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ABSTRACT

Machine learning (ML) models can make decisions based on large amounts of
data, but they may be missing important context. For example, a model trained to
predict psychiatric outcomes may know nothing about a patient’s social support
system, and social support may look different for different patients. In this work,
we explore strategies for querying for a small, additional set of these human fea-
tures that are relevant for each specific instance at test time, so as to incorporate
this information while minimizing the burden to the user to label feature values.
We define the problem of querying users for an instance-specific set of human fea-
ture values, and propose algorithms to solve it. We show in experiments on real
datasets that our approach outperforms a feature selection baseline that chooses
the same set of human features for all instances.

1 INTRODUCTION

Recent advances in machine learning (ML) have enabled it to be applied across several domains,
including complex scenarios involving loan approval, medical diagnoses and criminal justice. A
defining feature of complex scenarios is the need to incorporate human expertise in the decision-
making process. Specifically, ML models and human decision-makers often have different yet com-
plementary strengths: ML models can recognise patterns in massive datasets, while humans have
access to additional facts and contextual information which may be missing from the dataset and are
important for decision-making.

Consider the example where electronic health record (EHR) data from thousands of patients is con-
verted to a set of machine features that are analysed by ML and used to predict depression-related
outcomes (e.g. Pradier et al. (2020), Lage et al. (2022)). These models, though predictive, may lack
important contextual information that is otherwise available to the human patient, about for instance
their support network, or socioeconomic status. We call these human features. Both human and
machine can be important predictors of treatment outcomes (Carter et al., 2012). However, different
features may be relevant for different types of patients. For example, marital status may be important
to determine social support for a 40 year old patient, but not an 18 year old.

Existing strategies for incorporating additional human features in test-time predictions largely rely
on users being able to make expert decisions. For example, mixtures-of-experts approaches (e.g.
Jordan & Jacobs (1994); Parbhoo et al. (2017)) weight the predictions made by an ML model and a
human decision-maker to decide when a human should step in. Others learn when to defer decisions
to a down-stream decision-maker based on samples of the ML model’s decisions (e.g Madras et al.
(2018); Mozannar & Sontag (2020); Joshi et al. (2021)), or explicitly constrain the model to align
with human expertise (Pradier et al., 2021; Wang et al., 2018). These methods all however, assume
that users can make reasonable predictions, which is not necessarily the case for many users like the
patients described above. A third alternative for incorporating human features is to identify the few
that are missing from the dataset, and collect these for all patients going forwards. While this does
not require user expertise, it assumes that the same set of features will be useful across all instances.

In this work, we consider the problem of intelligently eliciting a small number of personalized hu-
man features for each instance at test time, where weights for the human features were learned dur-
ing training. Having access to these features at train time may be reasonable in settings where there
is a budget for collecting additional human features at train time, including through crowdsourc-
ing (e.g. Cheng & Bernstein (2015)), or in clinical trials (e.g. the CoMMpass study for multiple
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myeloma1). But expecting these same features at test time might be infeasible for either financial or
workflow-related reasons. For example, asking a patient 100 questions during a clinical interview
may negatively impact the clinical relationship.

We frame the problem of selecting the human features to query for each instances as a constrained
optimization problem, where the goal is to find features that most improve our predictive ability for
each specific instance at test time without making more than B queries. We introduce an entropy-
based strategy for solving this problem that identifies the human features that will provide the most
information about the prediction given the information already available in the machine features. On
synthetic and real datasets (for which we create a partition between machine and human features),
our instance-specific approach outperforms querying for the same B features across all instances.

2 RELATED WORK

Algorithms for Combining Human and ML Decisions Various methods have been proposed to
facilitate joint human-ai predictions by combining predictions made independently by each party.
These include approaches to learning models that complement human predictions (e.g. Wilder et al.
(2020); Raghu et al. (2019)), learning to defer to decision-makers when models are unsure (e.g.
Madras et al. (2018)), as well mixture of experts frameworks where one of the decision-makers is a
human (e.g. Parbhoo et al. (2017); Pradier et al. (2021)). In contrast, we study methods that combine
human and machine inputs at the level of features to leverage the relative strengths of both human
and machine decision makers within the same decision.

