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Abstract

Foundation models for time series are emerging as powerful general-purpose
backbones, yet their potential for domain-specific biomedical signals such as elec-
troencephalography (EEG) remains rather unexplored. In this work, we investigate
the applicability a recently proposed time series classification foundation model, to
a different EEG tasks such as motor imagery classification and sleep stage predic-
tion. We test two pretraining regimes: (a) pretraining on heterogeneous real-world
time series from multiple domains, and (b) pretraining on purely synthetic data.
We find that both variants yield strong performance, consistently outperforming
EEGNet, a widely used convolutional baseline, and CBraMod, the most recent
EEG-specific foundation model. These results suggest that generalist time series
foundation models, even when pretrained on data of non-neural origin or on syn-
thetic signals, can transfer effectively to EEG. Our findings highlight the promise
of leveraging cross-domain pretrained models for brain signal analysis, suggesting
that EEG may benefit from advances in the broader time series literature.

1 Introduction

Electroencephalography (EEG) is a widely used non-invasive technique for monitoring brain activity,
with applications ranging from clinical diagnostics to brain—computer interfaces (BCI). A central
challenge in EEG analysis is classification, which underpins tasks such as motor imagery for BCI
control (Barachant et al., 2012), sleep staging (Chambon et al.2018)), and emotion recognition (Li
et al., [2022). Despite their promise, these applications face significant barriers: EEG datasets are
typically small, fragmented across institutions, and/or difficult to share due to privacy concerns.
Furthermore, EEG signals exhibit strong variability across subjects and sessions, which makes
generalization to unseen individuals especially difficult. This scarcity and variability limit the
effectiveness of deep learning models such as CNNs (Lawhern et al., 2018;/Chambon et al.,|2018)),
LSTMs (Phan et al., 2019), and transformers (Phan et al., 2022; |Guo et al., [2024)).

In parallel, machine learning has been transformed by the rise of foundation models (Bommasani
et al.}2021). In computer vision (Dosovitskiy et al.,|2021) and natural language processing (Achiam
et al.|2023), large-scale pretraining on diverse data has enabled models to generalize across tasks,
reducing the need for task-specific architectures and large labeled datasets. Inspired by this success,
time series foundation models (TSFMs) have recently emerged. Some focus on forecasting (Ansari
et al., 2024} Auer et al., 20235)), others on classification (Feofanov et al.,[2025), also with some attempts
to unify multiple time series tasks (Goswami et al.,[2024). Interestingly, both real-world (Feofanov
et al., [2025) and synthetic data (Xie et al., [2025)) have been shown effective for pretraining such
models.
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Table 1: Model comparison.

Model Type Domain Size Pretraining Multivariate
Type Pretraining
EEGNet Tailored EEG <0.0IM NaN NaN
CBraMod | Foundation Model EEG 4M Reconstruction Yes
Mantis Foundation Model  Generic M Contrastive No

In EEG specifically, efforts to build foundation models are more recent. CBraMod (Wang et al.|
2025) introduced a masked-reconstruction approach pretrained on the large-scale TUEG corpus
(Obeid and Piconel 2016), showing encouraging results for different BCI tasks. Yet, its evaluation
remains limited in scope, and questions persist about whether EEG-specific pretraining is necessary,
or whether general-purpose TSFMs can transfer effectively to EEG.

This paper takes a step forward to address the aforementioned questions. We investigate the applica-
bility of Mantis (Feofanov et al., 2025)), the most recent time series classification foundation model
pretrained either on heterogeneous time series datasets or synthetic data, to EEG signals. Across
benchmarks for sleep staging and motor imagery classification, we find that Mantis achieves strong
transfer performance, generally outperforming both EEGNet (Lawhern et al., [2018)), a widely used
baseline, and CBraMod, the most recent EEG-specific foundation model. This result, at the same
time, gives a high promise on developing general-purpose TSFMs and highlights a large room for
improvement in brain signal analysis. This finding suggests opportunities for leveraging cross-domain
TSFMs in brain signal analysis as well as reveals current limitations of EEG-specific foundation
models.

