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Abstract

Text retrieval plays a crucial role in incorporating factual knowledge for decision
making into language processing pipelines, ranging from chat-based web search to
question answering systems. Current state-of-the-art text retrieval models leverage
pre-trained large language models (LLMs) to achieve competitive performance,
but training LLM-based retrievers via typical contrastive losses requires intricate
heuristics, including selecting hard negatives and using additional supervision as
learning signals. This reliance on heuristics stems from the fact that the contrastive
loss itself is heuristic and does not directly optimize the downstream metrics of
decision quality at the end of the processing pipeline. To address this issue, we
introduce Neural PG-RANK, a novel training algorithm that learns to rank by
instantiating a LLM as a Plackett-Luce ranking policy. Neural PG-RANK provides
a principled method for end-to-end training of retrieval models as part of larger
decision systems via policy gradient, with little reliance on complex heuristics,
and it effectively unifies the training objective with downstream decision-making
quality. We conduct extensive experiments on various text retrieval benchmarks.
The results demonstrate that when the training objective aligns with the evaluation
setup, Neural PG-RANK yields remarkable in-domain performance improvement,
with substantial out-of-domain generalization to some critical datasets employed in
downstream question answering tasks.

1 Introduction

Retrieving relevant factual information has become a fundamental component of modern language
processing pipelines, as it grounds the decisions of the system and its users in factual sources. In
particular, the retrieved text is often utilized by downstream application models to generate accurate
outputs for various tasks, ranging from web search (Huang et al., 2013), question answering (Voorhees,
1999; Chen et al., 2017a; Karpukhin et al., 2020), and open-ended generation (Lewis et al., 2020;
Paranjape et al., 2022; Yu, 2022). This retrieval process not only acts as a knowledge base and reduces
the search space for downstream models, but also can provide users with evidence to understand and
validate the model’s final output. Consequently, the quality of the retrieval system plays a pivotal
role, significantly influencing the accuracy and completeness of any downstream decision making.

Recent research has seen a significant performance boost from incorporating pre-trained large
language models into the retrieval policy (e.g., Nogueira & Cho, 2019; Lin et al., 2020; Karpukhin
et al., 2020). LLM-based text retrievers excel in contextualizing user queries and documents in
natural language, often handling long-form or even conversational inputs. While these neural models
generally outperform traditional count-based methods, training high-performing LLM-based retrieval
policies presents several challenges.
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Figure 1: Illustration of our Neural PG-RANK. Given a query and a collection of documents, a
Placket-Luce ranking policy samples ranking, receives utility, and gets updated using policy gradient
and the received utility. Our method can directly optimize any ranking metric of interest as utility,
and allows end-to-end training of any differential policy. Query and document examples are from
MS MARCO dataset (Campos et al., 2017).

The primary challenge lies in the complex nature of rankings as combinatorial objects, such that for-
mulating efficient training objectives to enhance LLM-based retrieval functions becomes challenging
due to the large number of potential rankings. Existing training methods thus commonly resort to
optimizing pairwise preferences as an approximation. Unfortunately, these pairwise training objec-
tives do not directly relate to the desired ranking metrics for retrieval, such as nDCG (Normalised
Cumulative Discount Gain) or MRR (Mean Reciprocal Rate). To ameliorate this mismatch, most
approaches rely on complex heuristics that are difficult to control, including the careful selection of
specific hard negative examples (Xiong et al., 2021), employing a distillation paradigm (Qu et al.,
2021; Yang et al., 2020), or adopting an iterative training-and-negative-refreshing approach (Sun
et al., 2022). As a result of these intertwined challenges, training a competitive-performing retrieval
system is very difficult.

To overcome the above issues, we propose Neural PG-RANK, a rigorous and principled method that
directly learns to rank through policy-gradient training. Our approach enables end-to-end training
of any differentiable LLM-based retrieval model as a Plackett-Luce ranking policy. Moreover, our
method can directly optimize any ranking metric of interest, effectively unifying the training objective
with downstream application utility. This enables Neural PG-RANK to not only optimize standard
ranking metrics like nDCG, but any application specific metric that evaluates the eventual output
of the processing pipeline (e.g., BLEU score). Figure 1 illustrates the proposed Neural PG-RANK
framework: given a query and a collection of documents, a Plackett-Luce ranking policy samples
rankings, receives utility, and updates itself using policy gradients based on the received utility. By
minimizing the need for complex heuristics in negative selection and utilization, as well as eliminating
the requirement for additional supervision, our method successfully addresses the aforementioned
challenges while establishing a principled bridge between training objectives and downstream utility
of retrieval models. Table 1 compares the reliance of state-of-the-art retrieval models, including
our Neural PG-RANK, on negative document mining and additional supervision (more details in
Section 5).

