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ABSTRACT

Although Transformers have successfully transitioned from their language mod-
elling origins to image-based applications, their quadratic computational complex-
ity remains a challenge, particularly for dense prediction. In this paper we propose
a content-based sparse attention method, as an alternative to dense self-attention,
aiming to reduce the computation complexity while retaining the ability to model
long-range dependencies. Specifically, we cluster and then aggregate key and
value tokens, as a content-based method of reducing the total token count. The
resulting clustered-token sequence retains the semantic diversity of the original
signal, but can be processed at a lower computational cost. Besides, we further
extend the clustering-guided attention from single-scale to multi-scale, which is
conducive to dense prediction tasks. We label the proposed Transformer archi-
tecture ClusTR, and demonstrate that it achieves state-of-the-art performance on
various vision tasks but at lower computational cost and with fewer parameters.
For instance, our ClusTR small model with 22.7M parameters achieves 83.2%
Top-1 accuracy on ImageNet. Source code and ImageNet models will be made
publicly available.

1 INTRODUCTION

Transformers have driven rapid progress in natural language processing, and have become the pre-
dominant model in the field as a result (Vaswani et al., 2017; |Brown et al., 2020). The first Trans-
former to achieve image recognition performance comparable to the firmly established CNN models
(e.g. ResNet (He et al., 2016) and EfficientNet (Tan & Le,[2019)) was ViT (Dosovitskiy et al.,2021)).
ViT splits images into 16 x 16 patches, resulting in a sequence of visual tokens. In contrast to the lo-
cal receptive fields of CNNs, each token in ViT is able to interact with every other token, irrespective
of location, thus enabling the modelling of long-range dependencies.

Although its strength has been demonstrated in various tasks, ViT still suffers from the quadratic
complexity in both computation and memory due to the dense token-to-token self-attention. This
particularly hinders the applications in dense prediction, such as semantic segmentation. Inspired
by CNN models (Krizhevsky et al.|[2012;|Szegedy et al.,[2015; |He et al.,[2016), recent research (Liu
et al., 2021; Wang et al., [2021} [Heo et al., 2021} (Chu et al., 2021) has developed pyramid architec-
tures for Transformers. The resultant variation in regulable token length and number of channels
at various locations and scales enables greater computational and memory efficiency. To further
reduce complexity, Swin Transformer (Liu et al.,|2021)) limited self-attention to a local window, and
enabled cross-window connection through the window shifting. This means the computational bur-
den scales linearly with the number of tokens, but at the cost of long-range dependencies. Pyramid
Vision Transformer (PVT) (Wang et al., |2021) reduced the spatial dimension of queries and keys
using the large-kernel and large-stride convolution. Such a spatial reduction attention suffers from
the following two drawbacks. First, the reduced tokens are limited by the lack of fine-grained infor-
mation. As shown in Figure[T] the downsampled token includes a wide range of content information.
Taking the token located in the second row and second column for example, the object of “woman”
only occupies a small part of the whole token, and the token also contains a small part of “child” and
a large object of “sky”. This may lead to ambiguous semantics for these tokens. Second, the back-
ground tokens, like the sky and beach, take up quite a large portion of the entire sequence, which are
full of redundant information whilst investing most of the computations. Hence, the aforementioned
deficiencies may have a negative effect on the performance.
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We propose here a form of content-based sparse at-
tention, and a corresponding efficient and versatile
vision Transformer. The aim is to reduce the compu-
tational complexity of self-attention by reducing the Downsampling | s = N e
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numbers of key and value tokens. In contrast to grid-

based downsampling solutions used by (Wang et al.,
2021} 2022b) (see Figure [I)) we merge tokens ac-

cording to the similarity of their content rather than
their location.

We label the proposed approach clustering-guided
self-attention, and the corresponding Transformer as
ClusTR. It is comparable to other self-attention mod-
els but with value-clustering applied to the key and
value tokens (not query tokens). This method has
the advantage that the clustered tokens contain not
only rich but also explicit semantic information. It
is less affected by the background or other large-size
objects than grid-based methods. Clustering is also
more flexible than grid-based methods in that it al-
lows more control over the final number of tokens.
Clustering can also be applied to patches at vary- Figure 1: Comparison of grid-based self-
ing scales, thus exploiting the demonstrated value of ~attention and our clustering-guided self-
multi-scale information in vision (Zhang et al.,[2021; attention. Downsampling obfuscates fine-
[Chen et al| 2021a; Ren et al.| [2022). grained image features, and mixes content
types into larger tiles. Clustering, in con-
trast, eliminates semantic redundancy and is

Clustering

We demonstrate the effectiveness of our clustering-
based self-.attention on tasks including F:lassjﬁcation, thus able to operate at higher resolution. This
segmentation, detection, and pose estimation. The qliminates the over-representation of large
experimental results show that ClusTR outperforms  ghiects and *stuff” (like “sky™).

its CNN-based and Transformer-based counterparts.

For instance, ClusTR achieves the 83.2% and 84.1%

Top-1 accuracy on ImageNet with 22.7M and 40.3M

parameters, respectively. Our contributions are summarized as follows:

* We propose a content-based self-attention Transformer that clusters and aggregates visual
tokens according to their semantic information. Our clustering-guided self-attention re-
duces computational complexity without compromising long-range context modelling.

