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ABSTRACT

Test-Time Scaling (TTS) is an important method for improving the performance
of Large Language Models (LLMs) by using additional computation during the
inference phase. However, current studies do not systematically analyze how policy
models, Process Reward Models (PRMs), and problem difficulty influence TTS.
This lack of analysis limits the understanding and practical use of TTS methods. In
this paper, we focus on two core questions: (1) What is the optimal approach to scale
test-time computation across different policy models, PRMs, and problem difficulty
levels? (2) To what extent can extended computation improve the performance of
LLMs on complex tasks, and can smaller language models outperform larger ones
through this approach? Through comprehensive experiments on MATH-500 and
challenging AIME24 tasks, we have the following observations: (1) The compute-
optimal TTS strategy is highly dependent on the choice of policy model, PRM, and
problem difficulty. (2) With our compute-optimal TTS strategy, extremely small
policy models can outperform larger models. For example, a 1B LLM can exceed
a 405B LLM on MATH-500. Moreover, on both MATH-500 and AIME24, a 0.5B
LLM outperforms GPT-4o, a 3B LLM surpasses a 405B LLM, and a 7B LLM
beats o1 and DeepSeek-R1, while with higher inference efficiency. These findings
show the significance of adapting TTS strategies to the specific characteristics of
each task and model and indicate that TTS is a promising approach for enhancing
the reasoning abilities of LLMs.
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Figure 1: Comparison between the performance of large LLMs CoT and that of small LLMs
compute-optimal TTS on MATH-500 and AIME24. (a) & (d) Llama-3.2-3B-Instruct surpasses
Llama-3.1-405B-Instruct and GPT-4o on MATH-500 and AIME24; (b) & (e) DeepSeek-R1-Distill-
1.5B outperforms o1-preview on MATH-500 and AIME24, and surpasses o1-mini on MATH-500; (c)
& (f) DeepSeek-R1-Distill-7B beats o1 on MATH-500 and AIME24, and exceeds DeepSeek-R1 on
AIME24.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under Review at the ICLR 2025 Workshop on Reasoning and Planning for LLMs

1 INTRODUCTION

Large Language Models (LLMs) have shown significant improvements across a variety of do-
mains (OpenAI, 2023; Hurst et al., 2024; Anthropic, 2023; OpenAI, 2024; DeepSeek-AI et al., 2025).
Recently, OpenAI o1 (OpenAI, 2024) has demonstrated that Test-Time Scaling (TTS) can enhance
the reasoning capabilities of LLMs by allocating additional computation at inference time, making it
an effective approach for improving LLM performance (Qwen Team, 2024; Kimi Team et al., 2025;
DeepSeek-AI et al., 2025).

The key challenge of TTS is how to scale compute optimally, that is, allocating the optimal computa-
tion for each problem (Snell et al., 2024). Current TTS methods guide the generation process and
select the final answer using Process Reward Models (PRMs), which effectively scale test-time com-
pute (Wu et al., 2024; Snell et al., 2024; Beeching et al., 2024). These TTS methods involve several
important factors, such as policy models1, PRMs, and problem difficulty levels. However, there is
limited systematic analysis of how policy models, PRMs, and problem difficulty influence these TTS
strategies. This limitation prevents the community from fully understanding the effectiveness of this
method and developing insights for compute-optimal TTS strategies.

To address these issues, this paper aims to investigate the influence of policy models, PRMs, and
problem difficulty on TTS through comprehensive experimental analysis. Furthermore, we explore
the concrete characteristics and performance boundaries of TTS methods. Specifically, we conduct
extensive experiments on MATH-500 (Lightman et al., 2024) and the challenging AIME24 (AI-MO,
2024) tasks using a range of PRMs (spanning from 1.5B to 72B across different model series) across
multiple policy models (ranging from 0.5B to 72B across two model families). Our results show
that the compute-optimal TTS strategy heavily depends on the specific policy model, PRM, and
problem difficulty level. Even smaller models (e.g., a 1B model) can outperform larger models (e.g., a
405B model) and even state-of-the-art reasoning models, such as o1 or DeepSeek-R1, in challenging
reasoning tasks by applying compute-optimal TTS.

The contributions of this work can be summarized as follows:

1. We conduct a comprehensive evaluation of different TTS methods using various up-to-date
policy models, multiple PRMs, diverse scaling methods, and more challenging tasks.

2. Our analysis highlights the necessity of considering the influence of rewards in the TTS
process and introduces reward-aware compute-optimal TTS. We also demonstrate that the
compute-optimal scaling strategy varies with different policy models, PRMs, and problem
difficulty levels.

3. The empirical results demonstrate the significant potential of smaller language models to
outperform larger models through TTS. Using the reward-aware Compute-optimal TTS
strategy, we show that a 3B LLM can outperform a 405B LLM, and a 7B LLM can surpass
o1 and DeepSeek-R1 on MATH-500 and AIME24 tasks.

2 SETUP & PRELIMINARIES

2.1 PROBLEM FORMULATION

We formulate the reasoning problem as a Markov Decision Process (MDP) (Sutton & Barto, 2018),
defined by the tuple (S,A,P,R, γ), where S is the state space, A is the action space, P : S×A → S
is the transition function, R : S ×A → R is the reward function, and γ ∈ [0, 1] is the discount factor.
Given a prompt x ∼ X , the policy with parameters θ generates the initial action a1 ∼ πθ(· | s1),
where s1 = x is the initial state. The policy receives a reward R(s1, a1), and the state transitions to
s2 = [s1, a1], where [·, ·] denotes the concatenation of two strings. This process continues until the
episode terminates, either by reaching the maximum number of steps or by generating an <EOS>
token. A trajectory of length H is represented as τ = {a1, a2, · · · , aH}. The process can be
summarized as follows:

Initial State: s1 = x ∼ X
Action: at ∼ πθ(· | st)
State Transition: st+1 = P(· | st, at) = [st, at]
Reward: rt = R(st, at)

(1)

1Following Snell et al. (2024), we use “policy models” to refer to LLMs that generate solutions, and “verifiers”
for PRMs.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under Review at the ICLR 2025 Workshop on Reasoning and Planning for LLMs

2.2 TEST-TIME SCALING METHOD

We consider three TTS methods: Best-of-N (BoN) (Brown et al., 2024), beam search (Snell et al.,
2024), and Diverse Verifier Tree Search (DVTS) (Beeching et al., 2024). As pointed out by Snell
et al. (2024), lookahead search is inefficient due to multi-step sampling, so we do not evaluate it or
other methods involving lookahead operations, such as Monte Carlo Tree Search (MCTS).

Best-of-N. In the BoN approach, the policy model generates N responses, after which scoring and
voting methods are applied to select the final answer.

Beam Search. Given beam width N and beam size M , the policy model first generates N steps.
The verifier selects the top N

M steps for subsequent search. In the next step, the policy model samples
M steps for each selected previous step. This process repeats until the maximum depth is reached or
an <EOS> token is generated.

Diverse Verifier Tree Search. To increase diversity, DVTS extends beam search by dividing the
search process into N

M subtrees, each of which is explored independently using beam search. As
shown in Beeching et al. (2024), DVTS outperforms beam search on easy and medium problems with
a large computational budget N . A similar trend is observed in Chen et al. (2024), where increasing
the number of parallel subtrees proves to be more effective than increasing the beam width under the
same budget.