We conduct extensive experiments employing our Neural PG-RANK with different models on various
text retrieval benchmarks. We investigate the effectiveness of our method in both first-stage retrieval
(i.e. searching over the entire document collection) and second-stage reranking (i.e. searching within
a smaller candidate set per query). The results demonstrate a compelling trend: when the training
objective aligns with the evaluation setup, specifically within the context of second-stage reranking,
Neural PG-RANK exhibits remarkable in-domain performance improvement. Furthermore, we
find substantial out-of-domain generalization from MS MARCO (Campos et al., 2017) to some
critical datasets employed in downstream question answering tasks, such as NaturalQuestions (NQ;
Kwiatkowski et al., 2019) and HotpotQA (Yang et al., 2018). Overall, our method and findings pave
the way for future research endeavors dedicated to developing highly effective retrieval-based LLM
pipelines that are tailored for practical, real-world applications.
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Table 1: Reliance of state-of-the-art comparison systems and our Neural PG-RANK on negative
document mining and additional supervision. Each check denotes a heuristics used during training.
Our method minimizes the reliance on the type of negative documents, and does not require any
additional supervision from other models to improve retrieval performance.

Method Source of Negative Documents Additional Supervision
In-Batch BM25 Dense Model Cross-Encoder Late Interaction Model

SBERT (Reimers & Gurevych, 2019) ✓ ✓✓✓ ✓
TAS-B (Hofstätter et al., 2021) ✓ ✓ ✓ ✓
SPLADEv2 (Formal et al., 2021) ✓ ✓✓ ✓
Neural PG-RANK (Ours) ✓

2 Background and Related Work

Information retrieval (IR) is a class of tasks concerned with searching over a collection to find relevant
information to the given query. We focus on text retrieval, where query refers to a user input in
natural language and the collection is composed of text documents of arbitrary length. Text retrieval
is a central sub-task in many knowledge-intensive NLP problems.

Text Retrieval In the text retrieval literature, retrieval models have evolved from classic count-
based methods to recent learning-based neural models. Conventional count-based methods, such
as TF-IDF or BM25 (Robertson & Zaragoza, 2009), rely on counting query term occurrences in
documents, and do not consider word ordering by treating text as a bag of words. They suffer from
issues like lexical mismatch, where relevant documents may not contain exact query terms (Berger
et al., 2000). Prior work has explored how to enhance these lexical retrieval methods with neural
networks (Nogueira et al., 2019; Cheriton, 2019; Zhao et al., 2021).

Starting from Latent Semantic Analysis (Deerwester et al., 1990), dense vector representations have
been studied to improve text retrieval, with recently arising popularity of encoding the query and
document as dense vectors (tau Yih et al., 2011; Huang et al., 2013; Gillick et al., 2018). The advent
of powerful LLMs has allowed for developing neural models to replace lexical methods, which are
often referred as dense models (Nogueira & Cho, 2019; Karpukhin et al., 2020; Humeau et al., 2020).
Dense models are typically trained in a supervised manner to differentiate relevant documents from
irrelevant ones given the query by assigning higher scores to query-relevant documents. Architectures
of commonly-used dense models include bi-encoders (or dual-encoders) which encode query and
document separately and compute a similarity score between query and document embeddings (Guo
et al., 2020; Liang et al., 2020; Karpukhin et al., 2020; Ma et al., 2021; Ni et al., 2021), cross-
encoders which take the concatenation of query and document and output a numerical relevance
score (Nogueira & Cho, 2019), and late interaction models which leverage token-level embeddings
of query and document from a bi-encoder to compute the final relevance score (Khattab & Zaharia,
2020; Santhanam et al., 2021).

In large-scale text collections, sampling query-irrelevant documents (conventionally called negatives)
is necessary for feasible training. Improving negative sampling to obtain a better selection of
negatives (i.e. hard negatives) has been an active area of research, such as mining hard negatives from
BM25 (Xiong et al., 2021), or from stronger models (Qu et al., 2021; Formal et al., 2021). Another
strategy to boost the performance of dense retrieval models is to employ the knowledge distillation
paradigm (Qu et al., 2021), where a teacher model can provide query-dependent relevance scores of
documents for the student retrieval model to learn from. While negative selection and distillation
can improve the retrieval performance, they unfortunately require complex heuristics and convoluted
training pipelines. We propose a method that minimizes the reliance on intricate heuristics during
training and requires no additional supervision as learning signals. Our method also closes the gap
between training objective and evaluation metrics to improve not only the ranking in isolation, but
also to directly optimize the overall pipeline performance.

Learning to Rank Learning-to-rank (LTR) has a rich history in the field of IR. Our work falls
under the category of LLM-based methods, and for a comprehensive survey of non-LLM-based LTR
retrieval models, we refer readers to Liu et al. (2009).
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LTR methods used in multi-stage retrieval pipelines have attracted significant interest from both
academia (Matveeva et al., 2006; Wang et al., 2011; Asadi & Lin, 2013; Chen et al., 2017b; Mackenzie
et al., 2018; Nogueira & Cho, 2019; Khattab & Zaharia, 2020; Luan et al., 2021; Guo et al., 2022)
and industry (Delgado & Greyson, 2023). Well-known product deployments of such systems include
the Bing search engine (Pedersen, 2010), Alibaba’s e-commerce search engine (Liu et al., 2017),
and OpenAI’s ChatGPT plugins (OpenAI, 2023). The common thread among these studies is the
integration of retrieval and ranking systems to ultimately learn effective retrieval strategies.