Human Feature Inputs to ML Predictions Approaches to incorporate human features as inputs
to ML predictions exist, but address different problem settings. Some methods use crowdworkers
to label features (e.g. Cheng & Bernstein (2015); Takahama et al. (2018); Zou et al. (2015); Sakata
et al. (2019), however these are employed at train time in conjunction with model development, and
assume all features will be labeled at test time. Interactive symptom checkers query patients for
symptoms to help them explore diagnoses. Systems including Poote et al. (2014) have hard-coded
rules about which features to query, rather than learning them. Ruotsalo & Lipsanen (2018) does
algorithmically select relevant queries using uncertainty over feature values, which is similar to our
approach, but models associations between symptoms and diseases are hard links which does not
accommodate general classes of machine learning models. Finally, in geospatial settings, estimation
fusion techniques can make predictions combining multiple sensors, some of which can be human-
based (see Hall et al. (2008); Hall & Jordan (2010) for an overview). In contrast, we study a setting
where only a small number of human features can be queried at test time, and propose methods for
identifying these features that are applicable for arbitrary ML models on tabular datasets.

Editable Models for ML-Assisted Decision-Making Various studies have considered the conse-
quences of editing model explanations directly to influence predictions: Gillies et al. (2016); Kulesza
et al. (2013), allows users to change parameters, which is likely challenging for non-experts, and
may result in users decreasing predictive performance; Koh et al. (2020) learns models with con-
cept abstractions and simulates user feedback to correct erroneous concept values; and Jacobs et al.
(2021) finds that clinicians are interested in being able to edit patient features in a clinical dashboard
for antidepressant prescription. Approaches that rely on editing data may be similarly accessible to
non-experts, however neither of these settings allow users to input new features, or offers guidance
about which concepts or features they should edit. In contrast, our approach intelligently guides
users to impactful new features to provide to the model.

Similar methods solving different problems Our work is also closely related to methods that
perform instance-wise feature selection. Among these, Yoon et al. (2018) propose a deep learning
approach to discover subsets of features that may be relevant for predicting a particular output. Sim-
ilarly, several information-theoretic approaches have also been proposed for selecting features for
and explaining a prediction. The learning-to-explain (L2X) method (Chen et al., 2018; Jethani et al.,
2021) learns a function to extract a subset of features that are most informative for a given example
by maximising the mutual information between some selected features and the response variable.

1https://themmrf.org/finding-a-cure/our-work/the-mmrf-commpass-study/
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In a similar vein, information bottleneck-based approaches (Tishby et al., 2000; Alemi et al., 2016),
explicitly constrain a model to only use the most relevant features by trading-off compressing the
features with predicting a response. While each of these of these methods may be complementary
to what we propose in this paper, our use case is different since we explicitly focus on integrating
and leveraging human expertise during test time.

3 PROBLEM DEFINITION AND APPROACH

The key novelty in our formulation lies in presuming the existence of a set of “human-features” that
can be elicited at test time. Our core question is how to query a small, but useful set of human
features for each instance, given that we have some way of making predictions based on them. We
assume the user has features relevant to the decision-making task for a specific instance, which may
be the case when the instance corresponds to a representation of the user–for example their medical
record. We assume that, for each instance, we can query the associated user a small, fixed number of
timesB, for e.g. less than 10 times, for the values of specific features. More queries may overwhelm
the user. Finally, we assume that a distinct set of human features may be relevant for each instance.
For example, demographic characteristics such as marital status exist for all patients, but may be less
relevant for indicating social support in an 18 year old patient than a 40 year old. In the following
section, we formalize this optimization problem, and present an approach for solving it.

3.1 PRELIMINARIES

Concretely, we assume a standard supervised learning setup where we have a dataset ofN instances,
the machine features,Xm, that the machine learning model always has access to, and corresponding
labels, Y . In addition, we assume access to human features Xh during training but not at test time
when they must be queried for a cost. Xm and Xh could be any real values, but in our instantiation,
we assume Xh is binary: Xh ∈ {0, 1}NxDh . (The human is best at providing yes-no answers.) We
additionally assume that the labels are categorical, i.e. Yn ∈ {0, ...,K}.

We train a discriminative prediction function f to make predictions Ŷ as follows:

Ŷ = f(θm, Xm, θh, Xh) + φ (1)

where θm and θh are parameters for Xm and Xh respectively and φ is a bias term. We instantiate
the model class when discussing implementation, but the methods and problem definition apply
generally to models of this form.

