5000	0.2043
			CDS	0.6361	0.5226	0.5738	0.5221	0.4241	0.4985	0.2380	0.3816	0.4775	0.8173	0.7978	0.8023	0.3246	0.2812	0.4842	0.4243	0.3767	0.4243	0.2057
			lncRNA	EXON	0.6361	0.4226	0.4046	0.3202	0.3777	0.4781	0.4269	0.5000	0.2000	0.2000	0.2000	0.2000	0.2000	0.2000	0.2000	0.2000	0.2000	0.2000
			al mRNA	EXON	0.6802	0.5221	0.5738	0.5221	0.4241	0.4985	0.2380	0.3816	0.4775	0.8173	0.7978	0.8023	0.3246	0.2812	0.4842	0.4243	0.3767	0.4243
<i>Danio rerio</i>	429	NC_027114.7	mRNA	EXON	0.6808	0.6132	0.8661	0.6803	0.8203	0.7207	0.8053	0.6800	0.3885	0.6488	0.0000	0.0000	0.0000	0.3292	0.6103	0.3273	0.7360	0.4554
			CDS	0.6127	0.7708	0.7943	0.7183	0.8277	0.8717	0.8621	0.5172	0.6485	0.7111	0.6880	0.6709	0.6244	0.5334	0.6495	0.7110	0.6446	0.5142	
			lncRNA	EXON	0.6808	0.6132	0.8661	0.6803	0.8203	0.7207	0.8053	0.6800	0.3885	0.6488	0.0000	0.0000	0.0000	0.3292	0.6103	0.3273	0.7360	0.4554
			al mRNA	EXON	0.6808	0.6132	0.8661	0.6803	0.8203	0.7207	0.8053	0.6800	0.3885	0.6488	0.0000	0.0000	0.0000	0.3292	0.6103	0.3273	0.7360	0.4554
<i>Mugil cephalus</i>	429	NC_001770.1	mRNA	EXON	0.6712	0.6320	0.9461	0.6463	0.8223	0.8237	0.7291	0.6467	0.5609	0.0000	0.0000	0.0000	0.1519	0.6516	0.2471	0.3750	0.7077	
			CDS	0.6201	0.5980	0.6076	0.6149	0.6179	0.6154	0.1055	0.2129	0.2320	0.0000	0.0000	0.0000	0.3379	0.3890	0.3046	0.3752	0.1642		
			lncRNA	EXON	0.6201	0.5980	0.6076	0.6149	0.6179	0.6154	0.1055	0.2129	0.2320	0.0000	0.0000	0.0000	0.3379	0.3890	0.3046	0.3752	0.1642	
			al mRNA	EXON	0.6808	0.6132	0.8661	0.6803	0.8203	0.7207	0.8053	0.6800	0.3885	0.6488	0.0000	0.0000	0.0000	0.3292	0.6103	0.3273	0.7360	0.4554
<i>Paralichthys olivaceus</i>	429	NC_001083.1	mRNA	EXON	0.6520	0.6524	0.8537	0.6462	0.8402	0.7825	0.5005	0.6403	0.0000	0.0000	0.0000	0.1316	0.7232	0.2223	0.3491	0.7869	0.4811	
			CDS	0.6274	0.8224	0.8246	0.7248	0.7848	0.7255	0.8754	0.7584	0.7584	0.7715	0.7869	0.8010	0.8653	0.1117	0.0814	0.1773	0.1463		
			lncRNA	EXON	0.6274	0.8224	0.8246	0.7248	0.7848	0.7255	0.8754	0.7584	0.7584	0.7715	0.7869	0.8010	0.8653	0.1117	0.0814	0.1773	0.1463	
			al mRNA	EXON	0.6411	0.8377	0.8384	0.8322	0.8296	0.8239	0.7302	0.5336	0.6337	0.0000	0.0000	0.0000	0.1310	0.7232	0.2223	0.3493	0.7869	0.4811
<i>Xenopus laevis</i>	352	NC_004386.1	mRNA	EXON	0.6416	0.6741	0.8575	0.7643	0.8196	0.8011	0.7265	0.5094	0.5989	0.5731	0.5644	0.5687	0.5658	0.8977	0.1202	0.1468	0.7469	0.4267
			CDS	0.6416	0.6741	0.8575	0.7643	0.8196	0.8011	0.7265	0.5094	0.5989	0.5731	0.5644	0.5687	0.5658	0.8977	0.1202	0.1468	0.7469	0.4267	
