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Abstract001

It has been demonstrated that carefully de-002
signed reasoning paradigms, like Chain-of-003
Thought (CoT) and Tree-of-Thought (ToT), can004
enhance the reasoning capabilities of small lan-005
guage models by detailed thinking and exten-006
sive thought searching, unbounded branching007
factors in the searching space create prohibitive008
reasoning consumption. However these meth-009
ods fell into the trap of local optimum reason-010
ing, which means the model lacks a global011
perspective while solving problems. We pro-012
pose a novel reasoning paradigm called Rea-013
son from Future (RFF), which generates rea-014
soning paths by bidirectional reasoning that015
combines top-down planning with bottom-up016
reasoning accumulation. The essence of RFF017
lies in its reverse reasoning mechanism, which018
prioritizes core logical relationships and im-019
poses goal-oriented constraints on intermedi-020
ate steps, thereby reducing the searching space021
and mitigating error accumulation inherent in022
sequential forward reasoning. Empirical evalu-023
ations across diverse experiments demonstrate024
that RFF outperforms conventional paradigms025
with higher accuracy and less searching space026
to solve complex tasks.027

1 Introduction028

The rapid evolution of large language mod-029

els (LLMs), fueled by breakthroughs in deep030

learning architectures and unprecedented datasets,031

has demonstrated remarkable potential across nat-032

ural language processing (NLP) and interdisci-033

plinary applications (Lee and Toutanova, 2018;034

Radford, 2018; Team et al., 2023; Sel et al., 2023),.035

LLMs like ChatGPT (Achiam et al., 2023) and036

Llama (Dubey et al., 2024) exhibit human-like text037

generation, multilingual task execution, and emerg-038

ing logical reasoning. Current scholarly investiga-039

tions identify their reasoning capacity for problem040

decomposition as the critical determinant of func-041

tional boundaries, enabling industrial automation042

Try to minus 
bananas by 5

Try to do apples + 
bananas to get 20

I see, do apples + 
bananas to get 20

The number of fruits 
is apples + bananas

Question: There are 10 apples and 10 bananas in the blanket, 5 bananas 
are a little smaller than others. How many fruits in the blanket?

Answer
There are 10 apples and 10 
bananas. 5 bananas are a little 
smaller. So there are 10 + 10 - 5 
= 15 fruits. The answer is 15.

Back Reason
The fruits are the number of 
sum of apples and bananas.
Answer
There are 10 apples and 10 
bananas. 5 bananas are smaller. 
So there are 10 + 10 = 20 fruits.

Figure 1: Comparison between simple forward reason-
ing (left) and forward reasoning guided by back reason-
ing(right).

and academic research applications. 043

Recent studies demonstrate that well-designed 044

reasoning paradigms can significantly enhance 045

LLMs’ reasoning ability without additional costly 046

and time-consuming post-training. A seminal 047

work in this area is Chain-of-Thought (CoT) (Wei 048

et al., 2022), which pioneered the novel view 049

that reasoning ability can be improved by de- 050

signing reasoning prompts, paradigms, and exam- 051

ples. Tree-of-Thought (ToT) (Yao et al., 2024) 052

provides a searching view to enhance the ability 053

of complex reasoning. Progressive-Hint Prompt- 054

ing (PHP) (Zheng et al., 2023) and Cumulative Rea- 055

soning (CR) (Zhang et al., 2023) asks the model to 056

generate hints for the question before generating 057

the answer. 058

Although, these reasoning paradigms, break- 059

ing down the solution into multiple steps through 060

prompts or spatial search, can enhance the reason- 061
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ing ability and coherence of the model. They tend062