* We introduce multi-scale clustering-guided self-attention that is particularly well suited to
dense prediction tasks.

* QOur ClusTR, as a versatile Transformer backbone, outperforms the current state-of-the-art
on four key vision tasks including classification, segmentation, detection, and pose estima-
tion.

2 RELATED WORK

Vision Transformer. Transformers have become the dominant architecture in language modelling
and have recently demonstrated competitive performance in computer vision. Their ability to exploit
long-range interactions between tokens is particularly appealing. (Dosovitskiy et al.,[2021) proposed
the Vision Transformer (ViT) which achieved superior performance in image recognition tasks over
its CNN counterparts. Transformers have since been applied to various vision tasks, including seg-

mentation (Zheng et al.} 2021), detection (Carion et al.}[2020)), low-level vision (Chen et al.} 2021b),

image generation (Jiang et al., 2021), and pose estimation (Zeng et al.,[2022a). ViT requires large
volumes of training data due to its weak inductive bias (d’Ascoli et al.,[2021). DeiT (Touvron et al.,

2021a) utilizes an efficient Transformer optimization strategy that distils another strong classifier
to reduce data consumption. T2T-ViT(Yuan et al.| 2021) models the local image structure via a
Tokens-to-Token (T2T) transformation. CaiT (Touvron et al., 2021b) uses layer scaling to increase
the stability of the optimization when training large-scale Transformers. Although achieving record
performance on ImageNet 2009), these methods suffer from the quadratic complexity
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of dense self-attention. In weight for weight comparisons they are often outperformed by CNNs
on dense-prediction tasks, or high-resolution images. Inspired by CNN models, the pyramid Trans-
former structure (Wang et al., 2021} |Liu et al., 2021} Heo et al.| 2021} |L1 et al., [2021} |Chu et al.}
2021; (Chen et all 2022a; |Ren et al., [2022) breaks with the ViT architecture, and particularly its
fixed number of tokens and fixed number of channels. These methods have a pyramid structure that
can be used as a versatile backbone for both image classification and dense prediction tasks. These
pyramid Transformer variants downsample tokens at each stage by convolution with strides (Wang
et al., 2021} |2022b), patch merging with linear projections (Liu et al., [2021)), or clustering-based
patch embedding (Zeng et al., 2022a).

Efficient sparse self-attention. Self-attention is the mechanism by which transformers preform
long-range interactions between tokens, and simple dense self-attention methods naturally scale
quadratically with the number of tokens. Methods for improving the efficiency of self-attention
through sparsifying the set of possible interactions can be categorized as either content-based or
location-based.

Location-based sparse attention assumes that not all token-token interactions are equally likely to
be valuable. Examples of this selective-attention approach from language modelling include local
window sliding attention, global attention, and combinations thereof (Beltagy et al., 2020; |Zaheer
et al.| [2020).In computer vision, (Liu et al.,[2021) achieved efficient self-attention by limiting self-
attention to a local region, and enabling regions to interact through sliding windows. (Wang et al.|
2021) reduced the number of key and value tokens by aggregating the local region to a single token
through convolution with large kernels and large strides.

Predefined sparsity patterns do not necessarily match the empirical characteristics of data. Content-
based sparse attention methods partition the tokens according to their content. (Roy et al.,|2021)), for
example, clustered the tokens using the k-means algorithm and performed the self-attention in each
cluster. (Kitaev et al.| |2019) presented an efficient locality sensitivity hashing clustering to divide
tokens into chunks. (Wang et al.,2022a) proposed the kNN attention to select the top-k tokens from
keys and ignored the rest for each query when computing the attention matrix, thus filtering out
noisy tokens and speeding up training. Although spare attention has been studied in these attempts,
our ClusTR is different in the following aspects: 1) Compared with Wang et al. (2021)); |Liu et al.
(2021), ClusTR breaks the rigid rules of grid-based token aggregation and makes full use of token
representation for efficient vision modelling. 2) (Roy et al., 2021} [Kitaev et al., 2019; Wang et al.|
2022a) limited the range of self-attention to achieve efficiency, in which only similar tokens in the
same cluster can communicate with each other. In contrast, our ClusTR breaks the constraints of
limited self-attention range, and encourages to explore global attention patterns from the diverse
clustered tokens. 3) Moreover, with the proposed multi-scale attention, ClusTR is superior to these
single-scale attention methods when processing dense prediction tasks.

3 METHOD

As an efficient vision Transformer, ClusTR is different from other counterparts in terms of the self-
attention mechanism. As shown in Figure [2] we group vision tokens and aggregate the semantic-
similar tokens in the same cluster, aiming to reduce the computational complexity of self-attention.
Based on the clustering-guided self-attention, we can easily extend it to a multi-scale version which
is benefited from the multi-scale aggregation. In the following, we delve into the ClusTR self-
attention and architecture details.