3.2 DEFINING THE DESIRED OPTIMIZATION OBJECTIVE

We formalize the problem of querying a small number of human features at test-time as a constrained
optimization problem where, for each instance, we want to ask the user at most B questions. B is
some small number, like 10, to avoid overwhelming the user with irrelevant queries. The goal is to
find those B queries for each instance that maximize the predictive quality, L, as much as possible.

For a test instance x, we denote which features in xh have been queried, using a binary query mask,
q ∈ {0, 1}Dh . qd = 1 indicates that human feature d has been queried for this instance, while qd = 0
indicates that it has not yet been queried.

We can then write the constraint on the number of queries for each instance in terms of q:

Dh∑
d=1

qd ≤ B (2)

In other words, the number of elements in q must that are queried, i.e. set to 1, should be at most B.

To make predictions on a test instance where we only have access to queried features in q, we
marginalize out the remaining features (i.e. qd = 0). This is a standard way of handling missing
data. We denote this prediction function as fmarg , and use it to predict for an instance as follows:

fmarg(xm, xh, q) =

∫
x̃h

f(θm, xm, θh, x̃h)p(x̃h|xm, q) (3)
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where x̃h corresponds to a random variable sampled from the helper distribution p(x̃h|xm, q) defined
below, rather than the actual value of xh, as this is unknown.

To define this helper distribution p(x̃h|xm, q), first factorize it, as xh and xm are both high dimen-
sional, and thus challenging to model jointly. The factorized form is as follows:

p(x̃h|xm, q) =

Dh∏
d=1

p(x̃hd |xmd , qd) (4)

We then define the individual dimensions of the helper distribution as follows:

p(x̃hd |xmd , qd) =

{
1x̃h

d=xh
d
if qd = 1

p(x̃hd |xm) if qd = 0
(5)

I.e. the probability is the same as p(x̃hd |xm) if the feature hasn’t been queried, and if the feature has
been queried, the probability of the true value is 1, and zero otherwise.

In practice, we compute the expectation in Equation 3 by Monte Carlo sampling:

fmarg(xm, xh, q) ≈ 1

S

S∑
s=1

f(θm, xm, θh, x̃h(s))

x̃h(s) ∼ p(x̃h(s)|xm, q)

where S is the number of samples drawn.

Based on this, we can define an idealized optimization objective that optimizes q for instance x to
minimize predictive loss L between the true label y and the prediction made using only the machine
features and the queried human features in q. This objective can be written as follow:

q∗ = arg min
q∈{0,1}Dhs.t.

∑Dh
d=1 qd≤B

L(y, fmarg(xm, xh, q)) (6)

In our results, we operationalize L as f1-score, but other reasonable choices could be made.

3.3 APPROXIMATE SOLUTION TO DESIRED OBJECTIVE

Solving this optimization problem directly requires access to the true label, y, which we do not have
for test instances. We address this challenge by solving a related optimization problem based on the
uncertainty of the predictions given a mask q, as this can be evaluated without knowing y.

Specifically, we optimize q to minimize the entropy of the marginalized predictions after querying
the features in xh specified by q. We can write this approximate objective as follows:

q∗ = arg min
q∈{0,1}Dhs.t.

∑Dh
d=1 qd≤B

H[fmarg(xm, xh, q)] (7)

Intuitively, this means that we want to find the set of human features to query that will reduce
our uncertainty about the prediction as much as possible. In the absence of true labels, prediction
uncertainty gives a reasonable surrogate for Equation 6. This is similar to a successful approach
taken in Bayesian Active Learning by Disagreement (Houlsby et al., 2011).

Solving this approximate objective comes with challenges as well. The first problem is that it is not
possible to evaluate this objective without querying the human features in q, so we cannot try many
distinct values for q without going over the query budget. We address this by taking an expectation
over the values of xh in a candidate q to cheaply evaluate this objective many times. The second
problem is that it this set optimization is computationally difficult; we address this by greedily
building up q by querying the best remaining feature dimension at each step, until we reach a set of
size B. While this is not guaranteed to provide an optimal solution, it is often employed for similar
approaches, e.g. (Houlsby et al., 2011), and is generally quite effective in practice. Algorithm 1
gives a full description of our procedure.
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Based on these insights, we break the optimization problem in Equation 7 up into B subproblems
where we find the unqueried feature dimension that maximizes the expected predictive entropy if it
were to be queried. We write this subproblem objective as follows:

d∗ = arg min
d∈{1,...,Dh|qd=0}

Ep(xh
d |xm)[H(fmarg(xm, xh, q + 1

Dh

d )] (8)

where 1Dh

d denotes a onehot vector of size Dh where all entries are 0 except at index d where the
entry is 1. The expectation is easy to compute as we assume xhd is binary.