2 Methodology

Time series classification foundation model is an encoder F' : RE*T — R® that projects any signal
x € RY*T with C channels and sequence length 7" to a discriminative hidden space R?. During
pretraining, we observe an unlabeled pretraining set X that is sufficiently large for learning rich
embeddings that generalize well across different tasks. During fine-tuning, we observe a supervised
downstream task with observations {x;,y;}" ;. We append a classification head h : R® — RX
and fine-tune h o F' by minimizing the cross-entropy loss. In this work, we consider two foundation
models, which we briefly present below, and the summary can be found in Table ]

The first foundation model is CBraMod (Wang et al.,|2025), recently proposed for EEG data. It is
a masked autoencoder (He et al., 2022)) focused on correct reconstruction of missing patches. The
model has been pretrained on the TUEG dataset (Obeid and Piconel [2016)) with 1,109,545 EEG
samples after pre-processing. One of the main features of the model is that it is pretrained directly on
the multivariate signals. This is achieved by the proposed criss-cross transformer that mixes time-wise
and channel-wise attention modules. More implementation details can be found in Appendix

Second, we consider Mantis (Feofanov et al., |2025), a foundation model designed for general-
purpose time series classification. In contrast to CBraMod, Mantis is pretrained using contrastive
learning, pushing different augmentations of a single time series to lie close in the representation
space. Originally, they have pretrained Mantis on a mix of different real-world time series datasets
(1.8 millions samples in total, [Lin et al.|2024), with a small portion of EEG data. Recently, Xie
et al.[(2025) has shown that Mantis achieves the same performance by being pretrained on a purely
synthetic dataset generated by the CauKer algorithm (1 million samples). In our experiment, we will
consider both these checkpoints. We give more details in Appendix [A.2]

It is worth mentioning that in our preliminary experiments, we have found that freezing the encoder
for EEG data leads to a huge decrease in performance, so fine-tuning is necessary in this context. This
is why we have not considered MOMENT (Goswami et al.|[2024), which is very difficult to fine-tune
due to its large model size compared to CBraMod and Mantis. In our experiments, we compare the
two foundation models with EEGNet (Lawhern et al.|[2018)), a classical CNN architecture specifically
designed for EEG signals.
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3 Experimental Results

3.1 Setup

We conduct two different sets of experiments to evaluate Mantis on EEG data. First, we follow
the experimental setup used in CBraMod (Wang et al., 2025) and concentrate on motor imagery
classification. Second, we perform a comprehensive study on 8 sleep stage prediction datasets
following [Perslev et al.|(2021)) and |(Gnassounou et al.|(2025). While in the first case we extract the
results of CBraMod and EEGNet from [Wang et al.|[(2025), in the second case, we fine-tune these
models, so we can test the adaptability of CBraMod to new EEG tasks.

BCI dataset In the first experiments we use two dataset of Brain Computer Interface for Motor
Imagery classification. PhysioNet-MI (Schalk et al.| |2004) comprises 109 subjects with 64 channels
with a sampling rate of 160 Hz. This dataset includes four different motor imagery classes: left hand,
right hand, both hands, and both feet. SHU-MI (Ma et al., 2022) comprises 25 subjects with 32 EEG
channels sample at 250Hz. This dataset covers binary motor imagery with the right hand and the left
hand. Each dataset is resampled at 200 Hz. For PhysioNet-MI, subjects 1-70, 71-89, and 90-109 are
used for training, validation, and testing, respectively. For SHU-MI, subjects 1-15, 16-20, 21-25 for
training, validation, and testing, respectively.