2.3 COMPUTE-OPTIMAL TEST-TIME SCALING

To maximize the performance of TTS, Snell et al. (2024) proposes a test-time compute-optimal scaling
strategy, which selects hyperparameters corresponding to a given test-time strategy to maximize
performance benefits on a specific prompt. Given a prompt x, let Target(θ,N, x) represent the
output distribution over x produced by the policy model with parameters θ and a compute budget of
N .

θ∗x,y∗(x)(N) = argmax
θ

(
Ey∼Target(θ,N,x)

[
1y=y∗(x)

])
, (2)

where y∗(x) denotes the ground-truth correct response for x, and θ∗x,y∗(x)(N) represents the test-time
compute-optimal scaling strategy for the problem x with compute budget N .

3 RETHINKING COMPUTE-OPTIMAL TEST-TIME SCALING

3.1 COMPUTE-OPTIMAL SCALING STRATEGY SHOULD BE REWARD-AWARE

Compute-optimal TTS aims to allocate the optimal compute for each problem (Snell et al., 2024).
Previous works on TTS use a single PRM as verifier (Snell et al., 2024; Wu et al., 2024; Beeching
et al., 2024). Snell et al. (2024) trains a PRM on the responses of a policy model and uses it as the
verifier to do TTS with the same policy model, while Wu et al. (2024); Beeching et al. (2024) use a
PRM trained on a different policy model to do TTS. From the perspective of reinforcement learning,
we obtain an on-policy PRM in the former case and an offline PRM in the latter case. The on-policy
PRM produces more accurate rewards for the responses of the policy model, while the offline PRM
often generates inaccurate rewards due to out-of-distribution (OOD) issues (Snell et al., 2024; Zheng
et al., 2024).

For practical applications of compute-optimal TTS, training a PRM for each policy model to prevent
OOD issues is computationally expensive. Therefore, we investigate the compute-optimal TTS
strategy in a more general setting, where the PRM might be trained on a different policy model than
the one used for TTS. For search-based methods, PRMs guide the selection at each response step,
while for sampling-based methods, PRMs evaluate the responses after generation. This indicates that
(1) the reward influences response selection across all methods; (2) for search-based methods, the
reward also influences the search process.

To analyze these points, we perform a preliminary case study using beam search with Llama-3.1-
8B-Instruct as the policy model and RLHFlow-PRM-Mistral-8B and RLHFlow-PRM-Deepseek-8B
as PRMs. The results in Figure 11 demonstrate that the reward significantly affects the generation
process and outcomes. RLHFlow-PRM-Mistral-8B assigns high rewards to short responses, leading
to incorrect answers, while searching with RLHFlow-Deepseek-PRM-8B produces correct answers
but uses more tokens. In Section 4, we also empirically show that rewards have great influence on
TTS performance and output tokens.
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Based on these findings, we propose that rewards should be integrated into the compute-optimal TTS
strategy. Let us denote the reward function as R. Our reward-aware compute-optimal TTS strategy is
formulated as:

θ∗x,y∗(x),R(N) = argmax
θ

(
Ey∼Target(θ,N,x,R)

[
1y=y∗(x)

])
, (3)

where Target(θ,N, x,R) represents the output distribution of the policy model θ, adjusted by the
reward function R, under a compute budget N and prompt x. For sampling-based scaling methods,
Target(θ,N, x,R) = Target(θ,N, x). This reward-aware strategy ensures that compute-optimal
scaling adapts to the policy model, prompt, and reward function, leading to a more general framework
for practical TTS.

3.2 ABSOLUTE PROBLEM DIFFICULTY CRITERION IS MORE EFFECTIVE THAN QUANTILES
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Figure 2: Distribution of Pass@1
accuracy of Qwen2.5-72B-Instruct on
MATH-500, divided into five bins.

To consider the influence of problem difficulty on TTS, Snell
et al. (2024) group problems into five difficulty levels based
on Pass@1 accuracy quantiles. However, we find that using
difficulty levels from MATH (Hendrycks et al., 2021) or oracle
labels based on Pass@1 accuracy quantiles (Snell et al., 2024)
is not effective since different policy models have different
reasoning capabilities. As shown in Figure 2, Qwen2.5-72B-
Instruct achieves Pass@1 accuracy above 80% on 76.2% of
MATH-500 problems. Therefore, we use absolute thresholds
instead of quantiles to measure problem difficulty. Specifically,
we define three difficulty levels based on Pass@1 accuracy:
easy (50% ∼ 100%), medium (10% ∼ 50%), and hard (0% ∼
10%).

4 HOW TO SCALE TEST-TIME COMPUTE
OPTIMALLY?
In this section, we aim to answer the following questions:

• Q1: How does TTS improve with different policy models and PRMs?

• Q2: How does TTS improve for problems with different difficulty levels?

4.1 SETUP

Datasets. We conduct experiments on competition-level mathematical datasets, including MATH-
500 (Lightman et al., 2024) and AIME24 (AI-MO, 2024). MATH-500 contains 500 representative
problems from the test set of MATH (Hendrycks et al., 2021), and this subset is used following Snell
et al. (2024); Beeching et al. (2024). As recent LLMs show significant progress in mathematical
reasoning (OpenAI, 2024; DeepSeek-AI et al., 2025), we include the more challenging AIME24 for
experiments.

Policy Models. For test-time methods, we use policy models from Llama 3 (Dubey et al., 2024)
and Qwen2.5 (Yang et al., 2024b) families with different sizes. We use the Instruct version for all
policy models.

Process Reward Models. We consider the following open-source PRMs for evaluation:

• Math-Shepherd (Wang et al., 2024b): Math-Shepherd-PRM-7B is trained on Mistral-
7B (Jiang et al., 2023) using PRM data generated from Mistral-7B fine-tuned on MetaMath (Yu
et al., 2024).

• RLHFlow Series (Xiong et al., 2024): RLHFlow includes RLHFlow-PRM-Mistral-8B and
RLHFlow-PRM-Deepseek-8B, which are trained on data from Mistral-7B fine-tuned on Meta-
Math (Yu et al., 2024) and deepseek-math-7b-instruct (Shao et al., 2024), respectively. The base
model for both PRMs is Llama-3.1-8B-Instruct (Dubey et al., 2024).

• Skywork Series (Skywork o1 Team, 2024): The Skywork series comprises Skywork-PRM-
1.5B and Skywork-PRM-7B, trained on Qwen2.5-Math-1.5B-Instruct and Qwen2.5-Math-7B-
Instruct (Yang et al., 2024c), respectively. The training data is generated from Llama-2 (Touvron
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et al., 2023) fine-tuned on a mathematical dataset and Qwen2-Math (Yang et al., 2024a) series
models.

• Qwen2.5-Math Series (Zhang et al., 2025): We evaluate Qwen2.5-Math-PRM-7B and
Qwen2.5-Math-PRM-72B, trained on Qwen2.5-Math-7B-Instruct and Qwen2.5-Math-72B-
Instruct (Yang et al., 2024c), respectively. The data for training is generated using Qwen2-
Math (Yang et al., 2024a) and Qwen2.5-Math series models (Yang et al., 2024c). Among all
the PRMs listed, Qwen2.5-Math-PRM-72B is the strongest open-source PRM for mathemati-
cal tasks, while Qwen2.5-Math-PRM-7B is the most capable PRM among those with 7B/8B
parameters, as demonstrated in Zhang et al. (2025).

4.2 HOW DOES TTS IMPROVE WITH DIFFERENT POLICY MODELS AND PRMS? (Q1)
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Figure 3: Performance of Llama-3.1-8B-Instruct and Qwen2.5-7B-Instruct on MATH-500 with
different PRMs and TTS strategies.
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Figure 4: Performance of Llama-3.1-8B-Instruct and Qwen2.5-7B-Instruct on AIME24 with different
PRMs and TTS strategies.

