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Abstract

Foundation models for time series are emerging as powerful general-purpose1

backbones, yet their potential for domain-specific biomedical signals such as elec-2

troencephalography (EEG) remains rather unexplored. In this work, we investigate3

the applicability a recently proposed time series classification foundation model, to4

a different EEG tasks such as motor imagery classification and sleep stage predic-5

tion. We test two pretraining regimes: (a) pretraining on heterogeneous real-world6

time series from multiple domains, and (b) pretraining on purely synthetic data.7

We find that both variants yield strong performance, consistently outperforming8

EEGNet, a widely used convolutional baseline, and CBraMod, the most recent9

EEG-specific foundation model. These results suggest that generalist time series10

foundation models, even when pretrained on data of non-neural origin or on syn-11

thetic signals, can transfer effectively to EEG. Our findings highlight the promise12

of leveraging cross-domain pretrained models for brain signal analysis, suggesting13

that EEG may benefit from advances in the broader time series literature.14

1 Introduction15

Electroencephalography (EEG) is a widely used non-invasive technique for monitoring brain activity,16

with applications ranging from clinical diagnostics to brain–computer interfaces (BCI). A central17

challenge in EEG analysis is classification, which underpins tasks such as motor imagery for BCI18

control (Barachant et al., 2012), sleep staging (Chambon et al., 2018), and emotion recognition (Li19

et al., 2022). Despite their promise, these applications face significant barriers: EEG datasets are20

typically small, fragmented across institutions, and/or difficult to share due to privacy concerns.21

Furthermore, EEG signals exhibit strong variability across subjects and sessions, which makes22

generalization to unseen individuals especially difficult. This scarcity and variability limit the23

effectiveness of deep learning models such as CNNs (Lawhern et al., 2018; Chambon et al., 2018),24

LSTMs (Phan et al., 2019), and transformers (Phan et al., 2022; Guo et al., 2024).25

In parallel, machine learning has been transformed by the rise of foundation models (Bommasani26

et al., 2021). In computer vision (Dosovitskiy et al., 2021) and natural language processing (Achiam27

et al., 2023), large-scale pretraining on diverse data has enabled models to generalize across tasks,28

reducing the need for task-specific architectures and large labeled datasets. Inspired by this success,29

time series foundation models (TSFMs) have recently emerged. Some focus on forecasting (Ansari30

et al., 2024; Auer et al., 2025), others on classification (Feofanov et al., 2025), also with some attempts31

to unify multiple time series tasks (Goswami et al., 2024). Interestingly, both real-world (Feofanov32

et al., 2025) and synthetic data (Xie et al., 2025) have been shown effective for pretraining such33

models.34
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Table 1: Model comparison.

Model Type Domain Size Pretraining Multivariate
Type Pretraining

EEGNet Tailored EEG <0.01M NaN NaN
CBraMod Foundation Model EEG 4M Reconstruction Yes

Mantis Foundation Model Generic 8M Contrastive No

In EEG specifically, efforts to build foundation models are more recent. CBraMod (Wang et al.,35

2025) introduced a masked-reconstruction approach pretrained on the large-scale TUEG corpus36

(Obeid and Picone, 2016), showing encouraging results for different BCI tasks. Yet, its evaluation37

remains limited in scope, and questions persist about whether EEG-specific pretraining is necessary,38

or whether general-purpose TSFMs can transfer effectively to EEG.39

This paper takes a step forward to address the aforementioned questions. We investigate the applica-40

bility of Mantis (Feofanov et al., 2025), the most recent time series classification foundation model41

pretrained either on heterogeneous time series datasets or synthetic data, to EEG signals. Across42

benchmarks for sleep staging and motor imagery classification, we find that Mantis achieves strong43

transfer performance, generally outperforming both EEGNet (Lawhern et al., 2018), a widely used44

baseline, and CBraMod, the most recent EEG-specific foundation model. This result, at the same45

time, gives a high promise on developing general-purpose TSFMs and highlights a large room for46

improvement in brain signal analysis. This finding suggests opportunities for leveraging cross-domain47