Sleep datasets In the experiments, we used 8 sleep staging datasets. ABC (Jessie P. et al.| [2018)),
CCSHS (Rosen et al.,2003), CFES (Redline et al.,|1995), HPAP (Rosen et al.,|2012)), MROS (Blackwell
et al.,2011), SHHS (Zhang et al.| 2018a)), CHAT (Marcus et al.,|2013)), and SOF (Spira et al.| | 2008)
are publicly available sleep datasets with restricted access from National Sleep Research Resource
(NSRR) (Zhang et al., 2018b)). PhysioNet (Goldberger et al.,|2000) and MASS (O’Reilly et al.l 2014)
are two other datasets publicly available. These datasets are recordings of one night of sleep of
different patients. Every 30 s epoch of sleep is labeled with one of the five sleep stages: Wake, N1, N2,
N3, and REM. Datasets are split by subjects into training, validation, and test sets (60%/20%/20%).
More details about the pre-processing is given in the Appendix.

Architecture setup For fine-tuning, Mantis use a linear layer with pre-LayerNorm as a classfication
head. In the CBraMod’s paper, they tune the head for each task, while in our experiments, we fixed
it as a 3-layer MLP with ELU and dropout. For the BCI experiments, models were trained for a
maximum of 20 epochs using the AdamW optimizer with a batch size of 64 and a weight decay of
0.01. We set the initial learning rate to 1 x 10~ for the Physionet-MI dataset and 5 x 10~ for the
SHU-MI dataset. The learning rate was managed by a cosine scheduler with a warmup period over
the first 20% of training steps. We applied gradient clipping at a norm of 1.0 and utilized an early
stopping mechanism with a patience of 3 epochs to prevent overfitting.

For sleep staging, models were trained for a maximum of 50 epochs using the AdamW optimizer
with a batch size of 64 and a weight decay of 0.01. Training is monitored with early stopping on
the validation set, using a patience of 5 epochs. The learning rate is set to 1 x 10~* for Mantis and
CBraMod, and 1 x 10~2 for EEGNet. To account for limited resources, we impose a maximum
training time of 5 hours. A value of NaN indicates that the time limit was reached.

3.2 Results on Brain Computer Interface

We evaluated Mantis on a BCI motor imagery task, using the CBraMod setup for comparison (Table2).
On the Physionet-MI dataset, Mantis achieves performance competitive with CBraMod, a specialized
model for EEG that already surpasses classical CNNs like EEGNet by 6%. This similar result is
particularly noteworthy as Mantis was pretrained with minimal EEG data. More importantly, Mantis
significantly outperforms the baseline on the SHU-MI dataset, achieving a 72.15% F1-score versus
CBraMod’s 69.88%, when Mantis was pretrained only on synthetic data (Xie et al.l [2025). These
results demonstrate that its architecture can achieve state-of-the-art performance on brain signals
without extensive domain-specific pretraining.

Mantis’s performance is even more compelling given its approach to modeling spatial correlations,
which are critical for BCI tasks (Barachant et al.,|2012)). Unlike CBraMod, which relies on multivariate
pretraining, Mantis processes channels univariately and only models their inter-dependencies at the
final classification layer. The fact that Mantis still outperforms the multivariate approach suggests its
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architecture offers a more efficient method for preserving and leveraging spatial information in EEG
signals.

3.3 Results on Sleep Staging

We then evaluate the models on sleep staging, a task characterized by a low number of EEG channels
(typically 1-7) (Supratak et al., 2017; /Gnassounou et al., 2024; Wang et al., [2025), contrasting with
the highly multivariate signals CBraMod was designed for. As shown in Table [3for a 2-channel setup,
both foundation models surpass the EEGNet baseline. Crucially, Mantis consistently outperforms
CBraMod across all pretraining configurations (real and synthetic data), with performance gains
ranging from 0.3% on CCSHS to nearly 3% on the Mass dataset. This suggests that in scenarios with
limited spatial information, CBraMod’s multivariate architecture is less effective, whereas Mantis’s
more general, channel-independent design holds a distinct advantage.

Additionally, our results confirm the value of pretraining, as starting from a checkpoint yields
better performance than random initialization. Pretraining also enhances training stability and
efficiency, preventing runtime errors (denoted by NaN for runs exceeding 5 hours) that occurred
when training from scratch. However, the performance gains are modest, indicating substantial room
for improvement in future pretraining strategies for EEG data.