3.1 EkNN-BASED DENSITY PEAKS CLUSTERING

We denote the set of vision tokens as X = [x1, 22, ...,zx]T € RV*C, where N and C represent the
number of tokens and dimension of the token channel, respectively. Following (Rodriguez & Laio|
2014), we characterize token clusters by a higher density than their neighbors and by a relatively
large distance from other tokens with higher densities. As for a token x; € X, its local density is
defined as

1
pr=exp(—p > d@iz)?) (1)

JEENN (z;)
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(a) ViT (b) Swin (c) PVT (d) ClusTR
Figure 2: Comparison of self-attention in ViT, Swin, PVT and our proposed method. ViT performs
the dense token-to-token self-attention; Swin Transformer divides all tokens into several windows
and performs the window-based self-attention; PVT aggregates tokens in a grid by using strided
convolution. The proposed method groups vision tokens according to the feature similarity, resulting
in compact but semantic tokens for efficient self-attention.

where d(z;,x;) refers to the Euclidean distance between z; and z;, kNN(z;) = {j €
X|d(zi,z;) < d(x;,x)}, zx is the k-th neighbor of x;. Here, we also define another variable
0; for the token x;, which measures the distance between x; and other high-density tokens.

min (d(zi, ;) if Ip; > pi
J:pi>pi ) (2)
max(d(zi, z;)) if Bpj > pi

(=]
7

If z; is characterized as a cluster, its local density should be higher than that of its neighbors. Be-
sides, it should also have a relatively large distance from other higher-density tokens. To this end, a
decision value ; = p;*J; can be computed to locate the density peaks efficiently. The token clusters
are specialized with both large density p and large distance §. After that, the remaining tokens are
assigned to the same cluster as their nearest tokens with higher density. Based on the cluster index,
we can partition all tokens in X into M clusters, denoted by G = {G1, G2, ..., G}

The tokens in the same cluster are aggregated to generate a cluster representative token, formulated
by
Cluster(X;\) = [k, ha, ..., hnyy] € RM*C (3)

where A = N/M is the token reduction ratio, h; = Zmie G, Wi Ti, and w; is the learnable parameter
for each token z;. Note that the number of aggregated cluster representative tokens is far smaller than
that of the original visual tokens X, i.e., N >> N/A. Such a clustering-guided token aggregation
condenses a lot of visual tokens, benefiting the efficient self-attention process.

3.2 CLUSTERING-GUIDED SELF-ATTENTION

The attention module is one of the core components of the Transformer. Following
2017), most of Transformers and their variants apply the multi-head self-attention mechanism to
model the long-range dependencies. For each head, the query @, key K, and value V' have the size
of N x C. The scaled dot-product attention can be formulated as

T

Attention(Q, K,V) = Softmax( QK

Vs

where s is the scaling factor. Although the above self-attention can be implemented in a fast manner

by using highly optimized matrix multiplication, it still suffers from the high computation com-

plexity, i.e., O(N?), especially for the abundant vision tokens. To address this issue, we propose

a clustering-guided efficient self-attention that clusters and aggregates the semantic-similar tokens

in the same cluster to reduce the computation complexity. Based on the clustering algorithm in
Sec. the proposed efficient self-attention is reformulated as

WV “4)

Q-Cluster(K;\)T
NG

ClusAtt(Q, K, V;\) = Softmax( )-Cluster(V;\) 3)
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Figure 3: The architecture of our ClusTR.

After clustering, the tokens of key and value are decreased by A times, reducing the computation

complexity from O(N?) to O(NTZ)) Based on the single-head attention, the multi-head attention can
be implemented in parallel as

H
ME-ClusAtt(X;)) = &(| J clusatt(XW2, XWX, XWY;\)) (6)

i=1

where U refers to the concatenation operation, ¢ aggregates the feature representation of H attention

heads through a linear projection function. WiQ, WK, and W} are linear projections to generate
query, key, and value tokens.

3.3 MULTI-SCALE SELF-ATTENTION

Here we extend the proposed clustering-guided self-attention from single-scale to multi-scale. For
the multi-scale aggregation, we replace the single A in Eq. [3| with a set of factors Aq, ..., A, where
L refers to the number of scales. Then, the multi-scale clustering can be described as

N

Cluster(X;An, o AL) = [, o ANy 5o 3T o BN ] € RGTH-F30)XC (g
The computational complexity of multi-scale attention is O(N 2()% +..+ i)) And the multi-head
multi-scale clustering-guided self-attention can be described as

L H
MEMS—ClusAtt(X; A1, AL) = () | clusate(XW2, XW/S XWY:1N))) )

j=1i=1

where the linear projection ® is used to aggregate the feature representation of H attention heads
and L scales.

3.4 CLUSTR TRANSFORMER ARCHITECTURE

The basic ClusTR model is composed of four stages, as shown in Figure@ We follow (Ren et al.,
2022) and employ the overlapped patch embedding at the beginning of each stage to model local
continuity. Based on the clustering-guided self-attention, the Transformer block of ClusTR can be
computed as

2] = MHMS-ClusAtt(LN(2;—1)) + 211

2 = FEN(LN(2])) + 2] ©)
where LN is the layer normalization, and FFN is the fully connected feedforward network. Note that
the token reduction ratio A\ can be defined as any value during the clustering process. To balance
the efficiency and accuracy, we set A to {64,16}, {16,4}, {4,1}, {1} from the first to the last
stage, respectively. We build the tiny model, called ClusTR-T, that has a similar model size and
computation complexity to PVT-Tiny/PVTv2-B1. Based on this, we scale up ClusTR-T to the small
and base variants, called ClusTR-S, and ClusTR-B, which have the model size and computation
complexity of about 2x, and 4x compared to the tiny version. The specific architecture details and
hyper-parameters can be found in Appendix.
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Table 1: Image classification performance of different backbones on the ImageNet-1K validation
set. Here ‘Params.” refers to the number of the model parameters, and FLOPs is calculated based on
the input size of 224 x 224.