TSFMs in brain signal analysis as well as reveals current limitations of EEG-specific foundation48

models.49

2 Methodology50

Time series classification foundation model is an encoder F : RC×T → RQ that projects any signal51

x ∈ RC×T with C channels and sequence length T to a discriminative hidden space RQ. During52

pretraining, we observe an unlabeled pretraining set X0 that is sufficiently large for learning rich53

embeddings that generalize well across different tasks. During fine-tuning, we observe a supervised54

downstream task with observations {xi, yi}ni=1. We append a classification head h : RQ → RK55

and fine-tune h F by minimizing the cross-entropy loss. In this work, we consider two foundation56

models, which we briefly present below, and the summary can be found in Table 1.57

The first foundation model is CBraMod (Wang et al., 2025), recently proposed for EEG data. It is58

a masked autoencoder (He et al., 2022) focused on correct reconstruction of missing patches. The59

model has been pretrained on the TUEG dataset (Obeid and Picone, 2016) with 1,109,545 EEG60

samples after pre-processing. One of the main features of the model is that it is pretrained directly on61

the multivariate signals. This is achieved by the proposed criss-cross transformer that mixes time-wise62

and channel-wise attention modules. More implementation details can be found in Appendix A.1.63

Second, we consider Mantis (Feofanov et al., 2025), a foundation model designed for general-64

purpose time series classification. In contrast to CBraMod, Mantis is pretrained using contrastive65

learning, pushing different augmentations of a single time series to lie close in the representation66

space. Originally, they have pretrained Mantis on a mix of different real-world time series datasets67

(1.8 millions samples in total, Lin et al.,2024), with a small portion of EEG data. Recently, Xie68

et al. (2025) has shown that Mantis achieves the same performance by being pretrained on a purely69

synthetic dataset generated by the CauKer algorithm (1 million samples). In our experiment, we will70

consider both these checkpoints. We give more details in Appendix A.2.71

It is worth mentioning that in our preliminary experiments, we have found that freezing the encoder72

for EEG data leads to a huge decrease in performance, so fine-tuning is necessary in this context. This73

is why we have not considered MOMENT (Goswami et al., 2024), which is very difficult to fine-tune74

due to its large model size compared to CBraMod and Mantis. In our experiments, we compare the75

two foundation models with EEGNet (Lawhern et al., 2018), a classical CNN architecture specifically76

designed for EEG signals.77
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3 Experimental Results78

3.1 Setup79

We conduct two different sets of experiments to evaluate Mantis on EEG data. First, we follow80

the experimental setup used in CBraMod (Wang et al., 2025) and concentrate on motor imagery81

classification. Second, we perform a comprehensive study on 8 sleep stage prediction datasets82

following Perslev et al. (2021) and Gnassounou et al. (2025). While in the first case we extract the83

results of CBraMod and EEGNet from Wang et al. (2025), in the second case, we fine-tune these84

models, so we can test the adaptability of CBraMod to new EEG tasks.85

BCI dataset In the first experiments we use two dataset of Brain Computer Interface for Motor86

Imagery classification. PhysioNet-MI (Schalk et al., 2004) comprises 109 subjects with 64 channels87

with a sampling rate of 160 Hz. This dataset includes four different motor imagery classes: left hand,88

right hand, both hands, and both feet. SHU-MI (Ma et al., 2022) comprises 25 subjects with 32 EEG89

channels sample at 250Hz. This dataset covers binary motor imagery with the right hand and the left90

hand. Each dataset is resampled at 200 Hz. For PhysioNet-MI, subjects 1–70, 71–89, and 90–109 are91

used for training, validation, and testing, respectively. For SHU-MI, subjects 1-15, 16-20, 21-25 for92

training, validation, and testing, respectively.93

Sleep datasets In the experiments, we used 8 sleep staging datasets. ABC (Jessie P. et al., 2018),94

CCSHS (Rosen et al., 2003), CFS (Redline et al., 1995), HPAP (Rosen et al., 2012), MROS (Blackwell95

et al., 2011), SHHS (Zhang et al., 2018a), CHAT (Marcus et al., 2013), and SOF (Spira et al., 2008)96

are publicly available sleep datasets with restricted access from National Sleep Research Resource97

