

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 CONTRASTIVE AND MULTI-TASK LEARNING ON NOISY BRAIN SIGNALS WITH NONLINEAR DYNAMICAL SIG- NATURES

006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors

Paper under double-blind review

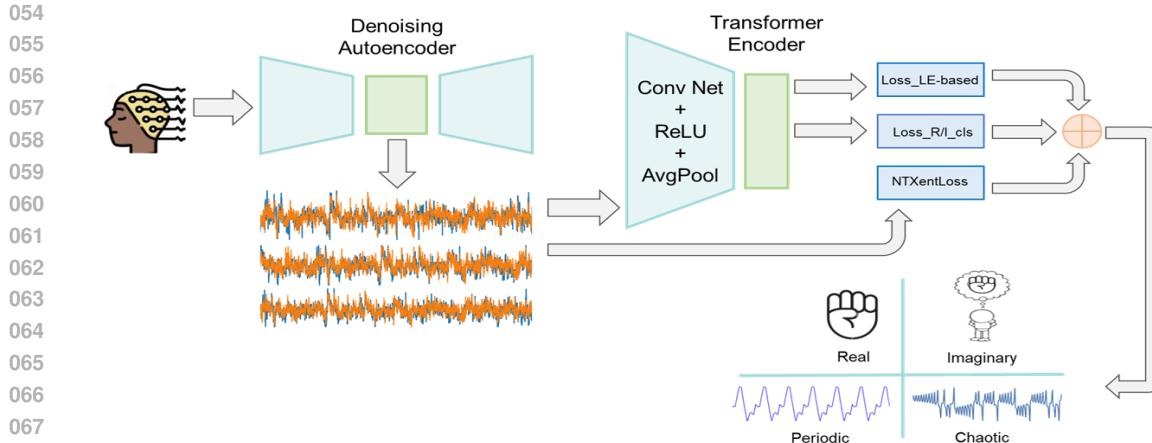
ABSTRACT

We introduce a two-stage multitask learning framework for analyzing Electroencephalography (EEG) signals that integrates denoising, dynamical modeling, and representation learning. In the first stage, a denoising autoencoder is trained to suppress artifacts and stabilize temporal dynamics, providing robust signal representations. In the second stage, a multitask architecture processes these denoised signals to achieve three objectives: motor imagery classification, chaotic versus non-chaotic regime discrimination using Lyapunov exponent-based labels, and self-supervised contrastive representation learning with NT-Xent loss. A convolutional backbone combined with a Transformer encoder captures spatial-temporal structure, while the dynamical task encourages sensitivity to nonlinear brain dynamics. This staged design mitigates interference between reconstruction and discriminative goals, improves stability across datasets, and supports reproducible training by clearly separating noise reduction from higher-level feature learning. Empirical studies show that our framework not only enhances robustness and generalization but also surpasses strong baselines and recent state-of-the-art methods in EEG decoding, highlighting the effectiveness of combining denoising, dynamical features, and self-supervised learning.

1 INTRODUCTION

Electroencephalography (EEG) signals are widely used to study human brain activity in both clinical and cognitive neuroscience applications. One of the key challenges in EEG-based Brain-Computer Interfaces (BCIs) is accurately classifying Motor Imagery (MI) tasks by analyzing noisy, non-stationary, and temporally complex neural signals to distinguish between real and imagined motor actions. Furthermore, characterizing the underlying dynamical behavior of EEG signals – whether they exhibit a chaotic attractor or a non-chaotic pattern (periodic, quasiperiodic, or no attractor) – can offer novel insights into the variability of the brain state and the complexity of the signal.

In this work, we explore a multitask learning framework that jointly trains a neural network to perform both MI classification and chaotic/non-chaotic signal identification, while also benefiting from a self-supervised contrastive learning objective. By simultaneously learning to (1) classify EEG signals as real versus imagery motor actions, (2) determine whether the signal dynamics are chaotic or non-chaotic (via Lyapunov exponents estimation), and (3) maximize similarity between augmented views of the same input using contrastive loss, we aim to improve the generalization and robustness of EEG decoding under noisy regimes. Our proposed architecture leverages a convolutional-Transformer backbone, which first encodes raw multi-channel EEG signals into temporally contextualized embeddings. These embeddings are then fed into multiple task-specific heads: a classification head for MI tasks, a chaos detection head trained using ground-truth Lyapunov-based labels, and a projector head for contrastive representation learning using the NT-Xent loss. This design enables the model to learn shared representations that are discriminative, dynamic-aware, and invariant to noise or channel-level perturbations. An overview of our proposed multitask learning architecture is illustrated in Figure 1, depicting the shared encoder and the three task-specific heads. This approach is particularly valuable for applications involving noisy, real-world EEG data, where traditional single-task classifiers may struggle. The integration of dynamical systems theory into a modern deep learning



069 **Figure 1:** Schematic illustration of our multitask learning framework architecture for noisy EEG brain signals.
 070
 071

072 pipeline contributes a novel mathematical dimension to EEG signal understanding and may offer
 073 more interpretable features for downstream clinical or cognitive tasks.
 074
 075

2 RELATED WORK

076 **EEG-based MI classification.** MI classification using EEG has been a central focus in BCI research.
 077 Traditional methods include Common Spatial Pattern (CSP) filtering and bandpower feature extraction
 078 combined with traditional classifiers such as Linear Discriminant Analysis (LDA) and Support Vector
 079 Machines (SVMs) in controlled settings [1, 2]. In recent years, deep learning models, particularly
 080 Convolutional Neural Networks (CNNs) like EEGNet [3] and DeepConvNet [4], as well as hybrid
 081 architectures combining CNNs with Recurrent Neural Networks (RNNs) or Transformers [5, 6],
 082 have demonstrated improved performance by automatically learning hierarchical spatio-temporal
 083 features from raw EEG data. Despite these advances, deep models are sensitive to noise, inter-subject
 084 variability, and often require extensive preprocessing or calibration efforts [7].
 085

086 **Contrastive learning in EEG.** Contrastive learning is a powerful self-supervised learning paradigm
 087 that allows the extraction of robust and invariant representations without labeled data. Frameworks
 088 such as SimCLR [8] and MoCo [9] and their variants have been adapted to physiological signals,
 089 including EEG, to learn feature embeddings that remain consistent under noise and data augmentation
 090 using time-domain transformations [10, 11, 12, 13]. Recent work indicates that contrastive pretraining
 091 improves downstream EEG classification tasks, especially in low-data settings [14]. However, existing
 092 methods typically target single downstream tasks, ignoring dynamics like chaos or periodicity.
 093

094 **Nonlinear dynamical characterization of EEG signals.** EEG signals often exhibit nonlinear
 095 dynamics, including chaotic, periodic, and quasiperiodic behaviors, which can be characterized using
 096 tools from dynamical systems theory and nonlinear time series analysis such as Lyapunov exponents,
 097 correlation dimension, and entropy-based measures [15, 16, 17, 18]. Prior studies have utilized these
 098 dynamical features for diagnosing neurological disorders such as epilepsy and Alzheimer’s disease
 099 [16, 19, 20]. However, incorporating such dynamical characterizations into deep learning models –
 100 either as auxiliary supervised/unsupervised tasks or as forms of regularization – is a novel direction.
 101 By classifying EEG signals based on their underlying dynamical regimes, the model can be guided to
 102 learn representations that better capture the underlying dynamics of neural activity.
 103

104 **Multitask learning with EEG.** Multitask learning has been applied to EEG data to jointly model
 105 related outputs – such as emotion classification, mental workload estimation, or seizure detection
 106 – to enhance performance and generalization. For example, Yin et al. [21] proposed a shared
 107 representation for emotion classification and workload prediction. Similarly, Lan et al. [22] used
 108 multitask learning to jointly predict driver drowsiness and attention from EEG. Multitask learning has
 109 also been employed for seizure prediction and detection tasks using shared temporal-spatial features
 110 [23]. By sharing the feature extraction layers and incorporating task-specific heads, multitask learning

108 helps regularize the model and leverage inductive bias across tasks [24, 25, 26]. Other studies have
 109 integrated clinical and behavioral outputs [27]. While multitask learning has shown effectiveness
 110 across related tasks, its application to jointly learning MI classification [28] and *dynamical signal*
 111 *characterization*—such as identifying underlying behaviors through invariants like the maximal
 112 Lyapunov exponent—remains largely unexplored.

113 **Transformers for EEG.** The Transformer architecture, originally designed for Natural Language
 114 Processing (NLP) [29], has recently been applied to time series data, including EEG [30, 31, 32, 33].
 115 Variants such as the Temporal Transformer or Performer have demonstrated the ability to model long-
 116 range dependencies [34, 35, 36] and achieve superior performance over RNNs and CNNs in several
 117 EEG decoding tasks. Models like TS-TCC [37] and SleepTransformer [38] show that attention-based
 118 mechanisms outperform CNNs and RNNs in time-series classification tasks. However, their potential
 119 in multitask settings, especially when *combined with contrastive learning and dynamical system*
 120 labels, remains under-investigated.

122 3 MATHEMATICAL PRELIMINARIES

124 A discrete-time Dynamical System (DS) describes the evolution of a state variable over successive
 125 time steps according to a deterministic update rule. In many practical settings – particularly in data-
 126 driven modeling – DS are extended to include external inputs, resulting in the general formulation

$$128 \quad \mathbf{z}_t = F_{\theta}(\mathbf{z}_{t-1}, \mathbf{s}_t), \quad (1)$$

129 where $\mathbf{z}_t \in \mathbb{R}^M$ denotes the state of the system at time t , $\mathbf{s}_t \in \mathbb{R}^N$ is an external control or input
 130 signal, and F_{θ} is a potentially nonlinear function parameterized by a set θ .

132 A key quantity in the analysis of DS is the *Jacobian matrix*, which captures the local sensitivity of
 133 the current state to perturbations in the previous state

$$134 \quad \mathbf{J}_t := \frac{\partial F_{\theta}(\mathbf{z}_{t-1}, \mathbf{s}_t)}{\partial \mathbf{z}_{t-1}} = \frac{\partial \mathbf{z}_t}{\partial \mathbf{z}_{t-1}}. \quad (2)$$

136 RNNs represent a parameterized subclass of input-driven DS, in which the state \mathbf{z}_t is interpreted as a
 137 latent or hidden representation. Architectures such as LSTMs, GRUs, and piecewise-linear RNNs
 138 instantiate specific forms of the transition function F_{θ} , enabling them to model complex temporal
 139 dependencies in sequential data.

140 Given $\mathbf{z}_1 \in \mathbb{R}^M$ and a sequence of inputs $\mathcal{S} = \{\mathbf{s}_t\}$, the system (1) evolves recursively as

$$141 \quad \mathbf{z}_T = F_{\theta}^{T-1}(\mathbf{z}_1, \mathbf{s}_t) := F_{\theta}(F_{\theta}(\dots F_{\theta}(\mathbf{z}_1, \mathbf{s}_2) \dots)). \quad (3)$$

143 Then

$$144 \quad \frac{\partial \mathbf{z}_T}{\partial \mathbf{z}_r} = \frac{\partial \mathbf{z}_T}{\partial \mathbf{z}_{T-1}} \frac{\partial \mathbf{z}_{T-1}}{\partial \mathbf{z}_{T-2}} \dots \frac{\partial \mathbf{z}_{r+1}}{\partial \mathbf{z}_r} = \prod_{k=0}^{T-r-1} \frac{\partial \mathbf{z}_{T-k}}{\partial \mathbf{z}_{T-k-1}} = \prod_{k=0}^{T-r-1} \mathbf{J}_{T-k}. \quad (4)$$

147 3.1 LYAPUNOV EXPONENTS

149 In DS theory, Lyapunov Exponents (LEs) are fundamental quantities used to characterize the long-
 150 term behavior of trajectories in the phase space of a system. The spectrum of LEs estimates the
 151 exponential rates of divergence or convergence of nearby trajectories in different local directions,
 152 thus capturing the system’s sensitivity to initial conditions. In particular, the largest LE reflects the
 153 dominant exponential behavior, indicating the rate at which small perturbations grow or decay over
 154 time. For any trajectory $\mathcal{O}_{\mathbf{z}_1} = \{\mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_T, \dots\}$ of the system (1), the maximum LE is given
 by

$$155 \quad \lambda_{\max} := \lim_{T \rightarrow \infty} \frac{1}{T} \log \left\| \prod_{r=0}^{T-1} \mathbf{J}_{T-r} \right\| \quad (5)$$

158 in which $\|\cdot\|$ is the spectral norm or any subordinate norm of a matrix. Likewise, the Lyapunov
 159 spectrum for $\mathcal{O}_{\mathbf{z}_1}$ can also be calculated as

$$160 \quad \lambda_i = \lim_{T \rightarrow \infty} \frac{1}{T} \log \sigma_i \left(\prod_{r=0}^{T-1} \mathbf{J}_{T-r} \right), \quad (6)$$

162 where σ_i denotes the i -th singular value. A negative sum of the Lyapunov spectrum suggests that the
 163 system’s trajectories converge toward an attractor, implying the presence of dissipation. When this
 164 sum is negative, the sign of the maximum LE offers further insight into the nature of the attractor [39,
 165 40, 41]:

- 167 • A negative maximum LE implies periodic dynamics,
- 168 • A zero maximum LE corresponds to quasiperiodic behavior, and
- 169 • A positive maximum LE suggests the presence of chaotic dynamics.

