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ABSTRACT

Inference of gene structure and location from genome sequences - known as
de novo gene annotation - is a fundamental task in biological research. However,
sequence grammar encoding gene structure is complex and poorly understood, often
requiring costly transcriptomic data for accurate gene annotation. In this work, we
revisit standard evaluation protocols, showing that commonly used per-token and
per-sequence metrics fail to capture the challenges of real-world gene annotation.
We introduce and theoretically justify new biologically grounded interval level
metrics, along with benchmarking datasets that better capture annotation quality.
We show that pretrained DNA language model (DNA LM) embeddings do not
capture the features necessary for precise gene segmentation, and that task specific
fine-tuning remains essential. We comprehensively evaluate the impact of model
architecture, training strategy, receptive field size, dataset composition, and data
augmentations on gene segmentation performance. We show that fine-tuned DNA
LMs outperform existing annotation tools, generalizing across species separated
by hundreds of millions of years from those seen during training, and providing
segmentation of previously intractable non-coding transcripts and untranslated
regions of protein-coding genes. Our results thus provide a foundation for new
biological applications centered on accurate and scalable gene annotation.

1 INTRODUCTION

The rapid development of DNA sequencing technologies, such as third-generation sequencing and
Hi-C, has led to an exponential growth in the availability of genome assemblies across the tree of life.
This genomic data is invaluable for fundamental research, biotechnology, and biomedicine, but raw
DNA sequences alone are insufficient for most applications. In order to interpret these data, genomes
must be annotated, which allows the identification of functional elements. Gene annotation is the
most important here, since it identifies genes and reveals their structural elements, which is critical
for almost all downstream applications.

A gene is a continuous subsequence of genomic DNA that serves as the template for transcription,
the process by which RNA molecules are synthesized from DNA. Genes are directional, and their
direction is defined collinear with the direction of RNA synthesis. Therefore, genes can appear in
forward or reverse orientation relative to the reference genome (Appendix A Figure A1A). In the
genomes, approximately half of annotated genes are in the forward orientation and half in the reverse.

The two largest gene classes are messenger RNAs (mRNAs) and long non-coding RNAs (lncRNAs) —
this paper focuses only on them. In the human genome, approximately 40.5% of genes are annotated
as mRNAs and 35.2% as lncRNAs. mRNAs encode proteins and their sequence is segmented into
exons and introns, with exons containing coding sequence (CDS) and untranslated regions (UTRs)
at the 5′ and 3′ ends (Appendix A Figure A1B). Translation of the CDS provides the amino acid
sequence of proteins, each amino acid encoded by three CDS letters (codon); thus, even a single
nucleotide shift in an exon boundary can change all downstream codons. By contrast, lncRNAs
lack CDS and do not produce proteins, but instead regulate diverse biological processes, including
chromatin remodeling, immune response, viral defense, and cancer progression (Mattick et al., 2023;
Sharma et al., 2024).

Annotating lncRNAs is a qualitatively different task compared to annotating mRNAs. Protein-coding
genes can often be recognized from conserved protein-coding fragments while lncRNAs lack such
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signals, evolve more rapidly, and are often expressed only in specific tissues, which makes their
detection particularly challenging without additional evidence such as RNA-seq.

Untranslated regions of mRNAs are also essential to annotate. Although they are not translated into
proteins, UTRs influence transcript stability, translation efficiency, and localization (Castillo-Hair
et al., 2024). They may encode short functional peptides, and mutations in UTRs can be linked to
human diseases (Filatova et al., 2023). Thus, a complete view of gene structure requires accurate
recovery not only of coding exons but also of UTRs and non-coding genes.

Learning the sequence rules that govern transcription and protein synthesis should, in principle,
enable prediction of gene structure directly from DNA sequence. Methods that attempt this are
known as ab initio gene predictors, yet in practice they underperform approaches that incorporate
supplementary evidence beyond the genome sequence (Scalzitti et al., 2020). Common sources of
such evidence include gene annotations from closely related species and RNA-sequencing data from
the target species (Raghavan et al., 2022). However, these resources are not consistently available
across organisms or conditions, which sustains the demand for robust ab initio gene annotation
methods that deliver high-quality results from sequence alone.

In this work, we address these gaps by applying DNA language models to gene segmentation and de-
veloping GENATATORs, a family of fine-tuned models specifically designed for ab initio annotation.
Using biologically inspired metrics, justified by theoretical analysis and empirical validation, we
demonstrate that pretrained DNA language model embeddings are insufficient for precise segmenta-
tion, making task-specific fine-tuning necessary. We then investigate how architecture, input context
length, species diversity in training data, and augmentation strategies affect performance. Finally,
we benchmark GENATATORs against existing methods and evaluate generalization on human and
other species, showing that our models achieve state-of-the-art performance in gene segmentation
due to capacity to uncover previously untrackable lncRNAs and UTRs of mRNA, while maintaining
comparable accuracy to the best existing tools on segmentation restricted to mRNA CDS.

2 RELATED WORK

Early ab initio approaches relied on probabilistic models such as AUGUSTUS (Stanke et al., 2004),
which is based on HMMs that hardcode biological rules of gene grammar. These models capture
statistical patterns of protein-coding genes, including the presence of a start codon to initiate CDS, a
stop codon to terminate it, absence of in-frame stops within the CDS, and canonical dinucleotides at
splice junctions. Such models are effective for identifying protein-coding genes but fail to capture
UTRs and lncRNAs (Scalzitti et al., 2020). To address these gaps, deep learning methods have been
introduced to learn gene segmentation rules from DNA sequence. Helixer used CNNs for gene
segmentation (Stiehler et al., 2020), and Tiberius integrated CNN layers with a differentiable
HMM decoder, achieving state-of-the-art accuracy on protein-coding gene annotation (Gabriel et al.,
2024). Although effective, these models remain constrained. Tiberius focuses on protein-coding
genes without explicit modeling of UTRs or lncRNAs, and its CNN backbone is restricted to relatively
short contexts (up to 10Kb) despite many human genes exceeding 30 Kb and spanning over 1 Mb.

Large DNA LMs have emerged as versatile backbones for genomic predictions (Schiff et al., 2024;
Fishman et al., 2025; Dalla-Torre et al., 2024; Marchal, 2024; Brixi et al., 2025; Zhou et al., 2023).
Based on transformer or SSM architectures, they can be pretrained on large genomic datasets. DNA
LMs have matched or surpassed classical approaches across tasks such as splice-site prediction,
promoter identification, and polyA signal detection. SegmentNT (de Almeida et al., 2024), a
fine-tuned Nucleotide Transformer DNA LM (Dalla-Torre et al., 2024) with a U-Net head,
is a nucleotide-resolution classifier that outputs probabilities for each gene element directly from
DNA sequence. Authors of SegmentNT also introduced variants of this model pretrained on
expression data — SegmentBorzoi and SegmentEnformer. However, as we demonstrate
below, classification performance on individual gene elements does not reliably reflect the accuracy
of full gene reconstruction. Consequently, the utility of these models for real-world biological
applications remains unclear.

Recently, AlphaGenome has been introduced as a foundation model of the genome that predicts
multiple modalities from sequence, including RNA-seq, chromatin accessibility, and splicing-related
outputs (Avsec et al., 2025). In the splicing domain, it performs nucleotide-level classification of
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donor and acceptor sites, prediction of splice-site usage, and quantitative splice-junction prediction.
While not being a gene annotation system, such splicing predictions of the model are directly relevant
to exon–intron boundary detection and therefore to transcript assembly.

Alongside these methods, several benchmarks have been proposed to assess gene annotation-related
tasks. GUE (Zhou et al., 2023) includes splice-site prediction; however, it assigns a single label to 400
bp input sequences, which makes it biologically irrelevant: gene annotation requires single-nucleotide
precision in detection of boundary between gene elements. BEND (Marin et al., 2023) instead
operates at the nucleotide level, but it uses short input sequences, relies on metrics that are not
biologically rigorous, and does not evaluate critical elements such as UTRs or lncRNA genes. A
detailed comparison between benchmarks developed in this work, BEND, and GUE is provided in
Appendix B.

Building on these observations, it is clear that systematic evaluations of modern DNA LMs for full
gene segmentation are still missing. In particular, SSMs have not been comprehensively benchmarked,
and among transformer-based models, only a single context-extension method (Peng et al., 2023)
has been applied to process genes longer than the default receptive field. A unified benchmark is
therefore needed to clarify how modern DNA LMs perform on gene segmentation, especially for
lncRNAs and UTRs that remain inaccessible to most existing tools.

3 FORMAL DEFINITION OF THE PROBLEM AND METRICS

We formalize gene segmentation as a multiclass and multilabel nucleotide level classification task.
The objective is to learn a function f that maps an input representation X ∈ RNl×H to an output
label matrix L ∈ RNl×5, where H is the token embedding dimension, Nl is the input length in
nucleotides, and 5 is the number of target classes which are exon, intron, coding sequence (CDS), 5′
untranslated region, and 3′ untranslated region.

3.1 SEGMENTATION SCORING

Segmentation performance can be assessed using conventional classification metrics such as precision,
recall, f1-score and PR-AUC computed per class at the nucleotide level. However, these metrics
evaluate classification independently for each nucleotide and therefore may not capture biological
dependencies between predictions. For instance, a misclassification of a single nucleotide within a
megabase long gene has negligible impact on the overall metric, while the same error can alter the
interpretation of all downstream sequence, since shifting a protein coding exon boundary by one
nucleotide modifies all downstream trinucleotide blocks and yields a different amino acid sequence, a
frame shift effect known in molecular biology.

To address this limitation, we use interval level segmentation scoring inspired by prior work (Scalzitti
et al., 2020). In this approach, a target interval is a continuous sequence of nucleotides with identical
ground truth class labels. A predicted interval is counted as a true positive only when it has complete
reciprocal overlap with a ground truth interval, which means that the predicted and true intervals
coincide.

Formally, let the ground truth class label sequence be L = (l1, l2, . . . , lNl
). An interval Im = [i, j] is

assigned to class K when lk = K for all k ∈ [i, j]. For each class K, let IK
pred be the set of predicted

intervals and let IK
true be the set of ground truth intervals. We compute the following quantities.

True positives are the number of predicted intervals that exactly match a ground truth interval. False
positives are the number of predicted intervals without an exact match in IK

true. False negatives are
the number of ground truth intervals that are not recovered in IK

pred.

The final interval level f1-score for class K is

F1Kinterval =
2TP

2TP + FP + FN
. (1)

This metric penalizes biologically important segmentation errors and provides a realistic assessment
of model performance.

We also extend interval level scoring to evaluate overall accuracy of gene structure prediction (defined
as gene level metric). In gene level scoring, a gene is counted as a true positive only when all of its
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intervals are reconstructed correctly. Reference annotations may include multiple valid transcript
structures for the same gene, known as transcription isoforms, which define different segmentations.
To account for this ambiguity, we use a gene level rule that accepts a prediction as correct when the
predicted interval set exactly matches the interval set of any annotated isoform of the target gene.
The current models Tiberius and AUGUSTUS rely on hard coded parameters tailored to coding
sequence identification, which makes them unable to detect exons that include untranslated regions.
Therefore, for protein coding transcripts we report two gene level metrics, one where the complete
exon structure is reconstructed and one where only the coding sequence part is reconstructed. We
compute these metrics separately for exon mRNA and CDS mRNA. For non coding transcripts such
as lncRNA, which have no CDS annotation, we compute gene level metrics using exon intervals only.
To obtain an overall gene level score we sum the number of correctly predicted lncRNA genes by
exon matching and the maximum of exon mRNA and CDS mRNA counts for protein coding genes,
which allows a fair comparison across models

Scoregene = TPexon-lncRNA +max
(
TPexon-mRNA, TPCDS-mRNA

)
. (2)

In Appendix C.1, we present a theoretical analysis that derives how sensitivity of conventional
PR-AUC and interval level metrics scales with boundary errors, justifying the need for the latter. This
is followed by empirical evidence in Appendix C.2, where we demonstrate that relying on PR-AUC
can lead to incorrect model rankings.