In practice, we solve this optimization subproblem by trying all possible values of d that satisfy the
constraint. This is a strategy linear in Dh, and is employed by many active learning approaches,
including Zhu et al. (2003).

Algorithm 1 Our greedy search-based optimization procedure chooses, at each iteration, to query
the human feature that minimizes the expected marginalized entropy given the feature is queried.

Given: xm, xh

q ← {0}Dh

for b ∈ {1, ..., B} do

d∗ = arg mind∈{1,...,Dh|qd=0} Ep(xh
d |xm)[H(fmarg(xm, xh, q + 1

Dh

d )]

q ← q + 1
Dh

d∗

end for

4 IMPLEMENTATION

In order to solve the approach described in previous section, we need to instantiate: a functional form
for the prediction function f , and a distribution for approximating p(xh|xm). We also describe a
heuristic approach to boosting predictive performance by re-training the parameters of the predictive
function given the learned query mask, q.

4.1 DEFINING A FUNCTIONAL FORM FOR f

In practice, we implement f as a logistic regression model, where we make predictions as follows:

Ŷ = σ((θm)TXm + (θh)TXh + φ) (9)

Where θm and θh are weight vectors in RDm and RDh respectively, and φ is an intercept term in R.

4.2 APPROXIMATION p(xh|xm)

The marginalized prediction function, fmarg , and the expectation in Equation 8, depend on
p(xh|xm). We approximate this quantity from the data at train time. In order to fit the approxi-
mation p̂(xh|xm), we model each dimension of xh with an independent logistic regression model,
as the features in xh are binary. For a dimension d, we define:

p̂(xhd |xmd ) = σ(wT
d xm + w0

d) (10)

where wd is a weight vectors in RDm , and w0
d is an intercept in R. We train parameters wd and w0

d

to minimize the log-loss between p̂(Xh
d |Xm) and Xh

d for each dimension d ∈ {1, ..., Dh} using the
training set. While more expressive approximations to this distribution are possible, we found this
one to be sufficient in practice.

4.3 IMPLEMENTATION HEURISTIC: RE-TRAINING WITH QUERY MASK

We describe an optional retraining heuristic that boosts performance. The parameters of the predic-
tion function, θm, θh, φ are trained assuming that the dataset includes the human features in addition
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to the machine features. While we address this by marginalizing out unqueried dimensions of the
human features when predicting, we can often do slightly better by re-training the parameters using
query masks optimized for the training set.

In this case, rather than marginalizing the unqueried features to make predictions, we zero them out.
We define a prediction function fzero as follows:

fzero(xm, xh, q) = σ((θ̄m)Txm + (θ̄h)T (xh � q) + φ̄) (11)

and fit the re-trained parameters θ̄m, θ̄h, and φ̄ using a standard approach on the transformed dataset:
(Xm, (Xh�Q), Y ). Q is the matrix of feature query masks fit using algorithm our entropy approach
on the training set. At test time, we make predictions using fzero.

5 EXPERIMENTS

We ran experiments in 2 real domains to compare the predictive performance of our proposed ap-
proach variations against baselines that do not permit instance-specific human feature queries. We
include results on an illustrative toy example in Appendix 1. Our results demonstrate that the
instance-specific queries made by our method are helpful for improving predictive performance,
and qualitatively sensible. We describe baselines, hyperparameters and datasets, then our results.