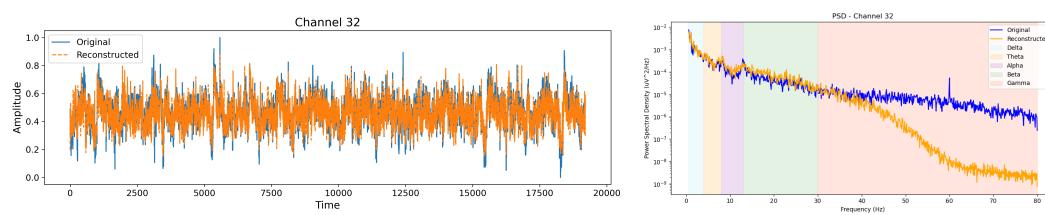
171 This classification applies to discrete-time DS; in contrast, continuous-time DS always have a zero
 172 LE when there is non-trivial motion, e.g. in periodic orbits, due to the continuous flow along
 173 trajectories. To further quantify the complexity of an attractor, the Kaplan–Yorke (KY) dimension
 174 is often employed [42]. It provides an estimate of the effective dimensionality of the attractor by
 175 interpolating between the LEs. It is particularly useful for understanding the fractal structure and
 176 effective degrees of freedom in high-dimensional or chaotic systems (Appx. A.3). The Lyapunov
 177 spectrum and KY dimension offer interpretable dynamical signatures of EEG activity (Appx. A.4).

179 4 METHODOLOGY

182 Our proposed approach combines multitask learning, DS characterization, and contrastive representation
 183 learning within a unified Transformer-based deep learning framework for EEG decoding. The
 184 objective is to improve the model’s ability to learn rich, dynamic-aware representations from noisy
 185 EEG recordings while jointly optimizing multiple tasks.

186 4.1 DENOISING AUTOENCODER FOR EEG SIGNAL PREPROCESSING

188 We use two EEG datasets: BCI2000, which includes data from 109 subjects, recorded with 64
 189 channels at a sampling rate of 160 Hz; and BNCI Horizon 2020 (004/008/009), with 9 subjects, 22
 190 channels, and a sampling rate of 250 Hz. See Appx. A.1 for details on the datasets and preprocessing.
 191 EEG signals are often corrupted by non-neuronal noise, such as muscular artifacts, eye blinks, and
 192 environmental interference. To mitigate this, we employ a 1D convolutional Denoising Autoencoder
 193 (DAE), trained as a powerful unsupervised pretraining mechanism, to reconstruct clean EEG from
 194 noisy observations. The model follows an encoder–decoder architecture with ReLU activations; for
 195 example, in BCI2000, it compresses 64-channel inputs into a 32-channel latent representation and
 196 reconstructs them back to the original dimensionality. Each channel is independently normalized
 197 to $[0, 1]$ using MinMax scaling. EDF-formatted EEG data is loaded via the MNE library [43, 44]; a
 198 custom PyTorch dataset from BCI2000 provides noisy-clean training pairs, where clean targets are
 199 generated using a bandpass filter. DAE is optimized using an optimized loss function and AdamW[45]
 200 over 300 epochs. The optimized total loss function is a weighted linear combination of two loss
 201 functions, SmoothL1Loss (x_1) [46] and SpectralLoss (x_2), expressed as $L_{\text{total}} = \alpha x_1 + \beta x_2$, with
 202 weights α and β chosen iteratively. This denoising pipeline is also effective in low Signal-to-Noise
 203 Ratio (SNR) conditions, particularly in distinguishing real from imagined motor movements. See
 204 Algo. 1 and Appx. A.7 for more details, Fig. 2 and Table 5 for qualitative results.



212 **Figure 2:** Raw and denoised EEG signals for channel 32 (subject S001R04) using our proposed DAE. The
 213 DAE effectively suppresses high-frequency and non-physiological noise while preserving task-relevant spectral
 214 features, as demonstrated by the PSD plot.

216 **Algorithm 1** Denoising Autoencoder Training Procedure
217
218 1: **Input:** Training data $\mathcal{X} = \{x^{(1)}, x^{(2)}, \dots, x^{(n)}\}$
219 2: **Output:** Trained encoder parameters θ_e , decoder parameters θ_d
220 3: **for** each epoch **do**
221 4: **for** each data sample $x \in \mathcal{X}$ **do**
222 5: $\tilde{x} \leftarrow \text{Noisy}(x)$
223 6: $h \leftarrow f_{\theta_e}(\tilde{x})$ {e.g., $h = \sigma(W_e \tilde{x} + b_e)$ }
224 7: $\hat{x} \leftarrow g_{\theta_d}(h)$ {e.g., $\hat{x} = \sigma(W_d h + b_d)$ }
225 8: $\mathcal{L}(x, \hat{x}) \leftarrow \alpha \cdot \text{SmoothL1Loss}(x, \hat{x}) + \beta \cdot \text{SpectralLoss}(x, \hat{x})$
226 9: Update θ_e, θ_d using gradient descent:
227 10: $\theta_e \leftarrow \theta_e - \eta \cdot \nabla_{\theta_e} \mathcal{L}$
228 11: $\theta_d \leftarrow \theta_d - \eta \cdot \nabla_{\theta_d} \mathcal{L}$
229 12: **end for**
230 13: **end for**

231 4.2 MULTITASK TRANSFORMER ARCHITECTURE
232

233 Our presented *multitask Transformer for EEG* is designed to process multi-channel EEG signals
234 using a shared encoder and three task-specific heads (see Algo. 2). The input is a tensor of shape
235 $\mathbb{R}^{B \times C \times T}$, where B is the batch size, C is the number of channels, and T is the number of time steps.
236 The DAE (Sec. 4.1) is first applied to suppress artifacts from the raw EEG input. Then, a lightweight
237 convolutional stem applies a sequence of 1D convolutional layers with ReLU activations and adaptive
238 pooling to extract short-range spatio-temporal features. Following this, these features are passed to a
239 Transformer encoder – a stack of self-attention blocks – models long-range temporal dependencies
240 and relationships across EEG channels (see Appx. A.8 for architecture specifics). Above the shared
241 encoder backbone, the model branches into three task-specific heads. The classification head predicts
242 whether an EEG trial corresponds to a real or imagined MI event, using ground-truth labels provided
243 in the dataset annotations. The chaos detection head classifies whether the underlying EEG signal
244 exhibits a chaotic attractor or a non-chaotic pattern (periodic, quasiperiodic, or no attractor). These
245 labels are generated through two different unsupervised pipelines that infer the dynamical structure
246 from the EEG signal and output binary chaos/non-chaos labels (see Sec. 4.3). The third head, the
247 contrastive projection head, maps the encoded features to a latent space via a projection MLP, where
248 a contrastive loss (e.g., NT-Xent) is applied to encourage the model to learn invariant representations
249 from augmented views of the same input. The overall architecture supports end-to-end training across
250 all three tasks, with joint optimization that enhances generalization and feature reuse. Each head
251 contributes to a combined loss function (Sect. 4.3), where the contrastive objective plays a key role
252 in improving representation quality, especially in low-label or noisy environments. This makes the
253 multitask Transformer well-suited for complex EEG tasks like MI decoding and dynamical state
254 identification, where both supervised and self-supervised signals are beneficial.

254 **Algorithm 2** Multitask EEG Classification: Real vs. Imagined & Chaos vs. Non-Chaos
255

256 1: **Input:** Denoised EEG dataset $D = \{(X_i, l_{1,i}, l_{2,i})\}_{i=1}^N$
257 where X_i is the input signal, l_1 : Real/Imagery label, l_2 : Chaos/Non-Chaos label
258 2: **Initialize:** Model parameters θ , learning rate α , number of epochs E , loss weights $\lambda_c, \lambda_d, \lambda_s$
259 3: **Output:** Trained model for joint label prediction of l_1 and l_2
260 4: **for** epoch $e = 1$ to E **do**
261 5: **for** each batch $B = (X, l_1, l_2)$ in D **do**
262 6: $\hat{l}_1, \hat{l}_2, z \leftarrow f_{\theta}(X)$ {Predict task labels and contrastive embedding}
263 7: Compute task-specific losses: $\mathcal{L}_{\text{class}} = \text{CE}(\hat{l}_1, l_1)$, $\mathcal{L}_{\text{LE-based}} = \text{CE}(\hat{l}_2, l_2)$, $\mathcal{L}_{\text{contrastive}} =$
264 ContrastiveLoss(z)
265 8: Compute total loss: $\mathcal{L}_{\text{total}} \leftarrow \lambda_c \cdot \mathcal{L}_{\text{class}} + \lambda_d \cdot \mathcal{L}_{\text{LE-based}} + \lambda_s \cdot \mathcal{L}_{\text{contrastive}}$
266 9: Backpropagation & Optimization: Update $\theta \leftarrow \theta - \alpha \cdot \nabla_{\theta} \mathcal{L}_{\text{total}}$
267 10: **end for**
268 11: **end for**
269 12: **return** Trained model f_{θ} for predicting labels l_1 and l_2

270 4.3 OPTIMIZATION AND TRAINING PROCEDURE OF SEMI-SUPERVISED FRAMEWORK
271272 The proposed multitask Transformer for EEG is trained using a weighted multi-objective loss that
273 jointly optimizes three tasks:

274
$$\mathcal{L}_{\text{total}} = \lambda_c \cdot \mathcal{L}_{\text{R/I-cls}} + \lambda_d \cdot \mathcal{L}_{\text{LE-based}} + \lambda_s \cdot \mathcal{L}_{\text{NT-Xent}}. \quad (7)$$

275

276 **MI classification:** A supervised task by cross-entropy loss ($\mathcal{L}_{\text{class}}$) to classify real vs. imagined trials.277 **Chaos detection:** Another supervised task using binary cross-entropy loss ($\mathcal{L}_{\text{LE-based}}$) to classify EEG
278 trials as chaotic or non-chaotic. Chaos labels are generated through two unsupervised pipelines:
279280 1. *RNN-based LEs*: We employed (clipped) shallow Piecewise-Linear RNNs (shPLRNNs) (see
281 Appx. A.2) with the Generalized Teacher Forcing (GTF) scheme [47] to reconstruct EEG signals
282 through unsupervised training. A 16D shPLRNN was fitted to compute all LEs (since the trained
283 shPLRNNs are DS, we can calculate their entire Lyapunov spectrum). Using the *sum of LEs* and the
284 *maximum LE*, we derived chaos vs. non-chaos labels (see Sect. 3.1 and Appx. A.14.2 for details).
285286 2. *Energy-based Chaos Tagging*: To assign a chaotic vs. non-chaotic label at the file level, we used
287 energy–entropy measures computed from EEG segments. In particular, we extracted *spectral entropy*,
288 that is, Shannon entropy of the normalized power spectrum, as introduced for EEG analysis by Inouye
289 et al. [48]. We also computed *permutation entropy*, which captures the diversity of ordinal patterns in
290 the time series and is a natural measure of dynamical complexity [49]. Files were then clustered in
291 the entropy feature space, and the cluster with lower mean entropy was interpreted as reflecting more
292 structured (chaotic) dynamics, consistent with prior nonlinear EEG analyses [19, 50]. The details of
293 the method is described in the Appx. A.14.3.
294295 We used the mentioned methods to compare the decisions (chaotic vs. non-chaotic) made by both
296 approaches, finding a high agreement. Both procedures provide an unsupervised mechanism for
297 assigning chaos/non-chaos tags, justifying their role in our semi-supervised multitask pipeline.
298299 **Contrastive learning:** We integrate a contrastive representation learning component into our multi-
300 task framework to facilitate robust and invariant feature learning from EEG signals. Specifically, we
301 adopt the NT-Xent (Normalized Temperature-scaled Cross Entropy) loss ($\mathcal{L}_{\text{contrastive}}$), which operates
302 on paired augmented views of the same EEG trial. Given two independently augmented versions of
303 the same trial, the NT-Xent loss aligns their latent representations in a shared projection space while si-
304 multaneously pushing apart representations of different trials within the mini-batch. This mechanism
305 enforces invariance to nuisance factors (such as small sensor noise, temporal artifacts, or electrode
306 variability) while retaining discriminative task-relevant information for motor imagery classification.
307 We design a set of lightweight and task-preserving augmentations tailored to EEG data to generate the
308 augmented views. These augmentations simulate common sources of variability in EEG acquisition,
309 such as sensor noise, transient signal dropouts, and amplitude fluctuations, without altering the
310 underlying task semantics. At training time, two views of each EEG trial are independently produced
311 through random augmentation, ensuring that the contrastive objective encourages the model to learn
312 features that remain consistent across such perturbations. The model is trained end-to-end using
313 the AdamW optimizer with a fixed learning rate and early stopping (to avoid overfitting). Training
314 batches include both original and augmented EEG views to support contrastive learning. Loss weights
315 ($\lambda_c, \lambda_d, \lambda_s$) are tunable based on task priority or dataset specifics. Performance is evaluated with
316 accuracy and F1-score, while representation quality is assessed via a downstream linear probe. This
317 approach combines supervised and self-supervised learning for effective feature extraction from
318 multi-channel EEG data. Refer to Appx. A.11 for further optimization and implementation details.
319320 5 COMPUTATIONAL EXPERIMENTS
321322 **Experimental Setup.** We evaluate four model configurations:323 (1) **Baseline RNN**: A vanilla RNN with a classification head trained to distinguish real vs. imagery
324 MI. This serves as a simple recurrent baseline.325 (2) **GTF-shPLRNN + LEs (Chaos/Non-chaos only)**: A two-component model trained solely for
326 chaos classification, omitting the contrastive components.327 (3) **Transformer + CNN (Real/Imagery only)**: Same as above, but trained for real vs. imagery
328 classification.

324 **(4) Proposed multitask model:** A framework combining a DAE, a Transformer encoder for temporal
 325 dynamics, and a shared CNN for spatial feature extraction. Three task-specific heads are used: (i) MI
 326 classification, (ii) chaos detection (chaotic vs. non-chaotic EEG), and (iii) contrastive representation
 327 learning via a SimCLR-style projection.