4 EXPERIMENTS

Input data The training dataset consists of genes from all human chromosomes except 8, 20, and
21, which were held out for validation during training. When specified, we also included genes
from all chromosomes of 39 additional mammalian species. All models were evaluated on human
chromosome 20, since the human genome provides the most accurate annotation among all available
species. For genes with multiple annotated isoforms, we selected a single isoform per gene with
the longest cumulative length of exons. A detailed description of dataset preparation is provided in
Appendix D.

Models We evaluated models representing different families of DNA LM architectures. From
the SSM family, we included Evo2-1B (Brixi et al., 2025) and Caduceus (with PH and PS mod-
ifications) (Schiff et al., 2024). For Transformer-based models, we selected GENA-LM equipped
with Recurrent Memory Transformer (RMT), capable of processing sequences comparable in length
to complete genes (Kuratov et al., 2024). DNABERT-2, DNABERT-S, and similar architectures
were not included due to the limited receptive fields. Additionally, we incorporated previously
developed gene segmentation models based on the Nucleotide Transformer DNA LM:
(SegmentNT and SegmentNT multispecies), as well as models pretrained on gene expres-
sion data (SegmentEnformer and SegmentBorzoi), as well as classical models (HMM-based
AUGUSTUS and the CNN&HMM hybrid Tiberius), in the final benchmarks. However, we did
not evaluate embeddings, re-optimize dataset preparation or training procedures for these models, as
such studies have been reported previously (de Almeida et al., 2024; Gabriel et al., 2024). We refer to
the Appendix E Table A7 for the summary of all models benchmarked in this study.

For models operating at single-nucleotide resolution (Evo2 and Caduceus), we appended a linear
projection layer of shape (H, 5) to map the model outputs to the five target classes. For non single-
nucleotide resolution models (Nucleotide Transformer, GENA-LM), token embeddings were
upsampled by repeating each token representation to match its corresponding nucleotide span and
further processed using a U-NET architecture as proposed in de Almeida et al. (2024).

All models were trained using cross-entropy loss, and the best-performing checkpoint was selected
based on exon-level f1-score on the validation set. Further details on model architectures and training
protocols are provided in Appendix D.

4.1 TRAINING ON EMBEDDINGS

DNA language models are expected to capture essential genomic features during pretraining. To
evaluate whether gene-structure information can be extracted directly from frozen representations,
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we conducted experiments where the DNA LM weights were fixed and only a shallow classifier was
trained. Specifically, we used a linear projection layer for models operating at nucleotide resolution
(Evo2, Caduceus) and a U-Net decoder for the token-based GENA-LM (byte–pair–encoded inputs).

As shown in Appendix F Table A8, none of the models produced embeddings containing sufficient
information for accurate gene segmentation (see Appendix G, Table A9 for detailed metrics). The
slightly higher performance of GENA-LM is likely attributable to the U-Net decoder, which, unlike
the linear layer used in Evo2 and Caduceus, can aggregate local contextual signals. These
observations are consistent with recent findings reported in the Nucleotide Transformer
embeddings benchmark (de Almeida et al., 2024).

To understand why pretrained models fail at segmentation, we analyzed final-layer hidden states on
ten randomly selected human genes (six mRNA and four lncRNA) using Caduceus and GENA-LM.
For GENA-LM, which uses BPE tokens, we expanded each token embedding uniformly across its
nucleotide span to obtain one vector per base for both models. PCA projections of the Caduceus
embeddings revealed four distinct clusters corresponding to nucleotide identity (A, C, G, T), rather
than gene structure (Appendix H, Fig. A4). GENA-LM embeddings formed diffuse clusters that also
did not align with gene elements (Appendix H, Fig. A3). This contrasts sharply with embeddings
obtained after fine-tuning on the gene segmentation task described in Section 4.2, which show
clear separation of gene elements (Appendix H, Fig. A3). Quantitatively, fine-tuning increased the
homogeneity of k-means (k=5) clusters with respect to exon, intron, CDS, 5′UTR, and 3′UTR labels
from 0.003 to 0.583 for Caduceus and from 0.0 to 0.497 for GENA-LM.

Together, these results indicate that pretraining alone is insufficient to encode the features required
for precise gene segmentation and that task-specific fine-tuning remains essential for achieving high
segmentation accuracy.

4.2 FINE-TUNING OF DNA LANGUAGE MODELS

We next conducted a series of fine-tuning experiments, where both the DNA LM parameters and the
classification head were trainable. These experiments were designed to systematically investigate
how model architecture and the biological information available during training influence gene
segmentation performance.

As a baseline, we considered models trained on human genomic sequences with a model context
length of 4,096 bp. Building on this setup, we explored the effect of extending the model context to
32 Kb, which provided a broader genomic window. We also examined whether expanding the training
data to include genes from 39 additional mammalian species improved performance by leveraging
evolutionary conservation, and we tested the impact of restricting the training set to protein-coding
transcripts while excluding lncRNAs, so that the models were exposed only to sequences with
well-defined coding structures. Finally, in a complementary experiment, we evaluated training on
multiple isoforms per gene vs using single representative isoform per gene in the baseline. In all
experiments we focused on Caduceus PS and Caduceus PH as representative SSMs, while
GENA-LM served as the representative Transformer-based model, and we did not include Evo-2,
since its larger size exceeded our available resources for running multiple fine-tuning experiments.

Our results (Table 1 and Appendix G Table A11) indicate that increasing the input sequence length
yields the most substantial improvement in segmentation performance, with approximately 1.6–2×
gains across models. Incorporating multiple species into the training set improved performance
by approximately 1.2–1.5×. Excluding lncRNAs from the training data resulted in improved CDS
detection for both Caduceus models. However, this came at the expense of reduced lncRNA
segmentation performance, although the decrease was not as pronounced. This observation suggests
that the sequence grammar underlying non-coding transcripts can, to large extent, be learned from
protein-coding sequences. In contrast to CDS detection, we did not observe consistent improvements
in exon segmentation for protein-coding genes when excluding lncRNA. Specifically, GENA-LM and
Caduceus PS achieved a modest improvement of approximately 10%, whereas Caduceus PH
exhibited a similar decrease in performance. Overall, we concluded that transcript filtering does not
substantially improve training performance. We also found that using multiple isoforms per gene
slightly reduced accuracy, confirming that the single-isoform strategy remains preferable
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Table 1: Gene-level performace metrics for dataset and model modifications: absolute number of
correctly reconstructed genes (abs) and differences (diff) compared to baseline (presented in the first
column). The gene type (all+) means that all isoforms of all genes were included to the dataset.

Chunk length (Nl), bp 4096 4096 32000 4096 4096 4096 4096 4096
Gene type all all+ all mRNA all all all all
Species human human human human 39 mammals human human human

Test-time augmentation no no no no no RC
splice-site

filter

RC
&

splice-site
filter

Model/dataset Gene type Class abs abs diff abs diff abs diff abs diff abs diff abs diff abs diff

GENA base
mRNA exon 31 22 –9 61 30 33 2 45 14 41 10 42 9 57 26

CDS 1 0 –1 1 0 1 0 5 4 4 3 1 0 6 5
lncRNA exon 15 10 –5 24 9 11 –4 18 3 20 5 24 13 29 14
all RNA exon 46 32 -14 85 39 44 –2 63 17 61 15 66 22 86 40

Caduceus PH
mRNA exon 50 41 –9 97 47 46 –4 78 28 85 35 61 15 107 57

CDS 1 1 0 2 1 11 10 58 57 5 4 4 –7 7 6
lncRNA exon 6 4 –2 23 17 5 –1 11 5 8 2 6 1 12 6
all RNA exon 56 41 -15 120 64 51 –5 89 33 93 37 67 16 119 63

Caduceus PS
mRNA exon 68 43 –25 112 44 76 8 91 23 101 33 77 1 126 58

CDS 20 0 –20 6 –14 32 12 94 74 24 4 23 –9 30 10
lncRNA exon 9 2 –7 18 9 4 –5 4 –5 17 13 9 0 18 9
all RNA exon 77 45 -32 130 53 80 3 95 18 118 38 86 9 144 67

To investigate the biological features underlying model errors, we analyzed the precision and recall
of exon interval detection, stratifying exon-intron boundaries based on their flanking dinucleotide
sequences (Appendix I, Fig. A5). Although the frequency of predicted boundaries at each dinucleotide
generally reflects the true distribution, we identified samples where dinucleotides flanking predicted
boundaries never occur at boundary positions in the actual data. Explicitly excluding exons flanked by
these “illegal” dinucleotides, designated as a “splice site filter” improves performance of all models
(Table 1).

As noted in the Introduction (Fig. A1A), genes occur in both orientations relative to the reference
genome, and for this reason we apply a test-time reverse-complement (RC) augmentation in which
each sequence is processed in its reference and RC orientations and the predictions are averaged.
As shown in Table 1, this approach yields substantial improvements in performance for all models.
Notably, Caduceus PS, whose architecture explicitly enforces RC equivariance in the DNA input
representation, still benefits significantly from test-time RC augmentation and achieves a ≈1.5×
improvement in performance. This effect arises because sequences are segmented into fixed-size
chunks and opposite orientations induce different chunkings, so averaging behaves like an ensembling.
Furthermore, RC augmentation provides greater performance gains than applying a splice-site filter
for both Caduceus models. To the best of our knowledge, this is the first study applying reverse-
complement augmentation in the context of the gene segmentation task.

Finally, we compared performance across model architectures. Consistent with previous bench-
marks (Schiff et al., 2024), Caduceus PS outperformed Caduceus PH in all experimental
settings. The Transformer-based GENA-LM exhibited superior performance in lncRNA detection,
whereas the SSM Caduceus detected a substantially higher number of protein-coding genes and
achieved markedly better CDS segmentation compared to GENA-LM. We hypothesized that nu-
cleotides counting is required to identify triplet-organized CDS. Whereas GENA-LM utilizes variable-
length BPE tokens, making counting task challenging, Caduceus employs single-nucleotide to-
kenization, which may explain improved performance for the CDS class. In contrast, GENA-LM
consistently outperformed Caduceus in lncRNA segmentation, a task that is more challenging
than mRNA for both models, and this advantage aligns with model capacity, since GENA base has
approximately 120M parameters compared to 16M in Caduceus. When we trained the same base
setup but with the larger 360M parameter GENA-LM, lncRNA segmentation performance improved
by 25%, further highlighting the benefits of model scaling for this task (Appendix G, Table A10).
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4.3 SCALING

To further improve model performance, we scaled and combined the features identified as most
impactful for gene segmentation. Specifically, we increased the input sequence length to 250 Kb,
utilized data from 39 mammalian species, and included all gene types in the training set. For the
Transformer-based architecture, we employed a larger instance of GENA-LM with an increased
number of parameters (GENA large), while for the SSM we used the Caduceus PS variant,
which consistently demonstrated performance superior to Caduceus PH in our benchmarks. We
deliberately conducted most experiments on a small dataset with downscaled models to conserve
computational resources while reporting detailed usage statistics (see Appendix J).