5.1 EXPERIMENTAL SETUP

Baselines We compare our method to two baselines and one oracle upper bound. The upper bound
consists of a model with the same functional form as f (i.e. logistic regression) trained using both the
machine and human feature sets, i.e. Xm and Xh–we denote this all-features. This would be what
would be possible if, at test time, we could query the human for all their features rather than a subset.
The first baseline consists of another logistic regression model trained with only the machine feature
set, i.e. Xm, we denote this machine-only. This is the performance of the model with no access
to human features. The second baseline consists of a standard feature selection (denoted feature-
selection) approach where the same B human features are queried for all instances, rather than a
distinct subset of human features being queried for each instance. This allows us to demonstrate the
importance of instance-specific human feature queries.

We implement the feature selection baseline using a greedy forward selection strategy (see Tang
et al. (2014) for an overview of this and other methods) where, for each of the B features to add,
we re-train the model adding each remaining human feature and choose the feature with the best
validation performance (computed using f1-score, as this is the metric used in our results). This is a
standard and effective approach to feature selection.

Hyperparameters We implement all logistic regression models using the scikit-learn package
(Pedregosa et al., 2011). We used a multinomial loss, the SAGA solver and we set the maxi-
mum number of iterations to 5000. In our hyperparameter search for the real data experiments,
we searched over penalties: [l1, l2 and none], inverse regularization strengths [ 0.01 , 0.1 , 1. , 10.
, 100. ], and class weighting schemes [none, balanced]. We set B = 10. For the entropy selection
approach, we set the number of Monte Carlo samples S = 5000 so as to minimize this source of
approximation error. For the models used in the entropy method to model f and p(xh|xm), we do
not search over balanced class weights as this causes challenges with calibration–something that is
important for this method because it depends on accurately estimating probabilities.

We perform hyperparameter selection based on maximizing f1-score (the metric we report) on the
validation set, except in the case of the models for p(xh|xm), where log-loss is minimized instead.
This is to encourage those models to accurately model the probability distribution they approximate.
For the feature selection models, we chose the hyperparameters once based on the machine features
rather than re-optimizing them for each possible choice of features to select.

Datasets To illustrate the performance of our proposed approach, we use two real datasets: a
recipe dataset2 where the goal is to predict the cuisine of a recipe (e.g. Italian food) based on the

2https://www.kaggle.com/datasets/kaggle/recipe-ingredients-dataset
train.json file
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Figure 1: Test f1-score as a function of B for all both variations of our method, baselines and upper
bound in recipe (left) and birds (right) datasets. Error bars are standard errors over 10 random
restarts. In both, all-features performs best and machine-only worst with the methods using a subset
of human features in between. In recipe, both entropy methods substantially outperform feature-
selection, while in birds, entropy-refit eventually does, but entropy performs slightly worse.

ingredients, and a birds dataset (Wah) where the goal is to predict the type of bird (e.g. crow) based
on some crowdsourced attributes of an image of a bird. After pre-processing, the recipe dataset
consists of 6k instances (subsampled to that size for computational reasons); 120 features, and 20
classes, and the birds dataset consists of 5k instances; 171 features; and 36 classes.

We split the feature sets between Xm and Xh to facilitate running experiments with ground truth
values of Xh. We construct these feature splits so that Xm consists of a smaller set of features that
are “simpler” in some way, and Xh consists of a larger set of features that are more “complex”.
In the recipe dataset, we split the features so all single word ingredients (33 features) are in the
machine feature set, and all 2+ word ingredients (87 features) are in the human feature set. For
the birds dataset, we split the feature so all non-color-related words (48 features) are in the machine
feature set, and all color-related words (123 features) are in the human feature set.

We preprocess the recipe dataset by removing instances without labels, then subsampling 15% of
the remaining instances, maintaining overall label distribution, for computational reasons. We then
removed features with positive values for less than 100 instances. For the birds dataset, we use
the coarse class labels, and remove instances with infrequent class labels, recorded for less than 50
instances. We then binarize features values at 0.5 (features are recorded as the fraction of agree-
ment on MTurk responses about whether the feature is present in the image), and removed fea-
tures with positive values for less than 100 instances. We split the data, class-balancing labels, into
train/validation/test sets of sizes 2

3 ,
1
6 ,

1
6 of the instances respectively.

5.2 RESULTS

In our experiments, we compared the predictive performance of the standard (entropy-selection) and
retrained (entropy-retrain) variations of the entropy selection method we propose to baselines and
the all-features upper bound. We report test f1-score for all of these across values of B. Results are
reported as the mean and standard deviation over 10 random restarts of the train/valid/test splits and
any subsampling, unless otherwise specified. Figure 1 shows results in both domains.