328 **Full contrastive vs. light contrastive learning.** Each EEG trial is augmented into two views via
 329 stochastic transformations, forming positive pairs for the NT-Xent loss (Appx. A.9), while other
 330 trials in the batch serve as negatives. EEG-specific augmentations preserve task-relevant structure
 331 while introducing variability: a) Jitter ($\sigma = 0.008$): Gaussian noise for electrode/environmental
 332 artifacts. b) Scaling ($\sigma = 0.03$): Amplitude rescaling for impedance/gain variability. c) Time masking
 333 (5% of length, prob. 0.5): Zeroing segments to mimic dropouts. d) Channel dropout ($p = 0.12$,
 334 prob. 0.3): Zeroing channels to simulate electrode loss. Each trial is augmented twice, passed
 335 through a CNN–Transformer backbone and projection head, with NT-Xent aligning embeddings
 336 while contrasting others. This *Full Contrastive* setup promotes invariant yet discriminative EEG
 337 representations, boosting motor imagery classification. A lighter variant (*Light Contrastive*) using
 338 only jitter and scaling improved Real/Imagery classification but slightly reduced chaos performance,
 339 showing a trade-off: invariance aids noisy motor imagery but may suppress subtle dynamical
 340 variability. Excluding the Lyapunov task yields highest chaos accuracy (Table 2), though this benefit
 341 lessens in multitask settings. Overall, ablations confirm unique contributions from each module, with
 342 integration yielding the most robust EEG decoding. Implementations used open-source Python and
 343 the GTF–shPLRNN framework (Appx. A.12).

344 5.1 TRAINING PROTOCOL AND RESULTS

345 All models were trained for 30 epochs using the AdamW optimizer (learning rate $1e-4$) with a
 346 batch size of 32. For select comparative runs, AdamW was used to assess optimizer sensitivity.
 347 The multitask model jointly optimized three objectives: cross-entropy loss (and periodic validation
 348 to monitor convergence) for MI and chaos classification, and NT-Xent loss for the contrastive
 349 head. Chaos labels were derived from LE-based labeling (Sect. 4.3). Losses were combined using
 350 task-specific weights to ensure balanced gradients. For ablation study, we evaluated standalone
 351 Transformer + CNN variants trained on individual tasks (without DAE or contrastive learning). All
 352 experiments followed a consistent auxiliary supervised training setup to ensure reproducibility and
 353 comparability. Further details are in Appx. A.13.

354 **Empirical evaluation.** We present key evaluation metrics for assessing model performance, focusing
 355 on classification accuracy, F1 score, and denoising autoencoder metrics like reconstruction loss,
 356 mean squared error, and Hellinger distance. We also adopt a systematic approach to evaluate the
 357 contribution of individual model components, allowing to identify the most critical elements for
 358 achieving optimal performance.

359 **Results:** Table 2 compares the performance of baseline and proposed models across Real/Imagery
 360 Motor Imagery (MI) classification and Chaos/Non-Chaos detection tasks. The Vanilla RNN baseline
 361 performs poorly on MI and was not evaluated on chaos detection. The GTF–shPLRNN + LE model
 362 achieves strong performance on chaos detection but does not address MI. A Transformer with a
 363 CNN backbone achieves competitive results for Real/Imagery classification but was not applied to
 364 chaos detection. Our full multitask pipeline with contrastive learning attains balanced improvements
 365 across both tasks. Using a lighter variant of contrastive learning further improves motor imagery
 366 performance while maintaining strong chaos detection, yielding the best overall average. These results
 367 highlight the complementary strengths of task-specific baselines and multitask approaches, while also
 368 underscoring the importance of tailoring contrastive learning strategies to EEG task characteristics.

369 **Note:** Additional features from the Lyapunov spectrum, e.g., the KY dimension, entropy, variance,
 370 or higher-order moments, could capture finer distinctions between real and imagined movements.
 371 But, our goal is to demonstrate that *a minimal set of dynamical features can effectively differentiate*
 372 *neural states*. We focus on the discriminative power of just two features: *the sum of LEs and the*
 373 *maximum LE*, aiming to evaluate this simple representation without the complexity or overfitting
 374 risks of larger feature sets. Our findings show that these two features can classify baseline signals
 375 (eyes open vs. closed) as periodic vs. chaotic dynamics with high accuracy. However, distinguishing
 376 real vs. imagined movements required incorporating additional modules into our framework.

378
379
380 **Table 1:** Short forms and their descriptions used in Table 2.
381
382
383
384
385
386
387
388

Short Form	Description
Vanilla RNN	Classical RNN for MI task
GTF-shPLRNN + LE (System A)	Chaos/Non-chaos detection using rules on LEs computed from GTF-shPLRNN model
Transformer + CNN Backbone (System B)	Transformer with CNN backbone for MI task
Full Pipeline	System A + System B
Full Contrastive	Contrastive Learning with Jitter, Scaling, Time masking and Channel dropout.
Light Contrastive	Contrastive Learning with Jitter & Scaling

389 **Table 2:** Performance comparison across models on Real/Imagery and Chaos/Non-Chaos detection tasks.
390

Model	Real/Imagery (A)		Chaos/Non-Chaos (B)		Average (A & B)	
	Acc (%)	F1	Acc (%)	F1	Acc (%)	F1
Vanilla RNN	56.2	0.55	—	—	—	—
GTF-shPLRNN + LE	—	—	96.0	0.95	—	—
Transformer + CNN Backbone	77.0	0.78	—	—	—	—
Full pipeline + Full contrastive	75.4	0.80	90.3	0.91	82.9	0.85
Full pipeline + Light contrastive	78.0	0.82	89.5	0.90	83.8	0.86

400 5.2 RESULTS FROM THE ABLATION STUDY
401402 **Table 3:** Ablation study on *Real/Imagery motor classification*. Reported metrics are accuracy in percentage
403 and F1-score. Full pipeline implies Denoising Autoencoder (DAE) and chaos vs non-chaos detection with
404 GTF-shPLRNN and Contrastive Learning and Transformer with CNN backbone.
405

Model Variant	Acc (%)	F1
Full Pipeline	78.0	0.82
w/o Contrastive Learning	77.0	0.78
w/o GTF-shPLRNN+LE	76.0	0.79
w/o Denoising	71.0	0.75

412 Table 3 shows an ablation of the proposed *Transformer+DAE+Contrastive MTL* model on motor
413 imagery EEG. Each row reports the effect of removing or altering one component while keeping
414 others active. The full model achieves balanced and strong generalization, while dropping either
415 contrastive learning or DAE pretraining leads to notable performance declines, confirming their
416 importance.
417418 5.3 COMPARISON OF STATE-OF-THE-ART (SOTA) MODELS: RESULTS WITH TWO DATASETS
419420 Our proposed *Transformer+DAE+Contrastive MTL* framework achieves the highest F1 scores
421 on both BCI2000 and BNCI Horizon 2020 datasets (Appx. A.1) under a fixed network setting. It
422 consistently outperforms CNN-based baselines such as EEGNet, ShallowConvNet, and DeepConvNet,
423 as well as more recent architectures like FBCNet. Other CNN variants (e.g., SCCNet, EEG-TCNet)
424 have reported strong results on BCI Competition IV-2a, though their performance on BCI2000
425 or BNCI Horizon 2020 remains untested. In parallel, self-supervised methods such as TS-TCC
426 and CL-EEG demonstrate improvements over purely supervised baselines but remain below our
427 model in generalization. These results underline the benefit of integrating denoising, contrastive
428 representation learning, and multitask objectives, which together yield robust cross-subject EEG
429 motor imagery decoding under LOSO evaluation. Table 5 compares raw and reconstructed EEG
430 signals for subject S001004 using various distance/error metrics, including Hellinger distance, RMSE,
431 Wasserstein distance, and MAE. These metrics quantify the discrepancy between the original and
432 reconstructed signals, providing insight into reconstruction quality. The low error values indicate that
433 the reconstruction loss is negligible.

Table 4: Comparison of SOTA methods for EEG MI classification on **BCI2000** and **BCI Horizon 2020** datasets. Reported results are best-effort extractions from literature; LOSO = Leave-One-Subject-Out protocol. Both data include left/right hand and foot MI. *NR* = not reported; SCCNet/EEG-TCNet on BCI IV-2a (4-class).

Method	Architecture Type	Self-Supervised	BCI2000 (F1)	BCI Horizon 2020 (F1)	Eval Protocol / Reported Accuracy
EEGNet[51]	CNN (depthwise separable)	No	0.70	0.68	LOSO / CV
ShallowConvNet[52]	CNN (shallow spectral)	No	0.68	0.66	LOSO / CV
DeepConvNet [52]	CNN (deep, 4 conv blocks)	No	0.71	0.69	LOSO / CV
FBCNet[53]	Filter-bank CNN	No	0.76	0.74	LOSO
SCCNet[54]	CNN (spatial component-wise)	No	NR	NR	SI+FT, BCI IV-2a: 74.1%; best 78.7% LOSO
TST[55]	Transformer (spectral)	No	0.78	0.76	SSL pretrain + fine-tune
TS-TCC [56]	CNN+Transformer encoder	Yes	0.80	0.78	SSL pretrain + LOSO
CL-EEG[10]	Contrastive SSL backbone	Yes	0.79	0.77	BCI IV-2a: 77.4% (fixed), 83.8% (per-subject)
EEG-TCNet[57]	Temporal ConvNet (TCN)	No	NR	NR	
Proposed: Transformer+DAE +Contrastive MTL	Transformer + Autoencoder + SSL	Yes	0.84	0.83	LOSO (ours)

Table 5: Comparison of raw and reconstructed EEG signals using error metrics for the EEG recording S001004

Metric	Channel 1	Channel 32
Hellinger Distance	0.121	0.136
Root Mean Squared Error (RMSE)	0.075	0.087
Wasserstein Distance	0.016	0.056
Mean Absolute Error (MAE)	0.059	0.071

6 CONCLUSIONS

Our results show that the multitask approach is both effective and mutually beneficial. The chaotic vs. non-chaotic classification shows significant improvements, while the real vs. imagery classification exhibits marginal enhancements. Overall, our proposed framework outperforms both the vanilla RNN and standalone models. To address data scarcity and noise, we employed a DAE, which effectively preserved signal structure while suppressing artifacts – outperforming conventional methods like band pass filtering and SNR. Moreover, contrastive learning enhanced representation quality, enabling robust performance even with limited data. Importantly, the framework is built sustainably, leveraging modular components and efficient learning strategies for easy maintenance, future extensibility, and reduced computational overhead. Our design ensures the framework can be scaled to accommodate larger or more diverse datasets and additional classification tasks without significant re-engineering. In the future, we may expand our analysis to include broader dynamical regimes beyond the traditional chaotic/non-chaotic classification, incorporating behaviors such as periodic, quasi-periodic, and no-attractor dynamics. This approach could enhance our understanding of signal dynamics and their associations with cognitive and motor tasks. Additionally, we might explore alternative backbone models, such as Graph Neural Networks (GNNs), to better represent spatial relationships among EEG channels, either in place of or alongside a CNN backbone-transformer combination. Furthermore, we could broaden this work to encompass clinical and cognitive applications by introducing new supervised or self-supervised tasks, such as mental workload classification ¹. Future work could enhance the classification by including additional signal types – e.g. periodic, quasi-periodic, no attractor – offering deeper insights into how signal dynamics affect MI classification.

Limitations. The main limitations include the scarcity of high-quality annotated EEG datasets, particularly for real vs. imagery tasks, which affected model generalization. Despite using a DAE, residual noise from signal acquisition may have impacted performance, especially in low-SNR cases. Finally, the deep learning model lacks interpretability, highlighting the need for explainable AI techniques to enhance transparency and clinical relevance.

¹All codes developed in this study will be made publicly available upon publication.

486 REFERENCES
487

488 [1] H. Ramoser, J. Müller-Gerking, and G. Pfurtscheller. “Optimal spatial filtering of single trial
489 EEG during imagined hand movement”. In: *IEEE Transactions on Rehabilitation Engineering*
490 8.4 (2000), pp. 441–446.

491 [2] B. Blankertz and et al. “The BCI competition III: Validating alternative approaches to actual
492 BCI problems”. In: *IEEE Transactions on Neural Systems and Rehabilitation Engineering*
493 14.2 (2007), pp. 153–159.

494 [3] V. J. Lawhern and et al. “EEGNet: A compact convolutional neural network for EEG-based
495 brain–computer interfaces”. In: *Journal of Neural Engineering* 15.5 (2018), p. 056013.

496 [4] R. T. Schirrmeister and et al. “Deep learning with convolutional neural networks for EEG
497 decoding and visualization”. In: *Human Brain Mapping* 38.11 (2017), pp. 5391–5420.

498 [5] Chengcheng Tang et al. “Self-attention CNN for EEG-based motor imagery decoding”. In:
499 *Proceedings of the AAAI Conference on Artificial Intelligence*. Vol. 36. 2022, pp. 11127–11135.

500 [6] Yao Li et al. “Transformer-based network for motor imagery EEG classification”. In: *IEEE
501 Access* 9 (2021), pp. 113345–113354.

502 [7] Yash Roy et al. “Deep learning for EEG-based brain–computer interfaces: A review”. In:
503 *Journal of Neural Engineering* 20.1 (2023), p. 011001.

504 [8] T. Chen and et al. “A simple framework for contrastive learning of visual representations”. In:
505 *ICML*. 2020.

506 [9] Kaiming He et al. “Momentum contrast for unsupervised visual representation learning”. In:
507 *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*. 2020,
508 pp. 9729–9738.

509 [10] H. Banville and et al. “Uncovering the structure of clinical EEG signals with self-supervised
510 learning”. In: *Nature Machine Intelligence* 3.10 (2021), pp. 693–705.