to make the model focus on the current state, re-063

sulting in lacking explicit guidance from a global064

understanding of the problem and excessive explo-065

ration of redundant information, overthinking, or066

errors during inference (Boix-Adsera et al., 2023).067

In contrast, the way human approaches problem-068

solving is different. Researches have shown that069

humans begin by building holistic mental modeling070

when solving complex problems, allowing problem071

solvers to form a topological framework before072

focusing on specific details (Spreng et al., 2009;073

Koban et al., 2021). This kind of cognitive predic-074

tion provides dual guidance for the subsequent solu-075

tion process: forming a "cognitive road map" of the076

solution path at the macro-level, helping to exclude077

obviously unrelated branches; evaluation criteria078

are established at the micro-level so that each spe-079

cific operation remains dynamically calibrated to080

the end goal. This global awareness allows us to081

avoid blindly combining superficial details and in-082

stead prioritize purposeful, contextually grounded083

deductions. This suggests that modeling this local-084

global consistency thinking paradigm might be able085

to enable LLMs to strategically synthesize infor-086

mation, minimize irrelevant exploration, and align087

intermediate steps with the overarching goal.088

Inspired by the maze-solving strategy of back-089

ward reasoning, where reversing the path from the090

endpoint accelerates discovering the solution, we091

propose a novel reasoning paradigm called Reason-092

from-Future (RFF) to enhance the reasoning abil-093

ity of LLMs by adding reverse thinking process to094

guide the forward reasoning as shown in Figure 1.095

RFF integrates bidirectional reasoning by alter-096

nating between reverse and forward thinking to097

maintain solution states: the reverse reasoning gen-098

erates the potential last state of the target state and099

sets the last state as the new target, then the forward100

reasoning takes a step toward the new target. The101

target state serves as a guide to precisely lead the102

forward reasoning, and the forward reasoning in103

turn produces more useful information to make the104

reverse reasoning more reasonable. We evaluate105

RFF in four datasets: Game of 24 (Yao et al., 2024),106

GSM8K (Cobbe et al., 2021), ASDiv (Miao et al.,107

2021), SVAMP (Patel et al., 2021), and demon-108

strate significant improvements in accuracy over109

baseline methods. Additionally, RFF reduces the110

search space by constraining reasoning to target-111

driven states, demonstrating good efficiency. Our112

results highlight the potential of bidirectional, goal-113

aware reasoning to unlock more robust and system- 114

atic problem-solving in LLMs. 115

In summary, We introduce RFF, a novel self- 116

planning reasoning paradigm to enhance the reason 117

ability of LLMs. In which, reverse thinking and 118

forward-thinking alternately to obtain a future per- 119

spective and narrow the solution-searching space. 120

We conduct experiments involving four datasets to 121

demonstrate the great performance and efficiency 122

of RFF. And we employ two extra experiments 123

by complicating the questions in Game of 24 and 124

GSM8K. The results represent RFF less consum- 125

ing in larger search spaces and robust thinking in 126

variant problems. 127

2 Related Work 128

2.1 Chain of Thought Reasoning 129

In the study of complex reasoning tasks, Chain-of- 130

Thought (CoT) (Wei et al., 2022; Wang et al., 2022) 131

prompting has emerged as a pivotal technique for 132

significantly improving the performance of large 133

language models (LLMs) by explicitly generating 134

intermediate reasoning steps. This approach en- 135

ables the decomposition of problems into struc- 136

tured, stepwise reasoning pathways, demonstrating 137

particular efficacy in mathematical and logical do- 138

mains. Recent advancements extend CoT through 139

symbolic formalization (e.g., Symbolic CoT(Xu 140

et al., 2024)), which incorporates formal logic sys- 141

tems to enhance both reliability and interpretabil- 142

ity by grounding reasoning in rigorous symbolic 143

frameworks. Critical analyses, however, reveal po- 144

tential limitations where models may exploit com- 145

putational redundancy rather than genuine reason- 146

ing in extended CoT steps, prompting discussions 147

about mechanistic transparency. 148

2.2 Search Reasoning 149

In the domain of search-based reasoning for large 150

language models, the Tree-of-Thought (ToT) (Yao 151

et al., 2024) framework introduces backtracking 152

capabilities within multi-path decision structures, 153

enabling systematic exploration of diverse solu- 154

tion trajectories. This approach proves particularly 155

effective for complex tasks requiring iterative hy- 156

pothesis generation and validation. Monte Carlo 157

Tree Search (MCTS) (Świechowski et al., 2023) 158

strengthens online decision-making robustness 159

through simulating and evaluating long-term re- 160

wards of candidate paths, demonstrating strengths 161

in reinforcement learning and dynamic program- 162
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Figure 2: Schematic illustrating various approaches to problem-solving with LLMs, and each rectangle box
represents a thought. Figure2(d) only shows the basic framework about RFF, see the concrete pipeline of two types
of RFF in Algorithm 1 (RFF-T) and Algorithm 2 (RFF-G).