			lncRNA	EXON	0.6416	0.6741	0.8575	0.7643	0.8196	0.8011	0.7265	0.5094	0.5989	0.5731	0.5644	0.5687	0.5658	0.8977	0.1202	0.1468	0.7469	0.4267
			al mRNA	EXON	0.6416	0.6741	0.8575	0.7643	0.8196	0.8011	0.7265	0.5094	0.5989	0.5731	0.5644	0.5687	0.5658	0.8977	0.1202	0.1468	0.7469	0.4267
<i>Anas platyrhynchos</i>	319	NC_002891.1	mRNA	EXON	0.6202	0.6785	0.8857	0.8206	0.8207	0.8126	0.8420	0.7558	0.8827	0.8300	0.7945	0.8123	0.7779	0.7779	0.7779	0.7779	0.1191	
			CDS	0.6154	0.5475	0.5784	0.6205	0.6205	0.4566	0.4566	0.6173	0.6173	0.6173	0.6173	0.6173	0.6173	0.6173	0.6173	0.6173	0.6173	0.6173	
			lncRNA	EXON	0.6154	0.5475	0.5784	0.6205	0.6205	0.4566	0.4566	0.6173	0.6173	0.6173	0.6173	0.6173	0.6173	0.6173	0.6173	0.6173	0.6173	0.6173
			al mRNA	EXON	0.6202	0.6785	0.8857	0.8206	0.8207	0.8126	0.8420	0.7558	0.8827	0.8300	0.7945	0.8123	0.7779	0.7779	0.7779	0.7779	0.1191	
<i>Gelidus galus</i>	319	NC_023386.1	mRNA	EXON	0.6988	0.6981	0.8759	0.8607	0.8607	0.7957	0.7705	0.6172	0.6988	0.0000	0.0000	0.0000	0.4057	0.7654	0.3337	0.2824	0.7506	0.4104
			CDS	0.6895	0.6981	0.8759	0.8607	0.8607	0.7957	0.7705	0.6172	0.6988	0.8414	0.8400	0.8391	0.8381	0.8381	0.8381	0.8381	0.8381	0.8381	
			lncRNA	EXON	0.6895	0.6981	0.8759	0.8607	0.8607	0.7957	0.7705	0.6172	0.6988	0.8414	0.8400	0.8391	0.8381	0.8381	0.8381	0.8381	0.8381	0.8381
			al mRNA	EXON	0.6895	0.6981	0.8759	0.8607	0.8607	0.7957	0.7705	0.6172	0.6988	0.8414	0.8400	0.8391	0.8381	0.8381	0.8381	0.8381	0.8381	0.8381
<i>Taeniopygia guttata</i>	319	NC_132030.1	mRNA	EXON	0.6917	0.6956	0.8783	0.8247	0.8207	0.8108	0.8459	0.8112	0.8734	0.8454	0.8724	0.8181	0.8734	0.8005	0.1320	0.0688	0.7051	0.1220
			CDS	0.6917	0.6956	0.8783	0.8247	0.8207	0.8108	0.8459	0.8112	0.8734	0.8454	0.8724	0.8181	0.8734	0.8005	0.1320	0.0688	0.7051	0.1220	
			lncRNA	EXON	0.6917	0.6956	0.8783	0.8247	0.8207	0.8108	0.8459	0.8112	0.8734	0.8454	0.8724	0.8181	0.8734	0.8005	0.1320	0.0688	0.7051	0.1220
			al mRNA	EXON	0.6917	0.6956	0.8783	0.8247	0.8207	0.8108	0.8459	0.8112	0.8734	0.8454	0.8724	0.8181	0.8734	0.8005	0.1320	0.0688	0.7051	0.1220
<i>Bubalus bubalis</i>	94	NC_051741.1	mRNA	EXON	0.6008	0.6777	0.8777	0.8277	0.8266	0.7781	0.7574	0.6377	0.6777	0.6769	0.6695	0.6641	0.6641	0.7227	0.2402	0.1603	0.7300	0.3465
			CDS	0.6008	0.6777	0.8777	0.8277	0.8266	0.7781	0.7574	0.6377	0.6777	0.6769	0.6695	0.6641	0.6641	0.7227	0.2402	0.1603	0.7300	0.3465	
			lncRNA	EXON	0.6008	0.6777	0.8777	0.8277	0.8266	0.7781	0.7574	0.6377	0.6777	0.6769	0.6695	0.6641	0.6641	0.7227	0.2402	0.1603	0.7300	0.3465
			al mRNA	EXON	0.6008	0.6777	0.8777	0.8277	0.8266	0.778												