The full set of features, outperforms only the machine features, suggesting that the human
features contribute substantially to predictive performance. In both datasets, all-features per-
forms substantially better than machine-only. In the recipe dataset, the gap in f1-scores between
these methods is 0.18, while in the birds dataset, the gap is 0.26. This suggests that there is substan-
tial improvement to be gained from finding ways to use the human features in predictions.

All 3 approaches that query human features are able to close a substantial portion of the gap
between all-features and machine-only within just 10 queries. In both datasets, the entropy-
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Figure 2: Test f1-score on birds as
a function of B after adding first 6
feature-selection queries to machine
features and re-running. Error bars are
standard errors from 5 random restarts.
By query 6, both entropy methods sub-
stantially outperform feature-selection.

Figure 3: Probability of querying a human feature (y-axis,
top 20 sorted by # times queried) given a machine feature
(x-axis) in the instance in recipe. Computed on test set for
randomly chosen restart. “cucumber”–“rice vinegar” and
“turmeric”–“garam masala” associations are sensible.

selection, entropy-retrain and feature-selection methods all substantially improve performance over
machine-only. The 2 entropy-based methods we propose close half or more of the performance gap
by the 10th query in both datasets, while feature-selection only achieves this in the birds dataset.
This is true despite the 10 queries covering only 12% of the human features in the recipe dataset
and 8% of the features in the birds dataset. This suggests that querying a small number of relevant
human features is a viable strategy for substantially improving the performance of ML models that
have access to only a subset of the relevant features.

Our proposed entropy-retrain approach outperforms feature-selection in both datasets after
sufficient queries, and never underperforms it. In the recipe dataset, entropy-retrain outper-
forms feature-selection starting from the 2nd query onwards. In the birds dataset, entropy-retrain
performs comparably to feature-selection for the first 6 queries, then outperforms it for the last 4.
The performance improvement is particularly marked in the recipe domain, where entropy-retrain’s
f1-score after 10 queries is 0.3 compared to only 0.26 for feature-selection. This suggests that query-
ing unique human features for each instance can improve performance over a shared set of features
queried for the entire dataset. It also suggests that our proposed entropy approach with the retraining
heuristic is an effective way to select these instance-specific human feature queries.

entropy-selection has variable performance compared to feature-selection in the initial queries,
but always outperforms it eventually. In the recipe dataset, entropy-selection performs similarly
to entropy-retrain, which allows it to substantially improve over feature-selection starting on the 4th
query. In the birds dataset, entropy-selection actually performs worse than feature-selection for the
first 6 queries, then performs similarly. Figure 2 shows the results of a follow-up experiment where
we added the first 6 features selected by feature-selection to the machine feature set for the birds
data, and re-ran all 3 approaches for 10 additional queries. This includes only 5 random restarts.
Here, we see that entropy-selection and entropy-refit perform similarly for the first 4-5 queries, then
substantially outperform feature-selection with an f1-score of 0.69 vs. 0.65. This suggests several
things: 1) the re-training heuristic is useful for boosting performance in at least some cases, 2)
even without the retraining heuristic, entropy-selection is useful, at least eventually, and 3) for some
datasets, individualized feature queries are useful immediately, while for others, they may be more
useful after querying an initial set of shared features.

Sensible correlations between machine features and human feature queries in the recipe do-
main suggest reasons for performance improvements from individualized feature queries.
Figure 3 shows a heatmap of the probability a specific human feature (y-axis) will be queried using
entropy-selection given that a specific machine feature (x-axis) is observed for the instance (com-
puted on the test set for 1 randomly chosen random restart). Strong relationships between sensible
ingredient pairings include “cucumber” and “rice vinegar”, which makes sense because the ingre-
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Figure 4: Original predictions, human features queried–underlined when positive, and updated pre-
dictions for 2 test instances from a randomly chosen restart with identical machine features. Infor-
mative human features including “soy sauce” and “olive oil” help to disambiguate predictions.

dients commonly co-occur in various east Asian cuisines but “cucumber” is more widely used, and
“turmeric” and “garam masala,” which makes sense because again, “turmeric” can be used in vari-
ous cuisines, but the 2 ingredients frequently co-occur in Indian cuisine. This suggests that feature
queries made by entropy-selection are informed by the machine features in sensible ways.