ming scenarios. Recent innovations bridge rea-163

soning with executable action, exemplified by164

frameworks like LATS (Language Agent Tree165

Search) (Zhou et al., 2023). By unifying hi-166

erarchical planning, probabilistic reasoning, and167

environment interaction within language mod-168

els, LATS extends the dynamic capabilities of169

ReAct (Reasoning + Acting) (Yao et al., 2022)170

paradigms, enabling adaptive agent behavior in171

multi-step problem-solving scenarios. While these172

approaches show complementary advantages in173

addressing combinatorial optimization and long-174

range dependency challenges, computational effi-175

ciency and path-pruning strategies remain critical176

areas for improvement.177

2.3 Progressive Hint Prompting Reasoning178

In the realm of progressive prompting for179

complex reasoning, Progressive-Hint Prompt-180

ing (PHP) (Zheng et al., 2023) advances dynamic181

problem-solving by fostering iterative, multi-turn182

interactions between users and LLMs. This method183

leverages feedback-driven prompts informed by184

historical outputs to systematically refine reasoning185

accuracy and coherence. Parallel to this, Cumula-186

tive Reasoning (CR) (Zhang et al., 2023) emulates187

human-like incremental cognition by decompos-188

ing tasks into structured subtasks and aggregating189

intermediate results through stepwise integration.190

Both PHP and CR synergize with foundational 191

frameworks like CoT and its derivatives, collec- 192

tively strengthening the generation and validation 193

of adaptive reasoning pathways. Recent advance- 194

ments further explore hybrid architectures that com- 195

bine PHP with retrieval-augmented mechanisms 196

and task-specific distillation. These frameworks 197

aim to balance computational efficiency with ro- 198

bust reasoning fidelity, addressing challenges such 199

as error propagation and context scalability. By 200

integrating iterative feedback loops with external 201

knowledge retrieval, such approaches optimize per- 202

formance in multi-step reasoning tasks while main- 203

taining generalizability. 204

3 Methods 205

Reason from Future(RFF) is a reasoning paradigm 206

that allows models to solve a question by us- 207

ing forward and backward reasoning alternately. 208

We use pθ to denote a LLM with parameters pθ, 209

and x, t to denote the input and question. The 210

{S} ∼ {S0, S1...Si}, {T} ∼ {T0, T1...Ti} denote 211

the current state and target state in each step i. We 212

define pθ(x, t|Si) as the output of the model pθ 213

with a prompt consisting of input x, target t, and 214

hints Si. In the i − th step, the model identifies 215

the preceding step closest to the current target state 216

Ti−1 and considers it as the new target state Ti and 217

provides the calculation relationship between the 218
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Algorithm 1 RFF-T
Require: LM pθ, input x, max Steps L, last

step generator G(), stepwise reasoner R(),
state checker C(), current state {S}, target
state{T}, avoid attempts{A}, verifier V ()

1: S0 ← x, T0 ← t, A0 ← {}, i← 0
2: while i <= L do
3: i← i+ 1
4: Ai ← {}
5: Ti ← G(pθ, Si−1, Ti−1)
6: Si ← R(pθ, Si−1, Ti, Ai−1)
7: if C(Si, Ti) == True then
8: j ← V (Si, Ti)
9: if j == i then

10: break
11: end if
12: Aj ← Aj ∪ {Sj , Tj}
13: i← j
14: end if
15: end while
16: return pθ(x, t|Si)

two. Then the model takes the Ti−1 as the new219

target for one-step forward reasoning. The model220

then repeats this step until the latest target state has221

been achieved (Si = Ti). A specific RFF pipeline222

should consist of three components: 1: Last Step223

Generator (G); 2: Stepwise Forward Reason (R);224

3: State Check (C).225

3.1 Last Step Generator226

RFF implements backward reasoning by generat-227

ing the last previous step. To be specific, RFF228

decomposes one target state Ti with current state229

Si into a pre-target state Ti+1 = G(pθ, Si, Ti) at a230

time, the form of the specific sub-target state de-231

pends on the on the target of the task, such as a set232

of numbers (Game of 24), the variables to be found233

(mathematical problems). It is worth noticing that234

the transition step between pre-target state Ti+1 to235

target Ti should be output explicitly to guarantee236

the correctness of the target decomposition to a237

certain extent.238

3.2 Stepwise Forward Reason239

We consider two different strategies: RFF-T in240

Algorithm 1 and RFF-G in Algorithm 2, to generate241

the next forward reasoning step for different types242

of target:243

(a) RFF-T: For problems like Game of 24 or244

Maze game, whose solution is one branch of a245

searching tree, the model should avoid repeating 246

the wrong attempts in the same layer of the search- 247

ing tree. We use {A} ∼ {A0, A1...Ai} to denote 248

the attempts should be avoid in step i, thus the next 249

state should be Si ← R(pθ, Si−1, Ti, Ai−1). 250

(b) RFF-G: For the problem like mathemati- 251

cal problems, whose solution is a directed acyclic 252

graph, all the information calculated by the previ- 253

ous states are either useful or redundant but not 254

harmful, so the reasoning path should consider all 255

the information calculated by the previous states, 256

which is Si ← Si−1 ∪R(pθ, x, Si−1, Ti). 257

Algorithm 2 RFF-G
Require: LM pθ, input x, max Steps L, last step

generator G(), stepwise reasoner R(), state
checker V (), current state {S}, target state{T}