Methods Resolution Pa(r&r;ls. FLOPs (G) Top-1(%) Reference
ConvNets
RegNetY-4G (Radosavovic et al.||2020) 224 21.0 4.0 80.0 CVPR20
RegNetY-8G (Radosavovic et al.||2020) 224 39.0 8.0 81.7 CVPR20
ConvNeXt-T (Liu et al.,|2022) 224 29.0 4.5 82.1 CVPR22
ConvNeXt-S (Liu et al.,|[2022) 224 50.0 8.7 83.1 CVPR22
R MLPs
CycleMLP-T (Chen et al.[[2022b) 224 28.0 4.4 81.3 ICLR22
CycleMLP-S (Chen et al.||2022b) 224 50.0 8.5 82.9 ICLR22
AS-MLP-T (Lian et al., [2022) 224 28.0 4.4 81.3 ICLR22
AS-MLP-S (Lian et al., [2022) 224 50.0 8.5 83.1 ICLR22
B Transformers
PVT-T (Wang et al.][2021) 224 13.0 1.9 75.1 ICCV21
PVT-ACmix-T (Pan et al.| [2022) 224 13.0 2.0 78.0 CVPR22
PVTv2-bl (Wang et al.|[2022b) 224 13.1 2.1 78.7 CVM22
QuadTree-B-bl (Tang et al.||2022) 224 13.6 2.3 80.0 ICLR22
ClusTR-T 224 11.7 2.2 80.2 Ours
PVT-S (Wang et al., 2021) 224 24.5 3.8 79.8 ICCV21
Swin-T (L1u et al.,|2021) 224 29.0 4.5 81.3 ICCV21
Twins-SVT-S (Chu et al.|[2021) 224 24.0 2.9 81.7 NeurIPS21
PVTv2-b2 (Wang et al.|[2022b) 224 254 4.0 82.0 CVM22
HRViT-b2 (Gu et al., [2022) 224 32.5 5.1 82.3 CVPR22
TCFormer (Zeng et al.,[2022b) 224 25.6 59 82.4 CVPR22
CrossFormer-S (Wang et al.; 2022c) 224 30.7 4.9 82.5 ICLR22
RegionViT-S (Chen et al.|[2022a) 224 30.6 53 82.6 ICLR22
CSWin-T (Dong et al.||2022) 224 23.0 4.3 82.7 CVPR22
QuadTree-B-b2 (Tang et al.|[2022) 224 242 4.5 82.7 ICLR22
ClusTR-S 224 22.7 4.8 83.2 Ours
PVT-L (Wang et al.,|2021) 224 61.4 9.8 81.7 ICCV21
HRViT-b3 (Gu et al., [2022) 224 37.9 5.7 82.8 CVPR22
Swin-S (Liu et al.,[2021) 224 50.0 8.7 83.0 ICCV21
RegionViT-M (Chen et al.,[2022a) 224 41.2 7.4 83.1 ICLR22
Twins-SVT-B (Chu et al., |[2021) 224 56.0 8.6 83.2 NeurIPS21
CrossFormer-B (Wang et al.;2022c) 224 52.0 9.2 83.4 ICLR22
PVTv2-b4 (Wang et al.|[2022b) 224 62.6 10.1 83.6 CVM22
Quadtree-B-b3 (Tang et al.[[2022) 224 46.3 7.8 83.7 ICLR22
ClusTR-B 224 40.2 7.5 84.1 Ours

4 EXPERIMENT

We evaluate ClusTR on four representative computer vision tasks, including image classification,
semantic segmentation, object detection, and pose estimation. We also investigate the effectiveness
of each part of ClusTR in the ablation section.

4.1 CLASSIFICATION ON IMAGENET-1K

Dataset: We conduct image classification experiments on the ImageNet-1K dataset (Deng et al.|
2009), which includes 1.28 million training images and 50K validation images from 1,000 cate-
gories. Setting: We randomly crop 224 x 224 regions as the input. Following (Wang et al.| 2022b)),
we apply a rich set of data augmentations to diversify the training set, including random cropping,
random flipping, random erasing, label-smoothing regularization, CutMix, and Mixup. We adopt the
AdamW optimizer (Loshchilov & Hutter, |2018) with a cosine decaying learning rate (Loshchilov
& Hutter, 2017), a momentum of 0.9, and a weight decay of 0.05, to train our ClusTR model. We
set the initial learning rate to 0.001, batch size to 1024, and epochs to 300, which are popular for
ImageNet training. During the inference time, we take a 224 x 224 center crop as the input and
adapt the Top-1 accuracy as the evaluation metric.
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Table 2: Semantic segmentation performance of different backbones on the ADE-20K validation
set. Here “*’ indicates that the numbers are cited from the reproduced results of Twins.