Among the works in the LTR literature, two that are closely related to our Neural PG-RANK
approach are Singh & Joachims (2019) and Oosterhuis (2021), which use Plackett-Luce models
to learn a ranking policy. Both approaches extend LTR policies to stochastic policies, allowing
for the maximization of task-relevant utility while incorporating fairness constraints during the
learning process. In this work, we extend such framework to the context of multi-stage LTR and
retrieval pipelines using LLMs, effectively unifying the training objective and ranking evaluation,
with additional variance reduction techniques and dense learning signals.

3 Setting

We focus on retrieval problems that involve integrating a text retrieval system into a larger language-
processing pipeline. In these applications, user queries can be lengthy and intricate natural language
descriptions, and the retrieved results are often used as input for downstream models, which further
process them to generate outputs for the overall task. This introduces two requirements that go beyond
the traditional retrieval application in search engines. Firstly, the retrieval system must be capable
of comprehending complex textual queries, which motivates the utilization of powerful language
models as part of the retrieval system. Secondly, it is crucial to optimize the entire set of retrieval
results holistically, as the quality of the downstream answer depends on the collective set of retrieval
results, rather than individual documents alone.

To address these requirements with a principled machine learning approach, we formalize the problem
setting as follows. We assume a distribution Q from which queries are drawn. Given a query q, we
have a candidate set of n documents dq = {dq1, d

q
2, . . . , d

q
n}. Our goal is to train a ranking policy

π(r|q) that produces a ranking r of the documents in the candidate set dq given a query q. For full
generality, we allow for stochastic ranking policies, which include deterministic ranking policies as a
special case.

To evaluate the quality of a ranking r, we use an application-specific utility function ∆(r|q). This
allows us to define the utility of a ranking policy π for query q as

U(π|q) = Er∼π(·|q) [∆(r|q)] . (1)

It is worth noting that ∆(r|q) can be any real-valued and bounded function that measures the quality
of the entire ranking r for query q. It does not necessarily need to decompose into relevance
judgments of individual documents. For example, ∆(r|q) can be a function that quantifies the success
of using ranking r in a larger language processing pipeline for the overall task, enabling end-to-end
optimization of the ranking policy π. Our learning objective is to learn a ranking policy π that
optimizes the expected utility over the query distribution Q:

π⋆ = argmax
π∈Π

Eq∼Q [U(π|q)] (2)

where Π represents the space of possible ranking policies.

To ensure compatibility with conventional training methods in the retrieval literature, our framework
also covers the scenario where we have individual relevance judgments relqi ∈ {0, 1} for each
document in the candidate set, denoted as relq = {relq1, rel

q
2, . . . , rel

q
n}. In this case, ∆(r|q) could

be a function like DCG (Cumulative Discount Gain), nDCG (Normalised DCG), MAP (Mean
Average Precision), or MRR (Mean Reciprocal Rate). Specifically, for DCG, we have ∆DCG(r|q) =∑

j
u(r(j)|q)
log(1+j) where u(r(j)|q) is the utility of ranking document dj in the ordering r for the query q.

Although our algorithm does not require individual relevance judgments, we focus on the commonly-
used nDCG in order to compare with prior that relied on this ranking metric.
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4 Method

We present our method, Neural PG-RANK, which addresses the IR problem described in Section 3.

Plackett-Luce Ranking Policy To train our ranking policies, we consider the following functional
form that is compatible with any score-based retrieval architecture. In particular, we define repre-
sentation functions ηqθ(q) and ηdθ (d), which encode the query q and the document d into fixed-width
vector representations, respectively. Additionally, we introduce a comparison function ϕ which takes
these representations and computes a score:

sθ(q, d) ≜ ϕ(ηqθ(q), η
d
θ (d))

Under the Plackett-Luce model (Plackett, 1975; Luce, 1959), we can define a ranking policy πθ(r|q)
based on the scores sθ(q, d). The ranking policy is expressed as a product of softmax distributions:

πθ(r|q) =
n∏

i=1

exp sθ(q, dr(i))∑
j∈{r(i),...,r(n)} exp sθ(q, dj)

. (3)

Note that this family of Plackett-Luce ranking policies includes the policy that simply sorts the
documents by their scores as a limiting case:

πsort
θ (r|q) ≜ argsort

d∈dq

sθ(q, d), (4)

where argsort returns the indices that would sort the given array in descending order. In particular,
the Plackett-Luce distribution converges to this sort-based policy when the scores are scaled by a
factor τ with lim τ → ∞. One important distinction between Plackett-Luce policies and sort-based
policies is that Plackett-Luce policies remain differentiable, which is a crucial property exploited by
our training algorithm. Specifically, our policy πθ(r|q) and its logarithm log πθ(r|q) are differentiable
as long as our scoring model sθ is differentiable.