511 [11] Emadeldeen Eldele et al. “Time-series representation learning via temporal and contextual
512 contrasting”. In: *arXiv preprint arXiv:2106.14112* (2021).

513 [12] D. Kiyasseh and D. Clifton. “Clocs: Contrastive learning of cardiac signals across space, time,
514 and patients”. In: *NeurIPS*. 2020.

515 [13] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. “Representation learning with contrastive
516 predictive coding”. In: *arXiv preprint arXiv:1807.03748* (2018).

517 [14] Keya Hu et al. “Contrastive Self-supervised EEG Representation Learning for Emotion Classi-
518 fication”. In: *Annu Int Conf IEEE Eng Med Biol Soc* (July 2024), pp. 1–4.

519 [15] Michael Breakspear. “Nonlinear phase desynchronization in human electroencephalographic
520 data”. In: *Human brain mapping* 15.3 (2002), pp. 175–198.

521 [16] M. Mercier et al. “The value of linear and non-linear quantitative EEG analysis in paediatric
522 epilepsy surgery: a machine learning approach”. In: *Scientific Reports* 14 (2024), p. 18765.

523 [17] Elif Derya Übeyli. “Lyapunov exponents/probabilistic neural networks for analysis of EEG
524 signals”. In: *Expert Systems with Applications* 36.2 (2009), pp. 2009–2016.

525 [18] Milan Paluš. “Nonlinearity in normal human EEG: cycles, temporal asymmetry, nonstationarity
526 and randomness, not chaos”. In: *Biological cybernetics* 75.5 (1996), pp. 389–396.

527 [19] Cornelis J. Stam. “Nonlinear dynamical analysis of EEG and MEG: Review of an emerging
528 field”. In: *Clinical Neurophysiology* 116.10 (2005), pp. 2266–2301. DOI: 10.1016/j.
529 clinph.2005.06.011.

530 [20] E. Pereda, R. Q. Quiroga, and J. Bhattacharya. “Nonlinear multivariate analysis of neurophysi-
531 ological signals”. In: *Progress in Neurobiology* 77.1-2 (2005), pp. 1–37.

532 [21] Z. Yin and et al. “Recognition of emotions using multimodal physiological signals and an
533 ensemble deep learning model”. In: *Computer Methods and Programs in Biomedicine* 140
534 (2017), pp. 93–110.

535 [22] Tian Lan, Tao Wang, and Lei Liu. “Multi-task learning for drowsiness and attention prediction
536 from EEG signals”. In: *2020 International Joint Conference on Neural Networks (IJCNN)*.
537 IEEE. 2020, pp. 1–8.

538 [23] Samir Kumar Roy, Rakesh Ghosh, and Abdulhamit Subasi. “Multitask learning-based EEG
539 classification for seizure detection and prediction”. In: *IEEE Transactions on Neural Systems
and Rehabilitation Engineering* 30 (2022), pp. 1135–1144.

540 [24] Rich Caruana. “Multitask learning”. In: *Machine learning* 28.1 (1997), pp. 41–75.

541 [25] Sebastian Ruder. “An overview of multi-task learning in deep neural networks”. In: *arXiv*
542 *preprint arXiv:1706.05098* (2017).

543 [26] Colin Raffel et al. “Exploring the limits of transfer learning with a unified text-to-text trans-
544 former”. In: *Journal of machine learning research* 21.140 (2020), pp. 1–67.

545 [27] S. Sakhavi, C. Guan, and S. Yan. “Learning temporal information for brain-computer interface
546 using convolutional neural networks”. In: *IEEE Transactions on Neural Networks and Learning*
547 *Systems* 29.11 (2018), pp. 5619–5629.

548 [28] Ishan Misra et al. “Cross-stitch networks for multi-task learning”. In: *Proceedings of the IEEE*
549 *conference on computer vision and pattern recognition*. 2016, pp. 3994–4003.

550 [29] A. Vaswani and et al. “Attention is all you need”. In: *NeurIPS*. 2017.

551 [30] Shizhan Liu et al. “Pyraformer: Low-complexity pyramidal attention for long-range time series
552 modeling and forecasting”. In: # *PLACEHOLDER_PARENT_METADATA_VALUE*. 2022.

553 [31] Haixu Wu et al. “Autoformer: Decomposition transformers with auto-correlation for long-
554 term series forecasting”. In: *Advances in neural information processing systems* 34 (2021),
555 pp. 22419–22430.

556 [32] Haoyi Zhou et al. “Informer: Beyond efficient transformer for long sequence time-series
557 forecasting”. In: *Proceedings of the AAAI conference on artificial intelligence*. Vol. 35. 2021,
558 pp. 11106–11115.

559 [33] Tian Zhou et al. “Fedformer: Frequency enhanced decomposed transformer for long-term
560 series forecasting”. In: *International conference on machine learning*. PMLR. 2022, pp. 27268–
561 27286.

562 [34] S. Li and et al. “Enhancing the locality and breaking the memory bottleneck of transformer on
563 time series forecasting”. In: *NeurIPS*. 2019.

564 [35] Anna Shalova and Ivan Oseledets. “Tensorized transformer for dynamical systems modeling”.
565 In: *arXiv preprint arXiv:2006.03445* (2020).

566 [36] H. Song and et al. “Inception Transformer for Time Series Forecasting”. In: *NeurIPS*. 2021.

567 [37] E. Eldele and et al. “Time-series representation learning via temporal and contextual contrast-
568 ing”. In: *AAAI*. 2021.

569 [38] H. Phan and et al. “SleepTransformer: Attention-based sleep stage classification with trans-
570 formers”. In: *IEEE Transactions on Biomedical Engineering* 69.9 (2022), pp. 2834–2845.

571 [39] Kathleen T. Alligood, Tim D. Sauer, and James A. Yorke. *Chaos: An Introduction to Dynamical*
572 *Systems*. Springer, New York, NY, 1996.

573 [40] John Guckenheimer and Philip Holmes. *Nonlinear oscillations, dynamical systems, and*
574 *bifurcations of vector fields*. Vol. 42. Springer Science & Business Media, 2013.

575 [41] Lawrence Perko. *Differential Equations and Dynamical Systems*. Vol. 7. Springer, New York,
576 NY, 2001.

577 [42] J. L. Kaplan and James A. Yorke. “Chaotic behavior of multidimensional difference equations”.
578 In: *Functional Differential Equations and Approximation of Fixed Points*. Ed. by Heinz-Otto
579 Peitgen and Hans-Otto Walther. Vol. 730. Lecture Notes in Mathematics. Springer, 1979,
580 pp. 204–227. DOI: 10.1007/BFb0064311.

581 [43] Alexandre Gramfort et al. “MEG and EEG Data Analysis with MNE-Python”. In: *Frontiers in*
582 *Neuroscience* 7.267 (2013), pp. 1–13. DOI: 10.3389/fnins.2013.00267.

583 [44] Alexandre Gramfort et al. “MNE Software for Processing MEG and EEG Data”. In: *NeuroIm-
584 age* 86 (2014), pp. 446–460. DOI: 10.1016/j.neuroimage.2013.10.027.

585 [45] Ilya Loshchilov and Frank Hutter. “Decoupled weight decay regularization”. In: *arXiv preprint*
586 *arXiv:1711.05101* (2017).

587 [46] Adam Paszke et al. “Automatic differentiation in PyTorch”. In: *NIPS-W*. 2017.

588 [47] Florian Hess et al. “Generalized Teacher Forcing for Learning Chaotic Dynamics”. en. In:
589 *Proceedings of the 40th International Conference on Machine Learning*. ISSN: 2640-3498.
590 PMLR, July 2023.

591 [48] T. Inouye et al. “Quantification of EEG irregularity by use of the entropy of the power
592 spectrum”. In: *Electroencephalography and Clinical Neurophysiology* 79.3 (1991), pp. 204–
593 210. DOI: 10.1016/0013-4694(91)90138-T.

594 [49] Christoph Bandt and Bernd Pompe. “Permutation entropy: A natural complexity measure
 595 for time series”. In: *Physical Review Letters* 88.17 (2002), p. 174102. DOI: 10.1103/PhysRevLett.88.174102.

597 [50] A. Babloyantz and A. Destexhe. “Low-dimensional chaos in an EEG from epileptic patients”.
 598 In: *Proceedings of the National Academy of Sciences* 83.10 (1986), pp. 3513–3517. DOI:
 599 10.1073/pnas.83.10.3513.

600 [51] Vernon J Lawhern et al. “EEGNet: a compact convolutional neural network for EEG-based
 601 brain–computer interfaces”. In: *Journal of neural engineering* 15.5 (2018), p. 056013.

602 [52] Robin Tibor Schirrmeister et al. “Deep learning with convolutional neural networks for EEG
 603 decoding and visualization”. In: *Human brain mapping* 38.11 (2017), pp. 5391–5420.

604 [53] Ravikiran Mane et al. “FBCNet: A multi-view convolutional neural network for brain-computer
 605 interface”. In: *arXiv preprint arXiv:2104.01233* (2021).

606 [54] Chun-Shu Wei, Toshiaki Koike-Akino, and Ye Wang. “Spatial component-wise convolutional
 607 network (SCCNet) for motor-imagery EEG classification”. In: *2019 9th International
 608 IEEE/EMBS Conference on Neural Engineering (NER)*. IEEE. 2019, pp. 328–331.

609 [55] Yonghao Song et al. “Decoding natural images from eeg for object recognition”. In: *arXiv
 610 preprint arXiv:2308.13234* (2023).

611 [56] Emadeldeen Eldele et al. “Time-Series Representation Learning via Temporal and Contextual
 612 Contrasting”. In: *Proceedings of the Thirtieth International Joint Conference on Artificial
 613 Intelligence (IJCAI)*. 2021, pp. 2352–2358. URL: <https://www.ijcai.org/proceedings/2021/0324.pdf>.

615 [57] Thorir Mar Ingolfsson et al. “EEG-TCNet: An accurate temporal convolutional network for
 616 embedded motor-imagery brain–machine interfaces”. In: *2020 IEEE International Conference
 617 on Systems, Man, and Cybernetics (SMC)*. IEEE. 2020, pp. 2958–2965.

618 [58] Gerwin Schalk et al. “BCI2000: a general-purpose brain-computer interface (BCI) system”. In:
 619 *IEEE Transactions on biomedical engineering* 51.6 (2004), pp. 1034–1043.

620 [59] Michael Tangermann et al. “Review of the BCI competition IV”. In: *Frontiers in neuroscience*
 621 6 (2012), p. 55.

622 [60] Georgia Koppe et al. “Identifying nonlinear dynamical systems via generative recurrent neural
 623 networks with applications to fMRI”. In: *PLoS computational biology* 15.8 (2019), e1007263.

624 [61] Manuel Brenner et al. “Tractable Dendritic RNNs for Reconstructing Nonlinear Dynamical
 625 Systems”. In: *Proceedings of the 39th International Conference on Machine Learning*. Vol. 162.
 626 Proceedings of Machine Learning Research. PMLR, 2022, pp. 2292–2320.

627 [62] A Maus and JC Sprott. “Evaluating Lyapunov exponent spectra with neural networks”. In:
 628 *Chaos, Solitons & Fractals* 51 (2013), pp. 13–21.

629 [63] Ryan Vogt et al. “On lyapunov exponents for rnns: Understanding information propagation
 630 using dynamical systems tools”. In: *Frontiers in Applied Mathematics and Statistics* 8 (2022),
 631 p. 818799.

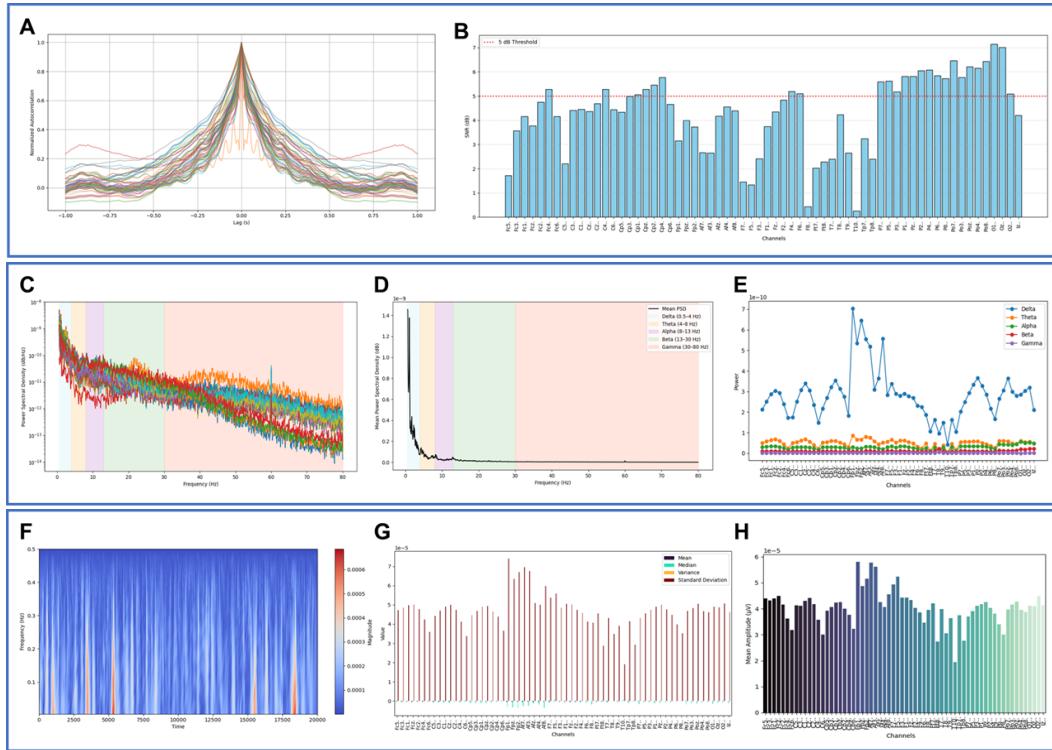
632 [64] Rainer Engelken, Fred Wolf, and Larry F Abbott. “Lyapunov spectra of chaotic recurrent
 633 neural networks”. In: *Physical Review Research* 5.4 (2023), p. 043044.