Semantic FPN 80k UperNet 160K
Methods Params. (M) | mIOU (%) | Params. (M) | mIOU (%)

ResNet-50 (He et al.,|[2016) 28.5 36.7 - -

PVT-S (Wang et al.[[2021) 28.2 39.8 - -
Swin-T* (Liu et al.,[2021]) 31.9 41.5 59.9 44.5

CycleMLP-b2 (Chen et al.;[2022b) 30.6 434 - -
ConvNeXt-T (Liu et al., 2022) - - 60.0 46.0
Twins-SVT-S (Chu et al.,[2021) 28.3 43.2 54.4 46.2

RegionViT-S+ (Chen et al.,[2022a) 35.7 45.3 - -
CrossFormer-S (Wang et al.,2022c) 34.3 46.0 62.3 47.6
MPVIT-S (Lee et al., 2022) - - 52.0 48.3
ClusTR-S (Ours) 26.4 48.0 52.5 49.6

Results: In Table|l] we compare ClusTR to other advanced backbones based on ConvNets, MLPs,
and Transformers. Compared with the advanced Transformer-based methods, ClusTR outperforms
the Transformer-based architectures with comparable or fewer parameters and computation budgets,
surpassing 1.9% than Swin Transformer (ClusTR-S 83.2 vs. Swin-T 81.3), and 1.5% than PVTv2
(ClusTR-T 80.2 vs. PVTv2-bl 78.7). Compared to the ConvNet-based methods, ClusTR is superior
to keep a balance between accuracy and complexity. With a similar complexity budget, ClusTR
achieves 1.1% performance gain over ConvNets (ClusTR-S 83.2 vs. ConvNeXt-T 82.1). With a
comparable accuracy (ClusTR 83.2 vs. ConvNeXt-S 83.1), ClusTR reduces the model complexity
of ConvNexts by half (ClusTR-S 22.7M/4.8G vs. ConvNeXt-S 50M/8.7G). Such an advantageous
accuracy-complexity trade-off still remains when compared to MLP-based methods.

4.2 SEMANTIC SEGMENTATION ON ADE20K

Dataset: We conduct semantic segmentation experiments on the ADE20K dataset (Zhou et al.,
2017), which includes 20,210 training images and 2,000 validation images from 150 fine-grained
semantic categories. Settings: We randomly resize and crop 512 x 512 image patches as the input
and set the batch size to 16. We empoy the ClusTR-S, pre-trained on ImageNet, as the backbone,
and evaluate it with two segmentation architectures, i.e., Semantic FPN (Kirillov et al., 2019) and
UperNet (Xiao et al., 2018b). The segmentation training process follows the default settings in
(Wang et al.,[2022b) and (Liu et al.,[2021). When training the Semantic FPN, we adopt the AdamW
optimizer (Loshchilov & Hutter, |2018) with an initial learning rate of 0.0001 and a weight decay of
0.0001, and set the number of iterations to 80K. As for UperNet, we adopt the AdamW optimizer
with an initial learning rate of 0.00006 and a weight decay of 0.01, and set the number of iterations to
160K. We also warm up the model linearly for the first 1500 iterations. During the test, we re-scale
the shorter side of the input image to 512 pixels and adapt the mIOU metric for evaluation.

Results: As shown in Table [2] we can see that ClusTR outperforms these advanced and popular
backbones, including ConvNets-based and Transformer-based, in both semantic FPN and UpperNet
modes. Compared to the ConvNet-based backbones, the proposed ClusTR achieves better segmen-
tation performance (ClusTR 48.0 vs. ResNet 36.7 with Semantic FPN; ClusTR 49.6 vs. ConvNeXt
46.0 with UpperNet) while using fewer parameters. Compared with the Transformer-based methods,
ClusTR outperforms other counterparts in both semantic FPN and UpperNet modes with comparable
or even fewer parameters, surpassing CrossFormer (Wang et al., 2022c) by 2.0%, and MPViT (Lee
et al.| 2022) by 1.3%.

4.3 OBIJECT DETECTION ON COCO

Dataset: We perform object detection and instance segmentation experiments on the COC02017
dataset (Lin et al.;|2014), which includes 118,287 training images and 5,000 validation images from
80 categories. Settings: We use the ClusTR-S pre-trained on ImageNet as the backbone of two
mainstream detectors, i.e., RetinaNet (Lin et al., [2017) and Mask R-CNN (He et al., [2017). We
follow the default settings of PVTv2 (Wang et al.l 2022b) and mmdetection (Chen et al.,2019). We
adopt the AdamW optimizer with a batch size of 16, and perform the 1x training schedule with 12
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Table 3: Detection and instance segmentation performance of Mask-RCNN with different backbones
on the COCO validation set.