PRMs are hard to generalize across policy models and tasks. As shown in Figure 3, for Llama-
3.1-8B-Instruct, the performance of search-based methods with Skywork and Qwen2.5-Math PRMs
improves significantly with larger compute budgets, while the results of searching with Math-
Shepherd and RLHFlow PRMs remain relatively poor, even worse than majority voting. For Qwen2.5-
7B-Instruct, the performance of searching with Skywork-PRM-7B and Qwen2.5-Math PRMs scales
well with more budgets, while the performance of other PRMs remains poor. In Figure 4, although the
Pass@k accuracy of both policy models improves a lot with larger compute budgets, the performance
improvement of TTS remains moderate. These results demonstrate that the generalization of PRMs is
particularly challenging across different policy models and tasks, especially for more complex tasks.

The optimal TTS method depends on the PRM used. As shown in Figure 3, BoN outperforms
other strategies most of the time when using Math-Shepherd and RLHFlow PRMs, while search-
based methods perform better with Skywork and Qwen2.5-Math PRMs. This difference occurs
because using a PRM for OOD policy responses leads to sub-optimal answers, as PRMs show limited
generalization across policy models. Moreover, if we select each step with OOD PRMs, it is likely to
obtain answers trapped in local optima and worsen the performance. This may also be related to the
base model of the PRM, since the PRM trained with PRM800K (Lightman et al., 2024) on Qwen2.5-
Math-7B-Instruct generalizes better than PRMs with Mistral and Llama as base models (Zhang et al.,
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2025). Further analysis is provided in Section D.1 and Appendix F. These results suggest that the
choice of the optimal TTS strategy depends on the specific PRMs used, emphasizing the importance
of considering reward information in compute-optimal TTS. We also explore the relationship between
TTS performance and the process supervision abilities of different PRMs. As shown in Figure 5, TTS
performance is positively correlated with the process supervision abilities of PRMs, and the fitted
function is Y = 7.66 log(X) + 44.31, where Y represents TTS performance and X represents the
process supervision abilities of the PRM (Zhang et al., 2025).
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Figure 5: The relationship between TTS performance and process supervision abilities of different
PRMs on MATH, where the size of each circle represents the number of parameters of the PRM and
the curve represents the fitted function.
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Figure 6: TTS performance of policy models with parameters from 0.5B to 72B on MATH-500 with
different scaling methods.

The optimal TTS method varies with policy models. To study the relationship between the
parameters of the policy models and the optimal TTS methods, we conduct experiments with
Qwen2.5 family LLMs (Yang et al., 2024b), including models with 0.5B, 1.5B, 3B, 7B, 14B, 32B,
and 72B parameters. The results in Figure 6 show that the optimal TTS methods depend on the
specific policy models. For small policy models, search-based methods outperform BoN, while
for large policy models, BoN is more effective than search-based methods. This difference occurs
because larger models have stronger reasoning capabilities and do not need a verifier to perform
step-by-step selection. In contrast, smaller models rely on a verifier to select each step, ensuring the
correctness of each intermediate step.

4.3 HOW DOES TTS IMPROVE FOR PROBLEMS WITH DIFFERENT DIFFICULTY LEVELS? (Q2)
Following Snell et al. (2024), we conduct a comprehensive evaluation of tasks with varying difficulty
levels. However, as explained in Section 3.2, we observe that using the difficulty levels defined in
MATH (Hendrycks et al., 2021) or the oracle labels based on the quantile of Pass@1 accuracy (Snell
et al., 2024) is not appropriate because different policy models exhibit different reasoning abilities.
To address this, we categorize the difficulty levels into three groups based on the absolute value of
Pass@1 accuracy: easy (50% ∼ 100%), medium (10% ∼ 50%), and hard (0% ∼ 10%).

The optimal TTS methods vary with different difficulty levels. The results in Figure 7 and
Figure 8 show that for small policy models (i.e., with fewer than 7B parameters), BoN is better
for easy problems, while beam search works better for harder problems. For policy models with
parameters between 7B and 32B, DVTS performs well for easy and medium problems, and beam
search is preferable for hard problems. For policy models with 72B parameters, BoN is the best
method for all difficulty levels.
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Figure 7: TTS performance of three Llama policy models on MATH-500 with three difficulty levels.

5 RESULTS FOR COMPUTE-OPTIMAL TEST-TIME SCALING

With the compute-optimal TTS strategy explored in Section 4, we conduct further experiments to
explore the following questions:

• Q3: Can smaller policy models outperform larger models with the compute-optimal TTS
strategy?

• Q4: How does compute-optimal TTS improve compared with CoT and majority voting?

• Q5: Is TTS more effective than long-CoT-based methods?

5.1 CAN SMALLER POLICY MODELS OUTPERFORM LARGER MODELS WITH THE
COMPUTE-OPTIMAL TTS STRATEGY (Q3)

Scaling test-time compute of small policy models is crucially important for improving the reasoning
performance of LLMs. We are interested in whether smaller policy models can outperform larger ones,
GPT-4o, even o1 and DeepSeek-R1, with the compute-optimal TTS strategy. First, we compare the
performance of Llama-3.2-3B-Instruct (compute-optimal TTS) with that of Llama-3.1-405B-Instruct
(CoT) on MATH-500 and AIME24. Also, we compare the performance of Qwen2.5-0.5B-Instruct,
Qwen2.5-1.5B-Instruct, Llama-3.2-1B-Instruct, and Llama-3.2-3B-Instruct with GPT-4o on the
above two tasks. As AIME24 is challenging for current LLMs, we also compare the performance of
DeepSeek-R1-Distill-Qwen-1.5B and DeepSeek-R1-Distill-Qwen-7B with o1 on AIME24.

From the results in Table 1, we have the following observations: (1) Llama-3.2-3B-Instruct with the
compute-optimal TTS strategy outperforms Llama-3.1-405B-Instruct on MATH-500 and AIME24,
meaning that smaller models can outperform 135× larger models using the compute-optimal
TTS strategy. Compared with previous works on TTS (Snell et al., 2024; Beeching et al., 2024),
we improve the result by 487.0% (23× → 135×). (2) If we further increase the compute budget to
N = 512, Llama-3.2-1B-Instruct with the compute-optimal TTS strategy beats Llama-3.1-405B-
Instruct on MATH-500, but underperforms Llama-3.1-405B-Instruct on AIME24.2 (3) Qwen2.5-0.5B-
Instruct and Llama-3.2-3B-Instruct with the compute-optimal TTS strategy outperforms GPT-4o,
indicating that small models can exceed GPT-level performance with the compute-optimal TTS
strategy. (4) DeepSeek-R1-Distill-Qwen-1.5B with the compute-optimal TTS strategy outperforms
o1-preview and o1-mini on MATH-500 and AIME24. We also show that DeepSeek-R1-Distill-Qwen-
7B with the compute-optimal TTS strategy outperforms o1 and DeepSeek-R1 on MATH-500 and
AIME24. These results demonstrate small reasoning-enhanced models can outperform frontier
reasoning LLMs with the compute-optimal TTS strategy.

2Since some outputs of Llama-3.2-1B-Instruct do not contain \boxed, which is used for answer extraction,
we use Qwen2.5-32B-Instruct to extract the answers of Llama-3.2-1B-Instruct.
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Table 1: Comparison of small policy models (compute-optimal TTS) with frontier reasoning LLMs
(CoT) on MATH-500 and AIME24.