Table 2: Three different scores for BCI over two datasets averaged over 3 seeds. EEGNet and
CBraMod results are from (Wang et al., 2025)). For Mantis, we report random initialization (Random),
pretraining on real dataset (Real Pretrain) and synthetic pretraining on data generated by CauKer (Xie
et al.,[2025) (Synth Pretrain).

Dataset Metric EEGNet CBraMod Mantis

Random  Real Pretrain  Synth Pretrain

Balanced Acc 58.14i1'25 64.17:‘:0‘90 60.76:{:1.10 64.43:&1'50 61.90:{:2.01
PhysioNet-MI Cohen’s Kappa 44.68i1'20 52~22j:1A70 47~70:t146 52~13i1.87 49~20:t3A35
Weighted F1 57.96i1'15 64.2711‘00 60.44i127 64~34i1.63 61~95;t2A52

Balanced Acc 58.89i177 63.70i1_50 60.70i190 63.00i1A37 65.5i4A3
SHU-MI AUROC 63.1111.42 71.39:1090 68.101007 69.4611 13 70.9044.1
AUC-PR 62.831152 69.881007 70.0040.09 70.5512.00 7215.38

Table 3: Weighted F1 score for sleep staging over eight datasets averaged over 3 random seeds.
Random and Synth Pretrain settings are as described in Table

Dataset EEGNet CBraMod Mantis
Random  EEG Pretrain  Random  Real Pretrain ~ Synth Pretrain

ABC 67941652 70.611329 74.90+4.89 72.824389  75.5045.62 75.T414.32
CCSHS 83.1310.10 87.0li027 88.041059 88.554039 88.8510.4s8 88.80+0.30
CFS 78.601131 83.481023 84.301008 84.961043 85.351035 85.0610.75
CHAT 78‘91:‘:0_16 84~11:t0.81 85-01:t0.42 NaN 85.94:‘:0.18 85.72:&0‘29
HOMEPAP 69.4310.08 70.37+1.90 72.56419.35 71.2641.93  73.1419.09 73.5312.00
MASS 79.8541.07 77404218 81124997  79.061189 84.09410385 82.4941 22
PhySiONet 75-73i0.38 77~19i0.94 78.97i0,43 77-9810.89 79~82i1.63 78.83i1,60
SOF 787441181 82.611p35 83.391067 83.701101 84.69:073 84.3110.57

4 Conclusion / Open Challenges

While promising, the current findings on Mantis’s superior performance for EEG analysis suggest
a significant step forward in applying foundation models to neural data. Its ability to outperform a
specialized EEG model highlights the potential of generalist architectures. Future work should focus
on extending these experiments to include a wider range of BCI datasets and new tasks, like emotion
recognition, to fully validate Mantis’s generalizability. Furthermore, addressing the challenge of
zero-shot learning on EEG data, perhaps through specialized normalization techniques such as Monge
alignment |Gnassounou et al.| (2025)), could unlock new avenues for leveraging these powerful models
without extensive training.
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A Architectures

A.1 CBraMod

Given an EEG sample x € R*T, where C is the number of channels and 7" is the number
of timestamps, CBraMod first partitions the time axis into non-overlapping windows of length ¢
(t = 200 used in pretraining), producing

T
x— X e ROPxt p— \‘tJ

Each patch x; ; (short time series from channel ¢ and window j) is independently encoded via:

* atime-domain convolutional branch f..,, (3-layer 1D CNN),
* afrequency-domain branch Wy - FFT(-) (FFT + linear projection).

Formally,
el ;= feonv(xij) ER?™, e =Wy - FFT(x; ;) € R*.

The embeddings are combined as

L — et f C'xpx200
e,;=e€;+e,, EeR .

pos 200
e RV,

Asymmetric Conditional Positional Encoding (ACPE) generates spatial-temporal offsets e; ;

which are added to the patch embeddings:
pos Oc RCprzoo'

0ij = €5 +€;,

The embeddings O are processed through L = 12 criss-cross transformer blocks, each with parallel
spatial and temporal attention:

0, € RO*200, S-Attn(O;) = Attention(O; W<, O,W¥ O;W"),

0, € RP*200, T-Attn(O;) = Attention(O; W<, O, W O,W").