At test time we applied both the splice-site filtering and RC augmentation strategies. We refer to the
resulting models as GENATATORs, a DNA language model-based family of gene annotators.

Both GENA large and Caduceus PS show significant performance improvements after scaling
(Figure 1). Interestingly, the performance gain was more pronounced for GENA large, resulting
in a higher overall segmentation accuracy compared to Caduceus PS. This contrast in model
ranking after scaling may be attributed to two factors. First, the increase in model size was fea-
sible only for GENA-LM because a larger pre-trained instance was available, whereas no larger
variant of Caduceus currently exists. Second, the Recurrent Memory Transformer architecture
employed in GENA-LM provides a superior ability to handle long input sequences in comparison
with SSMs (Rodkin et al., 2025).

Among gene types, the previously observed specificity of each model remained consistent after
scaling. GENA large achieved superior performance in the segmentation of lncRNAs, while
Caduceus PS continued to outperform in the detection of protein-coding gene structure and in the
accurate annotation of CDS (Figure 1 and Appendix G Table A14).

4.4 BENCHMARKING GENATATOR AGAINST OTHER GENE-ANNOTATION TOOLS

We evaluated the performance of the GENATATOR models in comparison with several state-of-the-art
gene annotation tools, including the HMM-based AUGUSTUS (Stanke et al., 2004), the CNN+HMM
model Tiberius (Gabriel et al., 2024), the DNA LM-based SegmentNT (with variants trained
on human-only and multispecies data) (de Almeida et al., 2024), and transformer-based models
pretrained on gene expression, namely SegmentEnformer and SegmentBorzoi (de Almeida
et al., 2024). We also included the recently developed AlphaGenome in the comparison (Avsec
et al., 2025).

We first compared models using the conventional PR-AUC metric (Appendix G Table A12). Ac-
cording to this evaluation, GENATATORs slightly outperform SegmentNT, SegmentBorzoi,
and SegmentEnformer, with an improvement of about 10% between the best-performing
GENATATOR and the best-performing SegmentNT.

We then assessed performance using gene level metrics described above, reporting results as the total
number of correctly segmented genes (Figure 1, detailed metrics and model usage in Appendix K).
Under this scoring scheme, GENATATORs identify substantially more genes, with more than a
threefold difference compared to previously developed alternatives. Visual inspection of predicted
gene structures reveals that SegmentNT frequently extends exon boundaries by several nucleotides,
which in the case of mRNA leads to reading-frame shifts and translates to biologically invalid
truncated peptides. This observation underscores the importance of gene level evaluation metrics for
capturing biologically meaningful segmentation accuracy.

We attribute the improved performance of GENATATORs to a combination of training optimizations,
including the use of multispecies data, extended input context lengths, and data augmentation
strategies. As shown in Table 1, a basic training configuration with human-only data, a 4,096 bp
input length, and no augmentations, or isolated modifications of this setup, produces results that are
comparable to or worse than those achieved by SegmentNT.

GENATATORs also outperform AUGUSTUS in the total number of correctly segmented genes and
perform on par with the current state-of-the-art model Tiberius. Specifically, the GENA-based
GENATATOR marginally outperforms Tiberius, while the Caduceus-based variant performs
slightly below it.
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BA

Figure 1: GENATATORs are top-ranked in gene segmentation benchmarks. A. Gene-level metrics. B.
BUSCO metrics

Stratifying performance by transcript type reveals that Tiberius outperforms both GENATATORs
in the number of correctly segmented protein-coding regions of genes, which stem from its superior
performance in CDS classification. However Tiberius completely fails to identify lncRNA genes
and UTRs within mRNA genes, resulting in slightly lower total number of correctly segmented genes.

The common metric for assessing the completeness of genome annotation is BUSCO (Manni et al.,
2021). To compute BUSCO, the predicted exon-intron structure of a gene is used to generate an
amino acid sequence, which is then compared to a set of proteins that are specific to a particular
taxonomy group. The results of BUSCO are presented as a number of proteins that were identified
from a selected dataset. These proteins are divided into two categories: Complete and Fragmented,
where fragmented proteins have some segments missing.

Using the mammalia-specific BUSCO dataset, GENATATORs identified 246 orthologs, outperforming
all other models. Tiberius detected 238 orthologs, but with a higher number of complete genes
(232 for Tiberius vs. 210 for GENATATOR). Similar trends were observed using the primates
BUSCO dataset.

Other models, including SegmentNT, SegmentBorzoi, and SegmentEnformer, showed
substantially lower BUSCO recovery rates, consistent with their lower gene level segmentation
performance. These results further reinforce the conclusion that conventional classification metrics
such as PR-AUC are poor proxies for evaluating biological utility of the models.

We next investigated whether segmentation errors made by different tools are shared or model-specific.
Shared errors would suggest the presence of genes with structural features that are out-of-distribution
relative to the training data, while model-specific errors would indicate that each tool fails on a
unique subset of genes. To explore this, we analyzed the overlap of correctly segmented genes
among the three top-performing models: the two GENATATOR variants and Tiberius. As shown
in Appendix G Figure A2, there is a substantial intersection of correctly segmented genes across
all models, supporting the hypothesis that certain genes present a challenge to all tools. At the
same time, each model also segments a distinct subset of genes not correctly annotated by the
others. In comparisons between GENATATORs and Tiberius, the unique gene set recovered by
GENATATORs is largely composed of lncRNAs, which Tiberius consistently fails to annotate.
These findings suggest that model ensembling is currently the most effective strategy for maximizing
gene annotation coverage across both coding and non-coding transcripts.

Overall, our results position GENATATORs as state-of-the-art models for gene annotation, with
particular strength in the detection of non-coding genes and UTRs.

4.5 GENATATORS GENERALIZE ACROSS UNSEEN SPECIES AT LARGE EVOLUTIONARY
DISTANCES

A key application of ab initio gene predictors is the annotation of genomes from previously unan-
notated species. To evaluate the cross-species generalization of our models, we first evaluated
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Table 2: Performance of different models on evolutionarily distant species.
Species Chromosome Gene type Class Caduceus PS (%) GENA large (%) Tiberius (%) AUGUSTUS (%)

A. thaliana NC 003075.7

mRNA EXON 26.56 30.59 0.10 7.59
CDS 14.80 8.43 14.06 55.33

lncRNA EXON 41.13 60.04 0.00 0.39
all RNA EXON 28.16 33.81 0.09 6.80

S. cerevisiae NC 001136.10

mRNA EXON 96.21 90.99 0.00 0.00
CDS 94.13 89.95 0.00 46.74

lncRNA EXON NA NA NA NA
all RNA EXON 96.21 90.99 0.00 0.00

performance on two evolutionarily remote species representing different kingdoms of life: the flower-
ing plant Arabidopsis thaliana (GCF 000001735.4) and the budding yeast Saccharomyces cerevisiae
(GCF 000146045.2) (Table 2). At the nucleotide level, there is effectively no sequence homology
between their genes and those of mammalian species included in the training dataset, and thus the
models had never encountered any comparable sequences during training. Despite this extreme
divergence, the models retained reasonable accuracy. For A. thaliana, GENA large correctly
reconstructed approximately one-third of all exons and over 60% of lncRNA exons, far surpassing
AUGUSTUS and Tiberius. For S. cerevisiae, whose compact genome lacks spliceosomal introns,
Caduceus PS achieved 96% exon recall and 94% CDS recall, substantially outperforming both
baselines. NA entries in the lncRNA row of Table 2 indicate the absence of annotated lncRNAs
in the reference genome.Same results were obtained when we excluded all genes with detectable
protein-level similarity to mammals, to ensure that model’s can not find homology even after inter-
nally translating DNA to amino acid code. Under this stringent setting, GENATATORs reconstructed
more than twice as many genes as AUGUSTUS, despite the latter being run with a species-specific
profile (Appendix L). Thus, although not tuned for plants or fungi, the models were able to produce
useful first-pass annotations in such genomes, providing strong evidence that their capabilities extend
beyond mere memorization of homologous patterns.

In addition to this extreme test, we benchmarked the models across a spectrum of animal species,
ranging from primates closely related to humans to distant lineages such as insects (Appendix M). The
relative ranking of methods remained consistent across these taxa: GENATATORs and Tiberius
consistently outperformed other baselines, with DNA LMs showing superior generalization on
more distant organisms. For protein-coding genes, segmentation accuracy gradually decreased with
evolutionary distance, whereas for lncRNAs, performance remained in the range of 10-30% across
all species, with GENA-based architectures consistently outperforming Caduceus-based ones.

CONCLUSIONS
In this work, we comprehensively evaluated the utility of DNA LMs for the gene segmentation
task. We show, both theoretically and empirically, that interval level metrics better reflect biological
relevance than conventional token level classifiers and introduce dedicated benchmark to score gene
segmentation models.

We demonstrated that embeddings from pretrained DNA LMs do not contain sufficient information
for accurate gene segmentation. However, by identifying optimal training regimes, datasets, augmen-
tations, and output filters, we enabled efficient fine-tuning and inference of gene structure. We further
showed that scaling DNA LMs under these conditions substantially improves performance leading to
state-of-the-art results.

We found that sensitivity to different functional gene elements—such as CDS and UTRs—varies
across DNA LM architectures. Nonetheless, all evaluated DNA LMs were capable of detecting
lncRNA genes, which remain inaccessible to current state-of-the-art tools such as Tiberius.

Furthermore, GENATATORs, our fine-tuned DNA LM-based models, generalize effectively to unseen
species across large evolutionary distances. These results highlight the potential of DNA LMs to
serve as powerful tools for de novo genome annotation in a wide range of biological and evolutionary
studies. We discuss limitations of this work in Appendix N.
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APPENDIX A. GENE STRUCTURE AND SEGMENTATION PROBLEM.

Protein
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Figure A1: Gene structure and segmentation problem. Panel A shows transcript types in the
dataset, where the model predicts all five classes but only intron and exon labels are relevant for
lncRNAs, while all five are meaningful for mRNAs. Panel B illustrates that the model always receives
DNA sequence from the forward strand (light green box) during training, yet these sequences may
correspond to genes located on either strand.
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APPENDIX B. DIFFERENCES BETWEEN OUR BENCHMARK AND OTHERS.

This appendix compares our benchmark with BEND (Marin et al., 2023) and with GUE introduced
alongside DNABERT-2 (Zhou et al., 2023), focusing on input length coverage, task granularity, and
the biological meaning of reported metrics. Table A1 summarizes the design choices in each suite,
and Table A2 reports human training-set lengths that illustrate coverage differences.