Policy Model MATH-500 AIME24 Avg.
Proprietary LLMs

GPT-4o 74.6 9.3 42.0
o1-preview 85.5 44.6 65.1
o1-mini 90.0 63.6 76.8
o1 94.8 79.2 87.0

Open-Source LLMs

Llama-3.1-70B-Inst. 65.2 16.7 41.0
Llama-3.1-405B-Inst. 71.4 23.3 47.4
QwQ-32B-Preview 90.6 50.0 70.3
DeepSeek-R1 97.3 79.8 88.6

Open-Source LLMs with TTS

Llama-3.2-1B-Inst. 66.2 16.7 41.5
Llama-3.2-1B-Inst. (N = 512) 72.2 10.0 41.1
Llama-3.2-3B-Inst. 75.6 30.0 52.8
Qwen2.5-0.5B-Inst. 76.4 10.0 43.2
Qwen2.5-1.5B-Inst. 81.8 20.0 50.9

Open-Source Reasoning-Enhanced LLMs with TTS

DeepSeek-R1-Distill-Qwen-1.5B 91.6 63.3 77.5
DeepSeek-R1-Distill-Qwen-7B 95.2 83.3 89.3

Table 2: FLOPS Comparison between smaller policy models (compute-optimal TTS) and larger ones
(CoT).

Policy Model Pre-training FLOPS Inference FLOPS Total FLOPS.

Llama-3.2-3B-Inst. 1.62× 1023 3.00× 1017 1.62× 1023

Llama-3.1-405B-Inst. 3.15× 1026 4.05× 1017 3.15× 1026

DeepSeek-R1-Distill-7B 7.56× 1023 3.00× 1017 7.56× 1023

DeepSeek-R1 5.96× 1025 6.71× 1017 5.96× 1025

FLOPS Comparison. To answer the question of whether compute-optimal TTS is more effective
than increasing the model size, we compare the FLOPS of evaluated models in Table 2 following Snell
et al. (2024), where the computed FLOPS is corresponded to the results in Table 1. From the results,
we can see that small policy models even surpass large ones with less inference FLOPS and
reduce the total FLOPS by 100× ∼ 1000×.

5.2 HOW DOES COMPUTE-OPTIMAL TTS IMPROVE COMPARED WITH COT AND MAJORITY
VOTING? (Q4)

Based on the findings of compute-optimal TTS with different policy models, PRMs, and difficulty
levels, we summarize the results of compute-optimal TTS for each policy model on MATH-500 in
Table 3. We find that compute-optimal TTS can be 60× more efficient than majority voting and
improve reasoning performance by 150% over CoT. These results demonstrate that compute-optimal
TTS significantly enhances the reasoning capabilities of LLMs. However, as the number of parameters
in the policy model increases, the improvement of TTS gradually decreases. This suggests that the
effectiveness of TTS is directly related to the reasoning ability of the policy model. Specifically, for
models with weak reasoning abilities, scaling test-time compute leads to a substantial improvement,
whereas for models with strong reasoning abilities, the gain is limited.

5.3 IS TTS MORE EFFECTIVE THAN LONG-COT-BASED METHODS? (Q5)
Recently, long-CoT-based methods have shown substantial progress in mathematical reasoning (Guan
et al., 2025; Cui et al., 2025; Zeng et al., 2025; DeepSeek-AI et al., 2025). We compare the
performance of TTS with these approaches.

Setup. We evaluate the following methods: (1) rStar-Math (Guan et al., 2025): This method first
generates reasoning data via MCTS, followed by online policy and preference model learning. (2)

8
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Table 3: Comparison of TTS with different policy models on MATH-500.

Policy Model CoT Major. Compute-Optimal TTS Performance Gain Efficiency Gain
Llama-3.2-1B-Inst. 26.0 39.0 65.6 152.3% 60.0×
Llama-3.2-3B-Inst. 41.4 58.4 77.6 87.4% 14.1×
Llama-3.1-8B-Inst. 49.8 66.4 80.2 61.0% 54.2×
Qwen2.5-0.5B-Inst. 31.6 47.2 76.0 140.5% 16.0×
Qwen2.5-1.5B-Inst. 54.4 68.4 82.6 51.8% 46.7×
Qwen2.5-3B-Inst. 64.0 77.0 87.4 36.6% 64.0×
Qwen2.5-7B-Inst. 76.8 83.6 90.0 17.2% 45.3×
Qwen2.5-14B-Inst. 80.2 85.6 90.8 13.2% 16.0×
Qwen2.5-32B-Inst. 82.4 87.0 90.4 9.7% 4.0×
Qwen2.5-72B-Inst. 83.8 87.2 90.2 7.6% 4.0×

Table 4: Comparison of compute-optimal TTS with long-CoT methods on MATH-500 and AIME24.

Policy Model MATH-500 AIME24 Avg.
Open-Source Models with Direct CoT

Qwen2.5-7B-Inst. 76.8 13.3 45.1
Qwen2.5-Math-7B-Inst. 79.8 13.3 46.6

Long-CoT Methods with Direct CoT

rStar-Math-7B 78.4 26.7 52.6
Eurus-2-7B-PRIME 79.2 26.7 53.0
Qwen2.5-7B-SimpleRL-Zero 77.2 33.3 55.3
Qwen2.5-7B-SimpleRL 82.4 26.7 54.6
DeepSeek-R1-Distill-Qwen-7B 92.4 63.3 77.9

Open-Source Models with TTS

Qwen2.5-7B-Inst. w/ 7B PRM (Ours) 88.0 33.3 60.5
Qwen2.5-7B-Inst. w/ 72B PRM (Ours) 91.0 36.7 63.9

Eurus-2 (Cui et al., 2025): This method enhances the reasoning abilities of LLMs through implicit
process rewards and online reinforcement learning. (3) SimpleRL (Zeng et al., 2025): This method
replicates self-reflection with only 8K training data. (4) DeepSeek-R1-Distill-Qwen-7B (DeepSeek-
AI et al., 2025): This method distills 800K high-quality reasoning samples from DeepSeek-R1 with
671B parameters into a 7B LLM.

Results. As shown in Table 4, we find that TTS with Qwen2.5-7B-Instruct outperforms rStar-
Math, Eurus-2, and SimpleRL on both MATH-500 and AIME24. However, while the performance
of TTS on MATH-500 is close to that of DeepSeek-R1-Distill-Qwen-7B, it shows a significant
drop on AIME24. These results indicate that TTS is more effective than methods applying direct
reinforcement learning or SFT on the data generated via MCTS but is less effective than distilling
from strong reasoning models.

6 CONCLUSION & DISCUSSION

In this paper, we conduct a detailed empirical study on compute-optimal test-time scaling from the
perspectives of different policy models, PRMs, and more challenging evaluation tasks. Our results
demonstrate the dependency of optimal TTS strategies on policy models and validate the significant
potential of small language models to outperform large-scale models through TTS. For instance,
a mere 1B size model can surpass a 405B model with TTS. We also show that a 7B PRM can
achieve stronger TTS by supervising a more powerful 72B policy model, highlighting the need to
explore a true “weak-to-strong” paradigm beyond the current “strong-to-weak” supervision for policy
optimization. The key to this goal is designing more efficient forms of supervision, as PRM-based
and reinforcement learning-based methods still have limitations due to their reliance on high-quality
supervision. Future work should investigate more flexible and general supervision mechanisms to
boost the performance of small language models in complex tasks and provide new directions for
developing resource-efficient reasoning strategies.