(NSRR) (Zhang et al., 2018b). PhysioNet (Goldberger et al., 2000) and MASS (O’Reilly et al., 2014)98

are two other datasets publicly available. These datasets are recordings of one night of sleep of99

different patients. Every 30 s epoch of sleep is labeled with one of the five sleep stages: Wake, N1, N2,100

N3, and REM. Datasets are split by subjects into training, validation, and test sets (60%/20%/20%).101

More details about the pre-processing is given in the Appendix.102

Architecture setup For fine-tuning, Mantis use a linear layer with pre-LayerNorm as a classfication103

head. In the CBraMod’s paper, they tune the head for each task, while in our experiments, we fixed104

it as a 3-layer MLP with ELU and dropout. For the BCI experiments, models were trained for a105

maximum of 20 epochs using the AdamW optimizer with a batch size of 64 and a weight decay of106

0.01. We set the initial learning rate to 1× 10−4 for the Physionet-MI dataset and 5× 10−4 for the107

SHU-MI dataset. The learning rate was managed by a cosine scheduler with a warmup period over108

the first 20% of training steps. We applied gradient clipping at a norm of 1.0 and utilized an early109

stopping mechanism with a patience of 3 epochs to prevent overfitting.110

For sleep staging, models were trained for a maximum of 50 epochs using the AdamW optimizer111

with a batch size of 64 and a weight decay of 0.01. Training is monitored with early stopping on112

the validation set, using a patience of 5 epochs. The learning rate is set to 1× 10−4 for Mantis and113

CBraMod, and 1 × 10−3 for EEGNet. To account for limited resources, we impose a maximum114

training time of 5 hours. A value of NaN indicates that the time limit was reached.115

3.2 Results on Brain Computer Interface116

We evaluated Mantis on a BCI motor imagery task, using the CBraMod setup for comparison (Table 2).117

On the Physionet-MI dataset, Mantis achieves performance competitive with CBraMod, a specialized118

model for EEG that already surpasses classical CNNs like EEGNet by 6%. This similar result is119

particularly noteworthy as Mantis was pretrained with minimal EEG data. More importantly, Mantis120

significantly outperforms the baseline on the SHU-MI dataset, achieving a 72.15% F1-score versus121

CBraMod’s 69.88%, when Mantis was pretrained only on synthetic data (Xie et al., 2025). These122

results demonstrate that its architecture can achieve state-of-the-art performance on brain signals123

without extensive domain-specific pretraining.124

Mantis’s performance is even more compelling given its approach to modeling spatial correlations,125

which are critical for BCI tasks (Barachant et al., 2012). Unlike CBraMod, which relies on multivariate126

pretraining, Mantis processes channels univariately and only models their inter-dependencies at the127

final classification layer. The fact that Mantis still outperforms the multivariate approach suggests its128
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architecture offers a more efficient method for preserving and leveraging spatial information in EEG129

signals.130

3.3 Results on Sleep Staging131

We then evaluate the models on sleep staging, a task characterized by a low number of EEG channels132

(typically 1-7) (Supratak et al., 2017; Gnassounou et al., 2024; Wang et al., 2025), contrasting with133

the highly multivariate signals CBraMod was designed for. As shown in Table 3 for a 2-channel setup,134

both foundation models surpass the EEGNet baseline. Crucially, Mantis consistently outperforms135

CBraMod across all pretraining configurations (real and synthetic data), with performance gains136

ranging from 0.3% on CCSHS to nearly 3% on the Mass dataset. This suggests that in scenarios with137

limited spatial information, CBraMod’s multivariate architecture is less effective, whereas Mantis’s138

more general, channel-independent design holds a distinct advantage.139

Additionally, our results confirm the value of pretraining, as starting from a checkpoint yields140

better performance than random initialization. Pretraining also enhances training stability and141

efficiency, preventing runtime errors (denoted by NaN for runs exceeding 5 hours) that occurred142

when training from scratch. However, the performance gains are modest, indicating substantial room143

for improvement in future pretraining strategies for EEG data.144

Table 2: Three different scores for BCI over two datasets averaged over 3 seeds. EEGNet and
CBraMod results are from (Wang et al., 2025). For Mantis, we report random initialization (Random),
pretraining on real dataset (Real Pretrain) and synthetic pretraining on data generated by CauKer (Xie
et al., 2025) (Synth Pretrain).