Table A1: Design comparison of benchmarks.
Benchmark Input scope Typical length Granularity Evaluation scope Metrics

GUE (Zhou
et al., 2023)

short sequences 70–1000 bp; splice sites
400 bp; GUE+ 5–10 kb

sequence-level local classification
tasks

task-specific
(MCC / F1)

BEND
(Marin et al.,
2023)

gene snippets up to 13 kb nucleotide-
level

nucleotide
classification of
gene-structure
labels; no full-gene
segmentation; no
UTR / lncRNA

MCC only

Ours full genes via
tiling

train 4 096 or 32 k or
250 k nt; full gene length
evaluation

nucleotide-
level

end-to-end
segmentation with
full gene
reconstruction;
with UTR and
lncRNA

interval-,
gene-level

A key difference is length coverage and how it affects evaluation. As summarized in Table A2, our
training data span substantially longer transcripts than BEND, preserving the long tail of gene lengths;
in fact, 17,737 human transcripts in our set exceed 13,000 nt, whereas BEND truncates at this length.
In addition, sequence-level suites such as GUE emphasize short-range classification and report scores
that do not capture boundary accuracy, while BEND, although nucleotide-level, uses metrics that
are not biologically rigorous for full gene structures and does not assess UTRs or lncRNA genes.
By contrast, our evaluation targets complete gene structures with interval- and gene-level metrics; a
detailed analysis of metric sensitivity appears in Appendix C.

Table A2: Statistics of training datasets for BEND and our benchmark (human).
Dataset # Transcripts Mean length (nt) Median (nt) 95th perc. (nt) Max (nt)

BEND (human) 4,783 7,474 7,355 12,414 13,000
Our (human) 33,367 37,366 14,651 176,543 250,000

Benchmarking on BEND For comparability we also report results on BEND. Unlike the probing
setup in the original BEND paper that assesses the quality of the embeddings in different pretrained
models, we fine-tuned our models until convergence using the official train, validation, and test splits.
This decision was deliberate: BEND compared all models against AUGUSTUS, which is a trained
HMM genome annotation tool (it saw all human genes in the BEND benchmark during training). To
ensure fairness we therefore also trained our models. Because sequences in BEND are short, all of
our models can handle the full length of each sample, so no chunking was applied at either training
or validation. The reported metric is MCC, as specified in the BEND paper.
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Table A3: BEND gene-finding results (MCC) with fine-tuned models using official splits and full-
sequence inference.

Model MCC

Caduceus PS 0.83
AUGUSTUS 0.80
Caduceus PH 0.72
GENA base 0.65

APPENDIX C. PR-AUC SENSITIVITY AND SUPPORTING EVIDENCE.

C.1 THEORETICAL EVIDENCE

Per nucleotide metrics such as precision, recall, f1 and PR-AUC treat each base independently, which
can hide small local mistakes that have large biological impact. We provide theoretical evidence of
this discrepancy between nucleotide and interval level metrics using a binary setup with two mutually
exclusive classes, exon coded as 1 and intron coded as 0. For a single gene containing p positive exon
bases and n negative intron bases with positive scores si, PR-AUC equals Average Precision and can
be written using the ranks of positives in the list sorted by si in descending order

PR-AUC = AP =
1

p

∑
k∈R+

Pr(k), Pr(k) =
#positives in top k

k
, (3)

where R+ is the set of positions in the sorted list that are occupied by positives. This depends only
on the ordering of scores, so any monotone transformation that preserves order keeps PR-AUC
unchanged.

We now carry one simple example through the derivation so that each step is explicit. Consider a
short gene with a single exon block followed by an intron block. The targets and baseline scores are

y =
[
1, 1, 1, 1, 0, 0, 0, 0

]
and s =

[
0.99, 0.95, 0.92, 0.91, 0.40, 0.35, 0.31, 0.20

]
.

This is a good prediction because exons receive higher scores than introns. The scores are already in
descending order, so the cumulative number of exons in the top k positions is

T (1) = 1, T (2) = 2, T (3) = 3, T (4) = 4, T (5) = 4, T (6) = 4, T (7) = 4, T (8) = 4,

and the corresponding precision values are

Pr(1) =
1

1
, Pr(2) =

2

2
, Pr(3) =

3

3
, Pr(4) =

4

4
, Pr(5) =

4

5
, Pr(6) =

4

6
, Pr(7) =

4

7
, Pr(8) =

4

8
.

Average Precision averages these precision values only at the positive positions k ∈ {1, 2, 3, 4},
hence

AP =
1

4

(
1 +

2

2
+

3

3
+

4

4

)
= 1. (4)

If we apply a monotone change to all scores, for example s 7→ s2 or s 7→ s + 5, the order does
not change and equation 4 remains the same, which illustrates the order invariance of PR-AUC in
equation 3.

We now introduce a boundary error at the exon edge before sorting and we make the modification
explicit. Keep the targets y fixed and lower the scores of the last two exon bases so that they fall
below all intron scores. Define the modified score vector

s̃ =
[
0.99, 0.95, 0.19, 0.18, 0.40, 0.35, 0.31, 0.20

]
,

where the underlined entries mark the two exon bases affected by the boundary error. This change is
applied before sorting by score. After sorting s̃ in descending order, the new score order is

s̃sorted =
[
0.99, 0.95, 0.40, 0.35, 0.31, 0.20, 0.19, 0.18

]
,

and the corresponding sorted labels become

y′sorted =
[
1, 1, 0, 0, 0, 0, 1, 1

]
.
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Thus the two undemoted exons stay at ranks 1 and 2, the four introns occupy ranks 3 through 6, and
the two demoted exons move to ranks 7 and 8. The cumulative positives for the modified order are

T ′(1) = 1, T ′(2) = 2, T ′(3) = 2, T ′(4) = 2, T ′(5) = 2, T ′(6) = 2, T ′(7) = 3, T ′(8) = 4,

and the Average Precision after the error averages the precision values at the positive ranks 1, 2, 7, 8

AP′ =
1

4

(1
1
+

2

2
+

3

7
+

4

8

)
=

1

4

(
1 + 1 +

3

7
+

1

2

)
=

41

56
≈ 0.7321.

We now connect this explicit computation with the general formula. In the general case with p exon
nucleotides and n intron nucleotides, if δ exon bases near the boundary are lowered below all intron
scores before sorting, the sorted list contains p− δ exons first, then n introns, then the δ demoted
exons. The rth demoted exon occupies rank

kr = n+ (p− δ) + r for r = 1, . . . , δ,

because the top contains p− δ undemoted exons and n introns before the first demoted exon appears.
At rank kr the prefix contains (p− δ) + r exons, so its precision equals

Pr(kr) =
p− δ + r

n+ p− δ + r
.

All remaining p− δ exons at ranks 1 through p− δ have precision 1. Plugging these two groups into
equation 3 gives the exact PR-AUC after the boundary error

PR-AUC′ =
1

p

[
(p− δ) · 1 +

δ∑
r=1

p− δ + r

n+ p− δ + r

]
. (5)

For the example with p = 4, n = 4 and δ = 2 this yields

PR-AUC′ =
1

4

[
2 · 1 + 3

7
+

4

8

]
=

41

56
,

which is exactly the value computed from the sorted example above.

The corresponding loss is

∆PR-AUC = 1− PR-AUC′ =
1

p

δ∑
r=1

(
1− p− δ + r

n+ p− δ + r

)
=

1

p

δ∑
r=1

n

n+ p− δ + r

≤ 1

p

δ∑
r=1

n

n+ 1
=

δ n

p (n+ 1)
≤ δ

p
. (6)

The last two inequalities hold because each denominator satisfies n+ p− δ + r ≥ n+ 1, hence each
summand is at most n/(n + 1) < 1, so the sum of δ such terms is at most δ n/(n + 1) < δ, and
dividing by p yields the stated bound ∆PR-AUC ≤ δ/p.

Under the same error the interval and gene views behave differently. If the gene has m true exon
intervals and the boundary of one interval moves by one base, that interval no longer matches exactly.
True positives drop from m to m− 1 and at least one false positive and one false negative appear.
Substituting into Eq. equation 1 yields

F1exon
interval =

2(m− 1)

2(m− 1) + 2
= 1− 1

m
. (7)

Define the interval drop as the difference between the perfect and the post error score. With one
boundary shift that breaks exactly one interval and introduces exactly one false positive and one false
negative, the drop is

∆F1exon
interval = 1−

(
1− 1

m

)
=

1

m
, (8)
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and it can be larger if the prediction creates additional spurious or missed intervals.

At gene level the same single boundary shift breaks the exact match for all isoforms, so the gene
contributes 1 before the error and 0 after

∆Scoregene = 1. (9)

Given equation 6, equation 8 and equation 9, the sensitivity fractions for the same local error satisfy

∆PR-AUC

∆Scoregene
≤ δ

p
and

∆PR-AUC

∆F1exon
interval

≤ δ

p
m. (10)

With m fixed and p large the right hand sides are small. Therefore, given the same boundary mistake,
PR-AUC changes by at most δ over p and becomes negligible on long exons, while the interval score
and the gene score incur fixed drops per affected interval and per affected gene.

C.2 EMPIRICAL EVIDENCE

We complement the theory with experiments scoring models with PR-AUC and interval level metrics
(Table A4). These results show that model ranking depends on the metrics used..

Table A4: Why gene level metrics matter, comparison of mean PR-AUC and fully reconstructed
genes

model PR-AUC mean gene level all
Caduceus PH 32 kb 0.656 120
Caduceus PS 32 kb 0.668 130
GENA-LM 250 kb 0.635 383

Both Caduceus variants exceed GENA-LM by PR-AUC mean, yet they reconstruct about three times
fewer genes, since 130 versus 383. Across all models the spread in mean PR-AUC is about 0.16,
for example Caduceus PS 0.680, SegmentNT 0.611, SegmentEnformer 0.520, while the difference
in fully reconstructed genes ranges from 0 to 383. With these numbers in mind, optimizing only
PR-AUC during early experiments can reward architectures that seem promising while failing to
assemble biologically valid transcripts, which slows progress.

We further trained models on a human gene set with the same labels but one label per BPE token and
varied input length from 4k BPE tokens which is approximately 32k nucleotides to 32k tokens which
is approximately 250k nucleotides.

Table A5: Effect of input length and output granularity on PR-AUC mean and gene level all for
GENA large

setting input length nt PR-AUC mean gene level all
4 k ≈ 32k 0.628 44
16 k ≈ 128k 0.642 66
32 k (BPE) ≈ 250k 0.648 106
32 k (nucleotide, human) ≈ 250k 0.672 208

Mean PR-AUC differs by about 0.020 between the 4k and 32k BPE models, yet the gene level score
rises from 44 to 106 which is a factor of about 2.5. Switching from BPE outputs to nucleotide
outputs by stacking a UNET on top of the trained model changes PR-AUC from 0.648 to 0.672,
while the number of fully reconstructed genes increases by 102 which is a factor of about 2. With
the arguments provided in Section C.1 and these empirical trends, we get that context length and
boundary precision both matter for transcript assembly and that interval and gene level evaluation is
needed when developing annotation models.
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APPENDIX D. DATASET PREPARATION, MODEL TRAINING AND ARCHITECTURE
DETAILS

The dataset was constructed using the human genome assembly GCF 009914755.1. Chromosomes
8, 20 and 21 were designated as the validation set, but only chromosome 20 was used to compute
final metrics for computational efficiency. We did not use a separate test set. The dataset contains
all mRNA and lncRNA genes, and all sequences were exclusively from the forward strand. The
dataset was filtered via selecting one representative transcript per gene, choosing the longest transcript
available. Only transcripts with a length of up to 250 Kb were included.

Below we provide details of modifications in dataset, training regime or architecture for specific
models:

1. For the mRNA-only dataset, we selected samples corresponding exclusively to protein-
coding genes from the original dataset.