Methods Params. (M) AP® AP, AP%, AP™ APZ, APl

ResNet-50 (He et al., 2016) 442 380 586 414 344 551 367
PVT-S (Wang et al.|[2027) 44.1 404 629 438 378 60.1 403
Swin-T (Liu et al., 2021) 478 422 646 462 391 61.6 420
Twins-SVT-S (Chu et al.| 2021) 44.0 434 660 473 403 632 434
CrossFormer-S (Wang et al.,[2022c) 50.2 454 68.0 497 414 648 446
ClusTR=S (Ours) 423 470 687 51.6 425 659 459

Table 4: Detection performance of RetinaNet with different backbones on the COCO validation set.

Methods Params. (M) AP? AP, AP%, APs APy AP.

ResNet-50 (He et al.,[2016) 37.7 363 553 386 193 400 488
PVT-S (Wang et al.|[202T) 34.2 404 613 430 250 429 557
CycleMLP-b2 (Chen et al.| 2022b) 36.5 406 614 432 229 444 545
Swin-T (Liu et al., 2021) 38.5 415 621 442 251 449 555
Twins-SVT-S (Chu et al.|[2021) 34.3 430 642 463 280 464 5715
RegionViT-B (Chen et al.| |20224) 83.4 433 652 464 292 464 570
CrossFormer-S (Wang et al.; 2022c) 40.8 44.4 65.8 47.4 28.2 48.4 59.4
Shunted-S (Ren et al., 2022) 32.1 454 659 492 287 493  60.0
ClusTR=S (Ours) 324 458 664 495 304 495 61.2

epochs. During training, we re-scale the shorter side of the input image to 800 pixels while keeping
the longer side no more than 1, 333 pixels. During test, the shorter side of input images is resized to
800 pixels, and the bbox mAP (AP?) and mask mAP (AP™) are used as evaluation metrics.

Results: As shown in Table [3] with comparable/fewer parameters, our ClusTR model surpasses
both ConvNet- and Transformer-based competitors when using Mask-RCNN for object detection
and instance segmentation. Compared to ConvNet backbones, our model outperforms ResNet (He
et al.| 2016) by 9.0 points for box AP, and 8.1 points for mask AP. Compared to Transformer back-
bones, our model achieves 6.6 box AP/4.7 mask AP over PVT, and 4.8 box AP/3.4 mask AP over
Swin. Besides, Table |4 reports the detection performance of different backbones when using Reti-
naNet as a detector. Our model achieves the 45.8 box AP with only 32.4M parameters, outperform-
ing other competitors especially in detecting small objects. We clarify that these results are expected,
since the proposed clustering-guided self-attention is able to pay equal attention to diverse objects,
insensitive to the object size, which is particularly beneficial for small objects.

4.4 2D WHOLE-BODY POSE ESTIMATION ON COCO.

Dataset: We perform pose estimation experiments on the COCOWholeBody V1.0 dataset (Jin
et al.,[2020), which contains 133 keypoints, including 17 for the body, 6 for the feet, 68 for the face,
and 42 for the hands. Settings: We follow the same settings in (Zeng et al.,[2022a), and adopt the
AdamW optimizer with an initial learning rate of 0.0005 (Loshchilov & Hutter,[2017)), a momentum
of 0.9, and a weight decay of 0.01. We set the batch size to 512, and the number of epochs to 210.
The OKS-based Average Precision (AP) and Average Recall (AR) are used as evaluation metrics.

Results: In Table[5 we compare ClusTR with other advanced models on COCOWholeBody V1.0
dataset. Our model achieves the new state-of-the-art performance on the pose estimation (59.4%
AP and 69.7% AR), outperforming the best ConvNet-based HRNet by 4.1 AP and 7.1 AR, and
surpassing the best Transformer-based TCFormer by 2.2 AP and 1.9 AR.

4.5 ABLATIONS

We perform the following ablation experiments to further verify the effectiveness of ClusTR. All
classification experiments are conducted based on ClusTR-T and the number of training epochs is
set to 100. The segmentation experiments are conducted based on the pre-trained ClusTR-T and the
Semantic FPN segmentation architecture.
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Table 5: Pose estimation performance of different backbones on the COCOWholeBody V1.0 dataset.
Here “*’ indicates that the numbers are cited from the reproduced results of TCFormer.

. body foot face hand whole
Methods Resolution | —xp="sR AP | AR | AP [ AR | AP [ AR | AP [ AR
ZoomNet* (Jin et al.,|2020) 384 %288 743 80.2 79.8 86.9 62.3 70.1 40.1 49.8 54.1 65.8
SBL-Res152* (Xiao et al.}[2018a) 256x192 68.2 76.4 66.2 78.8 62.4 72.8 48.2 60.6 54.8 66.1
HRNet-w32* (Sun et al.,2019) 256x192 70.0 74.6 56.7 64.5 63.7 68.8 47.3 54.6 55.3 62.6
PVTv2-b2 (Wang et al.,[2022b) 256x192 69.6 71.3 69.0 80.3 64.9 74.8 54.5 65.9 57.5 68.0
TCFormer (Zeng et al.}[2022a) 256x192 69.1 77.0 | 698 | 813 | 649 | 746 | 535 | 650 | 572 | 678
ClusTR-S (Ours) 256x192 714 78.8 73.3 83.8 66.5 75.7 55.9 67.1 594 69.7
Table 6: Comparison of different sparse attentions on the ImageNet-1K dataset.
Methods Token Aggregation | Params. (M) | FLOPs (G) | Topl (%)
SRA (Wang et al.|[2021) Grid-based 13.2 2.1 76.7
SRA+ENN attention (Wang et al., 2022a) Grid-based 13.2 2.1 76.8
ClusTR (Ours) Clustering 10.8 2.0 77.2

Table 7: Comparison of single-scale and multi-scale attention on ImageNet-1K and ADE-20K.