1: S0 ← x, T0 ← t0
2: for i = 1 to L do
3: Ti ← G(pθ, Si−1, Ti−1)
4: Si ← Si−1 ∪R(pθ, Si−1, Ti)
5: if V (Si, Ti) == True then
6: break
7: end if
8: end for
9: return pθ(x, t|Si)

3.3 State Check 258

State Check C() maintains an inference boundary 259

that determines the termination conditions of the 260

inference paradigm. Similar to Stepwise Forward 261

Reason, we set two different strategies to check 262

whether the reasoning comes to the boundary: 263

(a) RFF-T: For the reason only the correct reason- 264

ing path will be saved in the end, the C(pθ, Si, Ti) 265

only considers whether the current state Si coin- 266

cides with the latest target state Ti, or whether 267

the current state requires only one mathematical 268

or logical operation to reach the target state(e.g. 269

present state:(2 3 4), target state:(4 6) in Game of 270

24). Meanwhile, because RFF-T need to revisit 271

the previous state to explore the thought space, a 272

Verifier V (Si, T i) is set to verify whether this path 273

is the correct path when the reasoning comes to the 274

boundary. If this path is a wrong path V () will re- 275

turn the previous state j which should be revisited 276

and record the wrong attempt (Sj , Tj). 277

(b) RFF-G: Different from the RFF-T, each step 278

of reasoning generates a useful node of the directed 279

acyclic graph, so C(pθ, Si, Ti) considers whether 280
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Output: 24

……

forward reason
backward reason
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Figure 3: An example of how RFF-T works in Game of
24

the information the target state needs has already281

been solved or is noted in the background.282

4 Experiment283

We evaluate the effectiveness of RFF on some284

widely used LLM reasoning benchmarks, like285

GAME of 24 and GSM8k. Considering that suc-286

cessful paradigm may be due to the strength of287

the model itself rather than the strength of the288

paradigm, leading to difficulty in migrating them to289

weak models or small models, we carry out our ex-290

periments using Llama3-8B-Instruct(Dubey et al.,291

2024) and Qwen2.5-7B-Instruct (Yang et al., 2024)292

as the base models, and more detailed parameters293

will be shown in specific tasks setup.294

4.1 Game of 24295

The task of Game of 24 originates from (Yao et al.,296

2024), where the goal is to use four numbers with297

basic arithmetic operations (+-*/) to obtain 24, and298

each number can be used only once.299

Task Setup300

We conduct Game of 24 on Llama3-8B-Instruct301

with a temperature of 0.7 (consistent with the setup302

of CoT(Wei et al., 2022) and ToT(Yao et al., 2024)).303

We apply RFF-T because Game of 24 is usually304

viewed as fetching a branch of the searching tree305

and is consistent with the paradigm of RFF-T. A306

solving example can be seen in Figure 3. We con-307

duct 100 times about the middle hard 100 puzzles308

from 901 to 1000(Yao et al., 2024). We also con-309

sider each branch of the searching tree as a visit310

state and record the average visit states of differ-311

Model Method ACC Visit State

GPT-4

CoT 3% 1.0
ToT(n=1) 45% -
ToT(n=5) 74% 61.2
CR(n=1) 84% 11.7
CR(n=5) 94% 13.7

Llama3-8B
CR(n=1) 9% 30.9
CR(n=5) 19% 89.8

Llama3-8B
RFF(ours, n=5) 89% 9.9
RFF(ours, n=10) 96% 15.0

Table 1: The results of the Game of 24, where n denotes
the width of the searching tree.

ent paradigms, which is proportional to the search 312

space and the consumption of computation. 313

Baselines 314

We employ CoT, ToT, and cumulative reason- 315

ing(CR) with different parameters as the baselines. 316

The setup of CoT is consistent with (Wei et al., 317

2022) and (Yang et al., 2024), who employ the 318

intermediate calculation process as the reasoning 319

step. As for ToT and CR, we adapt the settings 320

and prompts from (Zhang et al., 2023). All these 321

methods are tested 100 times to get the average 322

result, and unless otherwise specified, the tempera- 323

ture of the model is set to 0.7. We also use GPT-4 324

as the baseline model. Due to the different space 325

exploring paradigms, we treat those with a similar 326

number of search spaces as the same class for com- 327

parison instead of similar branches of searching 328

trees. 329

Results 330

As shown in Table1, RFF with Llama3-8B exhibits 331

outstanding performance even compared to GPT- 332

4. CoT prompting method performs badly on this 333

task for the searching-tree-like tasks that need the 334

model to explore wide solution space. Searching 335

paradigms like ToT and CR achieve better scores 336

than CoT, meanwhile, the ToT method visits more 337

states because of blind searching. RFF reaches 338

the highest accuracy score and latest visit-states 339

at the same level: when the visit-state is around 340

10, our method reaches the best accuracy of 89% 341

compared to CR with GPT-4 at 84%; when the visit- 342

state is around 14, our method reaches an accuracy 343

of 96% compared to CR with GPT-4 at 94%. The 344

fewer visit-states and high accuracy are due to the 345

searching space in RFF being much smaller than 346
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Jon runs a triathlon. It takes him 40 minutes for 
the swim, an hour and 20 minutes for the bike 
ride and 50 minutes for the run. Compared to Jon, 
James finishes the swim 10% faster but takes 5 
minutes longer on the bike. If Jon won by 10 
minutes, how long did it take James to do the run? 