REINFORCE To solve the optimization problem defined in Equation 2, we propose a policy
gradient approach based on insights from the LTR literature (Singh & Joachims, 2019; Oosterhuis,
2021). Using the log-derivative trick pioneered by the REINFORCE algorithm (Williams, 1992), we
derive the policy gradient as follows:

∇θU(πθ|q) = ∇θEr∼πθ(·|q) [∆(r|q)]
= Er∼πθ(·|q) [∇θ log πθ(r|q)∆(r|q)] . (5)

Equation 5 exploits the key insight that we can express the gradient of our utility as the expectation
over rankings of the gradient of the log-probabilities (i.e. the policy gradient) from our ranking policy
πθ. We can thus estimate Equation 5 using Monte Carlo sampling, as detailed below.

Monte Carlo Sampling A naive method for sampling rankings from the policy πθ to estimate the
gradient is to iteratively draw documents without replacement from the softmax distribution over
the remaining documents in the candidate set until there are no more documents left. However, this
process has a quadratic computational complexity with respect to the size n of the candidate set.
Instead, we can equivalently sample rankings more efficiently in O(n log(n)) time by sampling an
entire ranking using the Gumbel-Softmax distribution (Jang et al., 2017) induced by our policy πθ.

Given a query q and its respective candidate set dq, to sample an ordering r of documents from our
policy πθ, we first compute the scores πθ(r(d)|q) for all documents d in the candidate set, as defined
in Equation 3. To sample from this induced distribution, we use the Gumbel-Softmax trick. For every
document d in the candidate set, we draw independent and identically distributed (i.i.d.) Gumbel
samples from the Gumbel distribution gd ∼ Gumbel(0, 1). Then, we calculate the softmax of the
sum of the log scores and their corresponding Gumbel samples as follows:

xd =
exp(log πθ(r(d)|q) + gd)∑

d∈dq exp(log πθ(r(d)|q) + gd)

Finally, we sort the documents according to their xd values, resulting in the sampled ranking r.
In practice, this sampling procedure allows us to sample rankings as fast as we can sort top-K
documents, resulting in a O(n log(n)) runtime complexity.
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Variance Reduction To reduce the variance induced by our Monte Carlo estimates of the gradient,
we incorporate a baseline into our objective. It is important to note that subtracting a baseline from
the objective still provides an unbiased estimate of the gradient. Baselines are commonly employed
in policy gradient methods to enhance the stability of the updates. In the case of Neural PG-RANK,
we adopt the REINFORCE leave-one-out baseline (Kool et al., 2019). The estimation of our policy
gradient, based on N Monte Carlo samples, can be expressed as follows:

∇̂θU(πθ|q) =
1

N

∑
i

[
∇θ log πθ(ri|q)

(
∆(ri|q)−

1

N − 1

∑
j ̸=i

∆(rj |q)
)]

. (6)

where ri is a sampled ranking and q corresponds to a specific query. ∆(ri|q) denotes the utility of
the ranking ri for this query q. It subtracts the average utility for all other sampled rankings for this
query. By including the leave-one-out baseline, we enhance the estimation of the policy gradient and
mitigate the impact of high variance in the updates.

Utility While our Neural PG-RANK applies to any utility function ∆(r|q), we focus on nDCG@10
in our experiments to be able to compare against conventional methods. Moreover, prior work (e.g.,
Wang et al., 2013; Thakur et al., 2021) argues that nDCG offers both theoretical consistency and
a practical balance suitable for both binary and graded sub-level relevance annotations. Following
Oosterhuis (2021), we exploit the insight that the utility at rank k only interacts with the probability
of the partial ranking up to k, and the partial ranking after k does not affect the utility before k. The
estimation of our policy gradient is now:

∇̂θU(πθ|q) =
1

N

∑
i

[∑
k

∇θ log πθ(ri,k|q, ri,1:k−1)(
nDCG(ri,k:|q, ri,1:k−1)−

1

N − 1

∑
j ̸=i

nDCG(rj,k:|q, ri,1:k−1)
)]

. (7)

5 Experimental Setup

In numerous applications of text retrieval systems, a prevalent practice involves a two-stage procedure:
initially, retrieving a limited set of candidate documents from the full collection (stage 1), and
subsequently, re-ranking these initially retrieved candidate documents (stage 2). We investigate the
effectiveness of our method in both stages by conducting extensive experiments with different models
on various text retrieval benchmarks.

Data We use MS MARCO (Campos et al., 2017), a standard large-scale text retrieval dataset
created from real user search queries using Bing search. We train on the train split of MS MARCO
from the BEIR benchmark suite (Thakur et al., 2021). For tuning hyperparameters, we carve out a
validation set of 7k examples from the training data.

During training, we mimic the two-stage retrieval setup that an eventual production system would
use. In particular, we generate candidate sets of 1k documents per query, composed of ground-truth
relevant documents to the query and irrelevant documents. These irrelevant documents come from a
stage 1 retriever, for which we typically use gtr-t5-xl (Ni et al., 2021) model in this work.

For in-domain evaluation, following prior work, we report performance on the dev set of MS MARCO.
We also report out-of-domain zero-shot evaluation performance of our MS MARCO models on the
subset of BEIR with readily available test sets.1 BEIR contains several existing text retrieval datasets,
ranging from Wikipedia, scientific, financial, and bio-medical domains. Table 5 in Appendix A lists
some details of our evaluation sets.