1296 APPENDIX H. CLUSTERIZATION OF HIDDEN STATES OF THE MODELS
1297

1298 **Setup** We extracted final-layer hidden states for ten randomly selected human genes, comprising
1299 six mRNA and four lncRNA transcripts. Two model states were analyzed: pretrained HuggingFace
1300 (HF) weights and our fine-tuned GENATATOR models for both architectures. For GENA-LM (BPE
1301 tokenization), each token embedding was expanded uniformly across its nucleotide span to obtain
1302 one vector per base. Importantly, we intercepted embeddings directly from the RMT backbone prior
1303 to the U-NET decoder in order to evaluate the pretrained representation itself. This was necessary
1304 because the U-NET component was introduced only in this work and is randomly initialized, as no
1305 pretrained version with U-NET exists. Passing embeddings through such a randomly initialized head
1306 would risk altering the information contained in the pretrained backbone. For Caduceus, weight
1307 tying was disabled (`weight_tying=False`) for both HF and fine-tuned states, which doubled the
1308 number of trainable parameters (up to 16M parameters). We fit two-dimensional PCA directly to the
1309 raw per-base embeddings and then applied k -means with $k=5$.
1310

1311 **Homogeneity metric** Let K denote the ground-truth label random variable over exon, intron, CDS,
1312 5'UTR, and 3'UTR, and C the cluster assignment returned by k -means. Define
1313

$$1314 H(K) = - \sum_k \frac{n_k}{N} \log\left(\frac{n_k}{N}\right), \quad H(K | C) = - \sum_c \sum_k \frac{n_{c,k}}{N} \log\left(\frac{n_{c,k}}{n_c}\right),$$

1315 where n_k is the count of label k , n_c is the size of cluster c , $n_{c,k}$ is the number of samples with label k
1316 in cluster c , and N is the total number of samples. The homogeneity score is
1317

$$1318 h = 1 - \frac{H(K | C)}{H(K)},$$

1319 with $h=1$ when $H(K)=0$ (see `sklearn.metrics.homogeneity_score`).
1320

1321 **Selected gene set** The analysis covered the ten human genes listed in Table A17, spanning both
1322 coding and non-coding classes and a broad range of transcript lengths.
1323

1324 Table A17: Gene set used for the embedding analysis. Lengths are transcript lengths in base pairs.
1325

1326 Gene	1327 Type	1328 Length (bp)
1329 LOC105375876	1330 lncRNA	1331 4,791
1332 CPSF1	1333 mRNA	1334 16,281
1335 FDFT1	1336 mRNA	1337 36,533
1338 OSER1-DT	1339 lncRNA	1340 14,964
1341 ERGIC3	1342 mRNA	1343 15,580
1344 TPX2	1345 mRNA	1346 62,507
1347 NOP56	1348 mRNA	1349 5,768
1349 IQANK1	1350 mRNA	1351 56,563
1352 LINC02986	1353 lncRNA	1354 3,453
1355 LOC107986930	1356 lncRNA	1357 140,852

1358 **Explained variance of PCA** To evaluate how much variance in the embeddings is captured by
1359 the leading principal components, we report the explained variance ratios (EVR) of the first two
1360 components (Table A18). These values quantify how strongly base identity or higher-order transcript
1361 structure dominate the embedding space.
1362

1363
1364
1365
1366
1367
1368
1369

Table A18: Explained variance ratios (EVR) of the first two PCA components computed directly on per-base embeddings without pooling.