Step 1:
Back Reason: 
 To know how long did it take James to do the run, we can do: 
 the time James finishes – the time James swim-the time James rides 

= the time James runs.
What we need to know is:  the time James finishes, the time swims, the time 
James rides.

Forward Reason:
  the time James rides is: 1 hour+ 20 minutes = 80 minutes
Step 2:
Back Reason: 
 To know the time James finishes: Since Jon won, we can do: 
 the time Jon finishes + the time Jon won 
Forward Reason:
 the time James finishes is: 
  40 minutes + 80 minutes+ 50 minutes + 10 minutes
 = 180 minutes
Step 3:
Back Reason: 
 To know the time James swims: Since James swims 10% faster, we can do: 
 the time James swims – the time Jon swims faster = the time Jon swims
Forward Reason:
 The time Jon swims = 40 minutes – 40 minutes*10% = 36 minutes
Step 4:
Back Reason: 
 To know the time James rides: Since James rides 5 minutes later, we can do: 
 the time James rides + 5 minutes = the time Jon rides
Forward Reason:
 The time Jon rides is: 1 hour + 20 minutes + 5minutes = 85 minutes
Step 5:
Back Reason: 
 We have known all the information, now we can solve the problem:
  the time James finishes – the time James swim-the time James rides 
 = the time James runs
Forward Reason:
  The time James runs is:  180 minutes – 36 minutes – 85 minutes 
 = 59 minutes
Final Answer:
  The time James runs is 59 minutes

Let's break it down step by step. 
1. Jon's total time is: 40 minutes (swim) + 80 

minutes (bike ride) + 50 minutes (run) = 170 
minutes 

2. James finishes the swim 10% faster than Jon, 
which means James' swim time is:  Jon's swim 
time - 10% of Jon's swim time = 40 - 4 = 36 
minutes 

3. James takes 5 minutes longer on the bike than 
Jon, so James' bike time is: Jon's bike time + 5 
minutes = 80 + 5 = 85 minutes 

4. Since James won by 10 minutes, his total time 
is 10 minutes less than Jon's total time: 
James' total time = 170 - 10 = 160 minutes 

5. James' total time is the sum of his swim time, 
bike time, and run time: 160 minutes = 36 
minutes (swim) + 85 minutes (bike) +? 
minutes (run) 

6. To find James' run time, subtract the swim 
and bike times from his total time: ? minutes 
= 160 - 36 - 85 = 39 minutes So, it took James 
39 minutes to complete the run.

Jon's total time is 40 + 80 + 50 = 170 minutes. 
James' swim time is 40 * 0.9 = 36 minutes. His 
bike time is 80 + 5 = 85 minutes. So his total time 
is 36 + 85 + x = 121 + x. Since he lost by 10 
minutes, 121 + x = 170 - 10 = 160. So x = 160 - 
121 = 39. The answer is 39. 

RFF-G AnswerQuestion

Direct Output

COT Output

Figure 4: An example from the GSM8K dataset, with solution generated by Direct, CoT, and RFF paradigms. The
former two paradigms tend to connect with "win" to positive operation "more", while RFF will first analyze the
background of the "win" and then generate the operation.

simply forward searching (e.g. for "1 2 12 12",347

with the target "12+12=24", LLM will not explore348

ways like "2+12=14").349

4.2 Math Problem Benchmark350

This task contains three datasets: GSM8K, SVAMP,351

and AsDiv. GSM8K is a mathematical dataset with352

1319 test data and is widely used in testing the rea-353

soning ability of LLMs. Each question requires354

3-10 steps of reasoning and calculation. SVAMP355

and ASDiv are two simple math problem datasets356

with 1000 and 2096 data respectively, each ques-357

tion requires 1-2 steps of reasoning and calculation.358

Task Setup 359

We conduct this task on Llama3-8B-Instruct and 360

Qwen2.5-7B-Instruct with a greedy search to ex- 361

clude the influence of random numbers on textual 362

reasoning. We apply RFF-G for the mathemati- 363

cal puzzle as its solution can be seen as a directed 364

acyclic graph from the question to the answer. We 365

employ 1 shot as the example to lead the model to 366

perform formatted reasoning. 367

Baselines 368

Considering the nature of the math problems, CoT 369

and CR are chosen as baselines for their excellent 370

ability for complex thinking and multi-jump reason- 371

6



Model Method GSM8K SVAMP ASDiv AVG

Llama3-8B-Instruct
CoT 75.6% 80.5% 82.3% 79.5%
CR 77.0% 71.2% 84.8% 77.6%
RFF (ours) 83.8% 89.7% 86.7% 86.7%