Limitations. Although we provide a comprehensive evaluation of TTS on mathematical tasks, there
are still some limitations and future directions to explore: (1) Extending TTS to more tasks such as
coding and chemistry tasks. (2) Exploring more effective methods for compute-optimal TTS.
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A RELATED WORK

LLM Test-Time Scaling. Scaling LLM test-time compute is an effective way to improve the
performance (OpenAI, 2024). Previous works explore majority voting (Wang et al., 2023), search-
based methods (Yao et al., 2023; Xie et al., 2023; Khanov et al., 2024; Wan et al., 2024), and
refinement (Qu et al., 2024) to improve the performance. For verification-guided test-time compute,
Brown et al. (2024) explores inference compute with repeated sampling and domain verifiers, while
Kang et al. (2024); Wu et al. (2024); Snell et al. (2024) further explore search-based methods with
process reward guidance and Wang et al. (2024c) extends this setting to VLMs. To eliminate the need
for external reward models and the generation of extensive samples, Manvi et al. (2024) proposes a
self-evaluation method for adaptive and efficient test-time compute. A recent work (Beeching et al.,
2024) explores TTS via search methods with diversity. However, these works lack a evaluation with
either strong verifiers or policies with different sizes / capabilities. In this paper, we aim to provide a
more systematically evaluation with up-to-date policies and verifiers, more challenging tasks, and
provide some principles for practical TTS.

Improving Mathematical Reasoning Abilities of LLMs. Prior methods for improving mathe-
matical reasoning abilities can be divided into training-time methods and test-time methods. For
training-time methods, previous works explore large-scale mathematical corpus pre-training (OpenAI,
2023; Azerbayev et al., 2024; Shao et al., 2024) and supervised fine-tuning (Luo et al., 2023; Yu
et al., 2024; Gou et al., 2024; Tang et al., 2024; Tong et al., 2024; Zeng et al., 2024) to improve
mathematical capabilities. Another line of works explore self-training and self-improvement strate-
gies (Zelikman et al., 2022; Gulcehre et al., 2023; Trung et al., 2024; Hosseini et al., 2024; Zelikman
et al., 2024; Zhang et al., 2024a; Setlur et al., 2024a; Kumar et al., 2024; Cui et al., 2025), which
improve the reasoning abilities by fine-tuning on self-generated solutions. Recently, many works
improve the mathematical reasoning abilities with long CoT (Qin et al., 2024; Huang et al., 2024;
Kimi, 2024; DeepSeek-AI et al., 2025; Qwen Team, 2024; Skywork, 2024; Zhao et al., 2024), as
OpenAI o1 (OpenAI, 2024) shows significantly powerful reasoning capabilities with long thinking.

For test-time methods, prompt-based approaches have been extensively studied to enhance reasoning
without altering the model parameters. Techniques such as Chain-of-Thought (CoT) (Wei et al.,
2022) and its variants (Yao et al., 2023; Leang et al., 2024) guide the model to decompose problems
into manageable sub-steps, thereby improving accuracy and coherence in mathematical reasoning.
Beyond prompting strategies, self-refinement techniques (Madaan et al., 2023) allow models to review
and correct their outputs, while external tool integration (Gao et al., 2023; Chen et al., 2023) leverages
program interpreter or symbolic manipulators to perform precise calculations and validations. Self-
verification approaches (Weng et al., 2023) enable models to assess the correctness of their own
reasoning processes, further increasing robustness. These test-time strategies complement training-
time enhancements, collectively contributing to significant improvements in LLMs’ mathematical
reasoning capabilities. Our work mainly enhances the reasoning performance via scaling test-time
compute via PRM-guided search methods.

Process Reward Models. Previous works show that PRMs are more effective than ORMs (Ue-
sato et al., 2022; Lightman et al., 2024). However, collecting high-quality PRMs data, such as
PRM800K (Lightman et al., 2024), is often costly. The researchers explores automatic PRM data col-
lection via direct Monte Carlo estimation (Wang et al., 2024b), detecting relative scores of ORMs (Lu
et al., 2024), and efficient MCTS with binary search (Luo et al., 2024). Recently, more advanced
PRMs are explored from advantage modeling (Setlur et al., 2024b), Q-value rankings (Li & Li, 2024),
implicit rewards (Yuan et al., 2024), and entropy regularization (Zhang et al., 2024b) perspectives.
Additionally, more open-source PRMs are released (Xiong et al., 2024; Skywork, 2024; Zhang
et al., 2024b; Li & Li, 2024; Yuan et al., 2024; Zhang et al., 2025), showing strong performance on
mathematical tasks. With the rapid development of PRMs, ProcessBench (Zheng et al., 2024) and
PRMBench (Song et al., 2025) are proposed to provide comprehensive evaluation of PRMs. Zhang
et al. (2025) provides guidelines for practical development of PRMs and releases the most capable
PRMs for mathematical tasks up-to-date.

B EXPERIMENTAL DETAILS

Scoring and Voting Methods. Following Wang et al. (2024a), we consider three scoring methods:
PRM-Min, PRM-Last, and PRM-Avg, and three voting methods: Majority Vote, PRM-Max, and
PRM-Vote. To obtain the final answer, we first use the scoring methods to evaluate the answers.
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For a trajectory of length H , the scores for each trajectory with different scoring methods are
calculated as follows: (1) PRM-Min scores each trajectory by the minimum reward among all steps,
i.e., score = minR{Rt}Ht=0. (2) PRM-Last scores each trajectory by the reward of the last step,
i.e., score = RH . (3) PRM-Avg scores each trajectory by the average reward among all steps, i.e.,
score = 1

H

∑H
t=0 Rt. The voting methods then aggregate the scores to determine the final answer.

Majority Vote selects the answer with the majority of votes (Wang et al., 2023), while PRM-Max
selects the answer with the highest score, and PRM-Vote first accumulates the scores of all identical
answers and then selects the answer with the highest score.

We use OpenR3, which is an open-source LLM reasoning framework as our codebase. For compute
budgets, we use {4, 16, 64, 256} in most experiments. The division of steps follows the format \n\n
as in prior works (Xiong et al., 2024; Zhang et al., 2025). For beam search and DVTS, the beam
width is set to 4. The temperature of CoT is 0.0, while it is 0.7 for other methods. For CoT and BoN,
we restrict the maximum number of new tokens to 8192. For search-based methods, the token limit is
2048 for each step and 8192 for the total response.

C PROMPT TEMPLATE FOR TEST-TIME SCALING

The system prompt for Llama 3 series models (Dubey et al., 2024) and Qwen2.5 series models (Yang
et al., 2024b) are listed in Table 5 and Table 6, respectively. Following Beeching et al. (2024), we use
the system prompt of the official evaluation 4 for Llama 3 to prevent performance drop.

Table 5: System prompt for Llama 3 series models.

Solve the following math problem efficiently and clearly:

- For simple problems (2 steps or fewer):
Provide a concise solution with minimal explanation.

- For complex problems (3 steps or more):
Use this step-by-step format:

## Step 1: [Concise description]
[Brief explanation and calculations]

## Step 2: [Concise description]
[Brief explanation and calculations]

...

Regardless of the approach, always conclude with:

Therefore, the final answer is: $\boxed{answer}$. I hope it is correct.

Where [answer] is just the final number or expression that solves the
problem.

Table 6: System prompt for Qwen2.5 series models.

Please reason step by step, and put your final answer within \boxed{}.