Model state	EVR ₁	EVR ₂
Caduceus PS (HF)	0.587	0.164
Caduceus PS (fine-tuned)	0.477	0.221
GENA LM large (HF)	0.010	0.009
GENA LM large (fine-tuned)	0.515	0.078

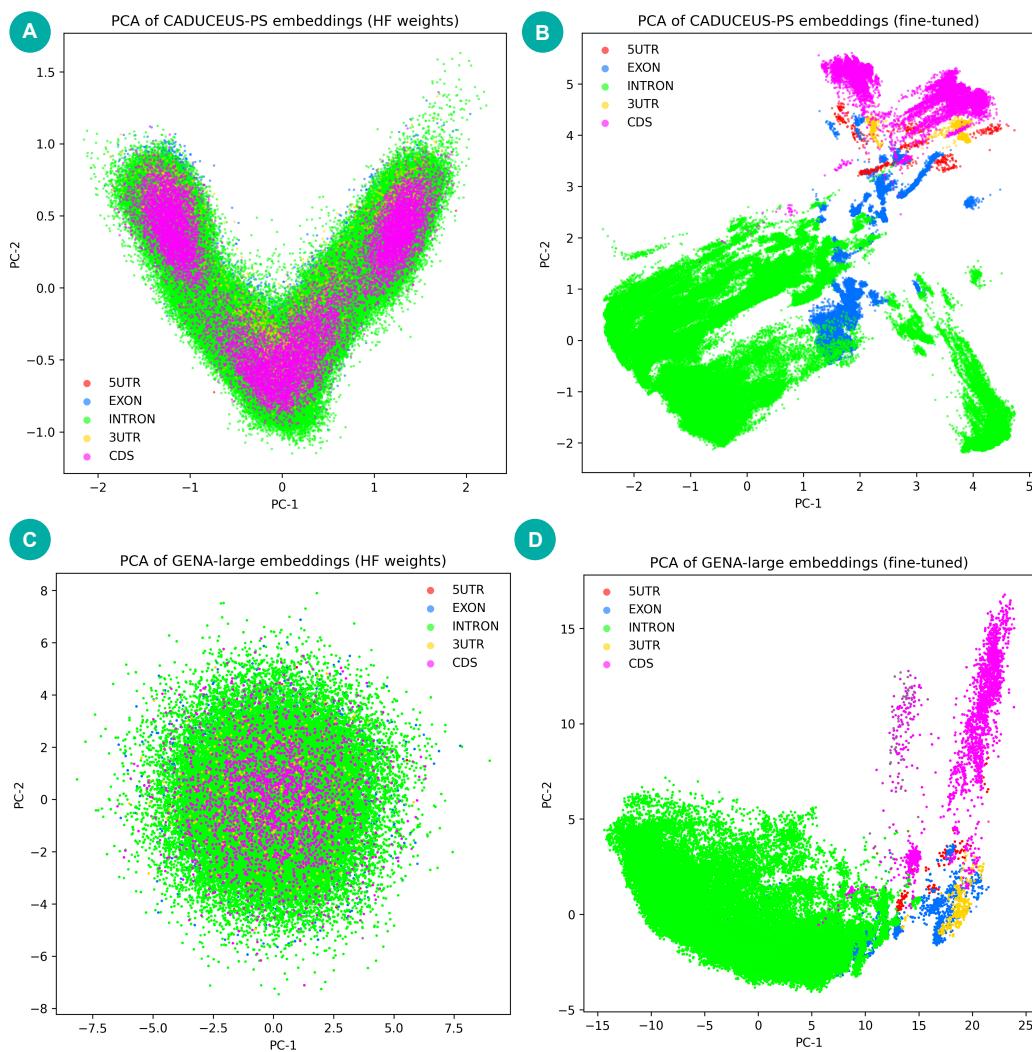
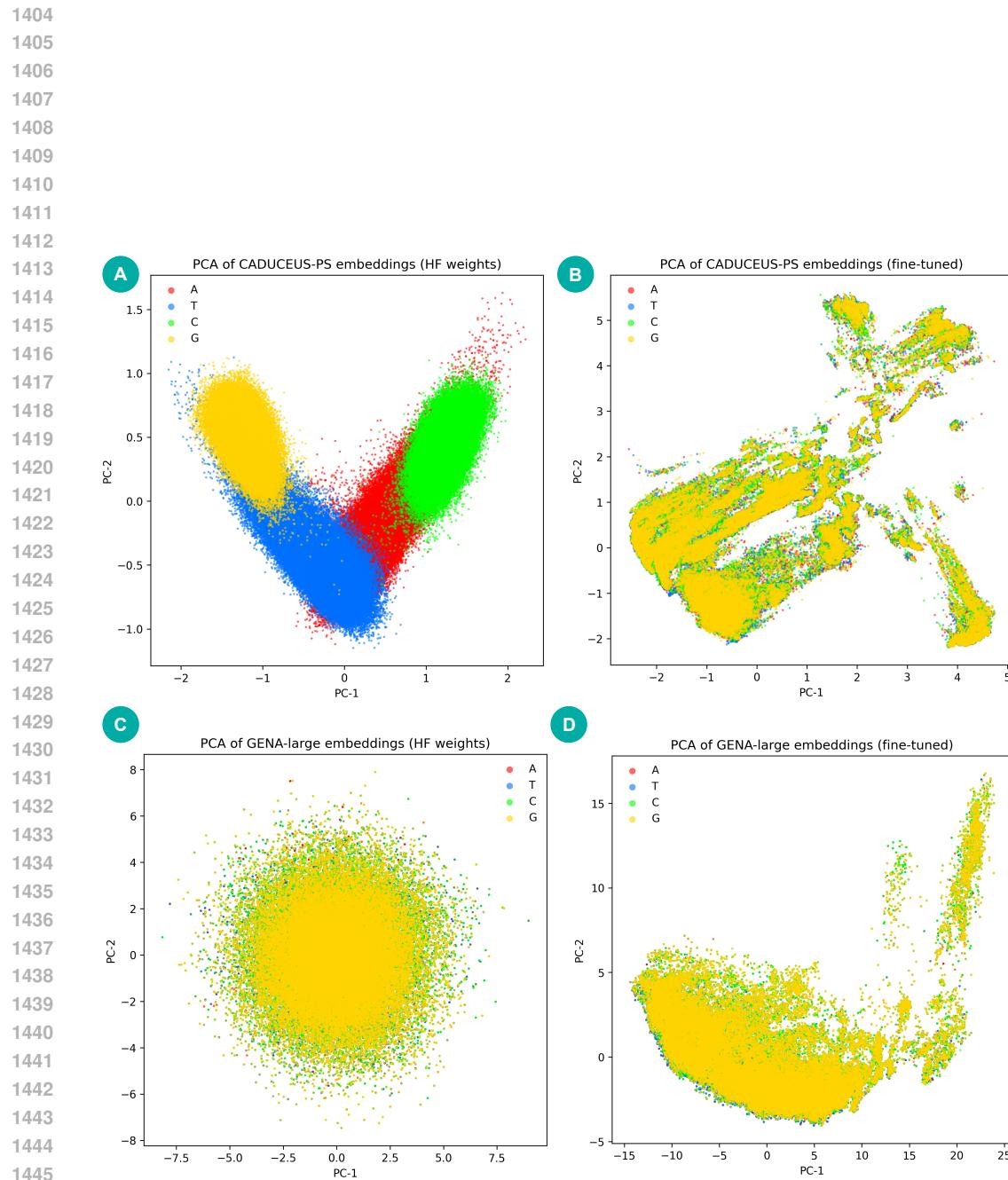


Figure A3: PCA of final-layer embeddings colored by gene-structure labels (5'UTR, EXON, INTRON, 3'UTR, CDS). Panels correspond to Caduceus PS with HuggingFace (HF) weights (A), Caduceus PS after fine-tuning (B), GENA LM large with HF weights (C), and GENA LM large after fine-tuning (D).