634 [65] Ryan Vogt et al. “On Lyapunov Exponents for RNNs: Understanding Information Propagation
 635 Using Dynamical Systems Tools”. In: *Frontiers in Applied Mathematics and Statistics* 8
 636 (2022).

637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647

648 **A APPENDIX**
649650 **A.1 DATA**
651653 We use two noisy datasets: (1) BCI2000 dataset [58] which provides EEG recordings from 109
654 subjects performing MI and Motor Execution (ME) tasks. Each session was recorded with 64 channels
655 at a sampling frequency of 160 Hz, with task trials lasting about three seconds and usable EEG
656 segments of one to two minutes per trial. The dataset covers eight task conditions (four MI and four
657 ME) in addition to a relaxed state, making it well suited for motor decoding. However, the recordings
658 are highly noisy due to artifacts such as eye blinks, muscle activity, and electrode variability, making
659 effective denoising a prerequisite for reliable analysis. (2) BNCI Horizon 2020 datasets [59] which
660 are widely used benchmarks for MI decoding. In particular, we focus on BNCI 2014-001 and BNCI
661 2014-002, both of which provide EEG recordings for binary left- versus right-hand MI classification.
662 a) BNCI 2014-001 contains recordings from 9 subjects, each with 22 EEG channels sampled at 250
663 Hz. Subjects performed left- and right-hand imagery following visual cues in multiple sessions,
664 yielding balanced binary MI data. b) BNCI 2014-002 includes recordings from 14 subjects with 15
665 EEG channels sampled at 512 Hz. Each subject completed multiple runs of left- versus right-hand
666 MI tasks, again with balanced trial counts. Both datasets provide clean trial structures but still exhibit
667 substantial EEG noise from eye blinks, muscle artifacts, and inter-subject variability, necessitating
668 robust preprocessing and denoising. Their relatively smaller channel counts compared to BCI2000
669 make them complementary testbeds for evaluating generalization and robustness of MI decoding
frameworks.
670671 We use raw or minimally preprocessed EEG signals recorded during MI tasks (real vs. imagery hand
672 or fist movement). Each EEG recording is band-pass filtered (e.g., 1–80 Hz) and denoised using our
673 proposed pretrained denoising autoencoder.
674675 **A.1.1 DATA VISUALIZATION OF CHARACTERIZATION OF EEG SIGNAL**
676677 Accurate characterization of EEG signals is essential for gaining deeper insight into the signal’s
678 intrinsic properties and the underlying neural dynamics. Figure 3 illustrates core signal features
679 across all channels and captures neural activity modulations associated with the task condition.
680681 We present a multi-domain visualization that reveals key aspects of the recorded EEG data during
682 task performance. These include time-domain structure, spectral composition, and statistical char-
683 acteristics across channels, offering a structured understanding of signal quality and neural signal
684 variation relevant for subsequent modeling. For more details see Appx. A.6
685686 **A.1.2 DATA PREPROCESSING**
687688 EEG recordings were preprocessed using a 1–80 Hz bandpass filter, normalization, and segmentation
689 into overlapping 320-point windows. Chaos labels were derived based on Lyapunov Exponents (LEs)
690 using an unsupervised method. A Denoising Autoencoder (DAE) was optionally used to suppress
691 noise and artifacts, enhancing signal quality. Additional signal analysis—including autocorrelation,
692 Signal-to-Noise Ratio (SNR) estimation, Power Spectral Density (PSD), band-specific power, and
693 wavelet decomposition—was performed to evaluate data quality and uncover neural patterns relevant
694 to classification and dynamical state detection. These preprocessing and analytical steps ensured that
695 the model received clean, structured input while preserving physiologically relevant information.
696697 Autocorrelation helped reveal temporal consistency in neural signals, while SNR analysis quantified
698 variability across subjects and sessions. Band power features provided insight into cognitive and
699 motor-related rhythms, with particular attention to alpha and beta bands often linked to Motor Imagery
700 (MI). Wavelet transforms captured transient patterns and localized frequency changes, which are
701 important in distinguishing chaotic from non-chaotic (e.g. periodic) brain states. PSD profiles before
702 and after DAE filtering confirmed noise suppression without loss of meaningful neural content.
703 Overall, this preprocessing pipeline ensured both robustness and interpretability in downstream
704 learning tasks.
705

702
703
704
705
706
707
708
709
710
711
712
713



738 **Figure 3:** Multidomain visualization of EEG signal properties for the first subject (S001R04). (A) Autocor-
739 relation plots across all 64 EEG channels, revealing temporal dependencies in the signal. (B) Signal-to-Noise
740 Ratio (SNR) enhancement after filtering (1–40 Hz), highlighting boosted channel quality. (C) Power Spectral
741 Density (PSD) highlighting the frequency content with annotated canonical EEG bands (delta, theta, alpha, beta,
742 gamma). (D) Mean PSD across all channels. (E) Band-specific EEG power (extracted for each canonical band)
743 across channels. (F) Continuous wavelet transform of the FC5 channel, illustrating time-frequency dynamics.
744 (G) Summary of descriptive statistics (mean, median, variance, standard deviation) across EEG channels. (H)
745 Mean EEG amplitude computed per channel to assess overall signal strength distribution.
746
747
748
749
750
751
752
753
754
755

756 A.2 PIECEWISE LINEAR RNNs
757

758 A Piecewise-Linear RNN (PLRNN) is a ReLU-based recurrent architecture designed to model
759 nonlinear DS through piecewise linear state transitions. A PLRNN, as introduced by [60], is defined
760 by

$$761 \quad \mathbf{h}_t = W_h^{(1)} \mathbf{h}_{t-1} + W_h^{(2)} \sigma(\mathbf{h}_{t-1}) + \mathbf{b}_0 + W_x \mathbf{x}_t, \quad (8)$$

763 where $\mathbf{h}_t \in \mathbb{R}^M$ is the latent state, $\sigma(\cdot)$ denotes the ReLU function applied element-wise, $W_h^{(1)} \in$
764 $\mathbb{R}^{M \times M}$ is a diagonal autoregressive matrix, $W_h^{(2)} \in \mathbb{R}^{M \times M}$ captures recurrent interactions, $\mathbf{b}_0 \in \mathbb{R}^M$
765 is a bias vector, and $W_x \in \mathbb{R}^{M \times N}$ modulates external input $\mathbf{x}_t \in \mathbb{R}^N$. By combining linear
766 autoregressive components with rectified activations, PLRNNs are well-suited for analyzing stability
767 and complexity in time series, including computation of LEs. Several extensions have been proposed
768 to increase their expressiveness and stability. [61] extended this architecture by replacing the ReLU
769 with a linear combination of shifted ReLUs, yielding the dendritic PLRNN (dendPLRNN)

$$771 \quad \mathbf{h}_t = W_h^{(1)} \mathbf{h}_{t-1} + W_h^{(2)} \sum_{j=1}^J \alpha_j \sigma(\mathbf{h}_{t-1} - \mathbf{b}_j) + \mathbf{b}_0 + W_x \mathbf{x}_t, \quad (9)$$

774 where α_j, \mathbf{b}_j are learned slope-threshold pairs that increase nonlinearity flexibility. Building on this,
775 [47] proposed the shallow PLRNN (shPLRNN), which introduces an additional linear transformation
776 before the ReLU

$$777 \quad \mathbf{h}_t = W_h^{(1)} \mathbf{h}_{t-1} + W_h^{(2)} \sigma(W_h^{(3)} \mathbf{h}_{t-1} + \mathbf{b}_1) + \mathbf{b}_0 + W_x \mathbf{x}_t, \quad (10)$$

779 where $W_h^{(2)}$ and $W_h^{(3)}$ are rectangular weight matrices and \mathbf{b}_1 is a hidden-layer bias. To ensure
780 stability, a clipped variant of the shPLRNN was introduced to restrict unbounded activations

$$781 \quad \mathbf{h}_t = W_h^{(1)} \mathbf{h}_{t-1} + W_h^{(2)} [\sigma(W_h^{(3)} \mathbf{h}_{t-1} + \mathbf{b}_1) - \sigma(W_h^{(3)} \mathbf{h}_{t-1})] + \mathbf{b}_0 + W_x \mathbf{x}_t, \quad (11)$$

783 which bounds state transitions under conditions on $W_h^{(1)}$ [47]. Recently, there has been increasing
784 interest in computing Lyapunov spectra from empirical time series using RNN-based approaches [62,
785 63, 64]. While estimating only the maximum LE is relatively tractable with RNN models, computing
786 the full Lyapunov spectrum – which provides a more complete characterization of system stability
787 and attractor geometry – is more challenging. Here, we leverage (clipped) shPLRNNs to estimate the
788 entire Lyapunov spectrum from EEG time series.

789 A.3 THE KAPLAN-YORKE DIMENSION
790

791 The Kaplan–Yorke (KY) dimension is a commonly used estimate of the fractal dimension of an
792 attractor, derived from its LEs. It provides a real-valued measure of how many directions in phase
793 space exhibit exponential divergence.

794 Suppose an n -dimensional Dynamical System (DS) has ordered LEs

$$796 \quad \lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_n. \quad (12)$$

797 Let j be the largest index such that the sum of the first j LEs is non-negative

$$799 \quad \sum_{i=1}^j \lambda_i \geq 0 \quad \text{and} \quad \sum_{i=1}^{j+1} \lambda_i < 0. \quad (13)$$

802 Then the KY dimension is defined as

$$803 \quad D_{KY} = j + \frac{\sum_{i=1}^j \lambda_i}{|\lambda_{j+1}|}. \quad (14)$$

806 This dimension gives a real-valued measure of how many directions in phase space are expanding
807 and partially expanding. For chaotic systems, D_{KY} is typically non-integer and reflects the fractal
808 structure of the attractor. These tools are particularly relevant when analyzing the stability and
809 richness of learned representations in machine learning models, especially those involving recurrent
dynamics or continuous-time neural systems.

810 **Discrete vs. Continuous-time DS** In *continuous-time* systems, motion along the flow direction is
 811 neutral, leading to one zero LE even for periodic orbits. In contrast, *discrete-time* systems (maps)
 812 evolve in jumps, and periodic orbits consist of a finite number of fixed points cycling through. There
 813 is no neutral direction—only stable or unstable directions. Therefore, for a stable periodic orbit in a
 814 map, all LEs are negative, and

$$D_{KY} = 0. \quad (15)$$

815
 816
 817
 818
Table 6: Classification of D_{KY} for continuous-time DS (flows)

Behavior	Description	KY Dimension
Fixed Point	No motion	0
Periodic Orbit	Closed loop (1 zero exponent)	1
Quasiperiodic Orbit	Motion on torus (≥ 1 zero exponents)	Integer (≥ 2)
Chaos	Strange attractor	> 1 (non-integer)

820
 821
 822
 823
 824
 825
Table 7: Classification of D_{KY} for discrete-time DS (maps)

Behavior	Description	KY Dimension
Fixed Point	Constant point	0
Periodic Orbit	Repeating points (no zero exponent)	0
Quasiperiodic Orbit	Repeating torus-like structure	Integer (≥ 1)
Chaos	Fractal set	> 1 (non-integer)

830 A.4 DYNAMICAL ANALYSIS OF EEG SIGNALS

831 The Lyapunov spectrum and KY dimension reflect the underlying structure and complexity of
 832 brain dynamics in a data-driven way. The KY dimension indicates the number of effective degrees
 833 of freedom in the EEG dynamics. A higher dimension reflects greater complexity, potentially
 834 corresponding to cognitive activity or task engagement. When the sum of LEs is negative, the system
 835 is dissipative and contracts onto a lower-dimensional attractor, which is consistent with typical
 836 biological behavior. This was also consistently observed in our experiments. Different types of
 837 attractors observed in EEG dynamics—such as fixed points, periodic orbits, quasiperiodic tori, or
 838 chaotic orbits—yield qualitatively different Lyapunov spectra and corresponding KY dimensions.
 839 These dynamical regimes enable interpretation of neural activity in terms of stability, rhythmicity,
 840 and dimensional complexity [15, 18]. See Sect. 3.1 and Appx. A.3 for further methodological details.
 841 Table 8 summarizes the key interpretations.

842
 843
 844
 845
 846
 847
 848
Table 8: EEG interpretations from Lyapunov spectrum and KY dimension

Attractor Type	KY Dimension	EEG/BCI Interpretation
Fixed Point	$D_{KY} = 0$	Strongly damped state, minimal neural activity
Periodic Orbit (k-Cycle)	$D_{KY} = 0$	EEG cycles through finite patterns (e.g., alpha bursts)
Quasiperiodic Motion	Integer $D_{KY} = 1, 2, \dots$	Rhythmic oscillations (e.g., resting, sleep stages)
Chaotic Dynamics	Non-integer $D_{KY} > 1$	High-dimensional, complex EEG under cognitive load

850 A.5 HARD-DENOISING WITH SNR

851
 852 Denoising is the process of removing or reducing noise from a signal to enhance its quality. SNR is a
 853 key metric used to assess the effectiveness of denoising. A higher SNR indicates a cleaner signal
 854 with less noise.

864
865

A.5.1 SNR-BASED DENOISING BY CHANNEL THRESHOLDING

866
867
868
869

In this approach, denoising is achieved by discarding EEG channels with low SNR, under the assumption that such channels contribute primarily noise rather than meaningful signal. After computing the SNR for each EEG channel, a threshold (e.g., 8 dB) is applied to retain only high-quality channels. Channels with SNR below this threshold are excluded from further analysis.