Qwen2.5-7B-Instruct
CoT 87.2% 92.1% 88.0% 89.1%
CR 87.7% 83.7% 91.9% 87.8%
RFF (ours) 89.5% 95.1% 92.2% 92.3%

Table 2: The results of the math problems.

ing. CoT and CR are set with one shot to balance372

the influence of the same setup in RFF-G. CoT373

generates a continuous chain of thoughts until the374

model answers the question. CR generates a few375

hints first, then generates simple questions and an-376

swers until the model thinks it’s enough to answer377

the question.378

Results379

Table 2 shows the accuracy of Llama3-8B-instruct380

and Qwen-2.5-7B-Instruct on three datasets. CR381

and RFF present great improvement of accuracy to382

CoT on GSM8K and ASDiv datasets, contributing383

to the better focus on details and relations about384

progressive prompting methods. However, CR fails385

to reach the level of CoT on SVAMP, stemming386

from an overthinking about a very simple question.387

We also notice the gap between RFF and CoT is388

increasing with the base ability of the model de-389

creasing(from Qwen to Llama), demonstrating a390

significant complementary effect on the model’s391

reasoning ability.392

4.3 Studies of Redundant Thinking393

We investigate the limitations of traditional algo-394

rithms for solving the Game of 24. While conven-395

tional breadth-first search tree methods perform396

well in low-dimensional solution spaces, their un-397

guided exploration mechanisms may lead to signif-398

icant computational resource waste and efficiency399

degradation when handling higher-dimensional400

problems.401

To validate this theoretical hypothesis, we con-402

structed an experimental dataset comprising 100403

enhanced problems (IDs 901-1000) by strategically404

adding the constant "1" to original four-number405

combinations, creating five-number variants. Theo-406

retically, this operation preserves the solvability of407

problems (based on arithmetic identity transforma-408

tions) and is expected to decrease the difficulty by409

introducing a redundant variant.410

Model Method ACC Visit State

GPT-4
CR(n=5) 76% 7.06
RFF(n=5) 89% 5.96
RFF(n=10) 93% 9.13

Llama3-8B
CR(n=5) 26% 96.56
RFF(n=5) 85% 28.62
RFF(n=10) 92% 56.13

Table 3: The results of 5 numbers of the Game of 24.

As shown in Table 3, after adding a redundant 411

variant, the performance of CR decreased signifi- 412

cantly with GPT-4 (from 94% to 76%). In contrast, 413

RFF achieves a higher success rate with fewer visit 414

states compared with CR. When we further expand 415

the search space, the model’s performance contin- 416

ues to improve. At the same time, we observe that 417

the smaller model requires more attempts at reason- 418

ing to achieve performance comparable to the orig- 419

inal data. However, RFF consistently surpasses CR 420

in terms of success rate and resource consumption. 421

The result demonstrates the effective prospective 422

state space pruning in RFF and effectively validates 423

the superiority of future-state leading-based search 424

space convergence mechanisms. 425

4.4 Studies of Robust Thinking 426

To address the data leakage risks associated with 427

the widespread adoption of the GSM8K dataset, 428

researchers (Mirzadeh et al., 2024) proposed 429

the GSM-Symbolic benchmark through semantic- 430

preserving transformations. This dataset gener- 431

ates derivative problems via entity/quantity sub- 432

stitution (GSM-SYM) and the addition of sin- 433

gle (GSM-P1) or dual (GSM-P2) conditional con- 434

straints to the original question. Despite theoretical 435

expectations that surface-level modifications (e.g., 436

name/quantity changes) should not impact rea- 437

soning capabilities, empirical observations reveal 438
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Figure 5: The result of CoT and RFF on GSM-Symbolic dataset.