1447 Figure A4: PCA of the same embeddings colored by nucleotide identity (**A**, **T**, **C**, **G**). Under
 1448 HF weights, Caduceus PS exhibits clear separation by base identity, while fine-tuning reduces
 1449 base-driven structure and enhances organization by transcript elements.

APPENDIX I. GENATOR ERROR ANALYSIS.

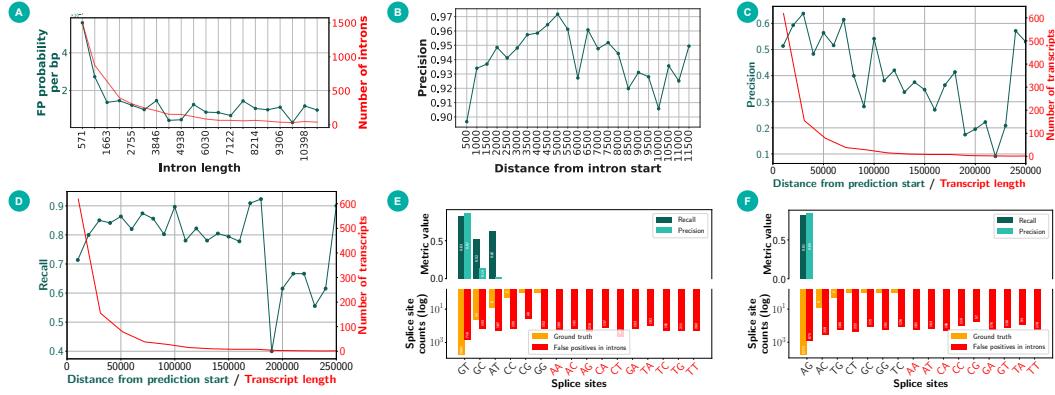


Figure A5: Error analysis provides insights into potential tweaks for improving gene annotation. A-D: Performance metrics as a function of intron length (A), distance from exon-intron boundary (B), and distance from gene sequence start (C-D). B aggregates intron sequences located at specific distance from exon-intron boundary. In A and B the distribution is cropped at the 90th percentile, in C and D at 250Kb. E and F: Precision and recall at predicted intron-exon boundaries, stratified by flanking dinucleotide, separately for left (E) and right (F) intron boundary, with the distribution of targets shown in red and orange.

APPENDIX J. COMPUTING POWER REQUIREMENTS.

We intentionally performed vast majority of the experiments on a small dataset using downscaled models (i.e. base GENA-LM version instead of large) to save computation time and allow more datasets and architectures to be benchmarked. We believe that providing results of the thorough benchmarking is important background with saves compute for others who is going to develop better models for gene annotation.

Average time and resources required for processing 250 Kbp with the most efficient GENATOR models are provided in the table below. For the whole human chromosome it takes 15 min using single A100 GPU and 8.5 GB GRAM. GENA-based models can be used even without GPU: with Intel(R) Xeon(R) Platinum 8358 CPU @ 2.60GHz single chromosome (chr20, 67Mbp) can be annotated within 3h.

Table A19: Runtime and memory usage of different models.

Model	A100 \times 1 Time	A100 \times 1 Memory	CPU Time	CPU Memory
GENA large	3.5 s	8 430 MiB	42 s	8 430 MiB
Caduceus PS	1 s	7 936 MiB	NA	NA

Here, NA indicates that Caduceus PS cannot be executed on CPU.