Evaluation Setup We report nDCG@10 (Normalised Cumulative Discount Gain; Järvelin &
Kekäläinen, 2000) on each evaluation set by reranking the candidate set per query as a second-stage
ranker (Subsection 6.1), or over the full document collection as a first-stage retriever (Subsection 6.2).
In the second-stage ranking evaluation, our candidate set for each query comprises of the top-ranked

1We include the passage ranking task in TREC-DL 2019 (Craswell et al., 2021), a variant of MS MARCO,
as an out-of-domain evaluation set. This dataset is available as the test split of MS MARCO in BEIR.
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documents obtained from gtr-t5-xl as stage 1 ranker, which serve as irrelevant documents, as well
as the ground-truth documents that are known to be relevant to the query. The inclusion of these
ground-truth query-relevant documents within the candidate set aims to approximate the candidate
set retrieved by an optimal first-stage retriever.

Comparison System We compare to the following systems from prior work:

• BM25 (Robertson & Zaragoza, 2009) A bag-of-words retrieval approach that ranks a set of
documents based on the occurrence of the query tokens in each document using TF-IDF.2

• SBERT (Reimers & Gurevych, 2019) A bi-encoder, dense retrieval model using hard
negatives mined by various systems. The objective combines a negative log likelihood loss
and a MarginMSE loss, with reference margin scores generated by a cross-encoder model.3

• TAS-B (Hofstätter et al., 2021) A bi-encoder model trained with topic-aware queries and a
balanced margin sampling technique, replying on dual supervision in a knowledge distillation
paradigm. The loss function is a pairwise MarginMSE loss with both hard negatives from
BM25 and in-batch negatives.4

• SPLADEv2 (Formal et al., 2021) A bi-encoder model trained by combining a regularization
term to learn sparse representation and a MarginMSE loss with hard negatives. Hard
negatives and the reference margin scores are generated with a dense model trained with
distillation and a cross-encoder reranker.5

Excluding BM25, the above supervised learning models are trained on MS MARCO with distilbert-
base-uncased (Sanh et al., 2019) as the initialization, use dot product to compute query-document
similarity, are in comparable scale, and represent the state-of-the-art performance of each approach.
Table 1 lists the reliance of these comparison systems and our method on the source of negative
documents and additional supervision used during training. Our Neural PG-RANK minimizes the
reliance on the type of negative documents, and does not require any additional supervision from
other models to improve retrieval performance.

Ranking Policy The representation model η parameterizing our ranking policy is initialized with
either SBERT or TAS-B as a warm start.6 Unless noted in our ablation experiments, we update the
policy using our Neural PG-RANK (described in Section 4) for 6 epochs over the training data.

Implementation Detail Our codebase is built upon BEIR (Thakur et al., 2021) and Sentence-
Transformers (Reimers & Gurevych, 2019). We run all experiments on A6000 GPUs with 48GB of
VRAM. Please see Appendix B for more implementation and hyperparameter details.

6 Experimental Result

For models trained using our method, we present their results on each evaluation set both as a
second-stage reranker over the candidate set (Subsection 6.1) and as a first-stage retriever over the
full document collection (Subsection 6.2).

6.1 Second-Stage Reranking

We report the performance of our trained models as a second-stage reranker, searching over a
candidate set of 1k documents for each query.7

2https://github.com/castorini/anserini
3https://huggingface.co/sentence-transformers/msmarco-distilbert-dot-v5 released on Hug-

ging Face (updated on Jun 15, 2022).
4https://huggingface.co/sentence-transformers/msmarco-distilbert-base-tas-b
5https://huggingface.co/naver/splade_v2_distil
6Our warmstart models exclude SPLADEv2, because our Neural PG-RANK method does not impose

regularization to maintain its sparse representation learning.
7BM25 is not compared in second-stage reranking, since it is commonly used only as a first-stage approach.
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Table 2: Second-stage reranking: nDCG@10 in-domain results. * marks evaluations run by us using
the publicly available checkpoint. Bold font represents the highest number per row, and underline
shows the second highest. Light green color highlights the experiments where our Neural PG-RANK
yields performance gain.

Dataset Comparison Systems Ours: Neural PG-RANK
SBERT* TAS-B* SPLADEv2* with SBERT with TAS-B

MS MARCO dev 0.892 0.893 0.900 0.987 0.982

Table 3: Second-stage reranking: nDCG@10 results on out-of-domain datasets. * marks evaluations
run by us using the publicly available checkpoint. Bold font represents the highest number per row,
and underline shows the second highest. Light green color highlights the experiments where our
Neural PG-RANK yields performance gain.