Dataset Metric EEGNet CBraMod Mantis

Random Real Pretrain Synth Pretrain

PhysioNet-MI
Balanced Acc 58.14±1.25 64.17±0.90 60.76±1.10 64.43±1.50 61.90±2.01

Cohen’s Kappa 44.68±1.20 52.22±1.70 47.70±1.46 52.13±1.87 49.20±3.35

Weighted F1 57.96±1.15 64.27±1.00 60.44±1.27 64.34±1.63 61.95±2.52

SHU-MI
Balanced Acc 58.89±1.77 63.70±1.50 60.70±1.90 63.00±1.37 65.5±4.3

AUROC 63.11±1.42 71.39±0.90 68.10±0.07 69.46±1.18 70.90±4.1

AUC-PR 62.83±1.52 69.88±0.07 70.00±0.09 70.55±2.00 72.15±3.8

Table 3: Weighted F1 score for sleep staging over eight datasets averaged over 3 random seeds.
Random and Synth Pretrain settings are as described in Table 2.

Dataset EEGNet CBraMod Mantis

Random EEG Pretrain Random Real Pretrain Synth Pretrain

ABC 67.94±6.52 70.61±3.29 74.90±4.89 72.82±3.89 75.50±5.62 75.74±4.32

CCSHS 83.13±0.10 87.01±0.27 88.04±0.59 88.55±0.39 88.85±0.48 88.80±0.30

CFS 78.60±1.31 83.48±0.23 84.30±0.08 84.96±0.43 85.35±0.35 85.06±0.75

CHAT 78.91±0.16 84.11±0.81 85.01±0.42 NaN 85.94±0.18 85.72±0.29

HOMEPAP 69.43±0.08 70.37±1.90 72.56±2.35 71.26±1.93 73.14±2.09 73.53±2.00

MASS 79.85±1.27 77.40±2.18 81.12±2.27 79.06±1.89 84.09±0.85 82.49±1.22

PhysioNet 75.73±0.38 77.19±0.94 78.97±0.43 77.98±0.89 79.82±1.63 78.83±1.60

SOF 78.74±1.81 82.61±0.35 83.39±0.67 83.70±1.01 84.69±0.73 84.31±0.57

4 Conclusion / Open Challenges145

While promising, the current findings on Mantis’s superior performance for EEG analysis suggest146

a significant step forward in applying foundation models to neural data. Its ability to outperform a147

specialized EEG model highlights the potential of generalist architectures. Future work should focus148

on extending these experiments to include a wider range of BCI datasets and new tasks, like emotion149

recognition, to fully validate Mantis’s generalizability. Furthermore, addressing the challenge of150

zero-shot learning on EEG data, perhaps through specialized normalization techniques such as Monge151

alignment Gnassounou et al. (2025), could unlock new avenues for leveraging these powerful models152

without extensive training.153
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A Architectures274

A.1 CBraMod275

Given an EEG sample x ∈ RC×T , where C is the number of channels and T is the number276

of timestamps, CBraMod first partitions the time axis into non-overlapping windows of length t277

(t = 200 used in pretraining), producing278

x 7→ X ∈ RC×p×t, p =

⌊
T

t

⌋
.

Each patch xi,j (short time series from channel i and window j) is independently encoded via:279

• a time-domain convolutional branch fconv (3-layer 1D CNN),280

• a frequency-domain branch Wfft · FFT(·) (FFT + linear projection).281

Formally,282

eti,j = fconv(xi,j) ∈ R200, efi,j = Wfft · FFT(xi,j) ∈ R200.

The embeddings are combined as283

ei,j = eti,j + efi,j , E ∈ RC×p×200.

Asymmetric Conditional Positional Encoding (ACPE) generates spatial-temporal offsets eposi,j ∈ R200,284

which are added to the patch embeddings:285

oi,j = ei,j + eposi,j , O ∈ RC×p×200.

The embeddings O are processed through L = 12 criss-cross transformer blocks, each with parallel286

spatial and temporal attention:287

Oj ∈ RC×200, S-Attn(Oj) = Attention(OjW
Q,OjW

K ,OjW
V ),

Oi ∈ Rp×200, T-Attn(Oi) = Attention(OiW
Q,OiW

K ,OiW
V ).