2. For the multispecies dataset, we processed data for 39 species (38 plus human) using the
same strategy as for human samples. The list of species is provided in Table A6. It’s
important to note that only the human genome is fully assembled, therefore samples from
other species containing ’N’ characters (indicating unknown sequences) were excluded.

3. All models were trained using flash attention support (if supported by the model) to improve
computational efficiency.

4. For training BPE-based GENA models at nucleotide-level resolution, embeddings derived
from the token-level models were employed, omitting memory, CLS, and SEP tokens. The
primary distinction between handling embeddings from GENA-LM versus other models
arises from GENA-LM’s use of BPE tokens, necessitating additional steps before U-Net
usage, whereas models like Caduceus and Evo2 already operate directly at nucleotide
resolution. Specifically, for GENA-LM, token embeddings were upsampled, meaning each
embedding was replicated according to how many nucleotides it covered. Subsequently,
nucleotide-specific embeddings (one per nucleotide type, totally four different learnable
embeddings) were concatenated to these upsampled token embeddings. For computational
efficiency, those embeddings were segmented into non-overlapping chunks of 8192 base
pairs (along sequence length axis), which were individually fed into the U-Net model. In
contrast, for models that can directly utilize nucleotide resolution, we simply included an
additional fully connected layer to convert embeddings into class probability vectors.

5. A learning rate of 5 × 10−5 and weight decay of 1 × 10−4 with AdamW optimizer was
discovered to be the optimal trade-off between prediction accuracy (particularly for splice site
boundary detection) and convergence speed, as lower values adversely impacted prediction
quality.

6. Training of each model was performed on 8 Nvidia GPUs (either A100 or H100), except
for Evo2, which specifically required Nvidia H100 GPUs due to compatibility constraints
(GPU compatibility > 8.9). All models were trained until convergence was observed
using an exon-level validation metric. Typically, training with frozen embeddings required
approximately half a day, while low-scale finetuning took about two days, with slight
variations depending on the specific model. It took us one week to train the final models
presented in our benchmark section.

7. In training and internal validation we do not always take nucleotides from the beginning of
a gene. Instead, we choose a random starting position and extract at most N nucleotides to
the right, where N is the model’s context length (4096, 32k, or 250k as reported in the main
text). We also ensure that the selected subsequence is at least 512 nucleotides long, so that
the model always receives enough context. Each gene contributes a single subsequence of
this form, with no splitting. Metrics computed in this setup, such as AUC and interval level
scores, are used only to select the best checkpoint for later evaluation.

8. For the final validation reported in the paper we evaluate complete genes. Here, sequences
are divided into non-overlapping chunks of the same length that the model was trained on.
Predictions are made for each chunk, then concatenated to recover the full gene, and metrics
are calculated on the full-gene predictions. This guarantees consistency with training while
still allowing evaluation of arbitrarily long genes.
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Table A6: List of genomic assemblies used to create the multispecies training dataset. List of genomic
assemblies used to create the multispecies training dataset. Assembly names correspond to the
annotation and genome names. The annotation files have been received by the NCBI Eukaryotic
Genome Annotation Pipeline.

Assembly Species
GCF 000952055.2 Aotus nancymaae
GCF 002263795.3 Bos taurus
GCF 000767855.1 Camelus bactrianus
GCF 000002285.3 Canis lupus familiaris
GCF 000151735.1 Cavia porcellus
GCF 001604975.1 Cebus imitator
GCF 000283155.1 Ceratotherium simum simum
GCF 000276665.1 Chinchilla lanigera
GCF 000260355.1 Condylura cristata
GCF 002940915.1 Desmodus rotundus
GCF 000151885.1 Dipodomys ordii
GCF 002288905.1 Enhydra lutris kenyon
GCF 000308155.1 Eptesicus fuscus
GCF 000002305.2 Equus caballus
GCF 018350175.1 Felis catus
GCF 000247695.1 Heterocephalus glaber
GCF 009914755.1 Homo sapiens
GCF 000236235.1 Ictidomys tridecemlineatus
GCF 000280705.1 Jaculus jaculus
GCF 000001905.1 Loxodonta africana
GCF 001458135.1 Marmota marmota
GCF 000165445.2 Microcebus murinus
GCF 000317375.1 Microtus ochrogaster
GCF 000001635.26 Mus musculus
GCF 900095145.1 Mus pahari
GCF 002201575.1 Neomonachus schauinslandi
GCF 000292845.1 Ochotona princeps
GCF 000260255.1 Octodon degus
GCF 000321225.1 Odobenus rosmarus divergens
GCF 009806435.1 Oryctolagus cuniculus
GCF 000181295.1 Otolemur garnettii
GCF 016772045.2 Ovis aries
GCF 000956105.1 Propithecus coquereli
GCF 003327715.1 Puma concolor
GCF 036323735.1 Rattus norvegicus
GCF 000235385.1 Saimiri boliviensis boliviensis
GCF 000181275.1 Sorex araneus
GCF 000003025.6 Sus scrofa
GCF 000243295.1 Trichechus manatus latirostris

APPENDIX E. COMPARISON OF MODELS FOR de novo GENE ANNOTATION
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Table A7: Comparison of Classical, State-of-the-Art, and Emerging Models for de novo Gene
Annotation

Model
Architecture

(details)
N params,

M
Input,

Kb Tokenization Released

AUGUSTUS HMM N/A N/A 1-bp (Stanke et al., 2004)

Tiberius CNN+HMM
8 10 1-hot (Gabriel et al., 2024)

SegmentNT
Transformer

(RoPE) + UNET
500 50 6-mer (de Almeida et al., 2024)

SegmentEnformer/Borzoi Transformer + UNET
200 50 1-bp (de Almeida et al., 2024)

AlphaGenome
CNN + Transformer 450 1000 1-bp (Avsec et al., 2025)

GENATATOR
(GENA large)

Transformer
(RMT) + UNET

360 250 BPE this work

GENATATOR
(GENA base)

Transformer
(RMT) + UNET

120 32 BPE this work

GENATATOR
(Caduceus PH) SSM

15 250 nucleotide this work

GENATATOR
(Caduceus PS)

SSM
(+RC equivalent)

15 250 nucleotide this work

GENATATOR
(Evo)

SSM
(S3 layers)

1000 32 nucleotide
this work

(probing only)

SegmentBorzoi
CNN + UNET 323 196 nucleotide this work

SegmentEnformer
Transformer + UNET 379 196 nucleotide this work

APPENDIX F. TRAINING ON EMBEDDINGS.

Table A8: Gene-level metric after training on frozen embeddings of different DNA LM models.
Chunk length (Nl), bp 4096 32000

Performance (gene-lvl metrics) mRNA lncRNA all RNA mRNA lncRNA all RNA

exon CDS exon exon exon CDS exon exon

GENA base 4 0 1 5 7 0 2 9
Caduceus PH 0 0 0 0 0 0 0 0
Caduceus PS 0 0 0 0 0 0 0 0
Evo2 0 0 0 0 0 0 0 0
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APPENDIX G. MODELS SCORING AND BENCHMARKING.

Table A9: Interval level metrics related to Table A8 (embedding training). Data shown for exon and
CDS class.

Model/train setup
4096 32000

precision recall f1 precision recall f1

GENA base
mRNA

exon 0.0077 0.1124 0.0145 0.0023 0.0096 0.0037
CDS 0.0197 0.0655 0.0303 0.0013 0.0029 0.0018

lncRNA exon 0.0032 0.0440 0.0060 0.0011 0.0059 0.0019
all RNA exon 0.0068 0.0969 0.0127 0.0020 0.0088 0.0032

Caduceus PH
mRNA

exon 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

CDS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
lncRNA exon 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
all RNA exon 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Caduceus PS
mRNA

exon 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
CDS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

lncRNA exon 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
all RNA exon 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Evo2
mRNA

exon 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

CDS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
lncRNA exon 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
all RNA exon 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table A10: Comparison of GENA base (Table 1) and GENA large in the baseline setup.
Model Category Gene-level

GENA base

EXON mRNA + lncRNA 46
EXON mRNA 31
EXON lncRNA 15

CDS mRNA 1

GENA large

EXON mRNA + lncRNA 61
EXON mRNA 42
EXON lncRNA 19

CDS mRNA 5

Table A11: Interval level performace metrics for small-scale finetunning experiments with dataset
and model modifications (absolute scores obtained for each setup), related to Table 1. Data shown for
exon and CDS classes.

Sequnce length 4096 32000 4096 4096
Gene type all all mRNA all
Species human human human 39 mammals

Test-time augmentation no no no no

Model/dataset precision recall f1 precision recall f1 precision recall f1 precision recall f1

GENA base
mRNA

exon 0.0452 0.4110 0.0815 0.1746 0.5906 0.2695 0.0340 0.3890 0.0625 0.0630 0.5321 0.1127
CDS 0.0489 0.4452 0.0881 0.1976 0.6570 0.3038 0.0394 0.4448 0.0723 0.0698 0.5914 0.1249

lncRNA exon 0.0327 0.2945 0.0588 0.1016 0.3636 0.1588 0.0166 0.1986 0.0307 0.0395 0.3294 0.0705
all RNA exon 0.0821 0.1875 0.1142 0.2876 0.5178 0.3698 0.0538 0.3616 0.0936 0.0651 0.4451 0.1136

Caduceus PH
mRNA

exon 0.1168 0.5595 0.1932 0.1912 0.6251 0.2928 0.2060 0.5602 0.3012 0.1428 0.6711 0.2355
CDS 0.1524 0.6642 0.2479 0.2577 0.7263 0.3804 0.2719 0.6884 0.3899 0.1859 0.7879 0.3008

lncRNA exon 0.0322 0.2018 0.0556 0.0581 0.2794 0.0961 0.0363 0.1223 0.0560 0.0434 0.2722 0.0748
all RNA exon 0.2338 0.5619 0.3302 0.2928 0.6035 0.3943 0.2788 0.6347 0.3874 0.4453 0.7700 0.5643

Caduceus PS
mRNA

exon 0.1222 0.6024 0.2032 0.2044 0.6326 0.3089 0.2562 0.5887 0.3571 0.1536 0.6750 0.2503
CDS 0.1576 0.7123 0.2581 0.3206 0.7460 0.4485 0.3459 0.7244 0.4682 0.2118 0.8027 0.3352

lncRNA exon 0.0359 0.2268 0.0619 0.0429 0.2452 0.0730 0.0418 0.1249 0.0626 0.0370 0.2387 0.0640
all RNA exon 0.3298 0.6429 0.4360 0.3566 0.6608 0.4632 0.4290 0.6831 0.5270 0.4903 0.7937 0.6062

Sequnce length 4096 4096 4096
Gene type all all all

Species human human human
Test-time augmentation rev comp splice site filter rev comp&splice site filter

Model/dataset precision recall f1 precision recall f1 precision recall f1

GENA base

mRNA
exon 0.0381 0.4774 0.0706 0.2426 0.4109 0.3051 0.2298 0.4770 0.3102

CDS 0.0409 0.5206 0.0759 0.2656 0.4450 0.3327 0.2526 0.5200 0.3400

lncRNA exon 0.0279 0.3300 0.0514 0.1677 0.2945 0.2137 0.1548 0.3300 0.2108
all RNA exon 0.1477 0.2712 0.1912 0.3708 0.1809 0.2432 0.4550 0.2607 0.3315