significant accuracy degradation across all mod-439

els. Following the standard evaluation protocol of440

GSM8K, we systematically assess the reasoning441

generalization of RFF models using the publicly442

available SYM, p1, and p2 subsets from GSM-443

SYM (each subset contains 50 variants from an444

original dataset). We employ Llama3-8B-Instruct445

with CoT and RFF methods to conduct this task.446

Figure 5 shows the accuracy distribution of the447

50 variants datasets in three subsets. The result448

exhibits that the accuracy of both methods drops449

on these three datasets, representing the fragility of450

the reasoning ability of models. However, RFF still451

has advantages in the average accuracy and shows a452

more concentrated and more accurate distribution.453

The result emphasizes that the form of forward454

reasoning guided by backward reasoning is quite455

robust in the face of variant problems.456

5 Conclusion457

In this paper, we introduce Reason from Fu-458

ture (RFF), a novel reasoning paradigm aiming459

at enhancing the reasoning ability of LLMs for460

complex problems. RFF leverages a bidirectional461

reasoning framework that integrates top-down plan-462

ning with bottom-up reasoning accumulation to463

generate a solution path. This aids in the conver-464

gence of the search space for the model, thereby465

enhancing inference efficiency. Simultaneously,466

it allows the model to focus on critical informa-467

tion, which improves the accuracy of reasoning.468

RFF has demonstrated superior performance across469

both searching tree tasks (Game of 24) and directed470

acyclic graph tasks (math problems), showing the471

potential to enhance the model’s reasoning capabil-472

ities.473

Limitations 474

The effectiveness of RFF relies on the model’s abil- 475

ity for reverse thinking. Since the model has not 476

been trained with specialized data, there can be 477

rare instances where errors in the final step of re- 478

verse reasoning lead to failure. In future work, we 479

will introduce fine-tuning or reinforcement learn- 480

ing to further enhance the generalizability of this 481

reasoning paradigm. 482

References 483

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama 484
Ahmad, Ilge Akkaya, Florencia Leoni Aleman, 485
Diogo Almeida, Janko Altenschmidt, Sam Altman, 486
Shyamal Anadkat, et al. 2023. Gpt-4 technical report. 487
arXiv preprint arXiv:2303.08774. 488

Enric Boix-Adsera, Omid Saremi, Emmanuel Abbe, 489
Samy Bengio, Etai Littwin, and Joshua Susskind. 490
2023. When can transformers reason with abstract 491
symbols? arXiv preprint arXiv:2310.09753. 492

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, 493
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias 494
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro 495
Nakano, et al. 2021. Training verifiers to solve math 496
word problems. arXiv preprint arXiv:2110.14168. 497

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, 498
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, 499
Akhil Mathur, Alan Schelten, Amy Yang, Angela 500
Fan, et al. 2024. The llama 3 herd of models. arXiv 501
preprint arXiv:2407.21783. 502

Leonie Koban, Peter J Gianaros, Hedy Kober, and Tor D 503
Wager. 2021. The self in context: brain systems 504
linking mental and physical health. Nature Reviews 505
Neuroscience, 22(5):309–322. 506

JDMCK Lee and K Toutanova. 2018. Pre-training of 507
deep bidirectional transformers for language under- 508
standing. arXiv preprint arXiv:1810.04805, 3(8). 509

8



Shen-Yun Miao, Chao-Chun Liang, and Keh-Yih Su.510
2021. A diverse corpus for evaluating and developing511
english math word problem solvers. arXiv preprint512
arXiv:2106.15772.513

Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi,514
Oncel Tuzel, Samy Bengio, and Mehrdad Farajtabar.515
2024. Gsm-symbolic: Understanding the limitations516
of mathematical reasoning in large language models.517
arXiv preprint arXiv:2410.05229.518

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.519
2021. Are nlp models really able to solve520
simple math word problems? arXiv preprint521
arXiv:2103.07191.522

Alec Radford. 2018. Improving language understanding523
by generative pre-training.524

Bilgehan Sel, Ahmad Al-Tawaha, Vanshaj Khattar,525
Ruoxi Jia, and Ming Jin. 2023. Algorithm of526
thoughts: Enhancing exploration of ideas in large527
language models. arXiv preprint arXiv:2308.10379.528

R Nathan Spreng, Raymond A Mar, and Alice SN Kim.529
2009. The common neural basis of autobiographical530
memory, prospection, navigation, theory of mind,531
and the default mode: a quantitative meta-analysis.532
Journal of cognitive neuroscience, 21(3):489–510.533
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A More Experiments on Math Problems 585

We compare two different backward reasoning 586

strategies on Math Problems called Pair Rea- 587

soning (same as RFF) and Single Reasoning as 588

shown in Figure 6, we conduct experiments on 589

GSM8K dataset using Llama3-8B-Instruct with 590

greedy search. 591

Method ACC

CoT 75.6%
Pair Reasoning RFF (RFF) 83.8%
Single Reasoning RFF 69.8%

Table 4: The results of different back reasoning strate-
gies

As shown in Table 4, the performance of Single 592

Reasoning RFF drops badly on GSM8K dataset and 593

even worse than CoT, we assume that the weakness 594

of the strategy of Single Reasoning is that when 595

deducing the whole chain of backward thought, the 596

situations of multi-hop seriously affects the back- 597

ward reasoning without new information generated 598

by the forward reasoning. 599

B Appendix for Prompts 600

The design of prompts is critical to lead the model 601

to reason exactly according to the paradigm we 602

have planned. We design these prompts deliber- 603

ately to ensure the model reason and output accord- 604

ing to the format we give it. 605
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Figure 6: Two different strategies of backward reasoning