870
871

Mathematically, for each channel c , the SNR is computed as:

872
873
874
875

$$\text{SNR}_c = 10 \cdot \log_{10} \left(\frac{\sum_t s_c(t)^2}{\sum_t (s_c(t) - \hat{s}_c(t))^2} \right)$$

876
877

where $s_c(t)$ denotes the original (possibly noisy) signal at time t for channel c , and $\hat{s}_c(t)$ represents a denoised or estimated version of that signal (e.g., obtained through filtering).

878
879

Only channels satisfying the condition

880
881

$$\text{SNR}_c \geq \theta$$

882
883

are retained, where θ is a predefined threshold (e.g., $\theta = 8$ dB). The set of denoised channels is then defined as:

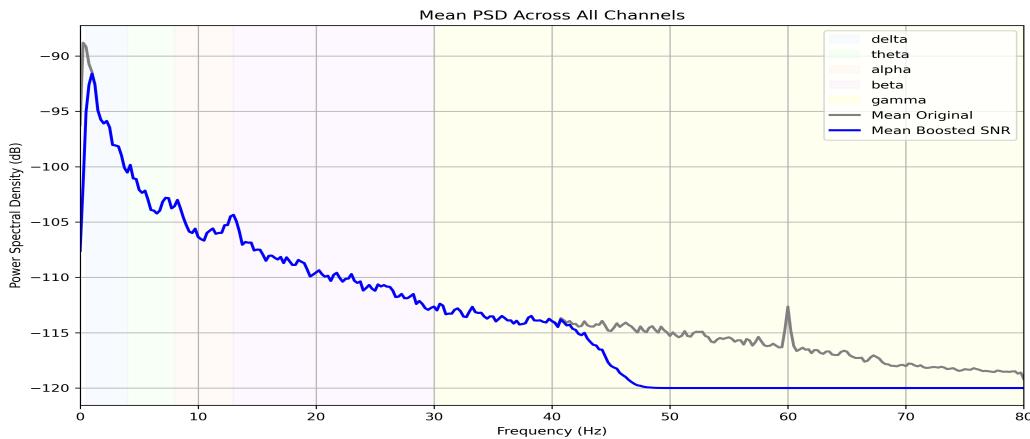
884
885
886

$$C_{\text{denoised}} = \{c \in C : \text{SNR}_c \geq \theta\}$$

887
888
889
890

This threshold-based method acts as a spatial denoising step by excluding low-SNR channels and helps improve the quality of the input data without introducing artifacts that might arise from aggressive signal filtering.

891



895

Figure 4: Mean PSD Across 64 EEG Channels (in dB). The plot shows the mean PSD computed across all 64 EEG channels, comparing the original signal (gray line) and a boosted SNR version (blue line). The x-axis represents frequency (0–80 Hz), while the y-axis shows PSD in decibels (dB). Colored vertical bands denote canonical EEG frequency ranges: Delta (0.5–4 Hz), Theta (4–8 Hz), Alpha (8–13 Hz), Beta (13–30 Hz), Gamma (30–80 Hz).

896

Figure 4 provides a spectral summary of EEG activity by averaging the PSD across all channels. It illustrates how the spectral content varies across frequency bands and how denoising or SNR boosting affects the signal. Key Observations: Delta and Theta Bands (0.5–8 Hz): Show high power in both the original and boosted PSD, consistent with dominant low-frequency EEG activity often associated with sleep and drowsiness. The boosted version (blue) has slightly suppressed power, indicating removal of low-frequency noise components. PSD in the Alpha Band (8–13 Hz) suggests enhancement of rhythmic neural activity typical of the alpha band (e.g., during eyes-closed resting state), and successful separation from low-frequency drifts. The denoising does not come into the

918 effects until around 40 Hz and above. The boosted PSD sharply drops after 45 Hz and suppresses
 919 high-frequency noise, especially removing the 60 Hz artifact, which validates the efficacy of the
 920 denoising method or filter used. Boosted SNR vs. Original: Across the spectrum, the boosted SNR
 921 curve maintains meaningful neural signals (especially in the alpha and beta bands) while reducing
 922 noise, particularly in the gamma band and beyond. The flatter tail beyond 50 Hz in the blue line
 923 reflects effective noise floor suppression. Therefore, denoising autoencoder works better to denoise
 924 the EEG signal. This PSD overlay visualization includes spectral comparisons across all channels.
 925

926 A.6 MULTIDOMAIN CHARACTERIZATION OF EEG SIGNAL

928 A.6.1 BAND POWER ANALYSIS WITH ELEVATED DELTA ACTIVITY

929 A band power diagram visualizes the power spectral density (PSD) of EEG signals across standard
 930 frequency bands—delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), and gamma
 931 (30–100 Hz). Elevated power in the delta band, especially when clearly dominant over other bands,
 932 may indicate specific neurophysiological or cognitive states.

933 Mathematically, the power in a given frequency band $B = [f_1, f_2]$ for a channel c is computed from
 934 the signal $s_c(t)$ using the Fourier transform or Welch’s method:

$$937 \quad P_c(B) = \int_{f_1}^{f_2} |S_c(f)|^2 \, df$$

940 where $S_c(f)$ is the Fourier transform of $s_c(t)$. If the delta power satisfies:

$$942 \quad P_c(\delta) \gg P_c(\theta), P_c(\alpha), P_c(\beta)$$

944 for a subset of channels, this is reflected visually in the band power diagram as distinctively taller bars
 945 in the delta range. This can help identify channels or regions with abnormal slow-wave dominance.

947 Such a pattern often warrants further investigation, particularly when observed in awake, task-related
 948 EEG sessions.

950 A.6.2 VISUALIZATION OF SIGNALS PER CHANNEL

951 The visualization of signals per channel in 64-channel EEG data typically displays time-series plots
 952 arranged in a grid layout, with each subplot representing one channel. This format allows for quick
 953 inspection of spatial and temporal patterns across the scalp, including artifacts, amplitude variations,
 954 and rhythmic activity. The channels are often labeled according to the 10-20 system, allowing the
 955 identification of region-specific dynamics (e.g., frontal or occipital activity). Such visualizations are
 956 essential for preliminary quality checks and identifying abnormal or noisy channels before further
 957 analysis.

959 A.6.3 SNR IN EEG DATA

961 The SNR in EEG data quantifies the relative strength of the neural signal compared to background
 962 noise, and it serves as a key indicator of data quality. SNR is often expressed in decibels (dB), where
 963 a higher value indicates a cleaner signal.

964 Mathematically, for a signal $s(t)$ and its denoised or estimated version $\hat{s}(t)$, the SNR in decibels is
 965 computed as:

$$967 \quad \text{SNR (dB)} = 10 \cdot \log_{10} \left(\frac{\sum_t \hat{s}(t)^2}{\sum_t (s(t) - \hat{s}(t))^2} \right)$$

971 Here, $\hat{s}(t)$ approximates the true signal, and the term $s(t) - \hat{s}(t)$ captures the noise component. This
 metric helps identify noisy channels or time segments for removal or correction.

972 A.6.4 ON DESCRIPTIVE STATISTICS OF EEG DATA
973

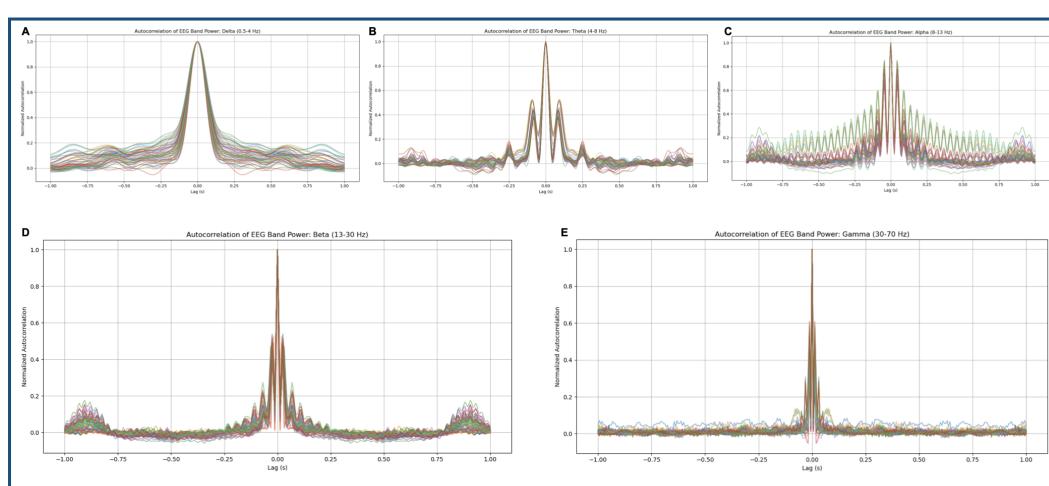
974 Hjorth parameters (activity, mobility and complexity) provide time-domain features that reflect
975 signal power, frequency content, and dynamic behavior of EEG signals, making them valuable for
976 characterizing brain states. Mean, median, variance, and standard deviation offer insights into the
977 central tendency and dispersion of EEG amplitudes, which helps in identifying abnormalities or
978 trends in brain activity. Skewness and kurtosis measure the asymmetry and peakedness of the EEG
979 signal distribution, respectively, aiding in the detection of outliers or unusual brain patterns. Together,
980 these statistical and Hjorth features enhance the interpretability and effectiveness of EEG signal
981 classification, especially in clinical and cognitive studies. They serve as foundational tools for both
982 traditional machine learning and deep learning feature extraction pipelines.

983 A.6.5 AUTOCORRELATION ANALYSIS
984

985 Autocorrelation analysis for EEG data involves examining the correlation of a signal with itself at
986 different time lags. This helps identify repeating patterns, periodicities, and temporal dependencies
987 within the EEG signal, providing insights into brain activity and dynamics.

988 Autocorrelation can highlight rhythmic activities in EEG, such as alpha, beta, or theta waves,
989 which are associated with different brain states like relaxation, alertness, or sleep. It can help
990 distinguish between rhythmic brain activity and random noise, as rhythmic signals tend to have higher
991 autocorrelation at certain lag times (time shifts).

992 Autocorrelation can be used to compare EEG signals under different conditions, such as eyes open vs.
993 eyes closed, or during mental tasks. Changes in autocorrelation patterns can indicate shifts in brain
994 activity related to cognitive processes or changes in alertness.



1014 **Figure 5:** Autocorrelation of EEG band power across frequency bands. Autocorrelation plots of normalized
1015 EEG band power are shown for five canonical frequency bands across multiple EEG channels or subjects:(A)
1016 Delta (0.5–4 Hz), (B) Theta (4–8 Hz), (C) Alpha (8–13 Hz), (D) Beta (13–30 Hz), and (E) Gamma (30–70 Hz).
1017 Each line represents the autocorrelation of band power time series for a single channel/subject, computed over a
1018 ± 1 second lag window. The y-axis shows the normalized autocorrelation, and the x-axis represents time lag (in
1019 seconds).

1020 Figure 5 presents a comparison of the temporal autocorrelation properties of EEG band power across
1021 five standard frequency bands. Autocorrelation provides insight into how band power values relate to
1022 themselves over time, helping to quantify rhythmic or sustained activity in different neural frequency
1023 ranges.

1024 *Panel A: Delta Band (0.5–4 Hz).* It shows a strong, sharp central peak at lag 0, with relatively low
1025 values at non-zero lags. It also suggests that delta band power has low temporal periodicity and

1026 relatively short memory, consistent with slow, non-rhythmic neural activity often associated with
 1027 deep sleep or unconsciousness.
 1028

1029 *Panel B: Theta Band (4–8 Hz).* It also shows a central peak but with more evident secondary peaks
 1030 and a broader central structure. It indicates a higher level of temporal structure and periodicity than
 1031 delta, which is aligned with theta’s role in tasks involving memory and navigation.
 1032

1033 *Panel C: Alpha Band (8–13 Hz).* It displays clear oscillatory structure in the autocorrelation, with
 1034 periodic peaks symmetric around lag 0. It reflects the strong rhythmic nature of alpha oscillations,
 1035 typically associated with relaxed wakefulness and visual attention. This periodicity suggests that
 1036 alpha-band power modulations have a sustained and cyclical character.
 1037

1038 *Panel D: Beta Band (13–30 Hz).* It is similar to theta, it shows a sharp central peak with some
 1039 weak rhythmic fluctuations. The pattern indicates less prominent oscillatory structure but some
 1040 short-lived temporal dependencies. Beta activity is often linked to motor control and active cognitive
 1041 engagement.
 1042

1043 *Panel E: Gamma Band (30–70 Hz).* It exhibits the narrowest and sharpest peak centered at zero
 1044 lag, with minimal structure at non-zero lags. It also implies that gamma-band power is transient
 1045 and uncorrelated over time, reflecting rapid, high-frequency bursts often involved in perceptual and
 1046 attention-related processes.
 1047

1048 A.7 DENOISING AUTOENCODER (DAE)

1049 The denoising autoencoder was configured with a total of four hidden layers and no dropout regu-
 1050 larization. The model was trained for 150 epochs using the Adam optimizer with a learning rate
 1051 of 1×10^{-3} and a mini-batch size of 64. A latent space dimensionality of 16 was used to capture
 1052 a compact representation of the input signal. The loss function was defined as a weighted linear
 1053 combination of SmoothL1 loss and spectral loss, with weights $\alpha = 0.8$ and $\beta = 0.2$, respectively, in
 1054 order to jointly preserve the temporal and spectral characteristics of the signal during reconstruc-
 1055 tion.
 1056