Dataset Comparison Systems Ours: Neural PG-RANK
SBERT* TAS-B* SPLADEv2* with SBERT with TAS-B

TREC-DL 2019 0.743 0.749 0.749 0.742 0.741
TREC-COVID 0.764 0.711 0.731 0.690 0.630
NFCorpus 0.308 0.320 0.341 0.249 0.303
NQ 0.836 0.836 0.854 0.869 0.878
HotpotQA 0.747 0.785 0.834 0.902 0.900
FiQA-2018 0.291 0.279 0.342 0.131 0.139
ArguAna 0.351 0.479 0.480 0.354 0.443
Touché-2020 0.480 0.423 0.460 0.363 0.361
Quora 0.962 0.982 0.967 0.963 0.982
DBPedia 0.513 0.513 0.533 0.521 0.525
SCIDOCS 0.144 0.151 0.163 0.108 0.136
FEVER 0.931 0.911 0.929 0.907 0.913
Climate-FEVER 0.442 0.433 0.444 0.438 0.383
SciFact 0.597 0.579 0.696 0.316 0.410

In-Domain Performance Table 2 presents the second-stage reranking performance of Neural PG-
RANK using various warm-start policies, as measured by nDCG@10. The results reveal that training
with Neural PG-RANK leads to remarkable in-domain improvements over the warmstart SBERT and
TAS-B models on MS MARCO dev set, with gains of +0.095 and +0.089 in nDCG@10, respectively.
Notably, Neural PG-RANK achieves exceptional nDCG scores, approaching a perfect score of 1.0,
not only for nDCG@10 (0.987 and 0.982) but also for nDCG@5 (0.986 and 0.981), nDCG@3
(0.985 and 0.978), and nDCG@1 (0.975 and 0.965).8 In addition, the performance improvements
after training with our method are more substantial when measured in nDCG@1, nDCG@3, and
nDCG@5. For example, our method yields performance gains of 0.149 and 0.146 over the warm-start
SBERT and TAS-B models in nDCG@1. Overall, these in-domain results consistently demonstrate
that Neural PG-RANK provides remarkable in-domain performance improvements across various
nDCG@k measures, with larger gains observed with smaller k values.

Out-of-Domain Generalization Table 3 shows the second-stage reranking performance of our
method on out-of-domain datasets on the BEIR benchmark. In general, models trained with Neural
PG-RANK demonstrate a level of generalization comparable to the baseline models. Importantly,
they notably outperform the baselines in the case of NaturalQuestions (NQ; Kwiatkowski et al.,
2019) and HotpotQA (Yang et al., 2018), which are critical and widely-studied benchmarks in
question answering (QA). Our method achieves strong performance on these datasets, with scores of
0.869/0.878 on NQ and 0.902/0.900 on HotpotQA. Similar to the trend observed in in-domain results
across different nNDCG@k measures, our method exhibits larger performance gains with smaller
k values in out-of-domain generalization. Remarkably, on HotpotQA, our method using SBERT
achieves an impressive nDCG@1 score of 0.974 (see Table 9 in the Appendix). These observations
are particularly promising, suggesting that our trained reranker exhibits substantial generalization to
the QA domain. We plan to delve deeper into this aspect. Conversely, the datasets in which models
trained using our method exhibit comparatively weaker generalization predominantly belong to the
domains of science and finance – we hope to investigate this further as well.

8We report nDCG@5, nDCG@3 and nDCG@1 of our method for second-stage reranking in Table 7, Table 8
and Table 9 in the Appendix, including both in-domain and out-of-domain evaluation.
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Table 4: First-stage retrieval: nDCG@10 in-domain results. * marks evaluations run by us using the
publicly available checkpoint. Bold font represents the highest number per row, and underline shows
the second highest.

Dataset Comparison Systems Ours: Neural PG-RANK
BM25 SBERT* TAS-B* SPLADEv2* with SBERT with TAS-B

MS MARCO dev 0.228 0.434 0.407 0.433 0.416 0.401

Ablation: Training Epochs We investigate how the duration of training impacts the performance
of Neural PG-RANK, in both in-domain and out-of-domain scenarios. In Table 10 in the Appendix,
we present the results for different training duration, specifically 0, 2, and 6 epochs. These results
demonstrate that Neural PG-RANK achieves strong in-domain performance even with just 2 training
epochs. However, there is a slight degradation in out-of-domain performance when the training
duration is increased to 6 epochs. This suggests that Neural PG-RANK has the potential to enhance
its out-of-domain generalization capabilities by carefully selecting the model to strike a balance
between in-domain and out-of-domain performance.

6.2 First-Stage Retrieval

In this section, we evaluate Neural PG-RANK in first-stage retrieval, which is to search over the
entire document collection for each query. This task can be particularly challenging when dealing
with extensive document collections, as is the case when searching through the 8.8 million documents
in the MS MARCO dataset.

Table 4 presents the results when we use Neural PG-RANK policies as first-stage retrievers, even
though they were trained as a second-stage reranker. We find that training Neural PG-RANK for
second-stage reranking is insufficient to match the performance of baseline systems when used as
a first-stage retriever.9 We conjecture that restricting training of Neural PG-RANK to a specific
first-stage retriever creates blind-spots in the learned policies, leading to suboptimal performance
in first-stage retrieval. To overcome this issue, we will investigate cutting-plane methods, which
can enable efficient training even without candidate sets, and which have been shown to be highly
effective (and provably convergent) for training other ranking and structured prediction methods
(Joachims, 2006; Joachims et al., 2009).