Caduceus PH

mRNA
exon 0.1687 0.6251 0.2657 0.6143 0.5583 0.5849 0.6897 0.6241 0.6553
CDS 0.2296 0.7375 0.3502 0.6940 0.6626 0.6780 0.7768 0.7361 0.7559

lncRNA exon 0.0448 0.2413 0.0755 0.2684 0.2018 0.2304 0.3180 0.2413 0.2744
all RNA exon 0.3355 0.6035 0.4313 0.6383 0.5572 0.5950 0.6890 0.6017 0.6424

Caduceus PS

mRNA
exon 0.1604 0.6467 0.2570 0.6408 0.6010 0.6203 0.6795 0.6454 0.6620

CDS 0.2174 0.7614 0.3383 0.7272 0.7105 0.7188 0.7692 0.7596 0.7644

lncRNA exon 0.0436 0.2551 0.0745 0.2821 0.2268 0.2515 0.3106 0.2551 0.2801
all RNA exon 0.3781 0.6668 0.4826 0.7285 0.6392 0.6809 0.7472 0.6633 0.7028
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Table A12: PR AUC benchmark, related to Figure 1.
Caduceus PS GENA large SegmentNT SegmentNT 

multi species SegmentBorzoi SegmentEnformer

Mean 0.6799 0.6348 0.6110 0.6095 0.5329 0.5200
5UTR 0.5173 0.5003 0.3752 0.3721 0.1910 0.1914
Exon 0.9545 0.9493 0.7674 0.7683 0.6954 0.6755
Intron 0.9360 0.9296 0.8421 0.8396 0.8391 0.8382
3UTR 0.5425 0.5312 0.4594 0.4581 0.4060 0.3749
CDS 0.4492 0.2637 - - - -

Table A13: BUSCO completeness computed on hold-out gene set (human chromosome 20). Related
to A13

Model BUSCO dataset Class Complete Fragmented Ground truth 
Complete

Ground truth 
Fragmented

Caduceus PS
Mammalia

EXON 210 36 275 3
CDS 215 33 275 3

Primates
EXON 322 40 409 4
CDS 323 41 409 4

GENA large
Mammalia

EXON 206 35 275 3
CDS 209 39 275 3

Primates
EXON 300 48 409 4
CDS 307 49 409 4

SegmentNT
Mammalia

EXON 166 46 275 3
CDS 169 43 275 3

Primates
EXON 237 60 409 4
CDS 247 58 409 4

SegmentNT multi species
Mammalia

EXON 168 48 275 3
CDS 169 48 275 3

Primates
EXON 232 70 409 4
CDS 237 70 409 4

SegmentBorzoi
Mammalia

EXON 36 33 275 3
CDS 36 33 275 3

Primates
EXON 54 39 409 4
CDS 53 38 409 4

SegmentEnformer
Mammalia

EXON 31 27 275 3
CDS 31 31 275 3

Primates
EXON 40 28 409 4
CDS 39 28 409 4

Tiberius
Mammalia

EXON 232 6 275 3
CDS 232 6 275 3

Primates
EXON 347 3 409 4
CDS 347 3 409 4

AUGUSTUS
Mammalia

EXON 194 27 275 3
CDS 192 30 275 3

Primates
EXON 278 46 409 4
CDS 279 54 409 4

BA

Figure A2: Each model provides unique set of annotated genes, yet large portion of errors are shared
accross models. Overlap of correctly segmented genes shown for protein-coding and lncRNA genes
together (A), and for protein-coding genes only (B).
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Table A14: Exon- and CDS-level benchmark. Related to Figure 1
Model Gene type Class precision recall f1

Caduceus PS
mRNA

EXON 0.9215 0.8763 0.8983
CDS 0.8928 0.8562 0.8741

lncRNA EXON 0.5232 0.4293 0.4717
all RNA CDS 0.8412 0.7750 0.8068

GENA large
mRNA

EXON 0.8877 0.8778 0.8827
CDS 0.8350 0.8156 0.8252

lncRNA EXON 0.5208 0.5174 0.5191
all RNA CDS 0.8043 0.7962 0.8002

SegmentNT
mRNA

EXON 0.3303 0.7554 0.4597
CDS 0.0722 0.6697 0.1304

lncRNA EXON 0.0044 0.0797 0.0084
all RNA CDS 0.1030 0.6025 0.1760

SegmentNT 
multi species

mRNA
EXON 0.1893 0.7577 0.3029
CDS 0.0353 0.6707 0.0671

lncRNA EXON 0.0027 0.0889 0.0052
all RNA CDS 0.0568 0.6064 0.1039

SegmentBorzoi
mRNA

EXON 0.0203 0.0647 0.0309
CDS 0.0038 0.0488 0.0070

lncRNA EXON 0.0006 0.0039 0.0011
all RNA CDS 0.0129 0.0509 0.0206

SegmentEnfor
mer

mRNA
EXON 0.0008 0.0037 0.0013
CDS 0.0002 0.0021 0.0003

lncRNA EXON 0.0000 0.0007 0.0000
all RNA CDS 0.0003 0.0030 0.0006

Tiberius
mRNA

EXON 0.7484 0.5930 0.6617
CDS 0.9288 0.7880 0.8526

lncRNA EXON 0.5439 0.0204 0.0393
all RNA CDS 0.7456 0.4633 0.5715

AUGUSTUS
mRNA

EXON 0.6710 0.6018 0.6345
CDS 0.7539 0.6911 0.7211

lncRNA EXON 0.3118 0.0381 0.0680
all RNA CDS 0.6572 0.4742 0.5509
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Table A15: Gene level metrics computed on a gene set assembled from 14 animal species. Metrics
are calculated for protein-coding and non-coding genes in a gene set from a single chromosome for
each species. MRCA MYA - million years from most recent common ancestor with Homo sapiens.

Species MRCA (MYA) Chromosome Gene type Class Caduceus PS GENA large Tiberius AUGUSTUS SegmentNT SegmnetNT 
multi species Ground truth

Anopheles funestus 686 NC_064599.1
mRNA

EXON 1142 1533 0 44 286 298
4821

CDS 639 322 970 1907 0 0
lncRNA EXON 15 27 0 0 0 0 243
all RNA EXON 1157 1560 0 44 286 298 5064

Drosophila melanogaster 686 NT_033779.5
mRNA

EXON 955 1079 0 135 391 482
2657

CDS 661 462 843 1431 0 0
lncRNA EXON 239 256 0 0 87 2 526
all RNA EXON 1194 1335 0 135 478 484 3183

Danio rerio 429 NC_007114.7
mRNA

EXON 480 467 5 0 91 185
1325

CDS 262 139 420 0 0 0
lncRNA EXON 48 91 0 0 3 4 222
all RNA EXON 528 558 0 0 94 189 1547

Mugil cephalus 429 NC_061770.1
mRNA

EXON 613 681 0 0 118 166
2119

CDS 386 219 775 3 0 0
lncRNA EXON 71 92 0 0 7 8 293
all RNA EXON 684 773 0 0 125 174 2412

Paralichthys olivaceus 429 NC_091093.1
mRNA

EXON 321 317 0 0 76 109
944

CDS 222 98 404 0 0 0
lncRNA EXON 15 22 0 0 0 0 129
all RNA EXON 336 339 0 0 0 0 1073

Xenopus laevis 352 NC_054386.1
mRNA

EXON 426 440 3 10 90 106
1463

CDS 248 106 487 164 0 0
lncRNA EXON 30 46 0 1 2 2 161
all RNA EXON 456 486 0 11 92 108 1624

Anas platyrhynchos 319 NC_092591.1
mRNA

EXON 449 429 2 0 124 104
1002

CDS 310 166 624 285 0 0
lncRNA EXON 34 43 0 0 0 0 412
all RNA EXON 483 472 0 0 124 104 1414

Gallus gallus 319 NC_052536.1
mRNA

EXON 463 422 0 0 166 116
1036

CDS 331 191 614 295 0 0
lncRNA EXON 26 34 0 0 1 0 314
all RNA EXON 489 456 0 0 167 116 1350

Taeniopygia guttata 319 NC_133030.1
mRNA

EXON 472 423 0 0 127 127
976

CDS 325 173 596 261 0 0
lncRNA EXON 31 40 0 0 0 0 245
all RNA EXON 503 463 0 0 127 127 1221

Bubalus bubalis 94 NC_059174.1
mRNA

EXON 658 673 3 17 161 147
1239

CDS 482 355 745 240 0 0
lncRNA EXON 47 69 0 0 0 1 331
all RNA EXON 705 742 0 17 161 148 1570

Panthera tigris 94 NC_056673.1
mRNA

EXON 580 627 0 42 223 193
1136

CDS 491 402 681 214 0 0
lncRNA EXON 36 62 0 0 2 0 284
all RNA EXON 616 689 0 42 225 193 1420

Tursiops truncatus 94 NC_047043.1
mRNA

EXON 486 498 0 20 162 134
1079

CDS 380 287 624 194 0 0
lncRNA EXON 29 22 0 0 0 2 214
all RNA EXON 515 520 0 20 162 136 1293

Pan troglodytes 6.4 NC_072417.2
mRNA

EXON 630 692 11 20 208 165
1304

CDS 501 371 797 232 0 0
lncRNA EXON 37 57 0 0 0 1 284
all RNA EXON 667 749 0 20 208 166 1588

Homo sapiens 0 NC_060944.1
mRNA

EXON 297 299 0 11 105 97
546

CDS 204 130 380 106 0 0
lncRNA EXON 68 84 0 0 0 0 434
all RNA EXON 365 299 0 11 105 97 980
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Table A16: Exon- and CDS-level computed on a gene set assembled from 14 animal species. Metrics
are calculated for protein-coding and non-coding genes in a gene set from a single chromosome for
each species. MRCA MYA - million years from most recent common ancestor with Homo sapiens.