An illustrative example demonstrates how different queried human feature values can cause
the predictions for 2 instances with identical machine features to diverge to correct predictions.
We examine in Figure 4 how the predicted probabilities change after 10 feature queries for 2 test
instances with identical machine features but different labels. While both start with Mexican cuisine
as the most likely prediction, after discovering that instance 1 contains olive oil and does not contain
many other distinctive ingredients including fish sauce and garam masala, the prediction correctly
changes to Italian. For instance 2, the presence of soy sauce and the absence of many other features
correctly changes the prediction to Chinese cuisine. Note that the queries are not identical because
they depend on the values of queried human features. This example illustrates how the instance-
specific human feature queries can help disambiguate the labels of otherwise similar instances.

6 DISCUSSION

Our experiments suggest avenues for future work. The late improvement of the entropy based meth-
ods over feature selection in birds suggest there may be cases where a combination of instance-
specific and global human feature queries can be useful. Our proposed entropy-retrain method
still performs as well as feature-selection, but there may be benefits to recording the same features
for all instances, including using this information to update p̂(xh|xm). Future work could explore
heuristics for identifying when a dataset would benefit from an initial round of global human feature
collection, and when it would directly benefit from an instance-specific approach.

We make assumptions in this work that, while plausible, merit further study. We propose a method
that works given a predictive set of human features, however this may not always be the case.
Additionally, even when human features are important, they may be distinct from machine features
in ways that impact how they can be used for prediction. For example, important human features
such as pain may be more subjective than some machine features. Future approaches could explore
ways to identify specific use cases where human features exist and are informative, and methods to
account for subjectivity when querying human features. Finally, the assumption that we have access
to the human features at train time limits the contexts in which this method can be used. Future
work can explore relaxing this assumption by incorporating active learning techniques to query only
those human features that are truly needed to train the model.

7 CONCLUSION

We define the problem of querying users of machine learning models for a small number of ad-
ditional human features for each instance at test time, and present algorithms for generating these
queries. Our results demonstrate that instance-specific human feature queries can improve predic-
tive performance, and that our proposed entropy algorithm plus retraining heuristic can effectively
generate these queries in cases where informative human features exist.
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classification and preference learning. arXiv preprint arXiv:1112.5745, 2011.

Maia Jacobs, Melanie F Pradier, Thomas H McCoy, Roy H Perlis, Finale Doshi-Velez, and
Krzysztof Z Gajos. How machine-learning recommendations influence clinician treatment se-
lections: the example of antidepressant selection. Translational psychiatry, 11(1):1–9, 2021.

Neil Jethani, Mukund Sudarshan, Yindalon Aphinyanaphongs, and Rajesh Ranganath. Have we
learned to explain?: How interpretability methods can learn to encode predictions in their inter-
pretations. In International Conference on Artificial Intelligence and Statistics, pp. 1459–1467.
PMLR, 2021.

Michael I Jordan and Robert A Jacobs. Hierarchical mixtures of experts and the em algorithm.
Neural computation, 6(2):181–214, 1994.

Shalmali Joshi, Sonali Parbhoo, and Finale Doshi-Velez. Pre-emptive learning-to-defer for sequen-
tial medical decision-making under uncertainty. arXiv preprint arXiv:2109.06312, 2021.

Pang Wei Koh, Thao Nguyen, Stephen Tang Yew Siang, Mussmann, Pierson Emma, Been Kim, and
Percy Liang. Concept bottleneck models. In Proceedings of the 37th International Conference
on Machine Learning, 2020.

Todd Kulesza, Simone Stumpf, Margaret Burnett, Sherry Yang, Irwin Kwan, and Weng-Keen Wong.
Too much, too little, or just right? ways explanations impact end users’ mental models. In 2013
IEEE Symposium on visual languages and human centric computing, pp. 3–10. IEEE, 2013.

Isaac Lage, Thomas H McCoy Jr, Roy H Perlis, and Finale Doshi-Velez. Efficiently identifying
individuals at high risk for treatment resistance in major depressive disorder using electronic
health records. Journal of Affective Disorders, 306:254–259, 2022.

David Madras, Toni Pitassi, and Richard Zemel. Predict responsibly: improving fairness and accu-
racy by learning to defer. Advances in Neural Information Processing Systems, 31, 2018.