7 Conclusion

In this work, we introduce Neural PG-RANK, a novel training algorithm designed to address
challenges associated with training LLM-based retrieval models. As a rigorous approach that reduces
the dependence on intricate heuristics and directly optimizes relevant ranking metrics, Neural PG-
RANK has demonstrated its effectiveness when training objective aligns with evaluation setup
— specifically, in the context of second-stage reranking — by exhibiting remarkable in-domain
performance improvement and presenting substantial out-of-domain generalization to some critical
datasets employed in downstream question answering. Our work establishes a principled bridge
between training objectives and practical utility of the collective set of retrieved results, thereby
paving the way for future research endeavors aimed at constructing highly effective retrieval-based
LLM pipelines that are tailored for practical applications.
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Table 5: Details of our evaluation sets (test set unless noted otherwise): source domain of documents
(Domain), number of queries (# Q), number of documents in the full collection, (# D), average number
of relevant documents per query (# Rel. D/Q), and the type of relevance annotation (Annotation).

Dataset Domain # Q # D # Rel. D/Q Annotation

MS MARCO dev misc. 6,980 8.8M 1.1 binary
TREC-DL 2019 misc. 43 9.1k 95.4 3-level
TREC-COVID bio-medical 50 171.3k 439.5 3-level
NFCorpus bio-medical 323 3.6k 38.2 3-level
NQ Wikipedia 3,452 2.7M 1.2 binary
HotpotQA Wikipedia 7.405 5.2M 2.0 binary
FiQA-2018 finance 648 57.6k 2.6 binary
ArguAna misc. 1,406 8.7k 1.0 binary
Touché-2020 misc. 49 382.5k 19.0 3-level
Quora Quora 10,000 522.9k 1.6 binary
DBPedia Wikipedia 400 4.6M 38.2 3-level
SCIDOCS scientific 1,000 25.7k 4.9 binary
FEVER Wikipedia 6,666 5.4M 1.2 binary
Climate-FEVER Wikipedia 1,535 5.4M 3.0 binary
SciFact scientific 300 5,2k 1.1 binary

Table 6: Hyperparameters used for Neural PG-RANK.

Setting Values
model [SBERT, TAS-B]

Neural PG-RANK epochs: 6
batch size: 220
learning rate: 1e-6
entropy coeff: 0.01
# rankings sampled per epoch: 5000
gumbel softmax temperature (τ ): 0.05
similarity function: dot product

A Dataset Statistics

Table 5 reports some details of the evaluation datasets in BEIR that we report performance on. Most
evaluation sets have binary annotation of the document relevance given the query (i.e. either relevant
or irrelevant to the query), while some datasets provide graded annotation of the document relevance
into sub-levels – a grade of 0 means irrelevant, and positive grades (e.g., 3-level annotation gives 1, 2,
or 3 as relevance judgement) marks relevant document.

B Implementation Detail

Table 6 lists the hyperparameters used in our experiments. Note that we use the same training
hyperparameters across all experiments with different warmstart models in our work.

C Performance Tables

Second-Stage Reranking In addition to NDCG@10 reported in Subsection 6.1, we report
NDCG@1 in Table 9, NDCG@3 in Table 8, and NDCG@5 in Table 7 for the second-stage reranking
performance of our models trained with Neural PG-RANK. Table 10 shows the performance at 0, 2,
and 6 epochs of training. 0 epoch means the warmstart models.

First-Stage Retrieval Table 11 reports evaluation of our models trained on MS MARCO as a
first-stage retriever on out-of-domain datasets in BEIR.
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Table 7: Second-stage reranking: nDCG@5 results. * marks evaluations run by us using the publicly
available checkpoint. ‡ double dagger symbol means in-domain evaluation. Bold font represents the
highest number per row, and underline shows the second highest. Light green color highlights the
experiments where our Neural PG-RANK yields performance gain.

Dataset Comparison Systems Ours: Neural PG-RANK
SBERT* TAS-B* SPLADEv2* with SBERT with TAS-B

MS MARCO dev‡ 0.884 0.884 0.892 0.986 0.981
TREC-DL 2019 0.753 0.765 0.757 0.767 0.771
TREC-COVID 0.782 0.719 0.758 0.717 0.659
NFCorpus 0.338 0.356 0.376 0.281 0.334
NQ 0.822 0.822 0.842 0.860 0.868
HotpotQA 0.730 0.769 0.819 0.892 0.890
FiQA-2018 0.267 0.251 0.317 0.122 0.127
ArguAna 0.291 0.435 0.426 0.307 0.395
Touché-2020 0.526 0.439 0.516 0.382 0.378
Quora 0.959 0.981 0.964 0.960 0.981
DBPedia 0.517 0.513 0.529 0.524 0.514
SCIDOCS 0.122 0.127 0.134 0.092 0.114
FEVER 0.925 0.904 0.923 0.902 0.908
Climate-FEVER 0.371 0.388 0.398 0.404 0.350
SciFact 0.575 0.558 0.674 0.279 0.379

Table 8: Second-stage reranking: nDCG@3 results. * marks evaluations run by us using the publicly
available checkpoint. ‡ double dagger symbol means in-domain evaluation. Bold font represents the
highest number per row, and underline shows the second highest. Light green color highlights the
experiments where our Neural PG-RANK yields performance gain.