Caduceus PS GENA large Tiberius AUGUSTUS SegmentNT SegmnetNT multi species

Species MRCA (MYA) Chromosome Gene type Class precision recall f1 precision recall f1 precision recall f1 precision recall f1 precision recall f1 precision recall f1

Anopheles funestus 686 NC_064599.1
mRNA

EXON 0.6512 0.6048 0.6271 0.6086 0.5773 0.5925 0.3557 0.1950 0.2519 0.4647 0.4771 0.4708 0.0276 0.3951 0.0515 0.1277 0.5106 0.2043
CDS 0.5972 0.5564 0.5761 0.4427 0.3966 0.4184 0.5877 0.3514 0.4398 0.7007 0.7128 0.7067 0.0125 0.3142 0.0240 0.0299 0.4174 0.0558

lncRNA EXON 0.1812 0.1812 0.1812 0.1906 0.2425 0.2134 0.0000 0.0000 0.0000 0.0108 0.0041 0.0059 0.0009 0.0450 0.0018 0.0049 0.0559 0.0090
all RNA EXON 0.6354 0.5916 0.6127 0.5912 0.5668 0.5788 0.3542 0.1889 0.2464 0.4593 0.4623 0.4608 0.0249 0.3841 0.0468 0.1173 0.4964 0.1897

Drosophila melanogaster 686 NT_033779.5
mRNA

EXON 0.7238 0.5576 0.6299 0.6995 0.5550 0.6189 0.3394 0.1852 0.2396 0.5779 0.5320 0.5540 0.0802 0.3988 0.1336 0.2249 0.5966 0.3267
CDS 0.6361 0.5226 0.5738 0.5231 0.4241 0.4685 0.6380 0.3816 0.4776 0.8173 0.7878 0.8023 0.0246 0.2802 0.0452 0.0420 0.4348 0.0767

lncRNA EXON 0.3861 0.4229 0.4036 0.3935 0.4761 0.4309 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0218 0.1310 0.0374 0.0069 0.0164 0.0097
all RNA EXON 0.6943 0.5491 0.6132 0.6710 0.5500 0.6045 0.3392 0.1735 0.2296 0.5773 0.4985 0.5350 0.0758 0.3819 0.1266 0.2126 0.5600 0.3082

Danio rerio 429 NC_007114.7
mRNA

EXON 0.8806 0.8329 0.8561 0.8303 0.7837 0.8063 0.6890 0.3885 0.4968 0.0000 0.0000 0.0000 0.0392 0.6103 0.0736 0.3293 0.7380 0.4554
CDS 0.8127 0.7768 0.7943 0.7183 0.6377 0.6756 0.8621 0.5172 0.6465 0.7311 0.6880 0.7089 0.0244 0.5334 0.0466 0.0749 0.6446 0.1342

lncRNA EXON 0.6737 0.6515 0.6624 0.7095 0.7650 0.7362 0.1132 0.0068 0.0128 0.0000 0.0000 0.0000 0.0150 0.3031 0.0285 0.0224 0.1544 0.0392
all RNA EXON 0.8657 0.8201 0.8423 0.8207 0.7824 0.8010 0.6844 0.3616 0.4732 0.0000 0.0000 0.0000 0.0370 0.5886 0.0696 0.2712 0.6968 0.3905

Mugil cephalus 429 NC_061770.1
mRNA

EXON 0.8712 0.8262 0.8481 0.8453 0.8223 0.8337 0.7291 0.4967 0.5909 0.0000 0.0000 0.0000 0.1519 0.6616 0.2471 0.3735 0.7077 0.4890
CDS 0.8293 0.7869 0.8075 0.7704 0.7253 0.7472 0.8758 0.6251 0.7295 0.7259 0.7212 0.7235 0.0568 0.5900 0.1037 0.0812 0.6403 0.1442

lncRNA EXON 0.6201 0.5960 0.6078 0.6149 0.6179 0.6164 0.1585 0.0129 0.0239 0.0000 0.0000 0.0000 0.0379 0.2189 0.0646 0.0372 0.1642 0.0607
all RNA EXON 0.8602 0.8162 0.8376 0.8350 0.8134 0.8241 0.7260 0.4757 0.5748 0.0000 0.0000 0.0000 0.1454 0.6423 0.2372 0.3414 0.6841 0.4555

Paralichthys olivaceus 429 NC_091093.1
mRNA

EXON 0.8550 0.8525 0.8537 0.8462 0.8402 0.8432 0.7825 0.5505 0.6463 0.0000 0.0000 0.0000 0.1310 0.7329 0.2223 0.3459 0.7899 0.4811
CDS 0.8274 0.8224 0.8249 0.7977 0.7488 0.7725 0.9224 0.6754 0.7798 0.7664 0.7715 0.7689 0.0610 0.6663 0.1117 0.0814 0.7173 0.1463

lncRNA EXON 0.3907 0.3754 0.3829 0.4461 0.4986 0.4709 0.0769 0.0056 0.0104 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
all RNA EXON 0.8411 0.8377 0.8394 0.8322 0.8296 0.8309 0.7802 0.5336 0.6337 0.0000 0.0000 0.0000 0.1310 0.7329 0.2223 0.3459 0.7899 0.4811

Xenopus laevis 352 NC_054386.1
mRNA

EXON 0.8416 0.8741 0.8575 0.7843 0.8186 0.8011 0.7265 0.5094 0.5989 0.5731 0.5644 0.5687 0.0658 0.6977 0.1202 0.1498 0.7499 0.2497
CDS 0.7979 0.8236 0.8105 0.7035 0.6674 0.6850 0.8579 0.6340 0.7292 0.6371 0.6156 0.6261 0.0328 0.6318 0.0624 0.0651 0.6815 0.1188

lncRNA EXON 0.5230 0.5112 0.5171 0.5233 0.6421 0.5767 0.0968 0.0061 0.0115 0.1156 0.0348 0.0535 0.0091 0.1902 0.0173 0.0166 0.1861 0.0305
all RNA EXON 0.8316 0.8620 0.8465 0.7741 0.8127 0.7929 0.7246 0.4926 0.5865 0.5683 0.5467 0.5573 0.0622 0.6808 0.1139 0.1402 0.7311 0.2353

Anas platyrhynchos 319 NC_092591.1
mRNA

EXON 0.9175 0.8986 0.9079 0.8799 0.8836 0.8818 0.8011 0.6421 0.7129 0.0000 0.0000 0.0000 0.3865 0.7668 0.5139 0.3019 0.7676 0.4334
CDS 0.8929 0.8785 0.8857 0.8265 0.8037 0.8149 0.9420 0.7958 0.8627 0.8309 0.7945 0.8123 0.0779 0.7016 0.1402 0.0650 0.7089 0.1191

lncRNA EXON 0.4154 0.3475 0.3784 0.4189 0.4557 0.4366 0.0476 0.0013 0.0026 0.0000 0.0000 0.0000 0.0115 0.0584 0.0192 0.0047 0.0826 0.0088
all RNA EXON 0.8666 0.8343 0.8501 0.8222 0.8337 0.8279 0.7977 0.5674 0.6631 0.0000 0.0000 0.0000 0.2918 0.6841 0.4091 0.1595 0.6877 0.2589

Gallus gallus 319 NC_052536.1
mRNA

EXON 0.9088 0.8796 0.8939 0.8657 0.8635 0.8646 0.7975 0.6172 0.6959 0.0000 0.0000 0.0000 0.4097 0.7654 0.5337 0.2824 0.7506 0.4104
CDS 0.8866 0.8595 0.8728 0.8205 0.7973 0.8087 0.9434 0.7702 0.8480 0.8411 0.7809 0.8099 0.0801 0.6924 0.1437 0.0649 0.6900 0.1186

lncRNA EXON 0.4117 0.3923 0.4018 0.3648 0.4515 0.4035 0.5000 0.0077 0.0152 0.0000 0.0000 0.0000 0.0128 0.0644 0.0213 0.0043 0.0961 0.0081
all RNA EXON 0.8639 0.8349 0.8492 0.8100 0.8257 0.8178 0.7969 0.5614 0.6587 0.0000 0.0000 0.0000 0.3248 0.7011 0.4439 0.1540 0.6907 0.2518

Taeniopygia guttata 319 NC_133030.1
mRNA

EXON 0.9184 0.8936 0.9059 0.8885 0.8808 0.8846 0.8041 0.6583 0.7239 0.0000 0.0000 0.0000 0.3236 0.7608 0.4540 0.2672 0.7691 0.3966
CDS 0.8917 0.8666 0.8789 0.8247 0.8007 0.8126 0.9459 0.8112 0.8734 0.8455 0.7924 0.8181 0.0736 0.6906 0.1330 0.0668 0.7001 0.1220

lncRNA EXON 0.4441 0.4532 0.4486 0.3971 0.4871 0.4375 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0052 0.0801 0.0097 0.0024 0.0868 0.0046
all RNA EXON 0.8878 0.8664 0.8770 0.8514 0.8565 0.8540 0.8032 0.6176 0.6983 0.0000 0.0000 0.0000 0.2273 0.7187 0.3454 0.1460 0.7269 0.2432

Bubalus bubalis 94 NC_059174.1
mRNA

EXON 0.9008 0.8751 0.8877 0.8737 0.8877 0.8806 0.7181 0.5734 0.6377 0.6769 0.6065 0.6398 0.1441 0.7227 0.2403 0.1609 0.7300 0.2637
CDS 0.8640 0.8421 0.8529 0.8141 0.8116 0.8129 0.9014 0.7636 0.8268 0.7551 0.6826 0.7170 0.0587 0.6336 0.1074 0.0459 0.6379 0.0857

lncRNA EXON 0.4867 0.4427 0.4636 0.4591 0.5141 0.4850 0.0588 0.0010 0.0020 0.0423 0.0091 0.0149 0.0007 0.0504 0.0015 0.0016 0.0846 0.0031
all RNA EXON 0.8669 0.8375 0.8519 0.8343 0.8552 0.8446 0.7168 0.5236 0.6052 0.6628 0.5546 0.6039 0.0631 0.6643 0.1153 0.0769 0.6739 0.1381

Panthera tigris 94 NC_056673.1
mRNA

EXON 0.9273 0.8944 0.9105 0.9160 0.9098 0.9129 0.7896 0.6065 0.6861 0.7097 0.6524 0.6799 0.4394 0.7809 0.5624 0.3425 0.7900 0.4778
CDS 0.9062 0.8804 0.8931 0.8771 0.8643 0.8707 0.9388 0.7492 0.8334 0.7769 0.7108 0.7424 0.1344 0.7027 0.2256 0.0832 0.7092 0.1489

lncRNA EXON 0.4493 0.3829 0.4135 0.5428 0.5274 0.5350 0.0000 0.0000 0.0000 0.0722 0.0077 0.0138 0.0036 0.0438 0.0067 0.0021 0.0548 0.0041
all RNA EXON 0.8973 0.8584 0.8775 0.8903 0.8829 0.8866 0.7887 0.5639 0.6576 0.7042 0.6071 0.6521 0.2914 0.7291 0.4164 0.1863 0.7384 0.2976

Tursiops truncatus 94 NC_047043.1
mRNA

EXON 0.8998 0.8662 0.8827 0.8661 0.8636 0.8648 0.7751 0.5795 0.6631 0.5929 0.5813 0.5870 0.2771 0.7496 0.4047 0.2199 0.7496 0.3400
CDS 0.8819 0.8476 0.8644 0.8309 0.8047 0.8176 0.9256 0.7250 0.8131 0.6609 0.6399 0.6502 0.0918 0.6760 0.1616 0.0540 0.6802 0.1000

lncRNA EXON 0.4633 0.4134 0.4369 0.4178 0.4816 0.4474 0.0000 0.0000 0.0000 0.0598 0.0150 0.0240 0.0042 0.0587 0.0078 0.0019 0.0709 0.0037
all RNA EXON 0.8743 0.8378 0.8556 0.8339 0.8397 0.8368 0.7735 0.5431 0.6382 0.5839 0.5458 0.5642 0.2068 0.7062 0.3200 0.1274 0.7070 0.2159

Pan troglodytes 6.4 NC_072417.2
mRNA

EXON 0.9043 0.8768 0.8904 0.8909 0.8928 0.8919 0.7797 0.6354 0.7002 0.7128 0.6240 0.6655 0.2530 0.7574 0.3794 0.2199 0.7559 0.3406
CDS 0.8749 0.8539 0.8643 0.8406 0.8321 0.8364 0.9282 0.7934 0.8555 0.7867 0.6959 0.7386 0.0925 0.6816 0.1630 0.0534 0.6832 0.0990

lncRNA EXON 0.4914 0.3851 0.4318 0.5182 0.5304 0.5242 0.0000 0.0000 0.0000 0.0357 0.0034 0.0062 0.0010 0.0473 0.0019 0.0012 0.0484 0.0023
all RNA EXON 0.8825 0.8451 0.8634 0.8664 0.8694 0.8679 0.7793 0.5945 0.6745 0.7078 0.5840 0.6400 0.1186 0.7116 0.2033 0.1209 0.7103 0.2067