3https://github.com/openreasoner/openr
4https://huggingface.co/datasets/meta-llama/Llama-3.2-1B-Instruct-evals

17

https://github.com/openreasoner/openr
https://huggingface.co/datasets/meta-llama/Llama-3.2-1B-Instruct-evals


918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under Review at the ICLR 2025 Workshop on Reasoning and Planning for LLMs

Table 7: Statistics of training data of RLHFlow PRMs.

Mistral-PRM-Data Deepseek-PRM-Data
Average Token per Response 236.9 333.1
Average Token per Step 46.6 58.4

Table 8: TTS with various voting methods on MATH-500.

Skywork-PRM-7B Qwen2.5-Math-PRM-7B
Majority Vote 77.8 87.6
PRM-Min-Max 70.6 87.4
PRM-Min-Vote 78.2 87.6
PRM-Last-Max 71.4 87.6
PRM-Last-Vote 77.8 87.6
PRM-Avg-Max 73.2 87.8
PRM-Avg-Vote 78.0 87.6

D ADDITIONAL RESULTS

D.1 DOES PRMS HAVE BIAS TOWARDS SPECIFIC RESPONSE LENGTHS OR SENSITIVITY TO
VOTING METHODS?

PRMs are biased towards the length of steps. Although we perform TTS under the same budget
in pervious experiments, we find that the number of inference tokens with different PRMs varies
singificantly. For example, given the same budget and the same policy model, the number of inference
tokens of scaling with RLHFlow-PRM-Deepseek-8B is consistently larger than that of RLHFlow-
PRM-Mistral-8B, nearly 2×. The training data of RLHFlow series PRMs are sampled from different
LLMs, which may lead to the bias towards the length of the output. To verify this point, we analyze
several properties of the training data of RLHFlow-PRM-Mistral-8B5 and RLHFlow-PRM-Deepseek-
8B6. As shown in Table 7, both the average token per response and the average token per step of
DeepSeek-PRM-Data are larger than those of Mistral-PRM-Data, indicating that the training data
of RLHFlow-PRM-Deepseek-8B is longer than that of RLHFlow-PRM-Mistral-8B. This may lead
to the bias towards the length of the output. We also find that the number of inference tokens of
scaling with Qwen2.5-Math-7B is larger than that of Skywork-PRM-7B, but the performance is very
near, which indicates that searching with Skywork-PRM-7B is more efficient than searching with
Qwen2.5-Math-7B.

PRMs are sensitive to voting methods. From the results in Table 8, it is shown that Skywork-
PRM-7B works better with PRM-Vote than with PRM-Max, while Qwen2.5-Math-PRM-7B is not
sensitive to voting methods. The main reason is that the training data of Qwen2.5-Math PRMs are
processed with LLM-as-a-judge (Zheng et al., 2023), which removes the wrong intermediate steps
labeled as positive steps in the training data and makes the outputted large reward values more likely
to be correct. This shows that the training data of PRMs is important for improving the ability to find
errors in the search process.

E FULL RESULTS OF TEST-TIME SCALING WITH DIFFERENT POLICY
MODELS, PRMS, AND SCALING METHODS

The full results of TTS with different policy models, PRMs, and scaling methods are shown in
Figure 9 and Figure 10.

F CASES

In this section, we provide cases for TTS and summarize several problems for PRMs. By analyzing the
output of TTS, we identify several issues with PRMs. Specifically, we observe four major categories:
(1) Over-Criticism: As shown in Figure 12, the PRM assigns low scores even to mathematically
correct steps, resulting in false negatives. (2) Error Neglect: As shown in Figure 13 and Figure 14,
the PRM sometimes assigns relatively high scores to steps with clear mathematical errors, failing

5https://huggingface.co/datasets/RLHFlow/Mistral-PRM-Data
6https://huggingface.co/datasets/RLHFlow/Deepseek-PRM-Data
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Figure 8: TTS performance of three Llama policy models on MATH-500 with different difficulty
levels.

to detect these errors during the reasoning process. (3) Error Localization Bias: As shown in
Figure 15, the PRM assigns lower scores to certain intermediate steps that are not where the critical
errors actually occur. This indicates a misalignment between the scoring signal and the actual error
locations. (4) Scoring Bias: As shown in Figure 16 and Figure 17, certain training biases, such as
sensitivity to the token length of intermediate steps, result in large discrepancies in scores for equally
correct reasoning steps.

Notably, these issues persist across both OOD datasets (e.g., the AIME24 dataset, which was not
used during PRM training) and in-distribution data (e.g., the MATH dataset used to train the model).
These problems distort the reasoning search process, degrade overall performance, and reduce the
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Figure 9: TTS performance of different policy models on MATH-500 with different PRMs and
scaling strategies.

reliability of PRM-assisted reasoning. Addressing these biases in future model architectures and
training procedures is necessary to improve the robustness and interpretability of PRMs.
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Figure 10: TTS performance of different policy models on AIME24 with different PRMs and scaling
strategies.
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Response (Beam Search with RLHFlow-Mistral-PRM-8B):
## Step 1: The least positive integer multiple of 30 must be divisible by 10 and 3. \nSince 
it can only be written with the digits 0 and 2, it must contain at least one 0 to be divisible 
by 10. [score=0.42]
## Step 2: To be divisible by 3, the sum of its digits must also be divisible by 3.\nThe 
possible sums of digits are 2, 4, 6, and so on, but only 6 is divisible by 3 and achievable 
with the digits 2 and 0. [score=0.62]
## Step 3: We can achieve a sum of 6 by using the number 220 or 022, but we cannot use 
leading zeros.\nThe number 220 is the smallest multiple of 30 that can be formed with 
the digits 0 and 2. ки\n [score=0.56]
## Step 4: Multiplying 220 by 3 results in 660, which is a multiple of 30.\nWe've found 
the least positive integer multiple of 30 that can be written with only the digits 0 and 2. 
[score=0.87]
Therefore, the final answer is: $\\boxed{660}$. [score=0.81]

Problem: What is the least positive integer multiple of 30 that 
can be written with only the digits 0 and 2?

Response (Beam Search with RLHFlow-Deepseek-PRM-8B):
## Step 1: Determine the divisibility requirement for the number\nTo be a multiple of 
30, a number must be divisible by both 2 and 3. [score=0.85]
## Step 2: Consider the divisibility by 2\nFor a number to be divisible by 2, it must end 
in 0, since it's the only way it will be even. [score=0.89]
## Step 3: Consider the divisibility by 3\nFor a number to be divisible by 3, the sum of 
its digits must be divisible by 3. [score=0.92]
## Step 4: Determine the least possible number meeting these requirements\nThe
smallest number that can be formed with the given digits (0 and 2) and ends in 0 is 200. 
However, the sum of its digits (2 + 0 + 0 = 2) is not divisible by 3. [score=0.85]
## Step 5: Find the next possible number meeting the requirements\nThe next number 
to try is 220. The sum of its digits (2 + 2 + 0 = 4) is still not divisible by 3. [score=0.91]
## Step 6: Determine the next possible number meeting the requirements\nThe next 
number is 2200. The sum of its digits (2 + 2 + 0 + 0 = 4) is still not divisible by 3. 
[score=0.91]
## Step 7: Find the next possible number meeting the requirements\nThe next number 
to try is 2020. The sum of its digits (2 + 0 + 2 + 0 = 4) is still not divisible by 3. 
[score=0.88]
## Step 8: Determine the next possible number meeting the requirements\nThe next 
number is 22000. However, we can notice that the sum of the digits is still not divisible by 
3. [score=0.88]
## Step 9: Consider a number with more 2s\nInstead of adding more 0s, try adding more 
2s to meet the divisibility requirement of 3. [score=0.91]
## Step 10: Find the next possible number meeting the requirements\nThe next number 
to try is 2220. The sum of its digits (2 + 2 + 2 + 0 = 6) is divisible by 3. [score=0.85]
Therefore, the final answer is: $\\boxed{2220}$. [score=0.81]

# of Tokens: 890

# of Tokens: 2419

Figure 11: Toy case of beam search with RLHFlow-Mistral-PRM-8B and RLHFlow-Deepseek-PRM-
8B.
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Response:

To simplify \\(\\sqrt{242}\\), we can use the prime factorization method. Here are the 

steps:  [score=0.90]

1. **Prime Factorization**: First, we need to find the prime factors of 242.\n   - 242 is 

even, so it is divisible by 2.\n     \\[\n     242 \\div 2 = 121\n     \\]\n     So, \\(242 = 2 

\\times 121\\).\n   - Next, we factor 121. We know that 121 is \\(11 \\times 11\\).\n     

\\[\n     121 = 11 \\times 11\n     \\]\n     So, \\(242 = 2 \\times 11 \\times 11\\).  