In addition to per-chunk throughput, we also measured end-to-end inference time on a full human chromosome using the same hardware configuration (one NVIDIA A100 80GB). On chromosome 20 of the T2T human genome, the GENA-based GENATOR model required approximately 16 minutes to complete annotation, while the Caduceus-based GENATOR variant completed the same task in about 8 minutes. For comparison, SegmentNT (evaluated using its recommended window size of 49,992 bp) required 36 minutes, Tiberius completed annotation in 13 minutes, and AUGUSTUS required 67 minutes.

1512 APPENDIX K. MODELS SCORING AND BENCHMARKING
15131514 K.1 PROCESSING PREDICTIONS
15151516 For all models except Tiberius and AUGUSTUS, each nucleotide was assigned the class with the
1517 highest value from the comparison group. The comparison group is specific to each class: for the
1518 exon class, it includes exon and intron; for the CDS class, it includes CDS, intron, 5'UTR, and
1519 3'UTR.1520 K.2 BENCHMARKING
15211522 Predictions were obtained by feeding the model with nucleotide sequences of transcripts (for interval
1523 level and BUSCO) or genes (for gene level). SegmentNT is not designed to process very long
1524 sequences, so for this model, the gene sequence was split into non-overlapping 50 kb segments. For
1525 SegmentBorzoj and SegmentEnformer, the input segment length was set to 196608 nucleotides, as
1526 recommended by the authors.1527 For AlphaGenome, several input sequence lengths are available; here, we used a segment size of
1528 1 Mb. For the segmentation task, the most suitable track, splice_sites, was employed. Exons were
1529 defined based on acceptor and donor classes, corresponding to the first and last nucleotide of each
1530 exon, respectively. Acceptor-donor pairs were identified in a sliding window from the beginning to
1531 the end of the sequence. We evaluated thresholds ranging from 0.1 to 0.9 in increments of 0.1, and
1532 for the final results, the best-performing threshold was selected.1533 It is important to note that SegmentNT can predict only the exon class, so metrics for the CDS
1534 class were obtained by subtracting predictions of 5'UTR and 3'UTR from exon predictions. Finally,
1535 GENATATORs are capable of predicting both exons and CDS, so for these models, metrics were
1536 calculated across all classes for all genes and transcripts.1537 K.3 INTERVAL LEVEL METRICS
15381540 To evaluate the accuracy of exon prediction for each model, sequences of a single transcript per gene
1541 were provided (the transcripts with the maximum total exon length were selected).1543 K.4 GENE LEVEL
15441545 Each model generated predictions based on the gene sequences. Interval-level (exon or CDS) analysis
1546 was then performed, comparing predictions to each known transcript of each gene. If there is a
1547 transcript with complete and reciprocal overlap between predicted exons and known exons, the gene
1548 was considered to be identified. CDS analysis was performed similarly.1549 K.5 BUSCO
15501551 Based on the predictions of each model, the nucleotide sequences of the genes were obtained for
1552 analysis. After performing the translation operation, the corresponding proteins were obtained and
1553 the longest of them was selected. The strand for translation was determined either directly if model
1554 outputs it explicitly (Tiberius and AUGUSTUS), or based on the predicted classes 5'UTR and 3'UTR,
1555 using the formula: $(FirstU5 - FirstU3) - (LastU5 - LastU3)$, where $FirstU5$ is the cumulative
1556 probability of 5'-UTR class prediction in the first 50 bases, $LastU3$ is the cumulative probability
1557 of 3'-UTR class prediction in the last 50 bases, and etc. (for other models). For AlphaGenome, the
1558 strand corresponding to the gene strand was used. Subsequently, the set of obtained proteins was
1559 analyzed using BUSCO.1560
1561
1562
1563
1564
1565