Both attentions use K = 8 heads with hidden dimension d = 200, and the concatenated outputs yield
E. c RC Xpx200 )

Pretraining For masked autoencoding, each representation is projected back to the time domain:
Xi; = Wrej; €R!, X e ROP*,

When pretraining, 50% of the patches are masked. The reconstruction loss is applied only to masked
patches:

Lviar = [ Xar — X3

A.2 Mantis

Given a time series sample x € RE*T', Mantis first resizes each channel to a fixed length ¢ multiple
of 32 ({ = 512 used in pretraining) via interpolation and applies instance-level standardization
(per-channel mean and variance over time). For channel i, let x(?) e R* denote the normalized series.

For each channel, a single 1D convolution layer (output width 256) followed by mean pooling
produces 32 base patches. The same pipeline applied to the first difference Ax(?) yields 32 differential
patches. From the raw (pre-normalization) series, per-patch statistics (mean 1¢; and standard deviation
o;) are computed and encoded via a scalar encoder. Concatenating the three feature parts and
projecting yields the final tokens:

¢; = MeanPool (Conv(x))) . € R,
- J
¢ = MeanPool (Conv(Ax(")) . € R*®,
j
s; = ScalarEnc(uj,0;) € R,
t; = LayerNorm(Wproj [cj; ch; S ]) eR*6  j=1,...,32,
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so that _ ) .
T = [tl, R ,tgg} € R32x256,

A learnable class token t.s is prepended, and sinusoidal positional encodings P are added:

TO) = [b0; TO] + P € R3X256.
The sequence T is processed through L = 6 Transformer encoder blocks (each with H = 8 heads;
dropout 0.1 during pretraining), and the class embedding is taken as the channel descriptor:

2 = ViT(TW), € R?.

All channels are encoded independently and concatenated:

z = concat(zY,...,2(©)) € R¥C.

Pretraining Mantis was pretrained using a contrastive loss. Let x and x’ be two augmented views
of the same original time series, and let their encoded representations be

z = Mantis(x),  z’ = Mantis(x') € R*%¢.

We define the cosine similarity between two vectors as

a b

SCOS(aa b) = <||a||27 ||b||2>

For a batch of IV samples, the contrastive (InfoNCE) loss for the i-th sample is

exp (scos(z;,z})/7)

Z;-V:l exp (scos(zi7 Z;)/T) '

L; =—log
where 7 > 0 is a temperature hyperparameter. The total loss is averaged over the batch:
1
L= Zl L;.

This training encourages embeddings of augmented views of the same sample to be close, while
pushing apart embeddings of different samples, yielding representations that capture meaningful
temporal features invariant to augmentations.

B Experimental Setup

Table 4: Datasets and number of subjects for sleep datasets.

Dataset | ABC CCSHS CFS HPAP PHYS MASS CHAT SOF
Subjects | 44 515 681 166 70 61 1230 434

Table [] reports the number of subjects in the sleep datasets. As shown, the number of subjects
varies widely, ranging from 44 in ABC to 1,230 in CHAT. For sleep dataset, we adopt a standard
pre-processing step commonly used in sleep staging studies (Chambon et al., 2018 [Stephansen et al.}
2018)). To ensure consistency across, we restrict the analysis to two bipolar EEG channels. For the
NSRR datasets, we select C3-A2 and C4-A1, while for Physionet and MASS, only Fpz-Cz and Pz-Oz
are available and thus used. All EEG signals are low-pass filtered at 30 Hz and resampled to 100
Hz. For CBraMod, the data are resampled to 200Hz and split into 1s patches. Data extraction and
preprocessing are performed with MNE-BIDS (Appelhoff et al.,[2019) and MNE-Python (Gramfort
et al.l [2013)).
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