1057 A.7.1 SMOOTHL1 LOSS & SPECTRAL LOSS:

1058 (A) SmoothL1Loss is a combination of L_1 and L_2 loss, used to provide robustness to outliers
 1059 while maintaining differentiability around zero. It introduces a transition point controlled by a
 1060 hyperparameter $\beta > 0$ (here $\beta = 0$), and is defined as, Let $x = \hat{y} - y$. The element-wise SmoothL1
 1061 loss is:
 1062

$$\ell(x) = \begin{cases} 0.5 \cdot \frac{x^2}{\beta}, & \text{if } |x| < \beta \\ |x| - 0.5 \cdot \beta, & \text{otherwise} \end{cases}$$

1063 The final loss with a reduction strategy is considered as default none.
 1064

1065 (B) Spectral loss computes the difference between the frequency-domain representations (e.g., STFT)
 1066 of predicted and target signals, encouraging the model to preserve spectral characteristics. Let $(\mathcal{S}(\cdot))$
 1067 denote the Short-Time Fourier Transform (STFT), and (\hat{y}, y) be the predicted and target signals
 1068 respectively. Then the spectral loss is defined as:
 1069

$$\mathcal{L}_{\text{Spectral}} = \|\mathcal{S}(\hat{y}) - \mathcal{S}(y)\|_p$$

1070 where $(\|\cdot\|_p)$ denotes the L_p -norm (typically $(p = 1)$ or $(p = 2)$).
 1071

1072 A.8 MULTITASK TRANSFORMER DETAILS

1073 Architecture specifics: tokenization, positional encoding, attention configuration, and hyperparam-
 1074 eters (number of layers, type of attention, patching if used)
 1075

1076 The Transformer encoder comprises L self-attention layers, each including Multi-Head Self-Attention
 1077 (MHSA), layer normalization, and Feed-Forward Networks (FFNs). The EEG sequence is treated as
 1078 a time series of vectors from each channel. Before feeding into the Transformer, the output of the
 1079 convolutional stem is reshaped to form a sequence of T' tokens of dimension d per sample. Positional
 1080

1080 encodings (either sinusoidal or learnable) are added to preserve temporal order. Each MHSA block
 1081 consists of H heads, with scaled dot-product attention computed as:
 1082

$$1083 \text{Attention}(Q, K, V) = \text{softmax} \left(\frac{QK^\top}{\sqrt{d_k}} \right) V$$

1085 where Q , K , and V are learned projections of the input token embeddings.
 1086

1087 The architecture is optimized using a joint loss across all three heads. Task gradients flow back to
 1088 the shared encoder, encouraging the model to learn reusable representations. Optionally, layer-wise
 1089 attention scores or feature maps can be visualized for interpretability.
 1090

1091 A.9 NT-XENT CONTRASTIVE LOSS

1093 Let z_i and z_j be the normalized embeddings of two augmented views of the same EEG segment
 1094 (positive pair), and let $\tau > 0$ be a temperature parameter. Define cosine similarity as:
 1095

$$1096 \text{sim}(\mathbf{u}, \mathbf{v}) = \frac{\mathbf{u}^\top \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}$$

1099 Then, for a batch of $2N$ augmented embeddings (i.e., N samples, each with two views), the contrastive
 1100 loss for a positive pair (i, j) is:
 1101

$$1102 \mathcal{L}_{i,j} = -\log \frac{\exp(\text{sim}(z_i, z_j)/\tau)}{\sum_{k=1}^{2N} 1_{[k \neq i]} \exp(\text{sim}(z_i, z_k)/\tau)}$$

1105 The full NT-Xent loss over the batch is computed as:
 1106

$$1108 \mathcal{L}_{\text{NT-Xent}} = \frac{1}{2N} \sum_{k=1}^N (\mathcal{L}_{2k-1, 2k} + \mathcal{L}_{2k, 2k-1})$$

1111 The Normalized Temperature-Scaled Cross-Entropy Loss (NT-Xent), used in SimCLR and many
 1112 contrastive frameworks, operates on the embeddings z from an encoder (typically a neural network
 1113 like a Transformer or CNN). It does not require additional features, only the embeddings of augmented
 1114 views of the same sample (positives) and of different samples (negatives). In this implementation, a
 1115 simple noise-based augmentation strategy is used to generate two distinct views of the same input
 1116 sample. Specifically, Gaussian noise is added independently to each copy of the original input to
 1117 obtain two augmented versions.
 1118

1119 These noisy versions represent different but semantically consistent views of the same underlying data.
 1120 This technique is particularly suitable for non-image domains such as EEG signals, time series, or
 1121 sensor data, where conventional spatial augmentations (like cropping or flipping) are not meaningful.
 1122

1123 The two augmented inputs are then passed through a shared encoder network and a projection head
 1124 to produce (two) embeddings. These embeddings are compared using a contrastive loss function,
 1125 such as the Normalized Temperature-scaled Cross Entropy Loss (NT-Xent Loss). The NT-Xent
 1126 loss computes cosine similarity between all pairs of embeddings and applies temperature scaling to
 1127 control the concentration of the softmax distribution.
 1128

1129 The temperature parameter τ plays a crucial role in this process. Lower values of τ result in sharper
 1130 probability distributions, making the model focus more strongly on the most similar (positive) pairs.
 1131 In this implementation, a τ value of 0.5 is used, which balances the contrast between positive and
 1132 negative pairs and is commonly adopted in SimCLR-style training setups.
 1133

1134 The advantages of Noise-Based Augmentation are as follows: 1. It is easy to implement and
 1135 computationally inexpensive. 2. It is effective for continuous and structured data types (e.g., EEG,
 1136 time series) where traditional augmentations are not applicable. 3. It preserves semantics maintaining
 1137 the overall meaning of the signal while introducing sufficient variability for contrastive training.
 1138

1134 A.9.1 MORE ON MODEL ARCHITECTURE
 1135
 1136 Our model consists of three main components (see Figure 1):
 1137
 1138 1 Shared encoder backbone:
 1139 – A lightweight convolutional stem extracts short-range spatial-temporal features from
 1140 the EEG input tensor (e.g., shape [batch_size, channels, time]).
 1141 – These features are passed through a Transformer encoder that captures long-range
 1142 dependencies and inter-channel relationships.
 1143 2 Task-specific heads:
 1144 – *Classification head*: Fully connected layers that output the probability of real vs.
 1145 imagery motor task.
 1146 – *Chaos detection head*: A parallel classifier predicting whether the EEG signal exhibits
 1147 chaotic or non-chaotic dynamics based on precomputed Lyapunov labels.
 1148 – *Contrastive projection head*: A projection MLP that maps encoder features to a latent
 1149 space where contrastive loss is applied between positive (augmented) views.
 1150

1151 A.9.2 TRAINING OBJECTIVES

1152 The multi-task transformer for EEG signal is trained using a multi-objective loss function that jointly
 1153 optimizes three distinct tasks: MI classification, chaos detection, and contrastive representation
 1154 learning. Each task-specific head contributes to the total loss, and their relative importance is
 1155 controlled via weighting coefficients. For MI classification, we use the standard cross-entropy loss,
 1156 denoted as $\mathcal{L}_{\text{class}}$, to predict whether the trial corresponds to a real or imagery motor task. The chaos
 1157 detection task uses binary cross-entropy loss $\mathcal{L}_{\text{LE-based}}$ to classify EEG trials as either chaotic or
 1158 non-chaotic, based on labels obtained from an unsupervised DS classifier. To promote robust and
 1159 invariant feature learning, the model also incorporates a contrastive learning objective, $\mathcal{L}_{\text{contrastive}}$,
 1160 using the NT-Xent loss applied to positive pairs generated through signal augmentation. The overall
 1161 training objective is a weighted combination of these three loss components:

$$\mathcal{L}_{\text{total}} = \lambda_c \cdot \mathcal{L}_{\text{class}} + \lambda_d \cdot \mathcal{L}_{\text{LE-based}} + \lambda_s \cdot \mathcal{L}_{\text{contrastive}},$$

1162 where λ_c , λ_d , and λ_s are hyperparameters controlling the contribution of each task. These weights
 1163 can be tuned based on task priority, dataset imbalance, or performance sensitivity. During training,
 1164 for each mini-batch, the model receives both the original and augmented EEG segments. The
 1165 classification and chaos heads are optimized using their respective targets, while the contrastive head
 1166 operates on the projections of the two augmented views. This joint objective enables the model
 1167 to learn task-relevant features while encouraging generalizable and noise-invariant representations
 1168 suitable for downstream EEG analysis tasks.
 1169

1170 A.10 SUPERVISED TRAINING TASK: REAL VS. IMAGERY CLASSIFICATION

1171 For the real vs. imagery classification task, the model is trained using a supervised learning approach
 1172 where each data point is labeled with either the *Real* or *Imagery* class. The training process for this
 1173 task follows a standard classification pipeline:
 1174

1. Data Input: Epochs of EEG data are fed to the network, with each sample corresponding to
 1177 one of the two classes (Real or Imagery).
2. Loss Function: Cross-entropy loss is used as the objective function for this binary classifica-
 1179 tion task.
3. Training Steps: We apply the AdamW optimizer with the specified learning rate. The model
 1181 learns to discriminate between real and imagery brain activity patterns over the course of 300
 1182 epochs, with performance evaluated periodically on a validation set to ensure convergence
 1183 and avoid overfitting.

1184 A.11 OPTIMIZATION AND TRAINING PROCEDURE

1185 The multitask Transformer of EEG signals is trained end-to-end using the Adam optimizer with
 1186 weight decay (AdamW), a fixed learning rate of 1×10^{-3} , and early stopping based on validation

1188 loss to prevent overfitting. The training loop runs for up to 300 epochs, with performance monitored
 1189 at each step. Classification and chaos detection losses are computed using the cross-entropy loss
 1190 function, while contrastive learning employs the NT-Xent loss with a temperature parameter of 0.5.
 1191 The training objective combines these losses in a weighted sum to jointly optimize the multitask
 1192 architecture. Data is loaded in mini-batches using a custom class that produces augmented EEG
 1193 views on-the-fly to support contrastive training.

1194 During each iteration, the model receives batches of EEG tensors and their corresponding labels,
 1195 including real vs. imagined class labels and chaos vs. non-chaotic labels. In parallel, synchronized
 1196 augmentations are applied to generate contrastive pairs directly within each batch. These paired
 1197 representations are then used to compute the contrastive loss. The optimizer updates the model
 1198 parameters after backpropagating the combined loss. Model performance is evaluated using standard
 1199 classification metrics such as accuracy and F1-score, while the quality of learned representations is
 1200 assessed through a downstream linear probe. This training strategy ensures both label-supervised and
 1201 self-supervised components contribute to robust feature learning from multi-channel EEG data.

1202 1203 A.12 EXPERIMENTAL SETUP

1204 We implemented and compared the following models

- 1207 1208 • Baseline 1: A vanilla RNN model with a classification head for MI classification (real vs
 1209 imagery motor). This model serves as a simple recurrent-based approach to MI classification.
- 1210 1211 • Proposed semi-supervised Multitask Framework: This architecture incorporates multiple
 1212 components aimed at handling diverse tasks. It includes: 1. A DAE as a unsupervised
 1213 preprocessing layer to clean and denoise the EEG signals, removing noise and artifacts
 1214 while preserving essential neural features. 2. A Transformer encoder to capture long-
 1215 range temporal dependencies in the EEG signal, leveraging self-attention mechanisms to
 1216 understand complex signal patterns across time. 3. A shared CNN backbone to extract
 1217 spatial features, which, combined with the temporal modeling capabilities of the Transformer,
 1218 provides a strong feature representation of the EEG data.
- 1219 1220 • Three important output heads for different tasks: a. Motor Task Classification: Real vs
 1221 imagery MI supervised classification. b. Unsupervised Chaos Detection: Identifying chaotic
 1222 vs non-chaotic signals. c. Contrastive Projection: A self-supervised learning task based
 1223 on the SimCLR-style contrastive loss. Each task-specific head was optimized with its
 1224 corresponding loss: cross-entropy for classification and chaos detection, and NT-Xent loss
 1225 for the contrastive projection.
- 1226 1227 • Standalone System with Transformer and CNN Backbone: We also implemented a stan-
 1228 alone system that only utilizes the Transformer encoder in combination with a CNN
 1229 backbone. This configuration was used for two specific tasks: 1. MI Classification: Classi-
 1230 fying real vs imagery MI. 2. Chaos Detection: Classifying chaotic vs non-chaotic signals.
 1231 This standalone model was designed to explore the capabilities of the Transformer and
 1232 CNN architecture, where the CNN extracts spatial features and the Transformer models the
 1233 temporal dependencies. Unlike the full multitask model, this setup lacks the contrastive
 1234 learning component but serves as a simpler comparison for understanding the contribution
 1235 of temporal modeling (via Transformer) and spatial feature extraction (via CNN) in EEG
 1236 classification tasks. It is noteworthy that while CNNs alone can effectively capture spatial
 1237 patterns, they are limited in capturing long-range temporal dependencies, which is why the
 1238 addition of the Transformer encoder significantly enhances the model’s ability to process
 1239 time series data.

1236 1237 A.13 TRAINING DETAILS

1238 The training protocol for our model is designed to accommodate both the supervised and unsupervised
 1239 components of the task, ensuring efficient learning for both the real vs. imagery classification and
 1240 the chaos vs. non-chaos tag generation. Below, we describe the overall training setup, including the
 1241 number of epochs, batch size, optimizers, and how the training is conducted for each component.