Stagel Rsig;gtz“’“ r;‘g‘;; Stagea~| Params. (M) | FLOPs (G) | Topl | mIOU
Single-scale 64 16 7 i 10.8 2.0 772 | 412
16 7 I I 10.8 21 TI4 | 418
Multi-scale | {64, 16} | {16,4} | 14,1} I 1.7 22 779 | 426

Grid-based vs. clustering-guided token aggregation: Token aggregation is an important operation
in the self-attention process that dramatically reduces the computation complexity. We compare the
clustering-guided token aggregation to the convolution-based grid token aggregation. Following the
spatial reduction attention (SRA) in (Wang et al.,[2021), we utilize the convolution with large strides
to achieve the grid token aggregation. Note that the other settings are the same for a fair comparison.
Table [6] reveals that our clustering-guided method not only reduce the parameters and FLOPs, but
also improve 0.5 points of Top1 accuracy (grid-based 76.7 vs. clustering-guided 77.2).

Compared to different sparse attentions: We also compare the clustering-guided attention to the
sparse attention method, kNN attention (Wang et al., [2022a), which is embedded in SRA to speed
up self-attention learning. As compared in Table|6] the kNN attention achieves a slight performance
gain (0.1 points) over SRA without increasing parameters and FLOPs. It is noteworthy that our
ClusTR not only outperforms kNN attention by 0.4% but also reduces about 18% parameters. It
demonstrates that the proposed ClusTR is superior to modeling abundant semantic dependencies,
thus leading to better performance.

Single-scale vs. multi-scale attention: In Table[7} we compare the single-scale attention with two
reduction ratios and multi-scale attention. For the single-scale, the smaller reduction ratio keeps
more detailed information, thus contributing to better accuracy, especially for dense prediction tasks
(+0.6 points for segmentation). By contrast, the multi-scale attention outperforms the single-scale
attention by at least 0.5 points on ImageNet and at least 0.8 points on segmentation, though it suffers
from a slight increase of parameters (+0.9M) and FLOPs (+0.1G).

5 CONCLUSION

The dense self-attention in Transformers suffers from the high computation complexity when pro-
cessing vision tasks, especially on dense prediction scenarios or high-resolution images. In this
work, we propose the content-based sparse attention that clusters vision tokens and aggregates them
in the same cluster. The clustering-guided self-attention not only reduces the computation complex-
ity but also invests the explicit and intensive semantics to each aggregated token, thus contributing
to better performance. Moreover, we extend it from single-scale to multi-scale self-attention, bene-
fiting the dense prediction tasks. Based on the proposed self-attention method, we build a versatile
Transformer model, called ClusTR. We conduct extensive experiments to demonstrate the effective-
ness of ClusTR, and achieve state-of-the-art performance on various vision tasks, including image
recognition, semantic segmentation, object detection, and pose estimation.
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SELF-ATTENTION VIA CLUSTERING FOR VISION
TRANSFORMERS”

Anonymous authors
Paper under double-blind review

A1l OVERVIEW

In this material, we provide more experimental details and results to supplement the main submis-
sion. We first provide the limitations and future Work (Section [AZ). We then provide the archi-
tecture settings of ClusTR variants (Section [@), and the training strategies used in classification,
segmentation, and detection tasks respectively (Section[A4). To further verify the effectiveness of
the proposed ClusTR, we also compare the curves of training loss and validation performance on
ImageNet-1K (Section [AS5). Finally, we visualize qualitatively the inference results from different
tasks (Section[A6).

A2 LIMITATIONS AND FUTURE WORK

As for the design of ClusTR, we manually set the same token reduction ratio for all samples, result-
ing in the number of clusters for each sample being only related to its resolution. In contrast, the
image content may play a more important role in deciding how many clusters should be produced.
Thus, a method of adaptively selecting the number of clusters according to the content is necessary,
which would be beneficial to further improve the accuracy and efficiency of ClusTR, and we leave it
for future work. Besides, our proposed backbone ClusTR is general and can be applied to a broader
range of applications, e.g., medical image analysis and vision-language tasks, which would also be
explored in future work.

A3 ARCHITECTURE DETAILS OF CLUSTR

In Table [AT, we provide the architecture hyper-parameters of three ClusTR variants, including
Transformer layers/channels/heads and multi-scale token reduction ratios at four stages.

Table Al: Architectures of ClusTR variants. Here ‘L, C, H’ represents the number of Transformer
layers, channels, and heads, respectively. A is the token reduction ratio.