10



Under review as a conference paper at ICLR 2023

Hussein Mozannar and David Sontag. Consistent estimators for learning to defer to an expert. In
International Conference on Machine Learning, pp. 7076–7087. PMLR, 2020.

Sonali Parbhoo, Jasmina Bogojeska, Maurizio Zazzi, Volker Roth, and Finale Doshi-Velez. Com-
bining kernel and model based learning for hiv therapy selection. AMIA Summits on Translational
Science Proceedings, 2017:239, 2017.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

Aimee E Poote, David P French, Jeremy Dale, and John Powell. A study of automated self-
assessment in a primary care student health centre setting. Journal of telemedicine and telecare,
20(3):123–127, 2014.

Melanie F. Pradier, Thomas H. McCoy Jr, Michael Hughes, Roy H. Perlis, and Finale Doshi-
Velez. Predicting treatment dropout after antidepressant initiation. Translational Psychiatry,
10(1):60, 2020. doi: 10.1038/s41398-020-0716-y. URL https://doi.org/10.1038/
s41398-020-0716-y.

Melanie F Pradier, Javier Zazo, Sonali Parbhoo, Roy H Perlis, Maurizio Zazzi, and Finale Doshi-
Velez. Preferential mixture-of-experts: Interpretable models that rely on human expertise as much
as possible. AMIA Summits on Translational Science Proceedings, 2021:525, 2021.

Maithra Raghu, Katy Blumer, Greg Corrado, Jon Kleinberg, Ziad Obermeyer, and Sendhil Mul-
lainathan. The algorithmic automation problem: Prediction, triage, and human effort. arXiv
preprint arXiv:1903.12220, 2019.

Tuukka Ruotsalo and Antti Lipsanen. Interactive symptom elicitation for diagnostic information
retrieval. In The 41st International ACM SIGIR Conference on Research & Development in In-
formation Retrieval, pp. 1301–1304, 2018.

Yusuke Sakata, Yukino Baba, and Hisashi Kashima. Crownn: Human-in-the-loop network with
crowd-generated inputs. In ICASSP 2019-2019 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 7555–7559. IEEE, 2019.

Ryusuke Takahama, Yukino Baba, Nobuyuki Shimizu, Sumio Fujita, and Hisashi Kashima.
Adaflock: Adaptive feature discovery for human-in-the-loop predictive modeling. In Thirty-
Second AAAI Conference on Artificial Intelligence, 2018.

Jiliang Tang, Salem Alelyani, and Huan Liu. Feature selection for classification: A review. Data
classification: Algorithms and applications, pp. 37, 2014.

Naftali Tishby, Fernando C Pereira, and William Bialek. The information bottleneck method. arXiv
preprint physics/0004057, 2000.

Jiaxuan Wang, Jeeheh Oh, Haozhu Wang, and Jenna Wiens. Learning credible models. In Pro-
ceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, pp. 2417–2426, 2018.

Bryan Wilder, Eric Horvitz, and Ece Kamar. Learning to complement humans. arXiv preprint
arXiv:2005.00582, 2020.

Jinsung Yoon, James Jordon, and Mihaela van der Schaar. Invase: Instance-wise variable selection
using neural networks. In International Conference on Learning Representations, 2018.

Xiaojin Zhu, John Lafferty, and Zoubin Ghahramani. Combining active learning and semi-
supervised learning using gaussian fields and harmonic functions. In ICML 2003 workshop on the
continuum from labeled to unlabeled data in machine learning and data mining, volume 3, 2003.

James Zou, Kamalika Chaudhuri, and Adam Kalai. Crowdsourcing feature discovery via adaptively
chosen comparisons. In Third AAAI Conference on Human Computation and Crowdsourcing,
2015.

11

https://doi.org/10.1038/s41398-020-0716-y
https://doi.org/10.1038/s41398-020-0716-y

	Introduction
	Related Work
	Problem Definition and Approach
	Preliminaries
	Defining the Desired Optimization Objective
	Approximate Solution to Desired Objective

	Implementation
	Defining a functional form for f
	Approximation p(xh|xm)
	Implementation heuristic: Re-training with Query Mask

	Experiments
	Experimental Setup
	Results

	Discussion
	Conclusion