System: Suppose you are one of the greatest AI scientists, logicians, and mathematicians. Let’s play a game.
The Input is the current state, which contains four or three numbers.
The Target is the state we want to get, which contains one or two numbers.
The Last Step is how to get the Target with Input in the last step.
The Avoid is tested to be a wrong Last step, you need to generate another different step.
What you need to do is to think how to use Input to get Target use some steps, just output the most likely Last 
Step you think.
Notice:
1 Now do not calculate the game, you need to rely on your instincts to give the most likely Last Step directly, 
and do not output other thinking process.
2 The Last Step should contains two parts: "calculation" and "left".
3 The number used in "calculation" may not appear in Input, and the result of "calculation" must appear in 
"left".
4 The numbers in "left" must be the same as Target.
5 You are forbidden to output Steps, you should output Last Step only.

User: 
Input: 1 3 6 11
Target: 24
Avoid: 3 x 8 = 24 (left: 24)
Avoid: 4 x 6 = 24 (left: 24)

Assistant:
Last Step: 2 x 12 = 24 (left: 24)

Figure 7: Prompts of Last Step Generator for Game of 24
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System: Now you are given few examples about the game: 
Input is the current state of the game.
Target is the final state you need try to satisfy using basic arithmetic operations (+ - * /) with the Input.
Steps are how to get Target with Input through basic operations.
Next Step is the how to get the Target with Input in the next step.
The Avoid is tested to be a wrong Next step, you need to generate another different step.
You need to choose two numbers from Input and use one basic arithmetic operations (+ - * /) to generate a 
new number.
Notice:
1 Output the Next Step directly and do not output the other thinking process.
2 The Next Step contains and only contain two parts: "calculation" and "left".
3 The "left" should be close to Target but not asked to be the totally same.
4 Your calculation must be correct.
5 Do not output Steps.

User:
Input: 8 8 10 12
Target: 8 16
Avoid:  8 + 8 = 16

System:
Next Step: 12 - 10 = 2 (left: 2 8 8)

Figure 8: Prompts of Stepwise Forward Reason for Game of 24

System: You are one of the GREATEST mathematicians, logicians, programmers, and AI scientists. You 
are intelligent and rational. You are prudent and cautious. You THINK NATURAL, BROAD AND DEEP. 
Let's think step by step.
You will be given a mathematical problem, a question about it and the information we have calculated.
Notice: 
1 You are not permitted to solve the question from the beginning.
2 You need to analyse the question and figure out what will be the last step to solve the question. 
3 Make sure your analysis are used to calculate the result of the question not the intermediate result.
4 Output the calculation process, and the information we need.

User:
Problem: {problem}
Question: {question}
Information: {information}

Assistant:
To know {question}: Since {information}, we can do: {calculation process}
Need Information: {need information}

Figure 9: Prompts of Last Step Generator for math problems
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System: You are one of the GREATEST mathematicians, logicians, programmers, and AI scientists. You 
are intelligent and rational. You are prudent and cautious. You THINK NATURAL, BROAD AND DEEP. 
Let's think step by step.
You will be given a mathematical problem, a question about it and the information we have calculated.
Notice: 
1 You are not permitted to solve the question from the beginning.
2 You need to analyse the question and figure out what will be the last step to solve the question. 
3 Make sure your analysis are used to calculate the result of the question not the intermediate result.
4 Output the calculation process, and the information we need.

User:
Problem: {problem}
Question: {question}
Information: {information}

Assistant:
To know {question}: Since {information}, we can do: {calculation process}
Need Information: {need information}

Figure 10: Prompts of Stepwise Forward Reason for math problems

System: You are one of the GREATEST mathematicians, logicians, programmers, and AI scientists. You 
are intelligent and rational. You are prudent and cautious. You THINK NATURAL, BROAD AND DEEP. 
Let's think step by step.
You will be given a mathematical problem, a question about it and information we have calculated.
Notice: 
1 You are not permitted to solve the question.
2 You need to analyse the question and information, then figure out whether we have already solved the 
question.
3 Make sure your analysis do not consist of calculation process.
4 If we have solved the question, you should output [True], else you should output [False].

User:
Problem: {problem}
Question: {question}
Information: {information}

Assistant:
Analyse: {analyse}
Answer: [True, False]

Figure 11: Prompts of State Check for math problems
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