Both attentions use K = 8 heads with hidden dimension d = 200, and the concatenated outputs yield288

Er ∈ RC×p×200.

Pretraining For masked autoencoding, each representation is projected back to the time domain:289

x̂i,j = Wre
r
i,j ∈ Rt, X̂ ∈ RC×p×t.

When pretraining, 50% of the patches are masked. The reconstruction loss is applied only to masked290

patches:291

LMAE = ∥X̂M −XM∥22.

A.2 Mantis292

Given a time series sample x ∈ RC×T , Mantis first resizes each channel to a fixed length t multiple293

of 32 (t = 512 used in pretraining) via interpolation and applies instance-level standardization294

(per-channel mean and variance over time). For channel i, let x(i) ∈ Rt denote the normalized series.295

For each channel, a single 1D convolution layer (output width 256) followed by mean pooling296

produces 32 base patches. The same pipeline applied to the first difference ∆x(i) yields 32 differential297

patches. From the raw (pre-normalization) series, per-patch statistics (mean µj and standard deviation298

σj) are computed and encoded via a scalar encoder. Concatenating the three feature parts and299

projecting yields the final tokens:300

cj = MeanPool
(
Conv(x(i))

)
j
∈ R256,

c∆j = MeanPool
(
Conv(∆x(i))

)
j
∈ R256,

sj = ScalarEnc(µj , σj) ∈ R64,

tj = LayerNorm
(
Wproj [ cj ; c

∆
j ; sj ]

)
∈ R256, j = 1, . . . , 32,
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so that301

T (i) = [t1, . . . , t32] ∈ R32×256.

A learnable class token tcls is prepended, and sinusoidal positional encodings P are added:302

T̃ (i) = [tcls;T
(i)] + P ∈ R33×256.

The sequence T̃ (i) is processed through L = 6 Transformer encoder blocks (each with H = 8 heads;303

dropout 0.1 during pretraining), and the class embedding is taken as the channel descriptor:304

z(i) = ViTL(T̃
(i))cls ∈ R256.

All channels are encoded independently and concatenated:305

z = concat
(
z(1), . . . , z(C)

)
∈ R256·C .

Pretraining Mantis was pretrained using a contrastive loss. Let x and x′ be two augmented views306

of the same original time series, and let their encoded representations be307

z = Mantis(x), z′ = Mantis(x′) ∈ R256·C .

We define the cosine similarity between two vectors as308

scos(a,b) =
〈 a

∥a∥2
,

b

∥b∥2
〉
.

For a batch of N samples, the contrastive (InfoNCE) loss for the i-th sample is309

Li = − log
exp

(
scos(zi, z

′
i)/τ

)∑N
j=1 exp

(
scos(zi, z′j)/τ

) ,
where τ > 0 is a temperature hyperparameter. The total loss is averaged over the batch:310

L =
1

N

N∑
i=1

Li.

This training encourages embeddings of augmented views of the same sample to be close, while311

pushing apart embeddings of different samples, yielding representations that capture meaningful312

temporal features invariant to augmentations.313

B Experimental Setup314

Table 4: Datasets and number of subjects for sleep datasets.

Dataset ABC CCSHS CFS HPAP PHYS MASS CHAT SOF

Subjects 44 515 681 166 70 61 1230 434

Table 4 reports the number of subjects in the sleep datasets. As shown, the number of subjects315

varies widely, ranging from 44 in ABC to 1,230 in CHAT. For sleep dataset, we adopt a standard316

pre-processing step commonly used in sleep staging studies (Chambon et al., 2018; Stephansen et al.,317

2018). To ensure consistency across, we restrict the analysis to two bipolar EEG channels. For the318

NSRR datasets, we select C3-A2 and C4-A1, while for Physionet and MASS, only Fpz-Cz and Pz-Oz319

are available and thus used. All EEG signals are low-pass filtered at 30 Hz and resampled to 100320

Hz. For CBraMod, the data are resampled to 200Hz and split into 1s patches. Data extraction and321

preprocessing are performed with MNE-BIDS (Appelhoff et al., 2019) and MNE-Python (Gramfort322

et al., 2013).323
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