Dataset Comparison Systems Ours: Neural PG-RANK
SBERT* TAS-B* SPLADEv2* with SBERT with TAS-B

MS MARCO dev‡ 0.872 0.872 0.881 0.985 0.978
TREC-DL 2019 0.748 0.764 0.758 0.772 0.770
TREC-COVID 0.810 0.745 0.770 0.735 0.669
NFCorpus 0.364 0.385 0.405 0.305 0.364
NQ 0.804 0.806 0.821 0.846 0.857
HotpotQA 0.712 0.749 0.799 0.878 0.875
FiQA-2018 0.260 0.244 0.302 0.123 0.124
ArguAna 0.245 0.385 0.368 0.268 0.349
Touché-2020 0.549 0.467 0.540 0.404 0.418
Quora 0.955 0.979 0.960 0.956 0.979
DBPedia 0.539 0.526 0.533 0.539 0.528
SCIDOCS 0.140 0.151 0.152 0.108 0.133
FEVER 0.921 0.898 0.918 0.895 0.902
Climate-FEVER 0.350 0.369 0.379 0.401 0.346
SciFact 0.563 0.534 0.662 0.260 0.353
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Table 9: Second-stage reranking: nDCG@1 results. * marks evaluations run by us using the publicly
available checkpoint. ‡ double dagger symbol means in-domain evaluation. Bold font represents the
highest number per row, and underline shows the second highest. Light green color highlights the
experiments where our Neural PG-RANK yields performance gain.

Dataset Comparison Systems Ours: Neural PG-RANK
SBERT* TAS-B* SPLADEv2* with SBERT with TAS-B

MS MARCO dev‡ 0.826 0.819 0.830 0.975 0.965
TREC-DL 2019 0.771 0.764 0.795 0.802 0.744
TREC-COVID 0.810 0.740 0.770 0.770 0.700
NFCorpus 0.406 0.438 0.460 0.344 0.410
NQ 0.758 0.752 0.770 0.815 0.822
HotpotQA 0.884 0.904 0.941 0.974 0.974
FiQA-2018 0.286 0.265 0.329 0.150 0.140
ArguAna 0.147 0.245 0.237 0.171 0.233
Touché-2020 0.561 0.510 0.561 0.449 0.439
Quora 0.946 0.975 0.952 0.950 0.976
DBPedia 0.618 0.570 0.585 0.604 0.583
SCIDOCS 0.182 0.187 0.196 0.142 0.176
FEVER 0.928 0.889 0.916 0.885 0.893
Climate-FEVER 0.432 0.446 0.453 0.536 0.463
SciFact 0.473 0.470 0.603 0.217 0.283

Table 10: Second-stage reranking: nDCG@10 results of evaluating the warmstart model, the model
after training for 2 epochs and after 6 epochs. ‡ double dagger symbol means in-domain evaluation.
Bold font represents the highest number per row, and underline shows the second highest. Light
green color highlights the experiments where our Neural PG-RANK yields performance gain.

Dataset Performance of Neural PG-RANK at Epoch 0 → 2 → 6
with SBERT with TAS-B

MS MARCO dev‡ 0.892 → 0.982 → 0.987 0.893 → 0.963 → 0.982
Avg. on other BEIR datasets 0.579 → 0.546 → 0.539 0.582 → 0.573 → 0.553

Table 11: First-stage retrieval: nDCG@10 results on out-of-domain datasets. * marks evaluations run
by us using the publicly available checkpoint. Bold font represents the highest number per row, and
underline shows the second highest. Light green color highlights the experiments where our Neural
PG-RANK yields performance gain.

Dataset Comparison Systems Ours: Neural PG-RANK
BM25 SBERT* TAS-B* SPLADEv2* with SBERT with TAS-B

TREC-DL 2019 0.506 0.703 0.723 0.729 0.703 0.710
TREC-COVID 0.656 0.664 0.487 0.710 0.446 0.346
NFCorpus 0.325 0.298 0.315 0.334 0.147 0.243
NQ 0.329 0.498 0.455 0.521 0.384 0.386
HotpotQA 0.603 0.587 0.581 0.684 0.500 0.465
FiQA-2018 0.236 0.286 0.276 0.336 0.124 0.133
ArguAna 0.315 0.349 0.479 0.479 0.353 0.442
Touché-2020 0.367 0.224 0.171 0.272 0.129 0.110
Quora 0.789 0.833 0.835 0.838 0.839 0.832
DBPedia 0.313 0.375 0.385 0.435 0.365 0.358
SCIDOCS 0.158 0.141 0.145 0.158 0.085 0.096
FEVER 0.753 0.774 0.678 0.786 0.358 0.341
Climate-FEVER 0.213 0.235 0.193 0.235 0.044 0.035
SciFact 0.665 0.595 0.575 0.693 0.264 0.369
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