Output._size ClusTR-T ClusTR-S ClusTR-B
L C H A L C H A L C H A
Stagel W/4 * H/4 1 64 1 | {64,16}] 3 64 1 | {6416} 3 64 1 | {64,16}
Stage?2 W/8 * H/8 2 | 128 | 2 | {164}] 5 128 | 2 | {164} ] 5 128 | 2 | {164}
Stage3 | W/16*H/16 | 6 | 256 | 4 | {4,1} | 13 | 256 | 4 | {41} | 18 | 320 | 5 {4,1}
Staged | W/32*H/32 | 1 | 512 | 8 1 2 | 512 | 8 1 3 512 | 8 1

A4 IMPLEMENTATION SETTINGS

A4.1 CLASSIFICATION ON IMAGENET-1K

In Table [A2, we provide the hyper-parameter settings on ImageNet-1K for our ClusTR, which
mainly follow [Wang et al.|(2022b).
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Table A2: ImageNet-1K training settings for our ClusTR.
Classification on ImageNet-1K

Training Configs ClusTR-T/S/B
Input size 224 x 224
Rand augment 9,0.5)
Rand cropping Yes
Rand flipping Yes
Data augmentation Rand erasing 0.25
Label-smoothing 0.1
CutMix 1
Mixup 0.8
Dropout 0.1/0.1/0.3
Clip grad None/None/1.0
Optimizer adamw
Optimizer momentum 0.9
Learning rate 0.0005 x %
Learning rate schedule Cosine decay
Weight decay 0.05
Batch size 1024
Epochs 300
Warmup epochs 5

A4.2 SEMANTIC SEGMENTATION ON ADE20K

In Table [E, we provide the training settings of Semantic FPN (Kirillov et al., |2019) and Uper-
Net (Xiao et al., 2018) on ADE20K, which follows Wang et al. (2022b)) and |Liu et al. (2021). As
done in the abovementioned papers, we used the pre-trained ClusTR model (on ImageNet-1K) as
the segmentation backbone.

Table A3: ADE20K training settings for our ClusTR.
Semantic segmentation on ADE20K

Training Configs Semantic FPN | UperNet
Pre-trained weights ClusTR-S on ImageNet-1K
Input size 512 x 512
Rand scaling img scale=(2048, 512), ratio range=(0.5, 2.0)
Data augmentation | Rand cropping crop size=(512, 512), cat max ratio=0.75
Rand flipping 0.5
Dropout 0.1
Optimizer adamw
Learning rate 0.0001 0.00006
Learning rate schedule poly, power=0.9 poly, power=1.0
Weight decay 0.0001 0.01
Batch size 16
Interations 80, 000 160, 000
Warmup interations No 1500

A4.3 OBIJECT DETECTION ON COCO

In Table [A4, we provide the hyper-parameter details of object detection on COCO. Similar to the
segmentation task, we use the ClusTR-S pre-trained on ImageNet-1K as the backbone of two main-
stream detectors, i.e., RetinaNet (Lin et al.l [2017) and Mask R-CNN (He et al., 2017)). We follow
the default settings of PVTv2 (Wang et al., [2022b) and mmdetection (Chen et al.,|2019).

A5 TRAINING LOSS

We plot the curves of the training loss and validation performance obtained by different meth-
ods on the image classification task in Figure [AT. Compared with the spatial-reduction attention



Under review as a conference paper at ICLR 2023

Table A4: COCO object detection training settings for our ClusTR.

Object detection on COCO

Training Configs

Mask-RCNN |

RetinaNet

Pre-trained weights

ClusTR-S on ImageNet-1K

Rand scaling

img scale=(1333, 800), keep ratio=True

Data augmentation

Rand flipping 0.5
Dropout 0.1
Optimizer adamw

Learning rate

0.0002

0.0001

Learning rate schedule

step, drops 10x at 8th epoch and 11th epoch

Weight decay 0.0001
Batch size 16
Epochs 12
Warmup interations 500
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(SRA) (Wang et al., 2021)) and NN based sparse attention (Wang et al., 2022a), the loss of our
clustering-guided attention is consistently lower and the top 1 accuracy is higher.

We also compare the training loss and validation performance of the single-scale attention and multi-
scale attention in Figure[AZ. We can see that multi-scale attention outperforms single-scale attention
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by a lower training loss and higher performance. In addition, for the single-scale, the smaller reduc-
tion ratio achieves lower training loss and better performance.

A6 VISUALIZED RESULTS

Figure [A3] shows some examples of the clustered vision tokens obtained from the third stage of
ClusTR-S. It reveals that ClusTR is able to locate the tokens with similar semantics and then group
them into a cluster systematically. Besides, we also observe that the scale of each cluster, i.e.,
the number of tokens, can be adaptively adjusted by the model. For instance, in the first image,
a large number of tokens from the curtain background are grouped into one cluster, while more
detailed information, like the cakes, flowers on cakes, and candles are identified as different clusters,
which provide the fine-grained and semantic-rich information for the clustered tokens. We also
provide some visualization results of different downstream tasks, including semantic segmentation
(see Figure[A4), object detection (see Figure[A5), and whole-body pose estimation (see Figure [A6).

Figure A3: Visualization of tokens in the different clusters obtained from the third stage of ClusTR-
S. The red area indicates the tokens belonging to the same cluster.

Figure A4: Semantic segmentation results of our ClusTR-S backbone on the ADE-20K set.
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Figure A6: Pose estimation results of our ClusTR-S backbone on the COCOWholeBody V1.0
dataset.
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