Homo sapiens 0 NC_060944.1
mRNA

EXON 0.9215 0.8763 0.8983 0.8877 0.8778 0.8827 0.7484 0.5930 0.6617 0.6710 0.6018 0.6345 0.3303 0.7554 0.4597 0.1893 0.7577 0.3029
CDS 0.8928 0.8562 0.8741 0.8350 0.8156 0.8252 0.9288 0.7880 0.8526 0.7539 0.6911 0.7211 0.0722 0.6697 0.1304 0.0353 0.6707 0.0671

lncRNA EXON 0.5232 0.4293 0.4717 0.5208 0.5174 0.5191 0.5439 0.0204 0.0393 0.3118 0.0381 0.0680 0.0044 0.0797 0.0084 0.0027 0.0889 0.0052
all RNA EXON 0.8412 0.7750 0.8068 0.8043 0.7962 0.8002 0.7456 0.4633 0.5715 0.6572 0.4742 0.5509 0.1030 0.6025 0.1760 0.0568 0.6064 0.1039
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APPENDIX H. CLUSTERIZATION OF HIDDEN STATES OF THE MODELS

Setup We extracted final-layer hidden states for ten randomly selected human genes, comprising
six mRNA and four lncRNA transcripts. Two model states were analyzed: pretrained HuggingFace
(HF) weights and our fine-tuned GENATATOR models for both architectures. For GENA-LM (BPE
tokenization), each token embedding was expanded uniformly across its nucleotide span to obtain
one vector per base. Importantly, we intercepted embeddings directly from the RMT backbone prior
to the U-NET decoder in order to evaluate the pretrained representation itself. This was necessary
because the U-NET component was introduced only in this work and is randomly initialized, as no
pretrained version with U-NET exists. Passing embeddings through such a randomly initialized head
would risk altering the information contained in the pretrained backbone. For Caduceus, weight
tying was disabled (weight tying=False) for both HF and fine-tuned states, which doubled the
number of trainable parameters (up to 16M parameters). We fit two-dimensional PCA directly to the
raw per-base embeddings and then applied k-means with k=5.

Homogeneity metric Let K denote the ground-truth label random variable over exon, intron, CDS,
5′UTR, and 3′UTR, and C the cluster assignment returned by k-means. Define

H(K) = −
∑
k

nk

N
log

(nk

N

)
, H(K | C) = −

∑
c

∑
k

nc,k

N
log

(
nc,k

nc

)
,

where nk is the count of label k, nc is the size of cluster c, nc,k is the number of samples with label k
in cluster c, and N is the total number of samples. The homogeneity score is

h = 1− H(K | C)

H(K)
,

with h=1 when H(K)=0 (see sklearn.metrics.homogeneity score).

Selected gene set The analysis covered the ten human genes listed in Table A17, spanning both
coding and non-coding classes and a broad range of transcript lengths.

Table A17: Gene set used for the embedding analysis. Lengths are transcript lengths in base pairs.
Gene Type Length (bp)

LOC105375876 lncRNA 4,791
CPSF1 mRNA 16,281
FDFT1 mRNA 36,533
OSER1-DT lncRNA 14,964
ERGIC3 mRNA 15,580
TPX2 mRNA 62,507
NOP56 mRNA 5,768
IQANK1 mRNA 56,563
LINC02986 lncRNA 3,453
LOC107986930 lncRNA 140,852

Explained variance of PCA To evaluate how much variance in the embeddings is captured by
the leading principal components, we report the explained variance ratios (EVR) of the first two
components (Table A18). These values quantify how strongly base identity or higher-order transcript
structure dominate the embedding space.
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Table A18: Explained variance ratios (EVR) of the first two PCA components computed directly on
per-base embeddings without pooling.

Model state EVR1 EVR2

Caduceus PS (HF) 0.587 0.164
Caduceus PS (fine-tuned) 0.477 0.221
GENA LM large (HF) 0.010 0.009
GENA LM large (fine-tuned) 0.515 0.078

BA

C D

Figure A3: PCA of final-layer embeddings colored by gene-structure labels (5’UTR, EXON, IN-
TRON, 3’UTR, CDS). Panels correspond to Caduceus PS with HuggingFace (HF) weights (A),
Caduceus PS after fine-tuning (B), GENA LM large with HF weights (C), and GENA LM
large after fine-tuning (D).
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BA

C D

Figure A4: PCA of the same embeddings colored by nucleotide identity (A, T, C, G). Under
HF weights, Caduceus PS exhibits clear separation by base identity, while fine-tuning reduces
base-driven structure and enhances organization by transcript elements.
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APPENDIX I. GENATATOR ERROR ANALYSIS.
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Figure A5: Error analysis provides insights into potential tweaks for improving gene annotation.
Precision and recall at predicted intron-exon boundaries, stratified by flanking dinucleotide, separately
for left (A) and right (B) intron boundary, with the distribution of targets shown in red and orange.

APPENDIX J. COMPUTING POWER REQUIREMENTS.

We intentionally performed vast majority of the experiments on a small dataset using downscaled
models (i.e. base GENA-LM version instead of large) to save computation time and allow more
datasets and architectures to be benchmarked. We believe that providing results of the thorough
benchmarking is important background with saves compute for others who is going to develop better
models for gene annotation.

Average time and resources required for processing 250 Kbp with the most efficient GENATATOR
models are provided in the table below. For the whole human chromosome it takes 15 min using
single A100 GPU and 8.5 GB GRAM. GENA-based models can be used even without GPU: with
Intel(R) Xeon(R) Platinum 8358 CPU @ 2.60GHz single chromosome (chr20, 67Mbp) can be
annotated within 3h.

Table A19: Runtime and memory usage of different models.
Model A100 × 1 Time A100 × 1 Memory CPU Time CPU Memory
GENA large 3.5 s 8 430 MiB 42 s 8 430 MiB
Caduceus PS 1 s 7 936 MiB NA NA

Here, NA indicates that Caduceus PS cannot be executed on CPU.

APPENDIX K. MODELS SCORING AND BENCHMARKING

K.1 PROCESSING PREDICTIONS

For all models except Tiberius and AUGUSTUS, each nucleotide was assigned the class with the
highest value from the comparison group. The comparison group is specific to each class: for the
exon class, it includes exon and intron; for the CDS class, it includes CDS, intron, 5’UTR, and
3’UTR.

K.2 BENCHMARKING

Predictions were obtained by feeding the model with nucleotide sequences of transcripts (for interval
level and BUSCO) or genes (for gene level). SegmentNT is not designed to process very long
sequences, so for this model, the gene sequence was split into non-overlapping 50 kb segments. For
SegmentBorzoi and SegmentEnformer, the input segment length was set to 196608 nucleotides, as
recommended by the authors.
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For AlphaGenome, several input sequence lengths are available; here, we used a segment size of
1 Mb. For the segmentation task, the most suitable track, splice sites, was employed. Exons were
defined based on acceptor and donor classes, corresponding to the first and last nucleotide of each
exon, respectively. Acceptor-donor pairs were identified in a sliding window from the beginning to
the end of the sequence. We evaluated thresholds ranging from 0.1 to 0.9 in increments of 0.1, and
for the final results, the best-performing threshold was selected.

It is important to note that SegmentNT can predict only the exon class, so metrics for the CDS
class were obtained by subtracting predictions of 5’UTR and 3’UTR from exon predictions. Finally,
GENATATORs are capable of predicting both exons and CDS, so for these models, metrics were
calculated across all classes for all genes and transcripts.

K.3 INTERVAL LEVEL METRICS

To evaluate the accuracy of exon prediction for each model, sequences of a single transcript per gene
were provided (the transcripts with the maximum total exon length were selected).

K.4 GENE LEVEL

Each model generated predictions based on the gene sequences. Interval-level (exon or CDS) analysis
was then performed, comparing predictions to each known transcript of each gene. If there is a
transcript with complete and reciprocal overlap between predicted exons and known exons, the gene
was considered to be identified. CDS analysis was performed similarly.

K.5 BUSCO

Based on the predictions of each model, the nucleotide sequences of the genes were obtained for
analysis. After performing the translation operation, the corresponding proteins were obtained and
the longest of them was selected. The strand for translation was determined either directly if model
outputs it explicitly (Tiberius and AUGUSTUS), or based on the predicted classes 5’UTR and 3’UTR,
using the formula: (FirstU5−FirstU3)−(LastU5−LastU3), where FirstU5 is the cumulative
probability of 5’-UTR class preidction in the first 50 bases, LastU3 is the cumulative probability
of 3’-UTR class prediction in the last 50 bases, and etc. (for other models). For AlphaGenome, the
strand corresponding to the gene strand was used. Subsequently, the set of obtained proteins was
analyzed using BUSCO.
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APPENDIX L. HOMOLOGY EXCLUSION EXPERIMENT IN S. cerevisiae.

To ensure that performance of GENATATORs in yeast is not attributable to residual homology
with mammalian training data, we performed a stringent control. All 766 annotated protein-coding
genes from S. cerevisiae chromosome NC 001136.10 were compared to the full proteomes of the 39
mammalian species used during training (1,827,441 proteins in total) using BLASTP (E-value cutoff
1e–05). Every yeast gene with at least one significant hit was excluded, resulting in a filtered set of
270 genes without detectable protein-level similarity to the training data.

We then evaluated gene-level reconstruction accuracy on this filtered set. Results are summarized in
Table Sx.

Table A20: Gene-level reconstruction on S. cerevisiae genes without detectable protein-level homol-
ogy to mammals.

Model Gene level (%)
Caduceus PS 98.52
GENA large 92.59
AUGUSTUS 41.85

Even under these stringent conditions, GENATATORs recovered over 250 genes - more than twice
the number recovered by AUGUSTUS, which was run with a species-specific HMM profile for
S. cerevisiae. These findings demonstrate that the observed performance cannot be explained by
homology leakage, but instead reflects the models’ ability to capture general splice and coding
sequence patterns transferable across kingdoms.

APPENDIX M. GENATATORS GENERALIZE ACROSS UNSEEN SPECIES.

A B C

Figure A6: GENATATORs generalize to previously unseen species. Performance of the models in
human and 13 other species for all (A), protein-coding (B), and lncRNA (C) genes. See Appendix D
Tables A15 and A16 for more information on metrics.

APPENDIX N. LIMITATIONS.

While GENATATORs demonstrate strong performance in benchmarking studies, their accuracy
remains far from perfect. Currently, only approximately 30–40% of all human genes can be correctly
segmented by any of the models evaluated in this study.

Another limitation lies in gene discovery. Although gene segmentation is a critical component of
genome annotation, complete annotation also requires accurate identification of gene boundaries,
including non-coding untranslated regions (UTRs), which remains challenging for all evaluated tools.
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Finally, the poor results observed in our embedding-only training experiments highlight a fundamental
limitation of current DNA language models: they do not capture gene structure during the pretraining
phase. This underscores the need for architectural or training paradigm improvements in future DNA
LM development.

APPENDIX O. DECLARATION OF LLM USAGE.

Large Language Models (LLMs) were used solely to improve the readability and clarity of the
manuscript text. No parts of the analysis, results, or conclusions were generated by LLMs.
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