1566 APPENDIX L. HOMOLOGY EXCLUSION EXPERIMENT IN *S. cerevisiae*.
1567

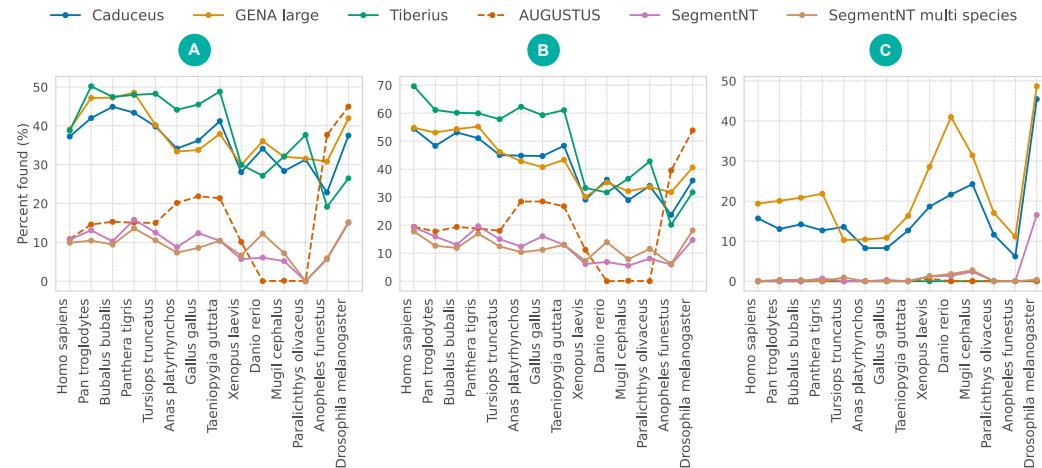
1568 To ensure that performance of GENATATORS in yeast is not attributable to residual homology
1569 with mammalian training data, we performed a stringent control. All 766 annotated protein-coding
1570 genes from *S. cerevisiae* chromosome NC_001136.10 were compared to the full proteomes of the 39
1571 mammalian species used during training (1,827,441 proteins in total) using BLASTP (E-value cutoff
1572 1e-05). Every yeast gene with at least one significant hit was excluded, resulting in a filtered set of
1573 270 genes without detectable protein-level similarity to the training data.

1574 We then evaluated gene-level reconstruction accuracy on this filtered set. Results are summarized in
1575 Table Sx.
1576

1577 Table A20: Gene-level reconstruction on *S. cerevisiae* genes without detectable protein-level homol-
1578 ogy to mammals.
1579

Model	Gene level (%)
Caduceus PS	98.52
GENA large	92.59
AUGUSTUS	41.85

1580 Even under these stringent conditions, GENATATORS recovered over 250 genes - more than twice
1581 the number recovered by AUGUSTUS, which was run with a species-specific HMM profile for
1582 *S. cerevisiae*. These findings demonstrate that the observed performance cannot be explained by
1583 homology leakage, but instead reflects the models' ability to capture general splice and coding
1584 sequence patterns transferable across kingdoms.
1585

1590 APPENDIX M. GENATATORS GENERALIZE ACROSS UNSEEN SPECIES.
1591

1609 Figure A6: GENATATORS generalize to previously unseen species. Performance of the models in
1610 human and 13 other species for all (A), protein-coding (B), and lncRNA (C) genes. See Appendix D
1611 Tables A15 and A16 for more information on metrics.
1612

1613 APPENDIX N. LIMITATIONS.
1614

1615 While GENATATORS demonstrate strong performance in benchmarking studies, their accuracy
1616 remains far from perfect. Currently, only approximately 30–40% of all human genes can be correctly
1617 segmented by any of the models evaluated in this study.

1618 Another limitation lies in gene discovery. Although gene segmentation is a critical component of
1619 genome annotation, complete annotation also requires accurate identification of gene boundaries,
including non-coding untranslated regions (UTRs), which remains challenging for all evaluated tools.

1620 Finally, the poor results observed in our embedding-only training experiments highlight a fundamental
1621 limitation of current DNA language models: they do not capture gene structure during the pretraining
1622 phase. This underscores the need for architectural or training paradigm improvements in future DNA
1623 LM development.

1624

1625 **APPENDIX O. DECLARATION OF LLM USAGE.**

1626 Large Language Models (LLMs) were used solely to improve the readability and clarity of the
1627 manuscript text. No parts of the analysis, results, or conclusions were generated by LLMs.

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673