[score=0.88]

2. **Rewrite the Square Root**: Now, we can rewrite the square root of 242 using its 

prime factorization.\n     \\[\n     \\sqrt{242} = \\sqrt{2 \\times 11 \\times 11}\n     \\]  

[score=0.84]

3. **Simplify the Square Root**: We can use the property of square roots that 

\\(\\sqrt{a \\times b} = \\sqrt{a} \\times \\sqrt{b}\\).\n     \\[\n     \\sqrt{242} = 

\\sqrt{2 \\times 11 \\times 11} = \\sqrt{2} \\times \\sqrt{11 \\times 11} = \\sqrt{2} 

\\times 11 = 11\\sqrt{2}\n     \\]  [score=0.53]

Therefore, the simplified form of \\(\\sqrt{242}\\) is \\(\\boxed{11\\sqrt{2}}\\).  

[score=0.46]

Problem:
Simplify $\\sqrt{242}$.

Figure 12: TTS case of Over-Criticism.
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Response:

To solve for \\( DE \\) given that \\(\\sin D = 0.7\\) and the length \\( EF = 7 \\), we 

can follow these steps: [score=0.99]

1. **Identify the given information and the right triangle:**\n   - We are given \\(\\sin D 

= 0.7\\).\n   - \\( \\angle DEF \\) is a right angle.\n   - \\( EF = 7 \\). [score=0.99]

2. **Understand the trigonometric relationship:**\n   - In a right triangle, \\(\\sin\\) of 

an angle is the ratio of the length of the opposite side to the hypotenuse.\n   - Here, 

\\(\\sin D = \\frac{EF}{DE}\\). [score=0.90]

3. **Set up the equation using the given \\(\\sin D\\):**\n   \\[\n   \\sin D = 

\\frac{EF}{DE}\n   \\]\n   Substituting the given values:\n   \\[\n   0.7 = \\frac{7}{DE}\n   

\\] [score=0.97]

4. **Solve for \\( DE \\):**\n   - To isolate \\( DE \\), multiply both sides of the 

equation by \\( DE \\):\n     \\[\n     0.7 \\cdot DE = 7\n     \\]\n   - Divide both sides by 

0.7:\n     \\[\n     DE = \\frac{7}{0.7}\n     \\]\n   - Simplify the division:\n     \\[\n     DE 

= 10\n     \\] [score=0.99]

Therefore, the length of \\( DE \\) is \\(\\boxed{10}\\). [score=0.99]

Problem:
Suppose $\\sin D = 0.7$ in the diagram below. What is $DE$? [asy]\npair D,E,F;\nF = 

(0,0);\nD = (sqrt(51),7);\nE = (0,7);\ndraw(D--E--F--D);\ndraw(rightanglemark(D,E,F,15));\n 

label(\"$D$\",D,NE);\n label(\"$E$\",E,NW); \nlabel(\"$F$\",F,SW); \nlabel(\"$7$\", 

(E+F)/2,W); \n[/asy]

Figure 13: TTS case of Error Neglect.

Response:

To find the length of \\( DE \\), we start by analyzing the given right triangle \\( DEF \\) 

where \\( \\angle EDF = 90^\\circ \\). We know that the length of \\( EF \\) is 7 and 

the sine of angle \\( D \\) is 0.7. We can use the definition of sine in a right triangle, 

which is the ratio of the length of the opposite side to the hypotenuse. [score=0.74]

Given:\n\\[ \\sin D = \\frac{EF}{DE} = 0.7 \\]\nSince \\( EF = 7 \\), we substitute to 

get:\n\\[ \\frac{7}{DE} = 0.7 \\]\nTo find \\( DE \\), we solve the equation:\n\\[ DE = 

\\frac{7}{0.7} = \\frac{7}{\\frac{7}{10}} = 10 \\] [score=0.88]

Thus, the length of \\( DE \\) is:\n\\[ \\boxed{10} \\] [score=0.82]

Problem:
Suppose $\\sin D = 0.7$ in the diagram below. What is $DE$? [asy]\npair D,E,F;\nF = 

(0,0);\nD = (sqrt(51),7);\nE = (0,7);\ndraw(D--E--F--D);\ndraw(rightanglemark(D,E,F,15));\n 

label(\"$D$\",D,NE);\n label(\"$E$\",E,NW);\n label(\"$F$\",F,SW);\n label(\"$7$\", 

(E+F)/2, W); \n [/asy]

Figure 14: TTS case of Error Neglect.
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Response:

To solve the problem, we start by noting that \\(D\\) is the intersection of the tangents 

to the circumcircle \\(\\omega\\) at \\(B\\) and \\(C\\). This means that \\(D\\) is the 

excenter of the triangle \\(ABC\\) opposite to \\(A\\). By the properties of tangents 

from a point to a circle, \\(DB = DC\\).  [score=0.20]

We use the fact that \\(AD\\) is the angle bisector of \\(\\angle BAC\\) when extended 

to intersect the circumcircle again at \\(P\\). By the Angle Bisector Theorem, we know 

that the ratio of the segments created by the angle bisector on \\(BC\\) is equal to the 

ratio of the other two sides of the triangle. Therefore, we have:\n\\[\n\\frac{BD}{DC} = 

\\frac{AB}{AC} = \\frac{5}{10} = \\frac{1}{2}\n\\]\nSince \\(BD = DC\\), we can use the 

Power of a Point theorem at \\(D\\). The power of point \\(D\\) with respect to the 

circle is:\n\\[\nDB^2 = DC^2 = DA \\cdot DP\n\\]\nSince \\(D\\) is the intersection of 

the tangents at \\(B\\) and \\(C\\), we have:\n\\[\nDB^2 = DC^2 = BD^2 = BD \\cdot 

BP\n\\]\nLet \\(BD = x\\). Then \\(DC = x\\) and \\(BC = BD + DC = 2x = 9\\), so \\(x = 

\\frac{9}{2}\\). Therefore, \\(BD = DC = \\frac{9}{2}\\).  [score=0.66]

Using the Power of a Point theorem again, we have:\n\\[\nBD^2 = DA \\cdot DP \\implies 

\\left(\\frac{9}{2}\\right)^2 = DA \\cdot DP \\implies \\frac{81}{4} = DA \\cdot 

DP\n\\]\nWe need to find the length of \\(DA\\). By the Angle Bisector Theorem, the 

ratio of the segments \\(BD\\) and \\(DC\\) is the same as the ratio of \\(AB\\) and 

\\(AC\\), which is \\(\\frac{1}{2}\\). Therefore, \\(DA\\) can be found using the 

formula for the length of the angle bisector:\n\\[\nAD = \\frac{2 \\cdot AB \\cdot AC 

\\cdot \\cos \\left(\\frac{A}{2}\\right)}{AB + AC}\n\\]\nHowever, a simpler approach is 

to use the fact that \\(AD \\cdot DP = \\left(\\frac{9}{2}\\right)^2 = \\frac{81}{4}\\). 