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

A.13.1 GENERAL TRAINING SETUP

- Epochs: We conduct training for 300 epochs in total. This duration is sufficient for convergence based on preliminary experiments, allowing the model to effectively learn the task-specific features in both supervised and unsupervised settings.
- Batch Size: A batch size of 32 is used for all tasks, providing a balance between memory efficiency and gradient update stability. This batch size allows the model to process a reasonable number of samples per iteration while fitting within the memory constraints of our GPU setup.
- Optimizers: We employ the AdamW optimizer, a variant of Adam that includes weight decay for improved generalization and better control over regularization. In some experiments, we also use the standard Adam optimizer depending on the task and configuration. Both optimizers have been tuned with a learning rate of 1e-4 to ensure smooth convergence during training.

A.13.2 OUR AUXILIARY SUPERVISION TRAINING TASK

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1. **Tag Generation:** Chaos/non-chaos tags are generated from the computed LEs, quantifying sensitivity to initial conditions. These serve as auxiliary supervision signals.
2. **Multitask Learning:** The model is trained to predict both motor imagery labels (real vs. imagery) and chaos tags simultaneously, supported by a shared CNN–Transformer encoder.
3. **Loss Function:** The joint objective combines cross-entropy loss for motor imagery, binary cross-entropy for chaos prediction, and an NT-Xent contrastive loss on augmented trial pairs. Loss weights are tuned to balance task contributions.
4. **Training Steps:** The DAE module is first pretrained for 150 epochs. The full MTL model is then trained for 200–250 epochs using AdamW with early stopping based on validation F1. Weight decay and gradient clipping are applied for regularization.

1274

1275

1276

1277

This protocol enables the model to integrate task-specific supervision with auxiliary chaos dynamics, improving generalization and robustness under cross-subject evaluation.

A.13.3 THREE OUTPUT HEADS FOR DIFFERENT TASKS:

1278

1279

1280

1281

1282

1283

1284

1285

Each task-specific head was optimized with its corresponding loss: cross-entropy for classification and chaos detection, and NT-Xent loss for the contrastive projection.

A.13.4 STANDALONE SYSTEM WITH TRANSFORMER AND CNN BACKBONE:

1286

1287

1288

1289

1290

1291

1292

1293

We also implemented a standalone system that only utilizes the Transformer encoder in combination with a CNN backbone. This configuration was used for two specific tasks:

- MI Classification: Classifying real vs imagery MI.
- Chaos Detection: Classifying chaotic vs non-chaotic signals.

1294

1295

This standalone model was designed to explore the capabilities of the Transformer and CNN architecture, where the CNN extracts spatial features and the Transformer models the temporal dependencies. Unlike the full multitask model, this setup lacks the contrastive learning component but serves as

1296 a simpler comparison for understanding the contribution of temporal modeling (via Transformer)
 1297 and spatial feature extraction (via CNN) in EEG classification tasks. It is noteworthy that while
 1298 CNNs alone can effectively capture spatial patterns, they are limited in capturing long-range temporal
 1299 dependencies, which is why the addition of the Transformer encoder significantly enhances the
 1300 model’s ability to process time series data.

1301

1302 A.14 FURTHER DETAILS ON CHAOS LABELING

1303

1304

1305 A.14.1 AGREEMENT COMPUTATION BETWEEN ENERGY- & PLRNN- BASED 1306 CHAOS/NON-CHAOS LABELING

1307 Agreement computation through epoch-level majority voting involves dividing the EEG signal into
 1308 multiple short epochs (e.g., 2–5 seconds each). For each epoch, both Energy -based and PLRNN
 1309 independently assign a chaos label (chaotic or non-chaotic). A majority label is then determined per
 1310 method by aggregating labels across all epochs within a trial or session. Agreement between the two
 1311 methods is computed by comparing their majority labels using metrics like Cohen’s Kappa or F1
 1312 score. We found a high agreement score of Cohen’s Kappa: 0.90.

1313

A.14.2 CHAOS LABELING: LE ANALYSIS USING SHPLRNN

1314

1315 For shPLRNNs, we utilize a custom implementation of the algorithm described in [65] to compute
 1316 the full Lyapunov spectrum. This method involves evaluating the product of Jacobian matrices along
 1317 trajectories of length T , yielding the Lyapunov exponents via:

$$1319 \quad \lambda_i = \lim_{T \rightarrow \infty} \frac{1}{T} \log \sigma_i \left(\prod_{t=0}^{T-1} \mathbf{J}_{T-t} \right), \quad (16)$$

1320 where σ_i denotes the i -th singular value of the Jacobian product. To maintain numerical stability
 1321 during computation, we employ repeated re-orthogonalization of the evolving tangent space using
 1322 QR decomposition. Additionally, to ensure accurate convergence toward the Lyapunov spectrum
 1323 associated with the system’s invariant set, initial transients are omitted from the evaluation of
 1324 Equation (16).

1325 A negative sum of the Lyapunov spectrum indicates that the system is dissipative, with trajectories
 1326 converging toward an attractor. Within this regime, the sign of the maximum LE serves as a key
 1327 indicator of the system’s dynamical nature:

- 1328 • A **negative** maximum LE indicates *periodic* dynamics,
- 1329 • A **zero** maximum LE is characteristic of *quasiperiodic* behavior, and
- 1330 • A **positive** maximum LE suggests the presence of *chaotic* dynamics.

1331 A positive sum of the LEs signifies that the system exhibits unstable, diverging behavior, with
 1332 trajectories moving away from any bounded region in state space. This typically suggests the absence
 1333 of a well-defined attractor.

1334 For the purpose of labeling, we define:

- 1335 • **Chaotic:** When the sum is negative and the maximum LE is positive.
- 1336 • **Non-chaotic:** When the sum is negative and the maximum LE is either negative or zero
 1337 (periodic or quasiperiodic attractor). Also when the sum is non-negative.

1338 This framework allows for robust classification of system dynamics into chaotic and non-chaotic
 1339 regimes based on the full Lyapunov spectrum. See Figure 6 as a representative example of LE
 1340 calculation via our framework.

1341

1342 A.14.3 ENERGY-BASED CHAOS TAGGING (METHOD DETAILS):

1343

1344 Given an EEG signal $x(t)$, we quantified dynamical complexity using entropy measures derived from
 1345 the signal’s energy distribution. For *spectral entropy*, we first estimated the power spectral density

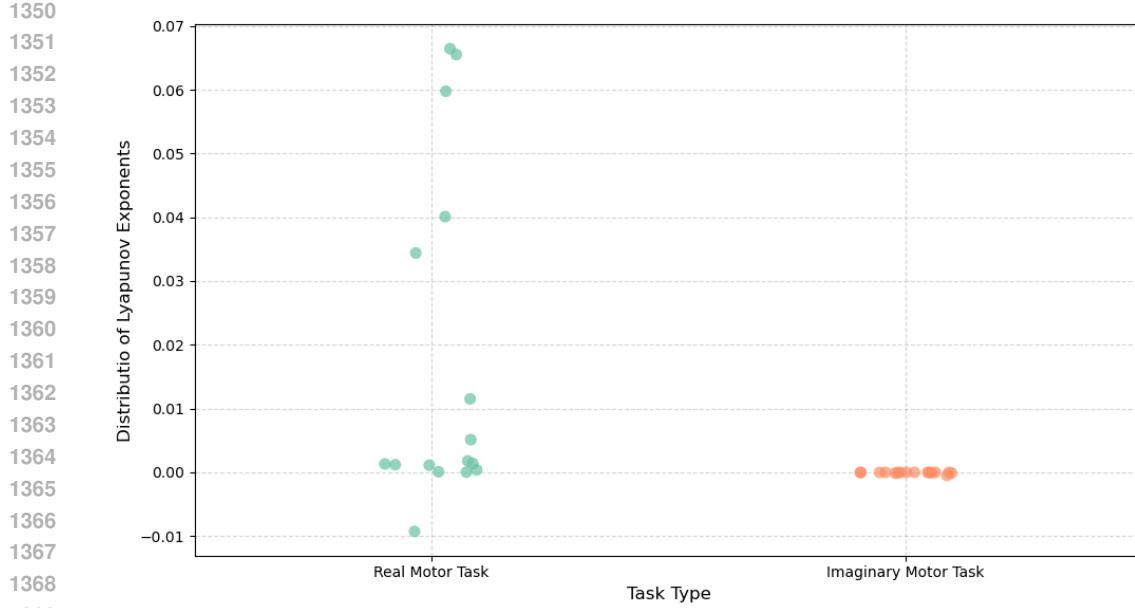


Figure 6: Comparison of statistic between the real vs imagery motor task.

(PSD) $P(f)$ via Welch’s method. Normalizing $P(f)$ into a probability distribution

$$p(f_i) = \frac{P(f_i)}{\sum_j P(f_j)},$$

the spectral entropy is given as the normalized Shannon entropy [48]:

$$H_{\text{spec}} = -\frac{\sum_i p(f_i) \log p(f_i)}{\log N_f},$$

where N_f is the number of frequency bins. This reflects the uniformity of energy across frequencies, with higher values indicating more irregular activity.

For *permutation entropy*, we mapped each segment of length m (embedding order) with delay τ into ordinal patterns π . The relative frequency of each ordinal pattern $p(\pi)$ yields the entropy [49]:

$$H_{\text{perm}} = -\frac{\sum_{\pi} p(\pi) \log p(\pi)}{\log(m!)}.$$

This measure captures temporal complexity through the diversity of local orderings in the time series.

Files were represented in the $(H_{\text{spec}}, H_{\text{perm}})$ space, and clustering distinguished lower-entropy (more structured, chaotic) from higher-entropy (more stochastic, non-chaotic) dynamics, consistent with prior nonlinear EEG studies [19, 50].

A.15 HYPERPARAMETERS

A.15.1 HYPERPARAMETERS OF SHPLRNN

We used the clipped shPLRNN trained by Generalize Teacher Forcing (GTF). A fixed GTF parameter α was considered. To perform the computations, we utilized the code repository from [47]. The selected hyperparameters are outlined in Table 9. Any hyperparameters not mentioned are configured to their default values as indicated in the repository from [47].

A.15.2 HYPERPARAMETERS OF MULTITASK TRANSFORMER

The proposed multitask learning (MTL) framework integrates a CNN backbone with a Transformer encoder, a contrastive objective, an auxiliary GTF–shPLRNN chaos prediction task, and DAE

Table 9: List of hyperparameters used for shPLRNN training

Hyperparameter	Value
Latent dimension	16
Hidden dimension	128
Batch Size	16
Batches per epoch	50
Sequence length	50
GTF interval	5
Epochs	250
GTF parameter α	0.1
Latent model regularization rate	1e-4
Observation model regularization rate	1e-6

pretraining. EEG inputs consisted of 1-second windows ($64 \text{ channels} \times 160 \text{ samples}$). The CNN backbone comprised two convolutional layers with kernels of size [5, 3] and filters [32, 64]. Features were processed by a 2–4 layer Transformer encoder ($d_{model} = 128$, 4 heads, feedforward dimension = 256, dropout = 0.1). A 2-layer MLP projection head ($128 \rightarrow 128$) with ReLU activation and L2 normalization was applied for contrastive learning. For the self-supervised objective, NT-Xent loss with temperature 0.5 was used (weight = 0.3), supported by EEG-specific augmentations including jitter, scaling, and optional time masking or channel dropout. The auxiliary GTF–shPLRNN task predicted Lyapunov exponents (weight = 1.0), encouraging sensitivity to chaos and regularity. Denoising Autoencoder (DAE) pretraining used a latent dimension of 128, SmoothL1 + Spectral loss combination, Gaussian noise corruption ($\sigma = 0.05$), dropout 0.2, AdamW optimizer with learning rate 1×10^{-3} , batch size 64, and 150 epochs. For MTL training, AdamW optimizer with learning rate 1×10^{-3} (decayed by 0.1 every 30 epochs), weight decay 1×10^{-4} , and gradient clipping of 1.0 was employed. Models were trained for 200–250 epochs with early stopping based on validation F1. The batch size was set to 32, and loss weights were fixed at CE = 1.0, Chaos = 0.6, and Contrastive = 0.3. Any hyperparameters not specified were kept at their default values.

Table 10: Hyperparameters for the proposed Multitask Learning (MTL) framework with CNN backbone, Transformer encoder, contrastive learning, GTF–shPLRNN auxiliary task, and DAE pretraining.

Component	Setting
Input shape	64 channels \times 160 samples (1s EEG window at 160 Hz)
CNN backbone	2 conv layers, kernels [5, 3], filters [32, 64], stride = 1
Transformer encoder	2–4 layers, $d_{model} = 128$, 4 heads, FFN dim = 256, dropout = 0.1
Projection head	2-layer MLP ($128 \rightarrow 128$), ReLU, L2 norm
Contrastive learning	NT-Xent loss, temperature = 0.5, weight = 0.3
Augmentations	Jitter ($\sigma = 0.008$), Scaling ($\sigma = 0.03$), optional: time mask (5%), channel dropout (0.1)
GTF-shPLRNN task	Auxiliary chaos/regularity prediction (Lyapunov exponent), weight = 1.0
Denoising Autoencoder (DAE)	latent dim = 128, decoder symmetric
DAE training	SmoothL1Loss=.80+SpectralLoss=.20 loss, Gaussian noise $\sigma = 0.05$, dropout=0.2, Adam lr= 1×10^{-3} , batch=64, epochs=150
Training setup	AdamW optimizer, lr= 1×10^{-3} (decay 0.1/30 epochs), weight decay= 1×10^{-4}
Batch size	32 (MTL), 64 (DAE pretraining)
Epochs	200–250 (MTL), early stopping on validation F1
Regularization	Gradient clipping = 1.0
Loss weights	CE = 1.0, Chaos = 0.6, Contrastive = 0.3

A.15.3 HARDWARE

The hardware we used to run the codes and iteratively train the clipped shPLRNNs, DAE & Transformer include an 11th Gen Intel(R) Core(TM) i7-11800H CPU @ 2.30GHz and 64.0 GB of RAM (63.7 GB usable).