Since \\(AD + DP = AP\\), we need to find \\(AP\\). Using the fact that \\(DA \\cdot DP 

= \\frac{81}{4}\\) and knowing that \\(DA = \\frac{90}{13}\\) (from the Angle Bisector 

Theorem and the length of the angle bisector formula), we can solve for 

\\(AP\\):\n\\[\nAP = \\frac{81}{4 \\cdot DA} = \\frac{81}{4 \\cdot \\frac{90}{13}} = 

\\frac{81 \\cdot 13}{4 \\cdot 90} = \\frac{1053}{360} = \\frac{117}{40}\n\\]\nThus, 

\\(AP = \\frac{117}{40}\\), and the sum \\(m + n\\) is:\n\\[\n117 + 40 = 

157\n\\]\nTherefore, the answer is:\n\\[\n\\boxed{157}\n\\]  [score=0.92]

Problem:
Let $ABC$ be a triangle inscribed in circle $\\omega$. Let the tangents to $\\omega$ at $B$ 

and $C$ intersect at point $D$, and let $\\overline{AD}$ intersect $\\omega$ at $P$. If 

$AB=5$, $BC=9$, and $AC=10$, $AP$ can be written as the form $\\frac{m}{n}$, where $m$ 

and $n$ are relatively prime integers. Find $m + n$.

Figure 15: TTS case of Error Localization Bias.
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Response:

Let's denote the number of gold coins in each of the seven bags initially as \\( n \\). 

Therefore, the total number of coins before finding the bag of 53 coins is \\( 7n \\). 

After finding the bag of 53 coins, the total number of coins becomes \\( 7n + 53 \\). 

[score=0.98]

Since you redistribute the coins so that all eight bags have the same number of coins, the 

total number of coins must be divisible by 8. Therefore, \\( 7n + 53 \\) must be divisible 

by 8. We can express this condition as:\n\\[ 7n + 53 \\equiv 0 \\pmod{8} \\]\n\\[ 7n 

\\equiv -53 \\pmod{8} \\]\nSince \\(-53 \\equiv -53 + 64 = 11 \\equiv 3 \\pmod{8}\\), 

we have:\n\\[ 7n \\equiv 3 \\pmod{8} \\] [score=0.81]

To solve for \\( n \\), we need the multiplicative inverse of 7 modulo 8. The multiplicative 

inverse of 7 modulo 8 is a number \\( x \\) such that:\n\\[ 7x \\equiv 1 \\pmod{8} 

\\]\nBy testing values, we find that \\( x = 7 \\) works because:\n\\[ 7 \\cdot 7 = 49 

\\equiv 1 \\pmod{8} \\]\nThus, multiplying both sides of \\( 7n \\equiv 3 \\pmod{8} \\) 

by 7, we get:\n\\[ n \\equiv 21 \\pmod{8} \\]\n\\[ n \\equiv 5 \\pmod{8} \\]\nSo, \\( n 

= 8k + 5 \\) for some integer \\( k \\). [score=0.92]

The total number of coins after finding the bag of 53 coins is \\( 7n + 53 = 7(8k + 5) + 53 

= 56k + 35 + 53 = 56k + 88 \\). Since the number of coins must be more than 200, we 

have:\n\\[ 56k + 88 > 200 \\]\n\\[ 56k > 112 \\]\n\\[ k > 2 \\]\nThe smallest integer 

\\( k \\) that satisfies this inequality is \\( k = 3 \\). Substituting \\( k = 3 \\) into the 

expression for the total number of coins, we get:\n\\[ 56 \\cdot 3 + 88 = 168 + 88 = 256 

\\] [score=0.79]

To find the number of coins before finding the bag of 53 coins, we calculate:\n\\[ 7n = 7 

\\cdot (8 \\cdot 3 + 5) = 7 \\cdot 29 = 203 \\] [score=0.51]

Thus, the smallest number of coins you could have had before finding the bag of 53 coins 

is \\(\\boxed{203}\\). [score=0.68] [token num=31]

Problem:
You have seven bags of gold coins. Each bag has the same number of gold coins. One day, you 

find a bag of 53 coins. You decide to redistribute the number of coins you have so that all eight 

bags you hold have the same number of coins. You successfully manage to redistribute all the 

coins, and you also note that you have more than 200 coins. What is the smallest number of 

coins you could have had before finding the bag of 53 coins?

Figure 16: TTS case of Scoring Bias.
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Problem:
You have seven bags of gold coins. Each bag has the same number of gold coins. One day, you 

find a bag of 53 coins. You decide to redistribute the number of coins you have so that all eight 

bags you hold have the same number of coins. You successfully manage to redistribute all the 

coins, and you also note that you have more than 200 coins. What is the smallest number of 

coins you could have had before finding the bag of 53 coins?
Response:

Let's denote the number of gold coins in each of the seven bags initially as \\( x \\). 

Therefore, the total number of coins initially is \\( 7x \\). After finding a bag of 53 coins, 

the total number of coins becomes \\( 7x + 53 \\).  [score=0.98]

We are given that the total number of coins can be evenly distributed among 8 bags, so 

\\( 7x + 53 \\) must be divisible by 8. Additionally, we know that the total number of 

coins is more than 200. We need to find the smallest possible value of \\( 7x + 53 \\) 

that satisfies both conditions.  [score=0.95]

First, we express the condition that \\( 7x + 53 \\) is divisible by 8:\n\\[ 7x + 53 \\equiv 

0 \\pmod{8} \\]\nSince \\( 7 \\equiv -1 \\pmod{8} \\), we can rewrite the equation 

as:\n\\[ -x + 53 \\equiv 0 \\pmod{8} \\]\n\\[ -x \\equiv -53 \\pmod{8} \\]\n\\[ x 

\\equiv 53 \\pmod{8} \\]\n\\[ x \\equiv 5 \\pmod{8} \\]\nThis means that \\( x \\) can 

be written in the form:\n\\[ x = 8k + 5 \\]\nfor some integer \\( k \\).  [score=0.90]

Next, we substitute \\( x = 8k + 5 \\) into the expression for the total number of 

coins:\n\\[ 7x + 53 = 7(8k + 5) + 53 = 56k + 35 + 53 = 56k + 88 \\]\nWe need \\( 56k + 

88 \\) to be more than 200:\n\\[ 56k + 88 > 200 \\]\n\\[ 56k > 112 \\]\n\\[ k > 2 

\\]\nThe smallest integer \\( k \\) that satisfies this inequality is \\( k = 3 \\). 

Substituting \\( k = 3 \\) into the expression for the total number of coins, we 

get:\n\\[ 56 \\cdot 3 + 88 = 168 + 88 = 256 \\]\nThus, the smallest number of coins you 

could have had before finding the bag of 53 coins is:\n\\[ 7x = 7(8 \\cdot 3 + 5) = 7 

\\cdot 29 = 203 \\]\nTherefore, the smallest number of coins you could have had before 

finding the bag of 53 coins is \\(\\boxed{203}\\). [score=0.12] [token num=283]

Figure 17: TTS case of Scoring Bias.
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